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Abstract The Kummer–Schwarz Equation, 2y′y′′′ − 3y′′2 = 0, (the prime denotes differ-
entiation with respect to the independent variable x) is well known from its connection to
the Schwartzian Derivative and in its own right for its interesting properties in terms of sym-
metry and singularity. We examine a class of equations which are a natural generalisation of
the Kummer–Schwarz Equation and find that the algebraic and singularity properties of this
class of equations display an attractive set of patterns. We demonstrate that all members of
this class are readily integrable.
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Introduction

The Kummer–Schwarz Equation [11],

2y′y′′′ − 3y′′2 = 0, (1)

is notable amongst the class of third-order ordinary differential equations due to its properties
as a differential equation apart from its well-known connection to the Schwarzian Derivative.
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Some of its properties were discussed in [9] and we briefly recall them here. Equation (1)
possesses six Lie point symmetries, namely

�1 = ∂x , �2 = x∂x , �3 = x2∂x , �4 = ∂y, �5 = y∂y, �6 = y2∂y . (2)

The algebra is a double dose of sl(2, R) with the first three symmetries providing one
representation and the last three symmetries providing the second representation. The full
algebra is sl(2, R)⊕sl(2, R). In terms of contact symmetries it has tenwith the algebra sp(5)
[1] and so may be transformed to the archetypal third-order equation of maximal symmetry,
y′′′ = 0, by means of a contact transformation. The equation also has attractive singularity
properties with a simple pole and resonances at −1, 0, 1. The solution,

y = A1

x + 2A0
+ A2,

reflects the singularity properties nicely.
The Kummer–Schwarz Equation is a representative of a general class of equations which

can be written as
y(n−2)y(n) − my(n−1)2 = 0, (3)

wherem is a parameter and n is an integer of lowest value 2, ie, the class of equations actually
starts at the second order.We provide the algebraic and singularity properties and solutions for
a number of the earlier elements of the class. From these results we infer general properties,
state them as conjectures and then prove these conjectures.

Symmetry Properties of the Class of Kummer-Schwartz Equations

Weexamine Eq. (3) for its symmetry properties. If n = 2, there are eight Lie point symmetries
given by1

�1 = ∂x

�2 = x∂x

�3 = y∂y

�4 = xy∂y

�5 = log(y)∂x
�6 = y log(y)∂y

�7 = x2∂x + xy log(y)∂y

�8 = x log(y)∂x + (y log(y))2∂y (4)

for m = 1. Equally for m �= 1 there are eight Lie point symmetries. Now the value of m
intrudes into the expressions for some of the symmetries. The symmetries are

�1 = ∂x

�2 = x∂x

�3 = y∂y

�4 = ym∂y

�5 = xym∂y

1 For the calculation of the symmetries we use the Mathematica add-on Sym [3–6].
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�6 = y1−m

m − 1
∂x

�7 = (1 − m)x2∂x + xy∂y

�8 = (1 − m)xy1−m∂x + y2−m∂y . (5)

Because the maximal number of Lie point symmetries for a scalar second-order ordinary
differential is eight [10, p. 405] for n = 2 the algebra is sl(3, R) irrespective of the value of
m.

We give the symmetries for n = 2, above, separately to those of n > 2, below, due to
the peculiar types of symmetry to be found in the case of the former for, in addition to the
usual solution symmetries, homogeneity symmetry and elements of sl(2, R), there are the
two noncartan or fibre-preserving symmetries [8] given by �7 and �8.

When one moves to higher values of n, the situation changes and we give the results for
a few low values of n to enable one to have a feel for the results to be proven below. We
highlight the various symmetry results in the table below for the values of n, 3, 4, 5, 6 and
7. The listing of the symmetries is ordered as solution symmetries, homogeneity symmetry
and such elements of sl(2, R) as persist when the number of point symmetries is less than
maximal. The Kummer–Schwarz Equation (n, m) = (3, 3

2 ) is also somewhat exceptional in
that there is a doubling of the sl(2, R) subalgebra. The subalgebra of sl(2, R) corresponding
to the one found for y′′′ = 0 is that based on the ∂x symmetries. This becomes obvious when
one looks at the results for (4, 4

3 ), (5,
5
4 ) and (4, 6

5 ). The coefficient of xy∂y decreases with
n and is naturally zero for n = 3. What is really exceptional is the persistence of y2∂y one
finds in one of the noncartan symmetries of y′′ = 0.

