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Abstract: We analyse two classes of (1 + 2) evolution equations which are of special interest in
Financial Mathematics, namely the Two-dimensional Black-Scholes Equation and the equation for
the Two-factor Commodities Problem. Our approach is that of Lie Symmetry Analysis. We study
these equations for the case in which they are autonomous and for the case in which the parameters
of the equations are unspecified functions of time. For the autonomous Black-Scholes Equation we
find that the symmetry is maximal and so the equation is reducible to the (1 + 2) Classical Heat
Equation. This is not the case for the nonautonomous equation for which the number of symmetries
is submaximal. In the case of the two-factor equation the number of symmetries is submaximal in
both autonomous and nonautonomous cases. When the solution symmetries are used to reduce each
equation to a (1 + 1) equation, the resulting equation is of maximal symmetry and so equivalent to
the (1 + 1) Classical Heat Equation.
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1. Introduction

In the early 1970s, Black and Scholes [1,2] and, independently, Merton [3] introduced a
mathematical model for the pricing of European options. The Black-Scholes-Merton (BS) Model
is described by an (1 + 1) evolution equation. The mathematical expression of the BS equation is

1
2

σ2S2u,SS + rSu,S − ru + u,t = 0 (1)

in which t is time, S is the current value of the underlying asset, for example a stock price, r is the rate
of return on a safe investment, such as government bonds and u = u (t, S) is the value of the option.
The solution of Equation (1) is subject to the satisfaction of the terminal condition u (T, S) = U, when
t = T.

For the prices of commodities, Schwartz [4] proposed three models which study the stochastic
behaviour of the prices of commodities that take into account several aspects of possible influence
on the prices. In the simplest model he assumed that the logarithm of the spot price followed
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a mean-reversion process of Ornstein-Uhlenbeck type. This is termed the one-factor model. The
one-factor model is described by the equation:

1
2

σ2S2F,SS + κ (µ− λ− log S) Su,S − F,t = 0 (2)

where κ > 0 measures the degree of reversion to the long-run mean log price, λ is the market price of
risk, µ is the drift rate of S and F = F (t, S) is the current value of the futures contract. The solution of
Equation (2) satisfies the initial condition F (0, S) = S.

The BS Equation (1) and the one-factor Equation (2) are of the same equivalence class as the
Schrödinger equation and the Heat diffusion equation. All four equations model random phenomena
of different contexts. The two first are in financial mathematics, the third in quantum physics and the
fourth in dispersion.

It has been proven that all four equations are maximally symmetric and invariant under
the same group of invariant transformations of dimension 5 + 1 + ∞ which span the Lie algebra
{sl (2, R)⊕s W3} ⊕s ∞A1, where W3 is a representation of the three-dimensional Weyl–Heisenberg
Group, (in the Mubarakzyanov Classification Scheme [5–8] this is {A3,8 ⊕s A3,1}⊕s ∞A1). This means
that there exists a point transformation which transforms one equation to another. The Lie symmetries
of the BS Equation (1) have been found in [9], whereas the Lie symmetries of the one-factor model (2)
were found in [10].

The parameters of the models (1) and (2) are generally assumed to be constant. However, in real
problems they may vary with time if the time-span of the model is sufficiently long. In [11] it has been
shown that, when the parameters σ, and r of the BS equation are time-dependent, i.e., σ = σ (t) and
r = r (t), the time-dependent BS equation is invariant under the same group of invariant
transformations as that of the “static” BS equation. The same result has been found for
the time-dependent one-factor model of commodities [12]. Hence the autonomous and the
nonautonomous Equations (1) and (2) are maximally symmetric and equivalent under point
transformations.

In Classical Mechanics the slowly lengthening pendulum with equation of motion in the linear
approximation,

ẍ + ω2 (t) x = 0 (3)

in which the time dependence in the “spring constant" is due to the length of the pendulum’s string
increasing slowly [13], admits the conservation law [14,15] (note that the case of a slowly shortening
pendulum is quite different [16]),

I =
1
2

{
(ρẋ− ρ̇x) +

(
x
ρ

)2
}

(4)

where ρ = ρ (t), is a solution of the second-order differential equation,

ρ̈ + ω2 (t) ρ =
1
ρ3 (5)

This result is independent of the rate of change of the length of the pendulum.
The latter equation is the well-known Ermakov-Pinney equation [17]. The solution was given by

Pinney in [18] and it is:

ρ (t) =
√

Aυ2
1 + 2Bυ1υ2 + Cυ2

2 (6)

subject to a constraint on the three constants, A, B and C. Functions υ1 (t) , υ2 (t) , are two linearly
independent solutions of Equation (3) .

