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ABSTRACT 

This paper presents a model for constrained multiobjective optimization of mixed-

cropping planning. The decision challenges that are normally faced by farmers include 

what to plant, when to plant, where to plant and how much to plant in order to yield 

maximum output. Consequently, the central objective of this work is to concurrently 

maximize net profit, maximize crop production and minimize planting area. For this 

purpose, the generalized differential evolution 3 algorithm was explored to implement the 

mixed-cropping planning model, which was tested with data from the South African grain 

information service and the South African abstract of agricultural statistics. Simulation 

experiments were conducted using the non-dominated sorting genetic algorithm II to 

validate the performance of the generalized differential evolution 3 algorithm. The 

empirical findings of this study indicated that generalized differential evolution 3 

algorithm is a feasible optimization tool for solving optimal mixed-cropping planning 

problems.  
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INTRODUCTION 

There is no denying fact that agriculture 

and agricultural products play important 

roles in sustaining lives on the planet earth. 

In general, humans need animals and plants 

for foods, animals need plants for foods. 

Moreover, plants benefit from humans and 

animals, otherwise it would be difficult for 

humans, plants and animals to survive on the 

planet earth. The provisioning of sufficient 

foods to cater for the enormous populations 

on the planet earth requires efficient 

planning in agriculture. The bulk of studies 

on agricultural farm production planning 

normally focus on crop rotation or mixed-

cropping techniques to keep planting areas 

under continuous production. The practice 

of mixed-cropping planning is related to 

many factors that may include measurable 

and non-measurable factors. These factors 

include the types of available land for 

cultivation, yield rates of the cultivated 

crops, weather conditions, rainfall, irrigation 

system and availability of agricultural inputs 

such as machinery, fertilizer, capital, labour 

and cost of production. 

The cultivation of a sequence of crops 

while satisfying crop succession 

requirements is characterized by mixed-

cropping techniques. Mixed-cropping is a 

cropping system involving a group of crops 

with more than one crop that is cultivated on 

a plot in the same cropping period or season. 

It involves the exploitation of jointly 

beneficial interrelationships amongst 

individual crops. The central objective of 

crop planning is to search for an optimal 

combination of crops amongst those 

considered in order to maximize the overall 

contributions while concurrently satisfying a 

set of constraints such as land availability 
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and capital. The benefits of the mixed-

cropping techniques include higher crop 

yield, better spread of crop production over 

the growing period, improved quality of 

products and reduced risk of total crop 

failure. The success of a mixed-cropping 

technique is, therefore, dependent on the 

integration of mathematical models to 

manage all the components of the 

production system. 

This study explores the Generalized 

Differential Evolution 3 (GDE3), an 

evolutionary algorithm to solve the 

constrained multiobjective optimal mixed-

cropping problem formulation. Evolutionary 

algorithms have been used in recent times to 

solve different classes of single and 

multiobjective optimization problems from 

the domain of operation research (Deb and 

Tiwari, 2005; Zhou et al., 2011). There are 

numerous practical benefits of using 

evolutionary algorithms to solve real 

optimization problems with multiple 

conflicting objectives as compared with the 

classical optimization and artificial 

intelligence techniques. These benefits 

include their conceptual simplicity, 

flexibility, parallelism, potential to 

incorporate domain specific knowledge and 

ability to self-adapt the search to find global 

optimum solutions on the fly (Fogel, 1977; 

Huang, et al., 2009). 

The agricultural systems pose numerous 

challenges that can be formulated and solved 

as optimization problems. In dealing with 

numerous challenges of agricultural 

problems, certain authors have considered 

different mathematical formulations of 

agricultural problems and applications of 

diverse techniques to solve these problems. 

For instances, crop selection (Detlefsen and 

Jensen, 2007; Brunelli and von Lücken, 

2009), crop planning (Sarker et al., 1997; 

Sarker and Quaddus, 2002; Sarker and Ray, 

2009; Adeyemo et al., 2010; Márquez et al., 

2011), irrigation planning (Adeyemo and 

Otieno, 2009; Raju et al., 2012; Chetty and 

Adewumi, 2014) and vegetable production 

(Francisco and Ali, 2006). The variety of 

optimization models that were previously 

used for crop planning ranges from single to 

multiobjective. These models also include 

linear to non-linear forms, where 

computational intelligence techniques such 

as evolutionary algorithms have been 

explored.  

