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Abstract 

Background: For a probiotic to be viable it needs to be preserved at a recommended minimum level of 6–7 log10cfu/g in the product 

being consumed, as suggested by the International Dairy Federation. Different biopolymer matrices have been used for 

encapsulation of probiotic; however, loss of viability is still a challenge.  

Materials and Methods: Modified citrus pectin-alginate microbeads containing Lactobacillus acidophilus ATCC 4356 was 

developed. Efficiency of the microbeads was evaluated in simulated conditions of the gastrointestinal tract and in Balb/c mice 

induced with colon tumor. Genomic identification of faecal lactobacilli samples from treated mice was also performed.  

Results: The Modified citrus pectin-alginate probiotic microbeads significantly enhanced the viability of Lactobacillus acidophilus 

ATCC 4356 compared to the control (p< 0.05) both in vitro and in vivo. Exposure of the modified citrus pectin-alginate microbeads 

to 3 hours of simulated gastric juice resulted in 82.7% survival of L. acidophilus ATCC 4356. Also, the number of faecal lactobacilli 

in the modified citrus pectin-alginate probiotic treated mice increased by 10.2% after 28 days.  

Conclusion: Modified citrus pectin-alginate is a novel effective means of oral delivery of bacterial cells and bioactive compounds. 

Modified citrus pectin-alginate can be used in probiotic therapy which may improve the prevention of colon cancer.  

Key words: Modified citrus pectin, alginate, probiotic, and microencapsulation. 

Introduction 

The use of pro-biotic microorganisms in the food industry and complementary medicine has gained great interest (Gbassi 

et al., 2011; Mitropoulou et al., 2013). Probiotic microorganisms are live supplement incorporated sometimes into functional foods 

which gives health benefit to host when consumed. These microorganisms when consumed pass through the gastrointestinal tract 

(GIT) during which viability may be lost before they reach their target site. Therefore, the viability of probiotic microorganisms 

during storage and transit in the GIT is of paramount importance (Anal and Singh, 2007; Gebara et al., 2013). Probiotics are defined 

as “live microorganisms which when administered orally in adequate amount confer a health benefit on the host” (FAO, 2002). 

Attention has been focused on decreasing the risk of cancer, particularly through the consumption of probiotics and increase in 

dietary fibre intake (Mandal et al., 2006). However, the colonic flora is able to produce substances with toxic or tumour-promoting 

activities when metabolising some dietary compounds in animal model. Therefore, the alteration/manipulation of intestinal bacterial 

composition through consumption of probiotics and composition of the diet may have the potential to reduce the risk of colon cancer 

by stimulating the immune system, regulating inflammations in the gut, decreasing incidence of infections and binding toxic 

substances (Capurso et al., 2006). A clinical trial was conducted where colonic microflora, Lactobacillus acidophilus showed anti-

carcinogenic activity in humans (Hansen et al., 2002). Also, studies have demonstrated that the inclusion of probiotics in diet 

reduces the risk of cancer (Chen and Chen, 2007). O'Keefe et al. (2007) reported that a low endogenous faecal lactobacilli count in 

the colonic mucosal biopsies leads to higher incidence of colon cancer in African Americans. 

Encapsulation successfully protects probiotic bacterial cells against adverse environmental and intestinal effect, thereby 

releasing them in their viable and metabolic active states in the intestine at under specified pH conditions. Various materials have 

been employed in probiotic encapsulation, but fast and easy inflow of water and other liquids through some of the matrices is a 

limitation (Anal and Singh, 2007). Extensive studies found alginate suitable for probiotic encapsualtion because of its lack of 

toxicity, ability to entrap living microorganisms and it is generally regarded as safe “GRAS” (Dinakar and Mistry, 1994; Gombotz 

and Wee, 2012). Modified pectin (MP) is a complex water soluble indigestible polysaccharide used as a dietary supplement to 

promote cell growth. MP, rich in β-galactose, is potentially safe, non-toxic and it possesses a unique bioactivity of inhibiting 

carcinogenesis (Morris, 2009; Maxwell et al., 2012). 

