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1. Introduction

The recent industrialisation and social economic growth envisaged 
in the world is associated with major environmental concerns. 
Thus, the demand on petroleum and petrochemical useful prod-
ucts produced from crude oil is escalating with a high consumption 
rate of water [1]. It has been estimated that about 246-341 L 
of water is consumed in processing a barrel of crude oil [2, 3]. 
However, based on the oil refinery industry size, capacity, type 
of crude oil, products and complexity of operation, it is in turn 
generates about 0.4-1.6 times the quantity of crude oil processed 
as wastewater. According to El-Naas et al. [4], the demand on 
energy is expected to rise over the next two decades and oil 
will account for about 32% of the world’s energy supply by 2030. 
This signifies that oil refinery wastewater (ORW) will continue 
to pose threats to the ecosystem if not treated before discharge 
into the water bodies, due to wastewater treatment limitations 
in relating to recalcitrant compounds, which resist biological de-
composition [4]. This has led to strict environmental protection 

bylaws in the wastewater treatment industries to correspondently 
preserve the natural ecosystem.

Generally, ORW contains diverse recalcitrant contaminants 
as inorganic substances, soap oil and grease (SOG), phenols, 
sulphides and ammonia contributing to high chemical oxygen 
demand (COD) [5]. As a result, many researchers have developed 
strong interest in optimizing and developing technologies to 
improve the discharge water quality to meet the stringent environ-
mental regulations. Some of these conventional processes are 
based on integrated physicochemical, mechanical and biological 
treatment process systems. These include dissolved air flotation 
(DAF) [6], coagulation [2], membrane bioreactors [7] and photo-
catalytic processes [8]. However, due to the variation in ORW 
composition, some of the aforementioned methods are not ad-
equate as they transform the phase of the pollutants from one 
form to another without complete removal of the oil residual 
from the effluent [9]. Subsequently biological treatments of this 
industrial wastewater is not possible, hence modern and fastid-
ious technologies like the advanced oxidation process (AOP) 
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has been proposed to encourage sustainable and eco-friendly 
industrial operations [5]. This is because the AOP has the ability 
to degrade the biological compositions and lower the toxic re-
sistant organic components of the ORW. In response, much em-
phasis has been placed on introducing photo-catalytic degrada-
tion (PCD) as a water saving initiative integrated in an advanced 
ORW treatment process [10]. Studies have shown that the oxida-
tive process of the PCD makes it more advantageous as a final 
polishing treatment process for effective degradation of toxic 
residuals [8].

Recently nano-photocatalysts like titanium dioxide (TiO2), 
Zinc oxide (ZnO) and Tungsten trioxide (WO3) have been em-
ployed in the AOD process, where the TiO2 has been used ex-
tensively for the removal of organic compounds. TiO2 is cost-effec-
tive with a high photocatalytic activity, is non-toxicity and has 
chemical stability, which makes it superior among the rest of 
the catalysts [8, 11]. This is because the PCD involves the gen-
eration of a hydroxyl radical (OH-) which is used for the degradation 
of the organics. According to Somensi et al [12], heterogeneous 
PCD can occur in the presence of a semiconductor such as TiO2 
and ZnO, such that the hydroxyl radical produced acts as the 
primary agent responsible for the oxidation of several aqueous 
organic contaminants as  presented below [11]:

Photoexcitation:    →    (1)

Charge-carrier trapping of e- : 
 → 

 (2)

Charge-carrier trapping of h+ : 
 → 

 (3)

Electron-hole recombination: 
 

 
  → 

  (4)

Photoexcited e- scavenging:    → 
∙ (5)

Hydroxyl h+ scavenging:     →  ∙ (6)

Photo degradation by OH·:      ∙ →  ′∙` (7)