The class of optimization problems 

practically appears in many relevant 

application areas of human life, such as 

project scheduling and staffing, production 

planning, transportation, investment 

planning and many more. The improvement 

in solutions of optimization problems has 

direct consequences on costs and other 

important factors such as customer 

satisfaction. It is well known that only 

special classes of optimization problems like 

linear optimization can be efficiently solved 

by polynomial time algorithms. Many real 

world optimization problems are hard to 

solve because of additional requirements and 

the nature of such problems. Specifically, 

these problems may have a combinatorial 

structure and they may be non-linear. In 

order to efficiently solve such complex 

optimization problems, a large number of 

algorithmic solution approaches have been 

invented in recent times. These approaches 

can be classified into two main categories, 

the exact and the heuristic algorithms with 

each class having its assets and inherent 

drawbacks. 

The exact optimization approaches like the 

branch-and-bound, dynamic programming, 

constraint programming and the large class 

of linear programming techniques like 

branch-and-cut, branch-and-price, branch-

and-cut-and-price are guaranteed to find an 

optimal solution and to guarantee that the 

solution found is indeed optimal 

(Papadimitriou and Steiglitz, 1998; Hoffman 

and Ralphs, 2013). In general, the run-times 

of these algorithms often increase 

dramatically with increased sizes. This 

follows that only small or moderately sized 

instances can be solved within reasonable 

run-times. On the other hand, heuristic 

algorithms tradeoff optimality for run-time 

gain and are applicable to larger instances of 

hard problems.  
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Table 1. Optimal crop planning models [↑: maximization, ↓: minimization]. 

Author Methodology Objective Constraint 

Sarker and 

Quaddus, 2002 
Goal programming ↑Total contribution 

Food demand, land, capital, 

contingency, area and import 

bond 

Sarker et al., 1997. Linear Programming ↑Total contribution 

Food demand, land, capital, 

contingency, area and import 

bond 

Sarker and Ray, 

2009 

Multi-objective 

constrained 

algorithm (MCA). 

↑Total contribution 

↓Working capital 

Food demand, land, capital, 

contingency, area and import 

bond 

 Chetty and 

Adewumi, 2014 
Swarm Intelligence ↑Total gross profits 

Land, irrigation 

Current work 

Generalized 

Differential 

Evolution 

↑Net profit 

↑Crop  production 

↓Land utilization 

Economic demand of crops, 

land resource, investment in 

crop production and labour 

cost. 

 

Metaheuristics algorithms have especially 

proven to be highly useful in practice. This 

class of algorithms includes, among others, 

variable neighbourhood search, simulated 

annealing, various population-based 

methods like evolutionary algorithms and 

the estimation of distribution algorithms like 

ant colony optimization (Glover and 

Kochenberger, 2003; Hoos and Stützle, 

2004; Gendreau and Potvin, 2010). The 

assets and drawbacks of the two classes of 

techniques can be seen as complementary, 

therefore, combining the ideas from both 

streams appears to be natural. The hybrid 

algorithms combining elements of both 

streams have proven to be more efficient in 

terms of run-time or solution quality. Such a 

class of hybrid algorithms is called 

metheuristics. The various models of 

combinations exist (Dumitrescu and Stützle, 

2003; Puchinger and Raidl, 2005; Raidl, 

2006) and their classification is reported 

(Talbi, 2002; Talbi, 2009).  

The past studies on crop planning mainly 

differ in terms of the objective functions 

considered, the constraints applied and the 

methodologies used to solve the problems 

examined (Table 1). The study at hand 

considered both fixed cost and variable cost 

that are required per unit area for crops. The 

previous authors have extensively 

considered the variable costs (Sarker et al. 

1997; Sarker and Quaddus 2002; Sarker and 

Ray 2009; Chetty and Adewumi 2014).  