Azoxymethane (AOM), a metabolite of 1, 2- dimethylhydrazine, is a potent specific carcinogen used to induce colon 

cancer in mice and rats (Bissahoyo et al., 2005; Tanaka, 2009). The AOM mouse model has been extensively used in the study of 

underlying mechanism of sporadic colon cancer in humans. The response of AOM-induced colorectal cancer mouse model mimics 

the occurrence of non-familial colon tumour particularly sporadic colon cancer in humans (Chen and Huang, 2009). Although few 

animal studies have shown that probiotics alone or synbiotics (probiotic and prebiotic) can reduce the incidence of precancerous 

lesions, but the mechanism by which this health benefit comes into play remains unclear and may be dynamic in nature (Capurso et 

al., 2006). The potential role of modified pectin (MP) and probiotics in the prevention of carcinogenesis has prompted the need to 

understand their synergistic influence on colon microflora. Therefore, the aim of this study was to investigate the effect of modified 

citrus pectin-alginate on the survival of encapsulated Lactobacillus acidophilus ATTC 4356 in vitro (gastric and intestinal juice) and 

in vivo (Balb/c mouse model of AOM-induced colon tumour). 
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Materials and Methods 
Plant Material 

 

Modified citrus pectin [(MCP); ecoNugenics Inc. (CA, USA), extracted from the peel pith of orange fruit, Citrus sp.]. This 

was obtained in form of a fine powder and stored at room temperature. Alginate sodium [Sigma Aldrich (St. Louis, M.O. USA), 

extracted from the cell wall of brown seaweed mostly found in cold water regions] was obtained in powder form. 

 

Preparation of Modified Citrus Pectin-Alginate Lactobacillus Acidophilus ATCC 4356 Micro-beads 

 

Microencapsulation of the pro-biotic was performed aseptically at room temperature. Frozen stock culture of L. 

acidophilus ATCC 4356 was rehydrated and grown in MRS agar/broth (Sigma Aldrich, St. Louis, M.O. USA) at 37C for 48 hours 

under aerobic and anaerobic condition using anaerocult®. Fresh cell suspensions of about 9-10 log10cfu/g were prepared for each 

microencapsulation procedure. Both the modified citrus pectin alginate (MCPA) and alginate calcium (AP) microbeads were 

produced separately using modified emulsification method (Homayouni et al., 2008). Modified citrus pectin (8.5%) and sodium 

alginate (2%) polymers, incorporated with hi-maize resistant starch (2%) (National Starch Food Innovation, Wadeville, Guateng) 

were agitated in distilled water for 10 min to produce the MCPA microbeads. For the AP microbeads, sodium alginate (2%) and hi-

maize resistant starch (2%) were used. Cell suspension (1 ml) of L. acidophilus ATCC 4356 was added to the polymer mixtures in 

300 ml of canola oil. The mixture was emulsified by adding lecithin (0.1%) with a constant agitation at 1400 rpm for 40 min. 

Calcium chloride (0.1 M) solution was added to the polymer mixtures to harden the beads and agitated for 5 min. Thereafter, the 

MCPA or AP probiotic microbeads were collected by centrifugation at 4000 rpm for 5 min at 4°C. The microbeads of L. acidophilus 

ATCC 4356 were immersed in 100 ml of chitosan solution (Sigma Aldrich, St. Louis, M.O, USA) and agitated at 1400 rpm for 15 

min on magnetic stirrer for coating. The microbeads were retrieved, washed with saline solution (0.9% NaCl) and stored in sodium 

glycerol (0.9% NaCl, 5% glycerol) solution at 4C. Free cells of L. acidophilus ATCC 4356 were stored in saline solution at 4°C 

The morphology and particle size (µm) of microbeads chosen at random were measured under MOTIC optical microscope 

(Motic images Plus 2.0 software, Hong Kong, Asia) and images captured with camera (Moticam 2500, Hong Kong, Asia). The size 

of each microbead is presented as mean ± standard deviation (SD). 

 

In Vitro:  

Enumeration of Lactobacillus Acidophilus ATCC 4356 

 

The viability of the encapsulated L. acidophilus ATCC 4356 in MCPA and AP microbeads were determined by vigorously 

homogenizing 1 g of the microbeads in 9 ml of sterile phosphate buffer solution (PBS) pH (7.4) for 10 min (Sheu and Marshall, 

1993; Annan et al., 2008). Cell suspensions (100 µl) were plated on MRS agar and incubated for 48 hours. Viable cells growth 

recorded in log10 cfu/ g were enumerated using automated colony Doc-It® imaging station (UVP, C.A, USA). However, the 

microencapsulation yield (EY) which is a combined measurement of the efficacy of encapsulation and survival of viable cells during 

the microencapsulation procedure was calculated using the formula:  

EY = (N / N0) X 100 

Where N is the number of viable encapsulated cells released from the microbeads (log10cfu/ g) and N0 is the number of free cells 

added to the biopolymer matrix emulsion. 