Equation (3) is invariant under the action of the group invariant transformations in which
the generators of the infinitesimal transformations form the sl (3, R) algebra. This is the Lie
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algebra admitted by the harmonic oscillator, ω (t) = ω0, and the equation of the free particle,
ω (t) = 0 [19–21]. The transformation which connects the nonautonomous linear Equation (3) with
the autonomous oscillator is a time-dependent linear canonical transformation of the form:

Q =
x
ẋ

, P = ρẋ− ρ̇x , T =
∫ t

ρ−2 (η) dη (7)

where ρ is given by Equation (6).
The connection of the number of symmetries of the corresponding Schrödinger Equation

with the Noether point symmetries of the classical Lagrangian [22,23] was seen to extend to the
time-dependent case [24] and, indeed, be seen to be the same as the equivalent autonomous
systems [25] and in the case of maximal symmetry is {sl (2, R)⊕s W3} ⊕s ∞A1 which is that of the
(1 + 1) classical heat equation.

In this context we wish to see what happens when we pass from an autonomous (1+ 2) evolution
equation to the corresponding nonautonomous case. For that we study the Lie symmetries of the
nonautonomous models of: (a) the two-factor model of commodities and (b) the two-dimensional
BS equation.

We find that, for the two-factor model, the autonomous and the nonautonomous equations are
invariant under the same group of invariant transformations {A1 ⊕s W5} ⊕s ∞A1. However, that it
is not true for the two-dimensional BS equation. The reason for that is that the Lie symmetries of the
two-factor model follow from the translation group of the two-dimensional Euclidian space (except
the homogeneous and the infinite number of solution symmetries). The translation group generates
Lie symmetries for both the autonomous system and for the nonautonomous system.

On the other hand the autonomous two-dimensional BS equation is maximally symmetric, i.e.,
it admits nine Lie symmetries plus the infinite number of solution symmetries, which form the
{{sl (2, R)⊕s so (2)} ⊕s W5} ⊕s ∞A1 Lie algebra. This result completes the analysis of [26] in which
they found that the two-dimensional BS equation admits seven Lie point symmetries plus the ∞A1.

The nonautonomous two-dimensional BS equation is invariant under the Lie algebra
{{A1 ⊕s so (2)} ⊕s W5} ⊕s ∞A1, that is, the sl (2, R) subalgebra is lost. The reason for that is that
the Lie symmetries of the autonomous two-dimensional BS equation arise from the homothetic
algebra of the two-dimensional Euclidian space which defines the Laplace operator of the evolution
equation and, when the parameters in the second derivatives are not constants, the homothetic
algebra of the Euclidian space does not generate Lie symmetries. Moreover, in the case for which
the parameters of the second derivatives are time-indepedent, the two-dimensional BS equation is
maximally symmetric, i.e., it is invariant under the same group of point transformations as the (1 + 2)
autonomous BS and Heat conduction equations.

The plan of the paper is as follows. In Section 2 we study the Lie symmetries of the two-factor
model of commodities for the autonomous and nonautonomous cases. We show that in both cases
the two-factor model is invariant under the {A1 ⊕s W5} ⊕s ∞A1 Lie algebra. The Lie symmetries of
the two-dimensional BS equation, the autonomous and the nonautonomous, are studied in Section 3.
Finally in Section 4 we give some applications and we draw our conclusions.

2. The Two-Factor Model of Commodities

The two-factor model adds to the spot price, S, of Equation (2) the instantaneous convenience
yield, δ, which may be interpreted as the flow of services accruing to the holder of the spot commodity
but not to the owner of a futures contract. The evolution partial differential equation for this model is

1
2

σ2
1 S2F,SS + ρσ1σ2F,Sδ +

1
2

σ2
2 F,δδ + (r− δ) SF,S + (κ (α− δ)− λ) F,δ − F,t = 0 (8)

for which the terminal condition is now F (0, S, δ) = S.



Mathematics 2016, 4, 34 4 of 14

Equation (8) is an (1 + 2) evolution equation and under the coordinate transformation

S = exp (σ1x) , δ = σ2

(
ρx +

√
1− ρ2y

)
(9)

becomes
F,xx + F,yy − (p1x + p2y + p3) F,x − (q1x + q2y + q3) F,y − 2F,t = 0 (10)

in which the new parameters are expressed on the terms of the old ones according to

p1 = 2ρ
σ2

σ1
, p2 = 2

√
1− ρ2 σ2

σ1
, p3 = −2r (11)

q1 =
κσ1 − ρσ2

σ1
√

1− ρ2
, q2 =

κσ1 − ρσ2

σ1
(12)

and

q3 = −
(
σ2

1 σ2ρ− 2σ2ρr + 2σ1κα− 2σ1λ
)

σ1σ2
√

1− ρ2
(13)

The Lie symmetries for the autonomous two-factor model (8) have been reported in [10].
However, for the convenience of the reader we present the results.