MATERIALS AND METHODS 

The Optimal Mixed-cropping Planning 

Model 

The mathematical formulation of a mixed-

cropping planning problem as considered in 

this study is a tri-objective model. The 

model is designed to concurrently maximize 

net-profit that can be produced by 

maximizing total crop production and 

minimizing the planting area. The objective 

is to make an effective use of the available 

limited resources to determine land 

allocation, amongst several competing crops 

that are required to be planted in the year. 

The soil characteristics, cropping patterns, 

crops produced, region and cropping 

methods are factors that affect production 

cost, yield rate and earning realized by the 

farmer. The mixed-cropping model is 

designed for a large scale planning 

incorporated with the data collected from the 

South African grain information service and 

the South African abstract of agricultural 

statistics (AAS, 2012). The objective 

functions and constraints of the optimization 

model are considered as follows: 
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Objective Function 1: Profit Maximization 

The principle on which the model is based is 

the principle of profit maximization, 

wherein the farmer has to choose a 

production plan that is likely to maximize 

profit. This can be expressed in a 

mathematical term that represents the net 

profit from single crop land (k= 1), double 

crop land (k= 2) and triple crop land (k= 3) 

as follows: 
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Objective Function 2: Crop Production 

Maximization 

Given the choice in terms of profit 

maximization and challenges faced by 

farmers in the production process, a farmer 

attempts to produce a specific level of output 

that requires maximizing crop production, 

according to the objective function. 

(equetion2) 

Objective Function 3: Planting Area 

Minimization 

From the socioeconomic perspective, 

besides meeting food demand, cultivation of 

profitable crops is dependent on the proper 

land allocation. Crop production 

maximization will therefore require 

minimizing the planting area, according to 

the following objective function. (equetion3) 

Constraints 

The objective functions considered in this 

study are to be solved, subject to the 

following five essential constraints: 

Economic Demands for Crops 

The total crop produced in a cropping year 

must not be less than the economic demands 

of crops in the country, which can be 

expressed as the constraint. (equetion4) 

Land Resource 

The total land used for a given type of land 

must not be greater than the total available 

land of that type, which can be expressed as: 

∑ ∑ ∀≤×

i j

kkjik kLXW ,,  (5) 

Where, W1= 1, for single-cropped land, 

because one crop is planted on a land, W2= 

1/2, because two crops are planted on the 

same land, and W3= 1/3, because three crops 

are planted on the same land. 

Labour Cost 

The total time required to cultivate a crop i 

in a single-crop year must not be greater 

than the total work time at the farm which 

can be expressed as equetion5. 

Investment in Crop Production 

The total investments in crop production 
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must not be greater than the working capital, 

which can be expressed as the following 

constraint: 

(equetion6) 

Non-negativity of Decision Variables 

The land area decision variables must not 

be less than zero, which can be expressed as 

the following constraint: 

0,, ≥kjiX
 ∀  kji ,,    

(7)
 

Where model variables are defined as 

follows: 