The above photocatalytic reaction mechanism indicates that 
the degradation method is a clean technology and can be applied 
to the treatment of several wastewater applications where un-
wanted organics may exist [12]. Similar thoughts are shared by 
Ghasemi et al. [13], where it was reported that  some of the 
key benefits of using TiO2 for PCD include the fact that no sludge 
formation occurs in the complete elimination of the contaminants. 
In addition, the use of the TiO2 particles due to its ability to 
remove organics and in some cases inorganic pollutants, makes 
it appealing. So far, various types of PCD viz TiO2/UV light process, 
H2O2/UV light process and Fenton’s reactions has gain much atten-
tion in the wastewater settings. The PCD, as one of the emerging 
techniques, has some setbacks in operations which affects the 
TiO2 reaction rate, hence requires an optimized condition to en-
hance effective degradation of the contaminants [8, 11]. Some 
of the main factors that can affect  the performance of PCD with 
TiO2 include photo catalyst concentration, pH of the solution, 

reaction temperature, concentration of the pollutants, presence 
of inorganic ions, flow rate of air sparged, light intensity or wave-
length and reaction time [13].

Optimizing PCD operating conditions is the ultimate goal of 
many researchers, where there is a knowledge gap on the inter-
active effects of the input variables on the system outputs. Yan 
[7] explains that high pollutant concentration can retard the 
PCD efficiency and can inhibit the catalyst as the TiO2 surface 
becomes saturated. For instance, Lazar et al. [11] reported on 
phenol degradation where a high increase in the catalyst dosage 
reduced the generation of the hydroxyl radicals because there 
were fewer spots present to adsorb the hydroxyl ion. Ghasemi 
et al. [13] then used a catalyst within the range of 0.5 to 5 
g/L to obtain above 65% degradation of ORW contaminants. 
Similarly, a study carried out by Somesi et al [12] for PCD of 
COD from ORW at a catalyst dosage of 6 mg/L produced a degrada-
tion of about 67% and 65%, respectively obtained for pH values 
of 5 and 6.

However, the conventional way of optimization usually in-
creases the number of experimental runs. This is time consuming 
with an increase in experimental budget. Response surface meth-
odology (RSM) can therefore be employed for process modelling 
and optimization in the field of PCD of ORW. This is because, 
RSM is data driven which is usually used to estimate the relation-
ship between the target variable and input variables. Afterwards, 
the derived models are used to approximate the optimum con-
ditions of the input variables to minimize or maximize the targeted 
variable [12].

In this study, the use of RSM was employed to evaluate the 
interactive factors. The RSM has been applied in several waste-
water treatment industries such as the oil refinery for DAF opti-
mization as well as processes with multiple input variables which 
has an influence on the system performance [14, 15]. RSM, as 
defined by Tetteh and Rathilal [14], is a collection of statistical 
and mathematical techniques used for experimental design, opti-
mization and improving processes. The most commonly used 
RSM designs are Central Composite design (CCD) and the 
Box-Behnken design (BBD). For CCD, points at the apexes of 
the cube gives rise to certain restrictions as the testing of these 
points become impossible due to the constraints of physical proc-
esses therefore increasing costs and making BBD more favourable. 
The BBD is different to the CCD design as it does not have a 
factorial design component present. Thus, the BBD constitutes 
an independent quadratic design with treatment allowing three 
levels for each factor such as the low, centre and high points. 
This makes it applicable in industrial research as it is an econom-
ical design with low resource requirements [14]. The BBD is known 
to have good design properties namely little co-linearity as well 
as it being insensitive to outliers and missing data. The BBD 
default design aims to improve prediction by using the average 
prediction variance. Therefore, BBD, adapted from RSM, was em-
ployed for the optimization of ORW exposed to micro TiO2 photo-
catalyst under ultraviolet lighting and aeration conditions. The 
factors under study are the catalyst concentration, reaction time 
and aeration flux on the degradation of the responses such as 
SOG and phenols. 
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2. Materials and Methods 

2.1. Effluent Sample and Analytical Methods

A synthetic oil-water emulsion concentration of 10,000 mg/L was 
prepared by adding 3 mg/L phenol crystals and 40 mg/L Power 
Glide SAE40 motor vehicle oil (Engen, SA) to a local South Africa 
municipal water. The characterisation of the effluent was done 
in accordance with the American Public Health Association [16] 
as depicted in Table 1. The phenol was tested with the use of 
the ThermoFisher - Gallery Discrete Analyser. SOG analysis was 
measured with the liquid-liquid extraction coupled with gravity 
separation techniques. This method conforms to the standard 
methods for the examination of water and wastewater in an oil 
refinery as reported by Tetteh et al [17]. By analysing SOG and 
phenol degradation percentage after the experimental stipulated 
time, the efficiency of the process was examined using the follow-
ing equation: 

   

  
×  (8)

In this equation, S0 and S are the initial sample and final sample 
parameters, respectively. 