2.1. Lie Symmetries of the Autonomous Equation

Consider the infinitesimal one-parameter point transformation

t′ = t + εξ1 (t, x, y, F) , x′ = x + εξ2 (t, x, y, F) (14)

y′ = y + εξ3 (t, x, y, F) , F′ = y + εη (t, x, y, F) (15)

where ε is an infinitesimal number so that ε2 → 0. From the transformation we define the generator
X, as

X =
∂t′

∂ε
∂t +

∂x′

∂ε
∂x +

∂y′

∂ε
∂y +

∂F′

∂ε
∂F (16)

or, equivalently,

X = ξ1 (t, x, y, F) ∂t + ξ2 (t, x, y, F) ∂x + ξ3 (t, x, y, F) ∂y + η (t, x, y, F) ∂F (17)

The differential equation, Θ, Equation (10), is invariant under the action of the one-parameter
point transformation Equations (14) and (15) if there exists a function Λ such that [27,28]

X[2]Θ = ΛΘ (18)

in which X[2] is the second prologation of X defined in the space
{

t, x, y, F, F,x, F,y, F,xx, F,yy, F,xy
}

.
When condition (18) holds, we say that X is a Lie (point) symmetry of Θ.

Therefore from Equation (18) we have the following Lie symmetries admitted by Equation (10)

Xt = ∂t , XF = F∂F , X∞ = f (t, x, y) ∂ f (19)

X1 = ec+t (a1∂x + a2∂y
)

(20)

X2 = ec−t (a′1∂x + a′2∂y
)

(21)

X3 = ec+t (b1∂x + b2∂y + (b3x + b4x + b5) F∂F
)

(22)

and
X4 = ec−t (b′1∂x + b′2∂y +

(
b′3x + b′4x + b′5

)
F∂F

)
(23)
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The parameters a1,2, a′1,2, b1−5, b′1−5 and c± are functions of p1−3 and q1−3. The Lie symmetries form
the {A1 ⊕s W5} ⊕s ∞A1 Lie algebra. We note that for special cases of the parameters p1−3, q1−3, the
representation of the admitted Lie symmetries of Equation (10) can be different. For instance, when
all the parameters q1−3 vanish, q1−3 = 0, the Lie symmetries X1−4 become

X′1 = p2∂x − p1∂y , X′2 = e
p1
2 t∂x (24)

X′3 = (p1 p2t + 2p2) ∂x − tp2
1∂y + p2

1yF∂F (25)

and
X′4 = e−

p1
2 t
((

p2
1 − p2

2

)
∂x + 2p1 p2∂y + p2

1 (p1x + p2y + p3) F∂F

)
(26)

For the remaining cases see [10].
Below, the nonautonomous two-factor model is defined and the group invariant point

transformations are derived.

2.2. Lie Symmetries of the Nonautonomous Equation

We consider that the parameters σI , ρ, r, κ, α and λ of Equation (8) are well-defined functions of
time. Without loss of generality we can select a new time variable τ and eliminate, for instance, the
function σ1 (t). Therefore we select σ1 = 1.

Under the time-depedent coordinate transformation, Equation (9), the two-factor model (8) has
the following mathematical expression

F,xx + F,yy − (P1 (t) x + P2 (t) y + P3 (t)) F,x − (Q1 (t) x + Q2 (t) y + Q3 (t)) F,y − 2F,t = 0 (27)

where now the new time-depedent parameters of the model are

P1 (t) = 2ρσ , P2 (t) = 2σ2

√
1− ρ2 , P3 (t) = 1− 2r (t) (28)

Q1 (t) = −
2 (ρσ2)

2 + (ρσ2),t + ρσ2κ

σ2
√

1− ρ2
(29)

Q2 (t) = −
(

2ρσ2 + κ + 2
σ2,t

σ2

)
+

2ρ2ρ2,t√
1− ρ2

(30)

and

Q3 (t) = −
(

σ2 (ρ− 2rρ)− 2κα + 2λ

σ2
√

1− ρ2

)
(31)

Therefore, from the symmetry condition (18) for Equation (27), we find that the generic Lie
symmetry vector is
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XG = a∂t +