i is a crop that can be considered for 

production, 

 j is a crop combination made up from i, 

k is the land type, 

kjiX ,,  is the area in hectares of land to be 

cultivated for a crop i of crop combination j 

in land type k, 

iP  is the price in South African Rand 

(ZAR) of crop i per metric ton, 

kjiV ,, is the variable cost required per unit 

area for crop i of crop combination j in land 

type k, 

kjiF ,,  is the fixed cost required per unit 

area for crop i of crop combination j in land 

type k, 

kjiU ,,  is the number of farming units of 

crop i of crop combination j in land type k, 

kjiG ,,  is the yield-rate, which is the 

amount of production in metric tons per 

hectare of crop i of crop combination j in 

land type k, 

kjiT ,, is the work time for growing crop i 

of crop combination j in land type k, 

kH is the working time for land type k, 

kW  is the land-type coefficient for land 

type k, 

iD  is the expected delivery in metric tons 

of crop i, 

kL  is the available domain of land type k, 

aC  is the working capital (ZAR), 

m is the number of alternative crops for 

single-cropped land, 

n is the number of crop combinations for 

double-cropped land, 

 q is the number of crop combinations for 

triple-cropped land, 

jM is a crop in each j for single-cropped 

land, j= 1,…,m, 

jN  is the j
th
 crop pair of the possible crop 

combinations of double-cropped land, j= 

1,…,n  

jQ is the j
th
 crop triple of the possible crop 

combinations of triple-cropped land, j= 

1,…,q 

Generalized Differential Evolution 

Algorithm 

The Generalized Differential Evolution 3 

(GDE3) algorithm (Kukkonen and Lampinen, 

2009) modifies the selection rule of the basic 

Differential Evolution (DE) (Price et al., 2005). 

The GDE 3 also extends DE/rand/1/bin strategy 

(Qin et al., 2009) to multiobjective and multi-

constraint problems. The selection rule is that old 
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vector is replaced by the selected trial vector in 

the next generation, if it weakly constraint-

dominated old vector (Kukkonen and Lampinen, 

2005). In the case of comparing feasible, 

incomparable and non-dominating solutions, 

both offspring and parent vectors are saved for 

the population of the next generation. This 

reduces the computational cost of the 

metaheuristic. 

The population size may increase at the end of 

a generation, thereby making the population size 

higher than the original value. The population is 

then reduced back to the original size based on a 

similar selection method used in NSGA-II 

algorithm. The sorting of members of the 

population is based on the goal for a posteriori 

optimization. The worst members of the 

population are removed according to non-

dominance and crowding to reduce the 

population size to the original size. GDE3 is 

similar to earlier developed differential evolution 

approaches such as Pareto-frontier Differential 

Evolution (PDE) (Abbass et al., 2001), and DE 

for Multiobjective Optimization (DEMO) (Robič 

and Filipič, 2005). In constrast, DEMO does not 

contain constraint handling and does not recede 

to basic DE in single objective optimization. This 

is because DEMO modifies the basic DE and it 

does not consider weak dominance in the 

selection. GDE3 improves the ability to handle 

multiobjective optimization problems by giving a 

better distributed set of solutions and less 

sensitive to the selection of control parameter 

values compared to the earlier GDE 

versions.(Luo et al., 2008). 

Solving the Mixed-cropping Planning 

Model 

There are more than 207 different crops 

cultivated in South Africa. Consequently, a full-

scale model, considering all these crops would 

consist of more than 789 constraints and 550 

decision variables. This is a very complex 

problem, but decision makers are interested only 

in the major crops and aggregate information of 

other crops (Sarker et al., 1997). As a result, all 

the crops are divided into 8 major groups, such 

as Deciduous Fruit and Viticulture, Field Crops, 

Vegetables, Citrus Fruit, Subtropical fruits, 

Flowers, Nuts and Other horticultural products. 

The crop groups are shown in Appendix I. The 

number of crop combinations identified for 

single, double and triple-cropped lands is 8, 14, 

and 3 respectively, according to the current 

cropping patterns in Appendix II. Any of the 

crop groups can be planted in a year, depending 

on the land type. In this study, as discussed 

earlier, the three objective functions considered 

are net profit maximization, crop production 

maximization and planting area minimization. 

The multiobjective evolutionary algorithm can 

generate a good number of alternative solutions 

in a single run to build the Pareto frontier, 

irrespective of the properties of the objective 

functions and the solution space. 

Experimental Design 

The GDE3 and Non-Dominated Sorted 

Genetic Algorithm II (NSGA-II) techniques 

were implemented using NETBEAN version 

7.3, on an HP PC with Pentium dual core 

processor having 2.30 GHz clock speed and 4 

GB of RAM.  

Parameter Settings  

As discussed in the earlier section, GDE3 

requires very few parameter settings in 

comparison to other evolutionary algorithms. 

Only three parameters i.e. population size, 

crossover rate (CR) and scaling parameter (F) are 

needed for GDE3. The problem was solved with 

GDE3 having a population size of 100 and the 

number of generations was 50. An experiment 

was performed to determine the best values of F 

and CR for better performance in GDE3 

algorithm. For this purpose, both CR and F vary 

from 0.1 to 1 with an increment of 0.1. The 

simulations were conducted for each value of F 

with respect to all values of CR. Hence, 100 such 

simulations were conducted. It was found from 

the results that a better Pareto optimal front is 

obtained by GDE3 with F= 0.5 and CR= 0.9. 