Table 1. Characteristics of ORW Sample 

Component Value

SOG (mg/L) 50

Phenol (mg/L) 10

Phosphate (mg/L) 0.6

Calcium hardness (mg/L) 37

M-Alkalinity (mg/L) 77

Total Dissolved Solids (TDS) (mg/L) 233

pH 7.13

Iron (mg/L) 6

Chlorides (mg/L) 99

Sulphates (mg/L) 28

Silica (mg/L) 60

2.2. Nanocatalyst (TiO2) 

Nanocatalyst (TiO2) as SACHTLEBEN RKB6 supplied by 
Huntsman Tioxide South Africa (Pty) was employed in this study. 
The SACHTLEBEN RKB6 is a micronized rutile TiO2 pigment 
treated with Alumina and Zirconia compounds as depicted in 
Table 2.

2.3. Experimental Setup 

The photocatalytic degradation of the synthetic oil-emulsion 
wastewater was performed with the experimental setup as depicted 
in Fig. 1. This setup was configured with two-reaction vessels 
of 1 litre volume each. The sparger had pinholes that were 0.5 
cm apart and the length of the sparger was 9 cm. The air sparged 
was supplied by a DARO Twin aquarium air pump, which had 

Table 2. Physical and Crystallite Properties of SACHTLEBEN RKB6 
(Huntsman Tioxide South Africa Pty)

Properties Value

White powder content 94% purity

Phase mixture Rutile 94%, Anatase 6%

Surface treatment Alumina, Zirconia 

Organic treatment Present 

Surface gravity 4.1 g/cm3

Crystal size 0.23 m

Loss at 105oC 0.60%

Bulk density 1.1 g/cm3

Oil absorption 18 cm3 /100 g pigment

Durability High durable 

ISO 591 classification R2

CAS No 13463-67-7

double outlets (X1 and X2), and a high and low flow setting. 
Two air pumps were used to service the four reaction vessels 
used. All tubing used for the supply of air was 4.5 mm silicone 
tubing. The irradiating light source (UV light) used was a radiant 
fluorescent T8 black light blue bulb of 18 W. This was used 
to activate the TiO2 catalyst for the advanced oxidation reaction. 

Fig. 1. Schematic diagram of photocatalytic degradation setup.

2.3. Response Surface Methodology (RSM)

To begin with, the RSM one factor at time (OFAT) approach 
was employed to study the effect of individual factors for the 
photocatalytic degradation of the ORW based on their ranges 
from literature. The three parameters selected were the catalyst 
concentration (A), run time (B) and airflow rate (C). Also, by 
employing the BBD, 17 experimental runs were designed with 
design Expert 10 software (Stat Ease Inc., USA). Table S1 depicts 
the BBD matrix of the 3 factor levels according to literature. Each 
numeric factor is set to 3 levels and 5 centre points. The centre 
points are duplicated for every combination of the categorised 
factor levels (Table S2). The results obtained were then fitted 
on a response surface quadratic model with oil (SOG) and phenol 
as the response variables.



Emmanuel Kweinor Tetteh et al.

714

 In response surface modelling, a quadratic polynomial equa-
tion was used to analyse the correlation between the targeted 
response (Y) and the input factors as follows Eq. (9):

   ∑  
   ∑  

  
   ≤  ≤ 

     (9)

In the above equation, y represents the target variable of the 
photocatalytic efficiency, β0 is a constant, βij, βii, βi are the co-
efficients of regression for interaction effects, xi, xj are independent 
variables of process, and ε represents the error [6]. The statistical 
analysis via analysis of variance (ANOVA) was performed and 
a model was suggested. To ensure the significance and the accuracy 
of the quadratic model obtained by using the RSM parameters 
like the regression coefficient (R2, R2

adj.), probability value (p-val-
ues), adequate precision and fisher variation ratio (F-values) were 
determined. This was evaluated with respect to a 95% confidence 
level. Finally, response surface three-dimensional (3D) graphs 
were plotted to illustrate the effects of interaction terms on the 
degradation of oil (SOG) and phenol. 