(
b1 + y

(
B2 +

1
4

aP2 −
1
4

aQ1

)
+

xa′

2

)
∂x +(

g− x
(

B2 +
1
4

aP2 −
1
4

aQ1

)
+

ya′

2

)
∂y +

1
4

[
4h + 2xb1P1 + 2xgP2 + x2(−P2 −Q1)

(
B2 +

1
4

aP2 −
1
4

aQ1

)]
F∂F +

1
4

[
2x
(

B2 +
1
4

aP2 −
1
4

aQ1

)
(yP1 − yQ2 −Q3) + x2P1a′ + 2xyP2a′

]
F∂F +

1
4

[
xP3a′ − 4xb′21 aP′1 + 2xyaP′2 + 2xaP′3

]
F∂F +

1
4

[
−4xy

(
1
4

P2a′ − 1
4

Q1a′ +
1
4

aP′2 −
1
4

aQ′1

)
− x2a′′

]
F∂F +

1
4

[
2yb1Q1 + 2yP3

(
B2 +

1
4

aP2 −
1
4

aQ1

)
+ y2(P2 + Q1)

(
B2 +

1
4

aP2 −
1
4

aQ1

)]
F∂F +

1
4

[
2ygQ2 + y2Q2a′ + yQ3a′ − 4yg′2aQ′2 + 2yaQ′23 a′′

]
F∂F (32)

where B2 is constant, a = a (t) , b1 = b1 (t) , f = f (t) and g = g (t), given by the system
of equations of Appendix A. Furthermore, from the generic vector field (32) and the system of
Appendix A, we know that the nonautonomous two-factor model of commodities is invariant
under the {A1 ⊕s W5} ⊕s ∞A1 Lie algebra, the same algebra as the autonomous model but in a
different representation.

We continue our analysis with the two-dimensional Black-Scholes equation.

3. The Two-Dimensional Black-Scholes Equation

Consider a basket containing two assets the prices of which are S1 and S2 and that the the prices
of the underlying assets obey the system of stochastic differential equations,

dSI,t = SI,t

(
µIdt +

σI√
1 + ρ2

(
dWI,t + ρdWJ,t

))
(33)

where I, J = 1, 2, I 6= J, and WI,t are two independent standard Brownian motions. Let
u = u (t, S1, S2) be the payoff function on a European option on this two-asset basket. Then the
evolution equation which u satisfies is an (1 + 2) linear evolution equation given by [29]

1
2

σ2
1 u,11 + ρσ1σ2u,12 +

1
2

σ2
2 u,22 − rS1u,1 − rS2u,2 − ru + u,t = 0 (34)

with the terminal condition u (T, S1, S2) = U, when t = T.
Equation (34) is a generalisation of the BS equation and it is called the two-dimensional BS

equation. The Lie symmetry analysis of Equation (1) has been presented in [9] and recently a
Lie symmetry analysis for Equation (1), with a general potential function, was performed in [30].
The algebraic properties of the autonomous form of Equation (34) have been studied in [26] and it
was found that Equation (34) is invariant under a seven-dimensional Lie algebra, plus the infinite
number of solution symmetries. As we see below, the analysis of the autonomous Equation (34)
in [26] is not complete. In particular we find that it is maximally symmetric, i.e., invariant under a
nine-dimensional Lie algebra, plus the infinite number of solution symmetries. In [26] the authors
considered the following equation

1
2

σ2
1 u,11 + ρσ1σ2u,12 +

1
2

σ2
2 u,22 − µ1S1u,1 − µ2S2u,2 − ku + u,t = 0 (35)
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which reduces to Equation (34) when µ1 = µ2 = k = r.
Below we determine the Lie symmetries of Equation (35) for the autonomous and

nonautonomous system.

3.1. Lie Symmetries of the Autonomous Equation

We introduce the coordinate transformation

S1 = exp (σ1x) , S2 = exp
(

σ2ρx + σ2

√
1− ρ2y

)
(36)

under which Equation (35) becomes

u,xx + u,yy − φ1u,x − φ2u,y − 2ku + 2u,t = 0 (37)

where now the new constants, φ1 and φ2, are

φI =
σ2

1 + 2µI

σI
(38)

On application of the Lie symmetry condition (18) for (37) we find that the Lie symmetry
vectors are

Xt = ∂t , Xu = F∂u , X∞ = f (t, x, y) ∂u (39)

X1 = ∂x , X2 = t∂x +
1
2

x‘x (x + φ1t) u∂u

X3 = ∂y , X4 = t∂y +
1
2
(y + φ2t) u∂u (40)

X5 = y∂x − x∂y +
1
2
(φ1y− φ2x) u∂u (41)