The NSGA-II control parameters are crossover 

probability Pc= 0.9 and mutation probability 

Pm=1/D. The parameter D is the number of 

decision variable, which in this work is 336. The 

distribution index of crossover operator ηc= 20 

and distribution index of mutation 



 Multiobjective Optimization of Crop-mix Planning ________________________________  

1109 

Appendix I. Various crops in South Africa and their groups. 

1. Deciduous fruit and viticulture 

Apples, peaches, pears, plums, table grapes, 

wine grapes, other deciduous fruit and viticulture 

2. Field crops 

Summer cereals (maize for grain, grain sorghum 

and other summer cereals), winter cereals (wheat, 

barley and other winter cereals), oilseeds (sunflower 

seeds, groundnuts, soya beans and other oil seeds), 

legumes (dry beans and other legumes), fodder crops 

(lucerne, maize for silage, teff and other fodder 

crops), other field crops (sugar cane, cotton, tobacco, 

seeds and other field crops) 

3. Vegetables 

Potatoes, pumpkins, tomatoes, cabbage, 

cauliflower, green beans, onions, sweet potatoes, 

peas, beetroot, carrots and other vegetables 

4. Citrus fruit 

Oranges, lemons, naartjie and other citrus fruit  

 

5. Subtropical fruits 

 Pineapples, bananas and other subtropical      

fruit 

6. Flower  

Cultivated, wild and pot plants 

7. Nuts 

Pecan, macadamia and other nuts 

8. Other horticultural products 

Rooibos tea, herbs, seeds and seedlings and other 

products 

Appendix II. Crop combinations. 

Single cropped land: Any one of the following crop (/group) can be selected for this type of land 

Combination No Crop (/Crop group) 

1 

2 

3 

4 

5 

6 

7 

8 

Deciduous fruit and viticulture 

Field crops 

Vegetables 

Citrus fruit 

Subtropical fruits 

Flowers 

Nuts 

Other horticultural products 

Double cropped land: Any combination of the following crops (/groups) can be selected for this type of land 

Combination no Members of the combination 

Crop 1 Crop 2 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Deciduous fruit and viticulture 

Deciduous fruit and viticulture 

Field crops 

Field crops 

Field crops 

Field crops 

Vegetables 

Vegetables 

Citrus fruit 

Subtropical fruits 

Flowers 

Nuts 

Other horticultural products  

Other horticultural products 

Subtropical Fruits 

Citrus fruit 

Vegetables 

Flowers 

Nuts 

Citrus fruit 

Nuts 

Citrus fruit 

Subtropical fruits 

Field crops 

Vegetables 

Other horticultural products  

Vegetables 

Field crops 

Triple cropped land: Any combination of the following crops (/groups) can be selected for this type for land 

Combination No Members of the combination 

Crop 1 Crop 2 Crop 3 

1 

2 

3 

Deciduous fruit and viticulture 

Nuts  

Other horticultural products  

Subtropical fruits 

Citrus fruit 

Vegetables 

Field crops 

Vegetables 

Citrus fruit 
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(a) 

 
(b) 

Figure 1. Contour lines for data produced (a) by GDE3. and (b) by NSGA-II. 

 

operator ηm= 20. The number of the needed 

function evaluations for GDE3 was set to be 

10,000.   