3. Results and Discussion 

3.1. Effects of Catalyst Concentration

In order to evaluate the extent of oil (SOG) and phenol degradation, 
the photolysis and adsorption tests were carried out by varying 
the catalyst concentration at 2 g/L, 5 g/L and 8 g/L. It was observed 
that for a high catalyst concentration, there is an increased rate 
of adsorption of the contaminants onto the TiO2 catalyst surface 
[13]. This produced more hydroxyl radicals and as a result in-
creased the oxidation process as presented in Fig. S1.

Fig. S1 shows that an increase in the catalyst concentration 
had a direct influence on the degradation of the contaminants. 
There was a greater degradation of the oil than the phenols. On 
average, oil (SOG) degradation was found to be 60%, 88% and 
98% for catalyst concentration of 2 g/L, 5 g/L and 8 g/L, respectively. 
Likewise, that of the phenols with respect to the catalyst concen-
tration were 40%, 43% and 60%. In addition, an increase in the 
catalyst concentration from 2 g/L to 5 g/L had almost no degradation 
on the phenols. This might be due to the low presence of reactive 
radicals of the catalyst to degrade the phenol as compared with 
the catalyst dosage of 8 g/L which produced a high surface area 
for the adsorption of the phenols. Therefore, it is advisable to 
use a catalyst-loading rate which degrades both contaminants 
at a constant run time and airflow rate [8].

3.2. Effects of Run Time 

It was found that effective degradation requires an economical 
contact time between the light intensity and the catalyst. Fig. 
S2 shows that increasing the run time increases the degradation 
of both oil (SOG) and phenol. However, the degradation of the 
phenol was rapid while that of the oil was gradual. The average 
oil degradation at 30, 60 and 90 min were 75%, 85% and 90%, 
respectively. Likewise, the phenol degradation observed was 35%, 
45% and 55%, respectively to the run time. 

3.3. Effect of Air Flowrate 

The addition of the dissolved air generated microbubbles increased 
the oxidation reaction rate for the contaminant degradations. It 
also assisted in keeping particles in suspension and the catalyst 
interacting with the effluent contaminants. However, increasing 
the air flowrate changed the phenomenon of the microbubbles 
to larger bubbles which created turbulence, thereby breaking the 
cohesion force that binds the nanoparticles and oil droplets 
together. Hence, decreasing the degradation of the ORW. 
Therefore, the lower air flowrate the better the microbubbles gen-
erated to enhance the degradation. 

Fig. S3 shows that increasing the airflow rate decreased the 
degradation of oil (SOG) and phenol. It was found that at an 
air flowrate of 0.768 L/min, 1.11 L/min and 1.48 L/min; the oil 
(SOG) degradation, respectively decreased as 95%, 85% and 65%, 
while that of the phenol also decreased as 75%, 45% and 35%, 
respectively for the air flowrates. This confirms a report by Hasan 
et al [18] that increasing the air flowrate has a significant effect 
on photolytic degradation retardation, thus the  moderate rate 
contributed to the agglomeration of the catalyst and the con-
taminant particles. 

3.4. Optimization Using RSM 

A BBD matrix with three factors and the results of experimental 
runs in terms of photocatalytic removal of the oil (SOG) and 
phenol at an initial concentration of 40 mg/L and 3 mg/L, re-
spectively are shown in Table S2. According to the design matrix, 
17 experimental runs were obtained and the data collected were 
analysed using the ANOVA. A second-order polynomial model 
was derived, where the data were well-fitted and the statistical 
significance of the models were acceptable. 