In the illustrative examples given in Table 1 a pattern emerges for the possible sets of
symmetries of equations of the form of (3). Form = 0 the number of symmetries is the same
as for y(n) = 0, n = 3, 4, 5, 6, 7. The general result for this class has been given in [12]
and the algebra is {A3,8 ⊕ A1} ⊕s nA1 in which the nomenclature of the Mubarakzyanov
Classification Scheme [13–16] has been used for the subalgebras. For general values of the
parameter, m, there appear to be n + 1 symmetries from the examples considered. For an
nth-order linear equation there are three possibilities reported in [12]. The maximal case has
n+4 point symmetries. The other cases are n+1 and n+2. The former comprises n solution
symmetries and the homogeneity symmetry, y∂y . The latter has these plus ∂x indicating
autonomy. However, here we do not have the same collection of symmetries. There are
solution symmetries of an equation of order two less than the one under consideration, the
homogeneity symmetry and a subset of two of the three elements of sl(2, R), (ie A3,8) to
be found in the equation of maximal symmetry. The algebra is 2A1 ⊕s {A1 ⊕ A2} in the
particular case of n = 4 and is known as A5,34.

Of some interest is the existence of a specific value of the parameter,m, for which there is
additional symmetry. In the case of n = 3 (Kummer–Schwarz) there are 6 = 3+3 symmetries
and the unexpected symmetry harks back to the exceptional noncartan symmetries of y′′ = 0.
For greater values of n the number of symmetries appears to be n + 2 which fits into the
numerical scheme for linear equations. However, the structure of the algebra is different. The
number of solution symmetries is n−2 and not n. Naturally homogeneity is preserved. What
is additional is that the equation continues to have the sl(2, R) subalgebra. Furthermore the
coefficients of that subalgebra correspond to a linear equation of order n− 2 and not n.2 The
algebra is (n − 2)A1 ⊕s {A1 ⊕ sl(2, R)}.
2 For a linear equation of order n the three elements are usually written as ∂x , x∂x + (n−1)

2 y∂y and x2∂x +
(n − 1)xy∂y .
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Table 1 The number of Lie point symmetries for n = 3, 4, 5, 6 and 7

n m i� Symmetries

3 3 or 0 7 ∂y , x∂y , x2∂y , y∂y , ∂x , x∂x + y∂y , x2∂x + 2xy∂y
3
2 6 ∂y , y∂y , y2∂y , ∂x , x∂x , x2∂x

else 4 ∂y , y∂y , ∂x , x∂x

4 0 8 ∂y , x∂y , x2∂y , x3∂y , y∂y , ∂x , x∂x + 3
2 y∂y , x

2∂x + 3xy∂y
4
3 6 ∂y , x∂y , y∂y , ∂x , x∂x + 1

2 y∂y , x
2∂x + xy∂y

else 5 ∂y , x∂y , y∂y , ∂x , x∂x + 1
2 y∂y

5 0 9 ∂y , x∂y , x2∂y , x3∂y , x4∂y , y∂y , ∂x , x∂x + 2y∂y , x2∂x + 4xy∂y
5
4 7 ∂y , x∂y , x2∂y , y∂y , ∂x , x∂x + y∂y , x2∂x + 2xy∂y

else 6 ∂y , x∂y , x2∂y , y∂y , ∂x , x∂x + y∂y

6 0 10 ∂y , x∂y , x2∂y , x3∂y , x4∂y , x5∂y , y∂y , ∂x , x∂x +
5
2 y∂y , x

2∂x + 5xy∂y
6
5 8 ∂y , x∂y , x2∂y , x3∂y , y∂y , ∂x , x∂x + 3

2 y∂y , x
2∂x + 3xy∂y

else 7 ∂y , x∂y , x2∂y , x3∂y , y∂y , ∂x , x∂x + 3
2 y∂y

7 0 11 ∂y , x∂y , x2∂y , x3∂y , x4∂y , x5∂y , x6∂y , y∂y , ∂x , x∂x +
3y∂y , x2∂x + 6xy∂y