X6 = 2t∂t + x∂x + y∂y +
1
2

(
φ1x + φ2y + t

(
φ2

1 + φ2
2 + 8k

))
u∂u (42)

and
X7 = t2∂t + tx∂x + ty∂y +

1
4

(
x2 + y2 + t2

(
φ2

1 + φ2
2 + 8k

)
+ 2t (φ1x + φ2y− 2)

)
u∂u (43)

which are 8+ 1+∞ symmetries. This is the admitted group invariant algebra of the two-dimensional
Heat Equation, that is, {{sl (2, R)⊕s so (2)} ⊕s W5} ⊕s ∞A1. Hence the two-dimensional BS
Equation (35) is maximally symmetric and equivalent with the two-dimensional Heat and
Schrödinger equations [31]. This result does not hold for the two-factor model of commodities. An
analysis does hold when in Equation (35), µ1 = µ2 = k = r; that is, for Equation (34).

When we apply the transformations

t = −1
2

T , x = x̄− 1
2

φ1t (44)

and
ȳ = y− 1

2
φ2t , u = e2ktv (t, x, y) (45)

to Equation (37), the equation becomes

v,x̄x̄ + v,ȳȳ − v,t = 0 (46)

which is the two-dimensional Heat conduction equation.
We proceed to the determination of the Lie symmetries for the nonautonomous Equation (35).
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3.2. Lie Symmetries of the Nonautonomous Equation

We take the parameters, σI , ρ, µI and k, of Equation (35) to be well-defined functions of time.
Moreover without loss of generality we select σ1 (t) = 1.

We apply the time-dependent transformation Equation (36) to Equation (35) and we have

u,xx + u,yy − P1 (t) u,x − (Q1 (t) x + Q2 (t) y + Q3 (t)) u,y − 2k (t) u + 2u,t = 0 (47)

in which

P1 (t) = 1 + 2µ1 (t) , Q1 (t) =
2 (ρσ2),t

σ2
√

1− ρ2
(48)

Q2 (t) = −
2
(
σ2,tρ

2 + σ2ρρ,t − σ2,t
)

σ2 (1− ρ2)
(49)

and

Q3 (t) =
σ2 (σ2 − ρ− 2µ2ρ) + 2µ2

σ2
√

1− ρ2
(50)

From the symmetry condition (18) for Equation (47) we find that the generic Lie symmetry vector
has the following mathematical expression

XG = a∂t +

(
b1 + y

(
B2 +

1
4

aQ1

)
+

xa′

2

)
∂x +

(
f − x

(
B2 +

1
4

aQ1

)
+

ya′

2

)
∂y +

1
4

[
4g +

(
−x2Q1

(
B2 +

1
4

aQ1

)
− 2x

(
B2 +

1
4

aQ1

)
(yQ2 + Q3)

)]
u∂u +

1
4

[
xP1a′ + 4xb′1 + 2xaP′1 + x2a′′ + 4xy

(
1
4

Q1a′ +
1
4

aQ′1

)]
u∂u +

1
4

[
+2yb1Q1 + 2yP1

(
B2 +

1
4

aQ1

)
+ y2Q1

(
B2 +

1
4

aQ1

)]
u∂u +

1
4

[
2y f Q2 + y2Q2a′ + yQ3a′ + 4y f ′2aQ′2 + 2yaQ′23 a′′

]
u∂u (51)

where B2 is a constant, a = a (t) , b1 = b1 (t) , f = f (t) and g = g (t) which given by the system of
differential equations of Appendix B. Furthermore, from Equation (51) and the system of Appendix B,
we observe that the nonautonomous Equation (34) is invariant under the group of transformations
in which the generators form the {{A1 ⊕s so (2)} ⊕s W5} ⊕s ∞A1 Lie algebra. Below we consider a
special case for which σ1 (t) ' σ2 (t) and ρ = const.

Special Case: ρ = const and σ1 (t) ' σ2 (t)

As a special case of the nonautonomous Equation (35) we consider σ2 (t) = σ0σ1 (t), where σ0 is
a constant and ρ (t) is a constant. The nonautonomous two-dimensional BS equation becomes

σ2
1 (t)

(
1
2

u,11 + ρσ0u,12 +
1
2

σ2
0 u,22

)
− µ1 (t) S1u,1 − µ2 (t) S2u,2 − k (t) u + u,t = 0 (52)

where without loss of generality we can select σ1 (t) = 1. Under the transformation Equations (36)
and (52) becomes

u,xx + u,yy −Λ1 (t) u,x −Λ2 (t) u,y − 2k (t) u + 2u,t = 0 (53)

where the new functions Λ1 (t) , Λ2 (t) are defined as

Λ1 (t) = 1 + 2µ1 (t) (54)
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and