RESULTS AND DISCUSSION  

The mixed-cropping planning model of 

this study was solved using GDE3. The 

result obtained using GDE3 was compared 

with the NSGA-II algorithm, which is a 

representative of the state-of-the-art 

evolutionary multiobjective optimization 

algorithms. The optimization is formulated 

with three objectives of concurrently 

maximizing net profit, maximizing total 

crop production and minimizing total 

planting area. Figures 1(a-b) show the 

contour lines that display the patterns of net 

profit, total crop production and total 

planting area for the data produced by GDE3 

and NSGA-II, respectively. In plotting the 

contour lines, the raw outputs computed by 

the GDE3 and NSGA-II algorithms were 

standardized in order to increase the effects 

of a variable whose variance is small and to 

reduce the effects of a variable with large 

variance. The minimax standardization 

procedure, which is one of the useful ways 

to standardize inputs was adhered to in this 

study. Given the data 

distribution ),...,,,( 321 nxxxxx = , the 

minmax standardization procedure computes 

a standardized value )( ixf in terms of the 

minimum value minx  and maximum value 

maxx  of x  for each i
th
 data point ix  

( ni ,...,2,1= ) and is given by a simple 

formula: 

)(*100)(
minmax

min

xx

xx
xf i

i
−

−
=

  
     (8) 

In multi-objective optimization, there 

cannot be a solution that will satisfy all the 

objectives, but instead, there are sets of 

solutions in one simulation run that 

correspond to non-dominated solutions 

(Deb, 2001). In Figures 1(a-b), solutions 

with values of 70–90 are examples of such 

solutions. In Figure (1-a), solutions with 

values of 10 to 50 produced a lower value of 

land used compared to the respective 

solution in Figure (1-b), indicating that 

GDE3 produced a better performance 

compared to NSGAII. In practice, the 

decision-maker ultimately has to select one 

solution from the solutions with net profit 

values of 10 to 50.   

Evaluating the quality of results for a 

single-objective optimization problem is 

relatively straightforward and significantly 

less challenging than for a multiobjective 

optimization problem. In a single objective 

optimization problem, researchers validate 

whether the quality of a specific solution 
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Table 2. Mean and standard deviation of metric values for algorithm performance across 50 independent 

executions. 

 

GD-metric (10
-3

) ER-metric (10
-3

) S-metric (10
-3

) MS-metric 

Mean 

(Std.Dev.) 
Rank 

Mean 

(Std. Dev.) 
Rank 

Mean 

(Std. Dev.) 
Rank 

Mean  

(Std. Dev.) 

Ra

nk 

G
D

E
3

 

0.5208 

(0.4872) 
1 

0.1157 

(0.0957) 
1 

0.3648 

(0.4152) 
1 

0.4732 

(0.3841) 
1 

N
S

G
A

-I
I 

0.6283 

(0.7397) 
2 

0.1181 

(0.1021) 
2 

0.4015 

(0.6534) 
2 

0.5149 

(0.4256) 
2 

 

 

was realized, how much computational feat 

was required, and how often such quality 

was realized (Khare et al., 2003; Mohan and 

Mehrotra, 2011). The difference between 

obtaining solutions can clearly be measured 

and this measure can be used as a 

performance metric (Einstein, 2012). In 

contrast, the evaluation of the quality of 

results obtained for a multiobjective 

optimization problem is rendered 

challenging by the absence of a supreme, 

simple, and generally accepted performance 

metric (Deb and Tiwari, 2005).   

A set of Pareto-optimal solutions form a 

Pareto optimal front and an approximation 

of the Pareto optimal front is called a set of 

non-dominated solutions (Manzano-

Agugliaro et. al., 2013). The goals of 

multiobjective optimization, therefore, are to 

find a set of solutions close as possible to the 

Pareto-optimal front and to find a set of 

solutions as diverse as possible to reveal 

trade-off information among different 

objectives. It has been argued that no single 

metric can be effective for measuring the 

performance of an algorithm (Deb and Jain, 

2002), as a result, four commonly used 

metrics were used to measure the 

performances of the two algorithms explored 

in this study. The metrics for this study were 

selected based on predominant knowledge 

about their suitability to measure certain 

characteristics. The convergence of the 

obtained set of solutions was measured by 

generational distance (GD) and error ratio 

(ER) metric, while the diversity of the 

obtained set of solutions was measured with 

spacing (S), and maximum spread metrics 

(MS) (Knowles and Corne 2002; Zitzler et 

al. 2003).  