The reduced form of the models expressed as a function of 
the input and output parameters, are represented in their coded 
(10; 12) and actual (11; 13) equations for oil (SOG) and phenol 
degradation, respectively. It was deduced that the data obtained 
fitted well to the response quadratic model. Furthermore, the 
analysis of residuals was performed for evaluating the model 
adequacy

Coded Oil (SOG) model =
86.26 + 1.13A – 5.4B + 13.07C – 2.58AB –
0.3616AC + 3.59BC-2.26A2 – 4.96B2 – 20.41C2 (10)

Actual Oil (SOG) model =
-163.442 + 4.988A + 0.245B + 380.21C –

0.0286AB –  0.338AC + 0.336BC – 0.251C2  –
0.0055B2 – 161.018C2 (11)

Coded Phenol model =

40.38 +4.76A – 8.43B + 9.58C – 6.67AB +

9.08AC - 4.93BC-4.59A2 + 7.92B2 – 1.63C2 (12)

Actual Phenol model =
16.15 + 1.574A – 0.447B + 41.017C – 0.074AB + 8.49AC – 

0.461BC – 0.509A2 + 0.00879B2 – 12.856C2 (13)
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It is observed that all the factors had an influence on the PCD 
of the contaminants. Nevertheless, the interaction between the 
reaction rate and aeration rate (BC) had an effective positive degra-
dation of the oil (SOG). This is due to their high positive coefficient 
term. Likewise, the combination of the catalyst concentration 
and aeration time (AC) had a significant positive influence on 
the phenol degradation. The negative second-order terms and 
other terms were attained for all the factors studied, that corre-
sponded to concave surfaces showing a higher rate of decrease 
of oil (SOG) and phenol removal efficiency.

3.5. ANOVA for the Oil (SOG) and Phenol Degradation 

The model accuracy is confirmed through the comparison between 
actual values and the predicted ones. The results show good accu-
racy of the model. The model significance and adequacy have 
been examined by means of ANOVA (Table S3 and S4) for the 
oil and phenol. Also good model predictability can be approved 
by the lack of fit test (not significant in this case) corresponding 
to the absolute error. Furthermore, the analysis of residuals was 
performed for evaluating the model adequacy.

In Table S3, the low value of the coefficient of variation (CV 
= 10.81%) confirms good accuracy of the model. The statistical 
values including p-value 0.0017 and F-value of 6.36 reveal the 
high model’s significance. The p-values less than 0.0500 indicate 
model terms are significant, and this makes the terms C and 
C² to be part of the model terms. There is only a 1.17% chance 
that the F–value of the model could happen because of error. 
Considering R2 of 0.9966, the variability of 99.66% could be de-
scribed sufficiently via the obtained results and accordingly the 
overall variation of 0.34% remained inexplicable. The adjusted 
coefficient value of 0.9613 and its reasonable consistent with 
R2 reveals a good predictability of the model. 

In Table S4, the low value of the coefficient of variation (CV 
= 9.25%) confirms good accuracy of the model. The statistical 
values including a p-value of 0.0004 and F-value of 18.59 reveal 
the high model’s significance. There is only a 0.04% chance that 
the F-value of the model could happen because of error. Considering 
R2 of 0.9798, the variability of 97.98% could be described suffi-
ciently via the obtained results and accordingly the overall variation 
of 4.02% remained inexplicable. The adjusted coefficient value 
of 0.9613 and its reasonable consistency with R2 reveals a good 
predictability of the model. The predicted R-squared and adjusted 
R-squared values are in reasonable agreement. This means the 
ability of both models to provide good prediction is high and 
can be used to navigate the design space well. 

The significance of the models were found to have high correla-
tion coefficients (R2) of 97.66% and 97.98% for the oil (SOG) 

and phenol, respectively, which validates how well the models 
fit the experimental data as depicted in Fig. S1 and S2. In addition, 
the plot demonstrated the predicted verses actual values for the 
degradation of the oil (SOG) and phenol, respectively. In Fig. 
S4, the vertical line of residuals is observed in the region between 
30% and 90%. In addition, in Fig. S5, the points are in close 
proximity to the regression line with a percentage probability 
range of 20% to 70%. Fig. S6 and Fig. S7 also depict the normal 
probability plots for SOG and phenol degradations. In both graphs 
(Fig. S6 and S7), the residues are linearly scattered, thus, the 
data points are very close to the regression line indicating a good 
fit of the model to the data.