Λ2 (t) =
σ0 (σ0 − ρ− 2µ2 (t) ρ) + 2µ2 (t)

σ0
√

1− ρ2
(55)

From the symmetry condition (18) for Equation (47) the following symmetry vectors arise

Xu = u∂u , X∞ = f (t, x, y) ∂F (56)

Z1 = ∂x , Z2 = t∂x +

(
1
2

∫
Λ1dt + x

)
u∂u (57)

Z3 = ∂y , Z4 = t∂y +

(
1
2

∫
Λ2dt + y

)
u∂u (58)

Z5 =

(
y +

1
2

∫
Λ2dt

)
∂x −

(
x +

1
2

∫
Λ1dt

)
∂y +

1
2

(
Λ1y− 1

2
Λ2x

)
u∂u (59)

Z6 = ∂t −
1
2

Λ1∂x −
1
2

Λ2∂y + ku∂u (60)

Z7 = 2t∂t +

(
x− 1

2

∫
Λ1dt−

∫
tΛ1dt

)
∂x +

(
y− 1

2

∫
Λ2dt−

∫
tΛ2dt

)
∂y + tku∂u (61)

and

Z8 = t2∂t +

(
tx− 1

2

∫ ∫ (
t2Λ1,tt + 3tΛ1,t

)
dt
)

∂x +

(
ty− 1

2

∫ ∫
t2Λ2,tt + 3tΛ2,t

)
∂y +[

−1
2

x
(∫

t2Λ1,ttdt + 3
∫

tΛ1,tdt− t2Λ1,t − tΛ1 − x
)]

u∂u +[
−1

2
y
(∫

t2Λ2,ttdt + 3
∫

tΛ2,tdt− t2Λ2,t − tΛ2 − y
)]

u∂u +

1
4

[
4t (t− 1)−

∫
Λ1

(∫
t2Λ1,ttdt

)
dt−

∫
Λ2

(∫
t2Λ2,ttdt

)
dt
]

u∂u +

1
4

[
−3

∫
Λ1

∫
tΛ1,tdt− 3

∫
Λ2

∫
tΛ2,tdt

]
u∂u

1
4

[∫
t2Λ1Λ1,t +

∫
t2Λ2Λ2,t +

∫
t
(

Λ2
1 + Λ2

2

)
dt
]

u∂u (62)

Hence the nonautonomous Equation (52) is maximally symmetric, just as the autonomous
two-dimensional BS equation, in contrast to the nonautonomous Equation (47) which is invariant
under another group of point transformations.

Moreover Equation (53) can be written in the form of Equation (46) and the transformation which
does that is

t = −1
2

T , u = e2ktv (t, x, y) (63)

and
x = x̄− 1

2

∫
Λ1dt , y = ȳ− 1

2

∫
Λ2dt (64)

Below we discuss our results and draw our conclusions.

4. Conclusions

The purpose of this work is to study the algebraic properties of nonautonomous (1+ 2) evolution
equations in financial mathematics. Specifically, we examined the relation among the admitted group
of invariant transformations between the autonomous and the nonautonomous equations of the
two-factor model of commodities and of the two-dimensional BS equation was performed.
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For the two-factor model of commodities we proved that the autonomous and the
nonautonomous equations are invariant under the same group of point transformations in which
the generators form the {A1 ⊕s W5} ⊕s ∞A1 Lie algebra.

As far as the autonomous two-dimensional BS equation is concerned, we proved that
it is maximally symmetric and admits as Lie symmetries the generators of the Lie algebra
{{sl (2, R)⊕s so (2)} ⊕s W5} ⊕s ∞A1 This corrects the existing result in the literature. However, the
admitted Lie symmetries of the nonautonomous two-dimensional BS equation form a different Lie
algebra than that of the autonomous equation and is of lower dimension. Specifically the admitted Lie
algebra is {{A1 ⊕s so (2)} ⊕s W5} ⊕s ∞A1. That result differs from that for the model of commodities
for which the autonomous and the nonautonomous equations are invariant under the same group of
transformations, namely {A1 ⊕s W5} ⊕s ∞A1.

In the case for which ρ = const and σ1 (t) ' σ2 (t), the two-dimensional BS equation is maximally
symmetric. In order to understand why we have this special case consider the general (1 + n)
evolution equation ( We use the Einstein summation convention).