7
6 9 ∂y , x∂y , x2∂y , x3∂y , x4∂y , y∂y , ∂x , x∂x + 2y∂y , x2∂x + 4xy∂y

else 8 ∂y , x∂y , x2∂y , x3∂y , x4∂y , y∂y , ∂x , x∂x + 2y∂y

The number of symmetries for each value of n is determined by the value of m. The first column contains the
value of n, the second the value ofm, the third the number of symmetries and the fourth the actual symmetries

These observations naturally lead to the following conjectures for various values of m.

Conjecture In general, symmetries of an nth-order equation of the type (3) are given by

m = else ∂y , x∂y , . . . x(n−3)∂y
y∂y
∂x , x∂x

m = n
n−1 ∂y , x∂y , . . . x(n−3)∂y

y∂y
∂x , x∂x + n−3

2 y∂y + x2∂x + (n − 3)xy∂y
m=0 ∂y , x∂y , . . . x(n−1)∂y

y∂y
∂x , x∂x + n−1

2 y∂y + x2∂x + (n − 1)xy∂y

Equation (3) has n + 1, n + 2 and n + 4 point symmetries corresponding to m =else ,
m = n/(n−1) andm = 0, respectively. The corresponding algebras are (n−2)A1⊕s {A1⊕
A2}, (n − 2)A1 ⊕s {A1 ⊕ sl(2, R)} and nA1 ⊕s {A1 ⊕ sl(2, R)}.
Proofs of the Conjectures: We recall that the general equation is

� : y(n−2)yn − my(n−1)2 = 0. (6)
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The linearised symmetry condition is X (n)� = 0 when � = 0, ie,

η(n−2)y(n) − 2mη(n−1)y(n−1) + η(n)y(n−2) = 0. (7)

Replace y(n) by my(n−1)2

y(n−2) in (7) to obtain

mη(n−2)y(n−1)2 − 2mη(n−1)y(n−1)y(n−2) + η(n)y(n−2)2 = 0. (8)

When we use the formula η(n) = Dnη −
n∑

j=1

(
n

j

)
y(n+1− j)D jξ, we can rewrite (8) as

my(n−1)2Dn−2η − my(n−1)2
n−2∑

j=1

(
n − 2

j

)
y(n−1− j)D j ξ − 2my(n−1)y(n−2)Dn−1η

+ 2my(n−1)y(n−2)
n−1∑

j=1

(
n − 1

j

)
y(n− j)D j ξ + y(n−2)2Dnη

− y(n−2)2
n∑

j=1

(
n

j

)
y(n+1− j)D jξ = 0. (9)

In Eq. (9) the Dnη term has y(n) which we can replace by using Eq. (3). Comparing the

coefficients of y′y(n−2)y(n−1)2 in Eq. (9) we get

ξy = 0, (10)

that is, ξ = a(x).
We rewrite Eq. (9) to obtain

my(n−1)2Dn−2η − my(n−1)2
n−2∑

j=1

(
n − 2

j

)
y(n−1− j)a( j)

− 2my(n−1)y(n−2)Dn−1η + 2my(n−1)y(n−2)
n−1∑

j=1

(
n − 1

j

)
y(n− j)a( j)

+ y(n−2)2Dnη − y(n−2)2
n∑

j=1

(
n

j

)
y(n+1− j)a( j) = 0.

(11)

By comparison of the coefficients of y′y(n−1)y(n−2)2 in Eq. (11) we see that

ηyy = 0, (12)

that is, η = b(x) + yc(x).
When we use Leibnitz’ rule for differentiating a product, we compute Dnη as

Dnη = bn(x) +
n∑

k=0

(
n

k

)
y(k)c(n−k). (13)
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On substitution of Eq. (13) into Eq. (11) we have

my(n−1)2b(n−2) + my(n−1)2
n−2∑

k=0

(
n − 2

k

)
y(k)c(n−2−k)

− my(n−1)2
n−2∑

j=1

(
n − 2

j

)
y(n−1− j)a( j) − 2my(n−1)y(n−2)b(n−1)

− 2my(n−1)y(n−2)
n−1∑

k=0

(
n − 1

k

)
y(k)c(n−1−k)

+ 2my(n−1)y(n−2)
n−1∑

j=1

(
n − 1

j

)
y(n− j)a( j) + y(n−2)2b(n)

+ y(n−2)2
n∑

k=0

(
n

k

)
y(k)c(n−k) − y(n−2)2

n∑

j=1

(
n

j

)
y(n+1− j)a( j) = 0.