3.6. Numerical Optimization by Perturbation Plot 

The numerical optimization procedure was performed applying 
a desirability approach to discover the distinct settings which give 
the maximize removal of the oil and phenol. The main interactive 
factors that have influence (catalyst concentration) on the response 
were identified by performing the perturbation plot as presented 
in Fig. S8 with their coded values, where a desirability degradation 
of 68% was found. Subsequently, almost the same desirability was 
obtained at the different conditions as depicted in Table 3. In 
this case, the option 1 was opted to be best conditions with degrada-
tion of oil (80.7%) and phenol (66.3%) by using their respective 
models to obtain the same desirability (68.1%). This occurred at 
a catalyst concentration of 2 g/L, a run time of 30 min and an 
airflow rate of 1.04 L/min. 

3.7. Graphical Optimisation and Confirmation Test

The interactive factors of the PCR system were graphically evaluated 
to enhance the polishing step in the treatment of ORW to be econom-
ically viable. A desirable goal for the catalyst concentration, reaction 
time and air flowrate were set to be within their respective range 
of the design space as depicted in Fig. S9. It was found that, an 
increase in the catalyst concentration increased the degradation 
of the contaminants at economic time rate (30 min); thus, the 
longer time will result in high energy utilisation by the system 
which will increase the cost of production. Therefore, using a cata-
lyst concentration of 7.8 g/L and aeration rate of 1.34 L/min, about 
86% of the oil and 78% of the phenol were degraded with a desir-
ability efficiency of 69%. The result obtained was in good agreement 
with the experimental results as shown in Fig. 2. 

The visual representation of the response surface in 3D and 
2D contour plots assisted the investigation and optimisation of 
the PCD system, by determining the maximum region of interest. 
The precise location and optimum point identified (Fig. 3 and 4).

Table 3. BBD Optimum Conditions

ID Catalyst Concentration( g/L) Run Time (min) Air Flow rate (L/min) Oil (SOG) (%) Phenol (%) Desirability (%)

1 2 30 1.04 80.72 66.34 68.1

2 2 30 1.17 80.54 66.24 65.1

3 2 30 1.15 81.00 66.49 64.1

4 2 30 1.17 80.26 66.09 65.1

5 2 30 1.18 80.07 65.98 65.1
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Fig. 2. Comparing model prediction and experimental results of optimum 
condition at time (30 min), catalyst concentration (7.8 g/L) and 
aeration rate (1.34 L/min).

The response 3D surface and the contour plots shows the models 
variation with two factor levels (catalyst concentration and run 
time) at a mediocre amount of aeration rate obtained from RSM 
model . In addition, the plots depict the sensitivity of the responses 
due to the change of factor levels with the degree of their 
interactions. Thus, when the catalyst concentration increases, 
photocatalyst rapidly agglomerates with a reducing ability of effec-
tive absorption of the contaminant. Hence, the degradation re-
action rate decreases due to a reduction of positive electron hole 
and the obtained oxidizer radicals [15, 18].

4. Conclusions

The performance of employing photocatalytic TiO2 in the pres-
ence of UV radiation and air on degradation of the oil (SOG) 

Fig. 3. The 3D and contour plot of oil (SOG) model. 

Fig. 4. The 3D and contour plot of phenol model.
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and phenol from petroleum wastewater was studied. It was de-
duced that the catalyst in the presence of the UV light and aeration 
(oxygen) supported the oxidation reaction, which converted the 
harmful orgaminic contaminants into CO2 and H2O. The OFAT 
approach demonstrated the need to obtain optimum conditions 
and identify the interactive factor to maximize the degradation 
rates of SOG and phenol. This was essential for any practical 
application of photocatalytic oxidation processes in ORW treat-
ment techniques, which has not been explored much by the crude 
refining industry. The BBD adapted from the RSM was successfully 
applied to optimize and evaluate the relationship between the 
operating conditions viz catalyst concentration, run time and air-
flow rate. It was found that all factors investigated had considerable 
influences rate on the photocatalytic degradation performance. 
The two response quadratic models developed for the oil (SOG) 
and phenol were significant with very low p-values (p < 0.0001). 
The models predictions were in good agreement with the ex-
perimental results with a desirability of 68%, and the oil (SOG) 
and phenol degradation rates of 80.7% and 66.3%, respectively. 
The obtained optimum conditions included the catalyst concen-
tration of 2 g/L, a run time of 30 min and an airflow rate of 
1.04 L/min. 
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