 

Determination of Survival of Free and Microencapsulated Lactobacillus Acidophilus ATCC 4356 in Simulated Gastric and 

Intestinal Juice 

 

Simulated gastric juice (SGJ) was prepared as follows: 9 g/l of NaCl and 3 g/l of pepsin (St. Louis, M.O. USA) with final 

pH 2.0 by 0.1 M hydrochloric acid (HCl). Simulated intestinal juice (SIJ) was prepared as follows: 3% (w/v) bile salt (Sigma 

Aldrich, St. Louis, M.O. USA), 6.5 g/l NaCl, 0.835 g/l KCl, 0.22 g/l, CaCl2 and 1.386 g/l NaHCO3 with final pH 8.0 by 0.1 M 

NaOH. Then, 1 g of the MCPA and AP probiotic microbeads was homogenized in 9 ml of SGJ and SIJ and incubated at 37°C for 30 

min, 60 min, 120 min and 180 min with constant agitation at 60 rpm. At each specified time interval, microbeads were washed with 

saline solution, diluted serially and enumeration of L. acidophilus ATCC 4356 cells was done as described above. All microbeads 

samples were treated in triplicates. 

 

 

In vivo:  

Animal Model 

 

This experiment was carried out at the Biomedical Research Unit (BRU), University of KwaZulu-Natal (UKZN) in 

accordance with approved standard protocols for animal treatment and with post institutional ethics approval (063/13/Animal and 

084/14/Animal). Seven week old male Balb/c mice weighing 20 – 25 g were bred in-house under a controlled condition of humidity 

(50 ± 10%) and temperature (23 ± 2C) on a 12 hours light/12 hours dark cycle. Mice were allowed free access to water and food. 

During the experiment, mice were carefully observed for any toxic effect, unusual behaviour and rectal bleeding. In addition, body 

weight for each mouse were recorded and monitored weekly.  

 

Azoxymethane (AOM) Treatment  

 

Twenty-five micro-litre of AOM (13.4 Molarity, ≥98%, Sigma-Aldrich Co., St. Louis, USA) was reconstituted in 500 µl 

sterile phosphate-buffered saline (PBS) to prepare a working concentration of 1 mg/ ml AOM. The administration of AOM dose to 

each mouse was dependent on the body weight of the mouse. Each mouse was pre-treated with 15 mg/kg AOM intraperitoneally 

once a week for four consecutive weeks. The AOM dose and time response was optimised prior to the start of the animal study. 
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Modified Citrus Pectin-Alginate and Alginate Calcium Probiotic Micro-beads Treatment 

 

The total study population (n=40) consisted of 4 groups (n=10 each). Each group of mice was orally administered 0.2 ml 

MCPA- and AP probiotic microbeads, MCP and water (control) for 28 days. Faecal samples were obtained for each group of mice at 

the initial day (day 0) prior the probiotic microbeads treatments and days 7, 14 and 28. 

 

Microbiological Analysis of Faecal Bacteria 

 

The faecal samples were transported in an ice pack bag and processed within 12 hours of collection. Samples were serially 

diluted in saline (0.9% NaCl) from 101 up to 1010 and inoculated on MRS agar for 48 hours at 37C. Colonies were selected 

randomly from each faecal sample plates count of 30 – 300 cfu/ml. Identification of isolates from pure cultures was done based on 

the following parameters: colony morphology, gram stain and cell morphology. 