(14)

By comparison of the coefficients of y(n−1)2 in Eq. (14) we get

b(n−2) + (n − 2)yc(n−2) = 0, (15)

that is,

b(n−2) = 0

c(n−2) = 0. (16)

When we compare the coefficients of y(n−1)2y(n−4) and y(n−1)y(n−2)y(n−3) in Eq. (14) we
obtain

c(2) − n − 4

3
a(3) = 0

c(2) − n − 3

3
a(3) = 0. (17)

The solution of (17) are
c(2) = 0 and a(3) = 0. (18)

We use Eqs. (16) and (18) to remove all summations in Eq. (14) and the y(n−1)2y(n−2)

terms vanish. Finally we have

m(n − 2)y(n−1)2y(n−3)c(1) − m

(
n − 2

2

)
y(n−1)2y(n−3)a(2)

− 2m(n − 1)y(n−1)y(n−2)2c(1) + m(n − 1)(n − 2)y(n−1)y(n−2)2a(2)

+ ny(n−1)y(n−2)2c(1) − n(n − 1)

2
y(n−1)y(n−2)2 = 0.

(19)

When we compare the coefficients of y(n−1)2y(n−3) in Eq. (19), we obtain

2c(1) − (n − 3)a(2) = 0. (20)

From a comparison of the coefficients of y(n−1)y(n−2)2 in Eq. (19) we obtain

(n − 2m(n − 1))c(1) + (m(n − 1)(n − 2) − n(n − 1)

2
)a(2) = 0. (21)
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We solve Eqs. (20) and (21) and obtain c2 = a3 = 0. Finally we have

ξ = a1 + a2x and (22)

η = b1 + b2x + · · · + bn−2x
n−3 + c1y. (23)

��
The Case m = n

n−1
In the case that m = n

n−1 Eqs. (20) and (21) are same and we obtain the relation

c2 = (n − 3)a3. (24)

From this relation we have one additional symmetry

x2∂x + (n − 3)xy∂y . (25)

The Case m = 0
The equation is

b(n) +
n∑

k=0

(
n

k

)
y(k)c(n−k) −

n∑

j=1

(
n

j

)
y(n+1− j)a( j) = 0. (26)

We collect the constant and y coefficients in Eq. (26) and find that

b(n)(x) = 0 , c(n)(x) = 0. (27)

We rewrite Eq. (26) as

n−1∑

k=1

(
n

k

)
y(k)c(n−k) −

n∑

j=2

(
n

j

)
y(n+1− j)a( j) = 0 (28)

and collect the coefficients of y(n−1) and y(n−2) in Eq. (28) to obtain

2c(1) − (n − 1)a(2) = 0 (29)

3c(2) − (n − 2)a(3) = 0. (30)

From Eq. (29) c = n−1
2 a(1) and we substitute this into Eq. (30) to obtain a(3) = 0, that is,

a = a1 + a2x + a3x
2. (31)

We have a(3) = 0. If we substitute this into Eq. (28) and compare the coefficients of
derivative of y up to n − 2, we see that

c(2) = 0 , c(3) = 0, . . . , c(n) = 0, (32)

that is,
c = c1 + c2x . (33)

Substitute (31) and (33) into Eq. (29) to obtain the relation

c2 = (n − 1)a3. (34)

The coefficient functions of the symmetries of the case m = 0 are

ξ = a1 + a2x + a3x
2 and

η = b1 + b2x + · · · + bnx
n−1 + c1y + a3(n − 1)xy.
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Singularity Analysis