Aij
(

t, xk
)

uij + Bi
(

t, xk
)

u,i + f
(

t, xk, u
)
= u,t (65)

If X = ξt∂t + ξ i∂i + η∂u is the generator of a Lie symmetry vector, one of the symmetry conditions
can be written as

Lξα Aij = −2ψAij (66)

where ψ is a function of t only, and α = 1, 2, ..., n, t. Therefore from Equation (66) we know that

Lξ i Aij = −2ψAij − Aij
,tξ

t (67)

From Equation (67) we know that, when Aij
,t = 0, the Lie symmetries of Equation (65) are

generated by the Homothetic Algebra of Aij. However, that is not true when Aij
,t 6= 0 and new

possible generators arise. In the (1 + 1) equations, i.e., Equations (1) and (2), when σ = σ (t), as we
discussed above, we can always perform a time (coordinate) transformation and cause the second
derivatives to be time-independent. Therefore, in order to apply this method to the two-dimensional
systems, we have to select ρ = const and σ1 (t) ' σ2 (t) so that at the end the components of the
second derivatives can be seen as time-independent.

Furthermore, we remark that we performed a reduction on the two nonautonomous
Equations (8) and (34) by using the Lie symmetries (32) and (51), respectively, for a (t) = 0. We
found that the reduced equations, which are (1 + 1) evolution equations, are maximally symmetric.
This is the same result as is to be found in the case of the autonomous two-factor model [10].

As a final application consider the nonautonomous two-dimensional BS Equation (53). From
the application of the invariant functions of the Lie symmetries {Z1 + c1Xu, Z3 + c2Xu} we have the
solution u (t, x, y) = w (t) exp (c1x + c2y), where

w (t) = exp
(

1
2

∫ (
2k (t)−

(
c2

1 + c2
2

)
+ Λ1 (t) c1 + Λ2 (t) c2

)
dt
)

(68)

In the case for which µ1 (t) = µ2 (t) = k (t) = r (t) and r (t) = r0 + ε sin (ωt), ω ,ε and r0 are
constants, the solution of the nonautonomous two-dimensional BS equation for the “t− x” plane is
given in Figure 1. We observe that in the t−direction, function u (t, x, y) has periodic behavior along
the line f (t) ' t with period ω.

The implication of the results of the present analysis is that for the two-factor model of
commodities, the autonomous and the nonautonomous problem share the same static solutions, that
is, the differences follow only from the time-dependent terms of the solution. However, that is not true
for the two-dimensional Black-Scholes Equation in which the nonautonomous equation in general is
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not maximally symmetric and does not share the same number of static solutions with that of the
autonomous equation. On the other hand we found that if and only if the time-dependence of the
two volatilities σ1 (t) , σ2 (t)are the same, i.e., σ1(t)

σ2(t)
= const, and if the correlation factor ρ is constant

then the nonautonomous Black-Scholes shares the same static solutions, i.e., static evolution, with the
autonomous equation.

Figure 1. Qualitative evolution of the solution u (t, x, y) for the nonautonomous two-dimensional
Black-Scholes-Merton Equation (34) in the “t-x” plane, when σ1, σ2, ρ are constants and r (t) = r0 +

ε sin (ωt).

The results of this analysis are important in the sense that by starting from the autonomous
equation and with the use of coordinate transformations and only someone can analyse models with
time-varying constants. On the other hand starting from real data and with the use of coordinate
transformations to see if the data are well described from the autonomous system, and vice verca.
The situation is not different from that which one finds on the relation between the free particle
and harmonic oscillator. In order to demonstrate that, if we plot the time-position diagram of the
mathematical pendulum, where we measure the distance and the time with nonlinear instruments,
the graph will be a straight line, which describes the motion of the free particle.

In a forthcoming work we intend to extend our analysis to the case where the free parameters of
the models are space-dependent. Such an analysis is in progress and will be published elsewhere.
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Appendix

Appendix A. Nonautonomous Two-Factor Model of Commodities

In this Appendix we give the differential equations which the functions a (t) , b1 (t) , h (t)
and g (t) of the generic symmetry vector Equation (32) of the nonautonomous two-factor model of
commodities satisfy. For the derivation of the system the symbolic package SYM of Mathematica has
been used [32–34].