 

 

Genomic DNA Sequence Analysis of Faecal Bacteria 

 

DNA of bacterial isolates was extracted with Zymo spinTM IIC (Zymo Research Corporation, USA). PCR amplification of 

the DNA sample fragments of the 16s region was obtained using DreamTaq (Thermo scientific Fermentas) and primers, 27F: 5´ 

GAGTTTGATCCTGGCTCAG and 1492R: 5´ GGTTACCTTGTTACGACT 3´. A total volume of 50ul containing 25ul of 

DreamTaq Green PCR master mix (DreamTaq DNA polymerase, optimised DreamTaq green buffer, MgCl2 and dNTPs), 1.0 µM of 

each primers, 1 µg of Template DNA and water, nuclease-free of PCR reaction. PCR was started by initial denaturation of template 

DNA at 95C for 3 min at 1 cycle then second denaturation at 95C for 30 s followed by primer annealing 25 cycles for 30 s, 

extension at 72C and final extension for 15 min at the same temperature. Amplicons were separated on 1% agarose Gel followed by 

staining with GRGReen. Exo/SAP amplicon purification was used directly on the PCR fragments. The ultra-pure DNA fragment 

was loaded into the ABI 3500 XL sequence analyzer. Consensus sequence and blast algorithm were performed in CLC Bio (Inqaba 

biotech, SA) and compared with the known ones available in the Genbank database.  

 

Data Analysis 

 

Data were subjected to two way analysis variance (ANOVA) and Tukey’s test to determine the significant differences 

among the means of microbeads using Graphpad Prism software SSPS version 17.0 for Windows (SSPS, Chicago, Illinois, USA). 

Results were presented as means ± standard deviation (SD) and statistical significance was set as (p < 0.05). 

 

Results and Discussion 
In vitro: 

Size and Encapsulation Yield of Lactobacillus Acidophilus ATCC 4356 in Modified Citrus Pectin-Alginate and Alginate 

Pectin Micro-beads  

 

In this study, the average mean diameter of the MCPA microbeads ranged from 220.89 ± 2.6 µm to 685.19 ± 0.7 µm 

which was significantly different from the AP microbeads which ranged from 147.61 ± 2.6 µm to 258.09 ± 2.6 µm (p < 0.05). The 

high concentration of modified citrus pectin blended with alginate calcium could be responsible for the large size of the MCPA 

microbeads. Chávarri et al. (2010) and Shi et al. (2013) found that polymer matrix with highest concentration produces large 

microsphere. Similarly, Sandoval-Castilla et al. (2010) found alginate (0.5%) without amidated pectin produced 710 µm microbeads 

size. When the concentration of amidated pectin was increased from 2 – 3%, the size of the bead also increased simultaneously from 

930 – 970 µm. However, the particle size of the microbead may depend on the encapsulation technique involved. Emulsification 

technique mostly produces small diameter (25 µm – 2 mm) compared to extrusion which produces a large size (2 – 5 mm). The 

average viable count of L. acidophilus ATCC 4356 in the MCPA microbeads was found to be 8.16 ± 0.06 log10cfu/g while it was 

8.10 ± 0.04 log10cfu/g in the AP microbeads. Chávarri et al. (2010) demonstrated that some strains of probiotic bacteria may be 

sensitive to the polymer material used for encapsulation which may lead to a low encapsulation yield. The entrapment of 

Lactobacillus gasseri and Bifidobacterium bifidum in alginate and quercetin reduces the encapsulation yield ranging from 19.5 – 

22.2%. In our study, both the MCPA and AP microbeads showed a high microencapsulation yield of 88.6 ± 0.8% and 88.0 ± 0.4% 

respectively (p > 0.05). Sandoval-Castilla et al. (2010) found that alginate + pectin capsules formed a significantly higher entrapment 

efficiency compared to alginate alone which corroborates our findings. In the literature, alginate calcium microbeads are more 

spherical in shape unlike the alginate pectin calcium microbeads that are either vermiform appendix or less spherical (Pillay and 

Fassihi,  999  D  a -Rojas et al., 2004; Sandoval-Castilla et al., 2010; Shi et al., 2013). In this study, the MCPA microbeads were 

more of spherical than vermiform appendix (Figure 1). This result could be attributed to the coating effect by chitosan. The 

availability of carboxyl ions may increase the adsorption of chitosan to the modified pectin-alginate calcium particle surface thereby 

forming a spherical shape.  
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Figure 1: The morphology of A - MCPA (modified citrus pectin alginate probiotic microbead) and B - AP (alginate calcium 

probiotic microbead) particles produced by modified emulsification with arrows indicating the chitosan coating effect.  