Table 2 shows the mean and standard 

deviations of the metric values for the final 

approximation set over 50 independent 

executions. It can be observed from the 

result shown in Table 2 that GDE3 

performed either similar to or better than 

NSGA-II. The superior performance of 

GDE3 over NSGA-II for the problem 

considered can be traced to the convergence 

and divergence improvement of the 

algorithm. The values produced by GDE3 

and NSGA-II, with respect to the GD-

metric, are very close. However, the value 

produced by GDE3 is much closer to zero, 

indicating that most of the generated 

solutions by the algorithm are on the true 

Pareto front. The value produced by GDE3, 

with respect to the ER-metric, is small when 

compared to the value produced by NSGA-

II, indicating that GDE3 produced a better 

non-dominated set of solutions, which 

formed the Pareto optimal set of the 

problem. The value produced by GDE3, 

with respect to S-metric, is closer to zero 
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than the value produced by NSGA-II. This 

gives an indication that most of the non-

dominated solutions produced by GDE3 are 

all the non-dominated solutions that are 

evenly spaced. The GDE3 produced a value 

much closer to zero than NSGA-II, with 

respect to MS-metric, meaning the solutions 

are ideally distributed and are perfectly 

spread out across the Pareto front. Overall, 

both algorithms had a good performance, but 

GDE3 produced a better performance than 

NSGA-II.  

CONCLUSIONS  

This work suggests that Generalized 

Differential Evolution 3 (GDE3) algorithm 

is a useful multiobjective optimization tool 

for optimal crop planning decision 

making. It has been shown that GDE3 can 

be successfully employed to search the 

feasible solutions space for a complex 

mixed-cropping planning problem that 

involves multiple objectives and multiple 

constraints. The GDE3 algorithm also uses 

a very simple mechanism to deal with 

constrained functions and results 

generated by the algorithm indicate that 

such mechanism, despite its simplicity, is 

effective in practice. From this study, it 

can be concluded that GDE3 is practically 

effective for optimal crop planning 

decision making. Given the features of 

GDE3, an extension of the paradigm for 

multiobjective optimization can be 

particularly useful to deal with dynamic 

functions. As part of future work, other 

optimization methods can be compared to 

GDE3 to establish its superiority for crop 

planning. The performance comparison of 

these optimization algorithms is valuable 

for a decision maker to consider tradeoffs 

in method accuracy versus method 

complexity. Finally, future work will 

extend GDE3 for crop planning decision 

under uncertainty. This will produce a 

novel approach to deal with practical 

situations for which profit coefficients of 

agriculture are uncertain.  
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  ريقيبهينه سازي چند منظوره كشت مخلوط با استفاده از الگوريتم عمومي تكامل تف

  ا. ادكانمبي، ا. اولوغبارا

  چكيده

مخلوط ارايه مي كند. چالش  برنامه كشت منظوره و چند سازي محدود اين مقاله مدلي براي بهينه

هايي كه معمولا كشاورزان در تصميم گيري براي دستيابي به حداكثر بازده (عملكرد)با آن رو به رو 

هدف اصلي اين  كان كشت، و سطح كشت. در نتيجه،هستند عبارتند از تعيين نوع كشت، زمان كشت، م

پژوهش بيشينه سازي همزمان سود خالص وعملكرد و كمينه كردن سطح كشت بود. به اين 

 generalized differential evolution 3( 3منظور،الگوريتم عمومي تكاملي تفريقي 

algorithmا داده هاي اداره خدمات ) براي اجراي مدل برنامه ريزي كشت مخلوط استفاده شد كه ب

اطلاعاتي توليد غله و چكيده آمار نامه كشاورزي آفريقاي جنوبي آزمون شده بود. آزمون هاي مشابه 

چيره -با دسته بندي غير IIبه وسيله الگوريتم ژنتيكي  3 تفريقي تكاملي راستي آزمايي الگوريتمسازي با 

براي  3 تفريقي عمومي تكامل اشت كه الگوريتمانجام شد. يافته هاي عملي اين پژوهش چنين اشاره د

  حل مسايل برنامه ريزي بهينه كشت مخلوط ابزار بهينه سازي قابل اجرايي است.
 