The system is:



Mathematics 2016, 4, 34 12 of 14

0 = −1
2

b1P1P3 −
1
2

gP2P3 −
1
2

b1Q1Q3 −
1
2

gQ2Q3 +

1
2

P1a′ − 1
4

P2
3 a′ +

1
2

Q2a′ − 1
4

Q2
3a′ + P3b′1 +

Q3g′ − 2h′ +
1
2

aP′1 −
1
2

aP3P′3 +
1
2

aQ′2 −
1
2

aQ3Q′3 − a′′ (A1)

0 = −1
2

b1P2
1 −

1
2

gP1P2 +
1
2

B2P2P3 +
1
8

aP2
2 P3 −

1
8

aP2P3Q1

−1
2

b1Q2
1 −

1
2

gQ1Q2 +
1
2

B2Q2Q3 +
1
8

aP2Q2Q3 −
1
8

aQ1Q2Q3

−3
4

P1P3a′ − 3
4

Q1Q3a′ − P2g′ + Q1g′ − b1P′1 −
1
2

aP3P′1

−gP′2 −
1
2

aP1P′3 −
3a′P′3

2
− 1

2
aQ3Q′1

+B2Q′3 +
1
4

aP2Q′3 −
3
4

aQ1Q′3 + 2b′′1 − aP′′3 (A2)

0 = −1
2

b1P1P2 −
1
2

gP2
2 −

1
2

B2P1P3 −
1
8

aP1P2P3 +
1
8

aP1P3Q1

−1
2

b1Q1Q2 −
1
2

gQ2
2 −

1
2

B2Q1Q3 −
1
8

aP2Q1Q3 +
1
8

aQ2
1Q3

−3
4

P2P3a′ − 3
4

Q2Q3a′ + P2b′1 −Q1b′1 −
1
2

aP3P′2

−B2P′3 −
3
4

aP2P′3 +
1
4

aQ1P′3 − b1Q′1 − gQ′2

−1
2

aQ3Q′2 −
1
2

aQ2Q′3 −
3a′Q′3

2
+ 2g′′ − aQ′′3 (A3)

and

0 = B2P1P2 +
1
4

aP1P2
2 −

1
4

aP1P2Q1 + B2Q1Q2 +

1
4

aP2Q1Q2 −
1
4

aQ2
1Q2 −

1
2

P2
1 a′ +

1
2

P2
2 a′ − 1

2
Q2

1a′ +

1
2

Q2
2a′ − 1

2
aP1P′1 − a′P′1 + B2P′2 +

3
4

aP2P′2 −
1
4

aQ1P′2 +

B2Q′1 +
1
4

aP2Q′1 −
3
4

aQ1Q′1 +
1
2

aQ2Q′2 + a′Q′2 −
1
2

aP′′1 +
1
2

aQ′′2 (A4)

Appendix B. Nonautonomous Two-Dimensional Black-Scholes

In this Appendix we give the differential equations which the functions a (t) , b1 (t) , f (t)
and g (t) of the generic symmetry vector Equation (51) of the nonautonomous two-dimensional
Black-Scholes Equation satisfy.

The system is:

0 = −1
2

b1Q1Q3 −
1
2

f Q2Q3 − 2ka′ − 1
4

P2
1 a′

+
1
2

Q2a′ − 1
4

Q2
3a′ − P1b′1 −Q3 f ′ + 2g′ − 2ak′

−1
2

aP1P′1 +
1
2

aQ′2 −
1
2

aQ3Q′3 + a′′ (B1)
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0 = −1
2

b1Q2
1 −

1
2

f Q1Q2 +
1
2

B2Q2Q3 +
1
8

aQ1Q2Q3 −
3
4

Q1Q3a′

−Q1 f ′ +
3a′P′1

2
− 1

2
aQ3Q′1 − B2Q′3 −

3
4

aQ1Q′3 + 2b′′1 + aP′′1 (B2)

0 = −1
2

b1Q1Q2 −
1
2

f Q2
2 −

1
2

B2Q1Q3 −
1
8

aQ2
1Q3 −

3
4

Q2Q3a′

+Q1b′1 + B2P′1 +
1
4

aQ1P′1 + b1Q′1 + f Q′2

−1
2

aQ3Q′2 −
1
2

aQ2Q′3 +
3a′Q′3

2
+ 2 f ′′ + aQ′′3 (B3)

0 = −1
2

B2Q2
1 −

1
8

aQ3
1 +

1
2

B2Q2
2 +

1
8

aQ1Q2
2

−Q1Q2a′ − 1
2

aQ2Q′1 + a′Q′1 − B2Q′2 −
3
4

aQ1Q′2 +
1
2

aQ′′1 (B4)

and

0 = −B2Q1Q2 −
1
4

aQ2
1Q2 +

1
2

Q2
1a′ − 1

2
Q2

2a′ +

B2Q′1 +
3
4

aQ1Q′1 −
1
2

aQ2Q′2 + a′Q′2 +
1
2

aQ′′2 (B5)
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