 

Stability of Free and Microencapsulated Lactobacillus Acidophilus ATCC 4356 in Storage  

 

Stability of the microencapsulated probiotics at 4C for 28 days was examined. Microencapsulated L. acidophilus ATCC 

4356 had a significantly higher survival rate when compared to the free cell (p < 0.05) (Figure 2). The viability of L. acidophilus 

ATCC 4356 in the MCPA and AP microbeads were reduced by 1.13 log10cfu/g (13.5%) and 1.38 log10cfu/g (17.2%) respectively 

while the free L. acidophilus ATCC 4356 was significantly reduced by 6.75 log10cfu/g (70.4%) (p < 0.05). Similarly, Brinques and 

Ayub (2011) found the highest viability of Lactobacillus plantarum in a mixture of 2% sodium alginate + 2% pectin while the 

lowest viability was found in 4% pectin. The significant survival of L. acidophilus ATCC 4356 in the MCPA microbeads at 4C was 

attributed to the prebiotic effect of hi-maize resistant starch incorporated in the blend of modified citrus pectin and alginate calcium 

microbeads. Also, the cryogenic effect of the sodium glycerol during storage of the microbeads at 4C may give cryo protection to 

the microencapsulated L. acidophilus ATCC 4356 compared to the free L. acidophilus ATCC 4356. The viability of L. acidophilus 

ATCC 4356 was 86.5% in the MCPA microbeads which is similar to Sheu and Marshall (1993). From our study, the blend of 

modified citrus pectin + alginate-calcium coated with chitosan in glycerol is an improved mixture of polymers which enhanced the 

stability and survival of L. acidophilus ATCC 4356 under refrigerated condition.  
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Figure 2: The viability of L. acidophilus ATCC 4356 as free and encapsulated cells during storage at 4C. MCPA - modified citrus 

pectin alginate probiotic microbeads, AP - alginate calcium probiotic microbeads and free cell – L. acidophilus ATCC 4356 cells. 

Each column represents mean  standard deviation (n=3). 

 

Survival of Free and Microencapsulated Lactobacillus Acidophilus ATCC 4356 in Simulated Gastric Juice 

 

The sensitivity of free probiotic bacteria to low pH (1.5 – 3.0) in the stomach reduces their survival considerably. Thus, the 

testing of the probiotic microbeads in simulated physiological conditions (gastric) was performed. At a pH 1.2, no viable free L. 

acidophilus ATCC 4356 was found after 30 min in SGJ while the number of encapsulated L. acidophilus ATCC 4356 cells in both 

MCPA and AP microbeads was below the detection limit, that is less than 2 log10cfu/g) after 1 hour which is similar to the data 

reported by Gebara et al. (2013). Also, Mandal et al. (2006) and Ortakci and Sert (2012) observed a drastic decrease in the number of 

free probiotic cells when exposed to SGJ (pH 1.5) for 30 min. At pH 2.0, we observed that the number of free L. acidophilus ATCC 

4356 in SGJ reduced significantly by 4.01 log10cfu/g (43.6%) compared to 0.55 log10cfu/g (5.9%) and 0.91 log10cfu/g (10.3%) in the 

encapsulated L. acidophilus ATCC 4356 MCPA and AP microbeads respectively after 180 min in SGJ (p < 0.05) (Figure 3). The 

viable number of L. acidophilus ATCC 4356 in these polymer matrices (MCPA and AP) was above 107 that is > 7 log10cfu/g which 

is the required minimum concentration of probiotic therapy able to confer health benefit (Anal and Singh, 2007). Ortakci and Sert 

(2012) found that L. acidophilus ATCC 4356 count in alginate calcium microbeads was reduced by 0.25 log10cfu/g after 30 min in 

SGJ. A little more than 1 log10cfu/g of L. gasseri and less than 1 log10cfu/g of Bifidobacterium bifidum in alginate-chitosan capsules 

were lost after 120 min in artificial gastric juice (Chávarri et al. (2010). 
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The improved survival of L. acidophilus ATCC 4356 in the MCPA micro-beads was attributed to the resilient and 

cohesive cross-linking network between modified citrus pectin and alginate calcium polymers. In the AP microbeads, calcium and 

chitosan polycations binds competitively to the carboxyl anions in alginate molecules. In the MCPA microbeads, the abundance of 

carboxyl polyanions (MCP and alginate) equivalently binds to calcium and chitosan polycations which forms a strong 

polyelectrolyte complex. This synergistic effect produced a strong trapping matrix which reduced the porosity of the bead wall.  