We examine the specific class of equations for the value of m = n
n−1 introduced above in

terms of singularity analysis. We follow the general method as outlined in [17,18] with the
modification for negative nongeneric resonances introduced by Andriopoulos et al. [2]. We
illustrate the method on the fifth-order equation,

y′′′y′′′′′ − 5
4 y

′′′′2 = 0. (35)

To determine the leading-order behaviour we set y = αχ p , where χ = x − x0 and x0 is
the location of the putative singularity. We obtain

α2 p2(p − 1)2(p − 2)2(p − 3)(p − 4)χ2p−8 − 5

4
α2 p2(p − 1)2(p − 2)2(p − 3)2χ2p−8

which is zero if (p − 4) = 5/4(p − 3), ie, p = −1. Note that the coefficient of the leading-
order term is arbitrary.

To establish the terms at which the remaining constants of integration occur in the Laurent
Expansion we make the substitution

y = αχ−1 + mχ−1+s,

where the various values at which s may take are determined by the coefficient of m being
zero and so arbitrary. The coefficient of m is a fifth-order polynomial the roots of which are

s = −1, 0, 1, 2, 3.

Consistency is automatically satisfied as both terms in the equation are dominant.

Conjecture The exponent of the leading-order term and the resonances of the nth member
of the class of equations,

(n − 1)y(n−2)y(n) − ny(n−1)2 = 0, n ∈ N > 1, (36)

are p = −1 and s = −1, 0, 1, 2, . . . , n − 2.

Proof We substitute y = αχ p , where χ = x − x0 and x0 is the location of the putative
singularity. We remove a common factor p2(p−1)2 · · · (p−n+3)2(p−n+2). The values
of p removed are all positive and so of no relevance to the singularity analysis. The remaining
terms are

(n − 1)(p − n + 1) − n(p − n + 2)

which, when put equal to zero, give the singularity to be p = −1.
We write y = αχ−1 + μχ−1+s and substitute into (36). We remove the common factors

χ−2(−1)(−2) · · · (−n + 2)(−1+ s)(−2 + s) · · · (−n + 2+ s). This immediately gives the
resonances, s = 1, 2, . . . , (n − 2), which are all positive. The remaining terms are

(n − 1)(−n + 1)(−n) + (n − 1)(−n + 1 + s)(−n + s) − 2n(−n + 1)(−n + 1 + s).

When this equated to zero, we obtain the two additional resonances s = −1, 0. ��
Apart from the generic resonance of −1 all of the resonances are nonnegative integers, ie,

the Laurent Expansion is a Right Painlevé Series [7].
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Discussion

We commenced our study with the Kummer–Schwarz Equation, (1), which is an interesting
equation in its own right if for nothing else that it has six Lie point symmetries in contrast to
the possible four, five or seven for a linear third-order equation.When we looked at equations
of higher (also lower in one instance) order, we discerned several features which made the
class of equations we have presented interesting.

The first was that the Kummer–Schwarz Equation is not generic. In [12] it was reported
that linear equations of the nth order had three possibilities after one left the second order. A
linear equation could have n + 1, n + 2 or n + 4 Lie point symmetries. It was not possible
for a linear equation to have n + 3 point symmetries. Consequently the Kummer–Schwarz
Equation, apart from the possession of the maximal number of contact symmetries, was
unusual in the set of third-order equations. In a sense the Kummer–Schwarz Equation is
an intermediary between the second-order equation, which has the maximal eight Lie point
symmetries to be had for a second-order equation, and the higher-order equations for which
the number of symmetries is n − 2 for the specific value of m indicated for that order. The
quasipersistence of a remnant of a noncartan does strike one as something peculiar.

For the higher elements of this class of equations the pattern of the Lie point symmetries
is quite clear.

For the specific value of m = n/(n − 1) the solution of the nth-order equation is simple.
One can write

(n − 1)y(n−2)y(n) − ny(n−1)2 = 0

as

d2

dx2

(
1

y(n−2)1/(n−1)

)
= 0

in which a multiplicative constant has been omitted. This elementary differential equation is
easily integrated to give the solution as

y(x) = (n − 1)n−1

(n − 2)!cn−2
1 (c1x + c2)

+
n∑

i=3

ci x
i−3,

where the ci are constants of integration.
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