 

Viability of Free and Microencapsulated Lactobacillus Acidophilus ATCC 4356 in Simulated Intestinal Juice 

 

This is to determine the stability of both MCPA and AP pro-biotic microbeads in the presence of bile salt in SIJ (pH 8.0) 

(Figure 3). In this study, free L. acidophilus ATCC 4356 cells were found not to survive in SIJ after 30 min. After 60 min, the 

number of cell in the AP microbeads decreased from 8.10 ± 0.04 log10cfu/g to 3.35 log10cfu/g and further reduced to 2 log10cfu/g 

(66.3%) at 120 min. In the MCPA microbeads, L. acidophilus ATCC 4356 reduced from 8.16 ± 0.06 log10cfu/g to 4.53 ± 0.10 

log10cfu/g after 180 min in SIJ. The viability of L. acidophilus ATCC 4356 cells in the MCPA was significant compared to the AP 

microbeads (p < 0.05). Similar to our findings, Shi et al. (2013) observed the total loss of free L. bulgaricus after 1 h exposure to bile 

salt solution. Trindade and Grosso (2000) found that alginate calcium beads did not protect B. bifidum and L. acidophilus from 2% 

and 3% bile salt action. On the contrary, Ortakci and Sert (2012) found no reduction in the number of both free and encapsulated L. 

acidophilus ATCC 4356 in 1.2% bile juice. Studies demonstrated that some probiotic strains are unaffected by intestinal bile action 

(Ortakci et al., 2012; Ortakci and Sert, 2012) while some are susceptible (Clark and Martin, 1994; Hansen et al., 2002; Chávarri et 

al., 2010; Shi et al., 2013; Trabelsi et al., 2013). Also, a high concentration of bile salt may disintegrate the bacterial cell wall 

integrity. In this regard, the outcomes of different studies varied as a result of different concentrations of bile salt solutions (0.3 – 

4%) and pH (6 – 8). Figures 4 and 5 show the morphology of the MCPA and AP microbead particles containing L. acidophilus 

ATCC 4356 in SGJ and SIJ respectively after sequential exposure for 3 hours.  

 

 

 

 

 
 

Figure 3: The viability of L. acidophilus ATCC 4356 as free and encapsulated cells during exposure to A - simulated gastric juice 

(SGJ) at pH 2 and B - simulated intestinal juice (SIJ) at pH 8 for 30, 60, 120 and 180 min. Each column represents mean  standard 

deviation (n=3). [MCPA - modified citrus pectin alginate probiotic microbeads, A - alginate calcium probiotic microbeads, free cell 

– L. acidophilus ATCC 4356 cells] 
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Figure 4: The morphology of MCPA (modified citrus pectin alginate) microbead particles containing L. acidophilus ATCC 4356 

after (A) 30 min (B) 60 min (C) 120 min and (D) 180 min exposure to simulated gastric juice (SGJ) at pH 2. Microbead particles 

encapsulating L. acidophilus ATCC 4356 indicated by the arrows. 
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Figure 5: The morphology of AP (alginate probiotic) microbead particles containing L. acidophilus ATCC 4356 after (A) 30 min 

(B) 60 min (C) 120 min and (D) 180 min exposure to simulated intestinal juice (SIJ) at pH 8. Microbead particles encapsulating L. 

acidophilus ATCC 4356 is indicated by the arrows. 

 

In vivo: 

Quantification and Analysis of Faecal Bacteria  

 

At day 7 of treatment, the amount of faecal lactobacilli in the MCPA probiotic treated group was increased by 0.38 ± 0.12 

log10cfu/g (5%) while in both the AP and MCP treated groups, 0.02 ± 0.05 log10cfu/g (0.2%) increase was observed (p > 0.05). At 

day 14, the change in amount of the faecal lactobacilli in the MCPA probiotic treated group increased significantly by 0.75 ± 0.4 

log10cfu/g (9.6%) compared to 0.32 ± 0.04 log10cfu/g (4%) and 0.01 ± 0.03 log10cfu/g (0.4%) in the AP probiotic and MCP treated 

groups respectively (p < 0.05). At day 28 of treatment, the faecal lactobacilli count in the MCPA- and AP probiotic treated groups 

further increased by 10.2% and 6% respectively. In the MCP treated group, the number of faecal lactobacilli reduced by 0.6% below 
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the initial baseline level (before treatment), although not statistically significant (p > 0.05). The amount of lactobacilli in the control 

group was also reduced by 0.1 ± 0.4 log10cfu/g (1.2%) (p > 0.05). The difference in number of lactobacilli before and after probiotic 

consumption was significantly increased only in the MCPA probiotic treated group compared to the AP probiotic, MCP treated and 

control groups (p < 0.01) (Figure 6). The changes in the number of faecal microflora observed in the treated mice supports the 

observation made by Mountzouris et al. (2006) that the colon microflora responds dynamically to change in dietary intake. MCP 

failed to increase the number of faecal lactobacilli in the MCP treated mice which corroborates with data reported by Biagi et al. 

(2010). However, the disintegration of chitosan coating and fermentation of the modified citrus pectin and resistant starch by L. 

acidophilus ATCC 4356 and intestinal microflora leads to the increased production of short chain fatty acids (SFCAs), gases and 

butyrate. Butyrate is the preferred energy source for colonic epithelial cells and growth of the faecal lactobacilli. These SFCAs have 

the ability to stimulate bile salt hydrolase which leads to the deconjugation of bile acid thereby reducing the effect of bile in the 

intestine (Ooi and Liong, 2010). 

 

 
 

Figure 6: Average count of faecal lactobacilli (log10cfu/g of feaces) in colon tumour induced Balb/c mice treated with MCPA 

(modified citrus pectin alginate probiotic microbeads), AP (alginate calcium probiotic microbeads) and MCP (modified citrus pectin 

solution). Each column represents mean  standard deviation (n=3). 

 

Generic-Specific Identification of Faecal Bacteria by 16S rRNA Amplification 

 

Henningsson et al. (2002) and Biagi et al. (2010) suggested pectin stimulates bacteria other than lactic acid bacteria. In our 

study, the DNA sample fragments encoding 16S region shows Lactobacillus spp., Bacillus sp. and Enterococcus faecium were 

present in faecal samples from the MCPA-, AP probiotic and control groups (Table 1). In the MCPA probiotic-treated mice, three of 

the DNA samples encoding 16S rRNA gene were closest to the genus Lactobacillus (L. acidophilus, L. reuteri and L. johnsonii). In 

the AP probiotic- and MCP treated groups; two and one Lactobacillus was found respectively. The rest belonged to other genera 

including Bacillus and Enterococcus faecium (both in MCPA, AP and MCP groups of mice) and one Bifidobacterium (MCP only).   
The detection of significant alignment of DNA fragments encoding 16S region of the probiotic strain, Lactobacillus 

acidophilus ATCC 4356 was found only in both the MCPA and AP probiotic treated groups. In the MCP treated group, Bacillus sp. 

was not detected but the genus Bifidobacterium was found only in this group. This demonstrates that MRS agar is neither ideal nor 

reliable to quantify bifidobacteria in mice faeces. The blast hits showed high significant alignments (with Expected values 0.00) and 

regions of 16S rRNA gene homology of Bacillus sp. in both the MCPA and AP probiotic treated groups than in the control group, 

despite mismatched genes and gaps in some cases. 

 

 

 

 

 

 

 

 

 

7,2	

7,4	

7,6	

7,8	

8	

8,2	

8,4	

8,6	

8,8	

0	 7	 14	 28	

Fa
e
ca
l	l
ac
to
b
ac
ill
i	c
o
u
n
t	
(l
o
g1
0
cf
u
/g
)	

Time	(Days)	

MCPA	

AP	

MCP	

Control	

http://dx.doi.org/10.4314/ajtcam.v13i2.13


Odun-Ayo et al., Afr J Tradit Complement Altern Med. (2016) 13(2):101-109 

http://dx.doi.org/10.4314/ajtcam.v13i2.13  

108 
 

Table 1: Identification of faecal bacteria by genome sequence BLAST search 

 

 
MCPA - modified citrus pectin alginate probiotic microbeads, AP - alginate calcium probiotic microbeads and MCP – modified 

citrus pectin solution. 

 

Conclusion 

 

The increase in number of identified faecal bacteria and Lactobacilli sp in the MCPA probiotic treated mice shows that 

MCPA combined with resistant starch and Lactobacillus acidophilus ATCC 4356 improves the stimulation and growth of colonic 

microflora. The results obtained in this study suggest that the novel MCPA microbeads are useful for effective oral delivery of 

bacterial cells and other bioactive compounds. MCPA can be used in probiotic therapy which may improve the prevention of colon 

cancer.  
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