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Abstract—The design of a four-pole reluctance motor with 
multiple objectives is discussed in this paper using a finite 
element design methodology based on multi-objective genetic 
algorithm. Non-dominated genetic algorithm (NSGA-II) is used 
because of its high performance and intensification in 
optimization problems. The global sensitivity chart revealed 
that the motor’s stator pole embrace and yoke thickness are 
key parameters for the optimization objectives, while the 
rotor’s pole embrace should be restrained and closely 
associated with these two key parameters. According to the 
optimization and sensitivity analysis results, a final design 
which is superior to the base design was achieved. There were 
15 % and 13.2 % improvement in the optimized model in 
terms of the average torque and efficiency respectively. Also, 
the optimized model recorded a reduction in the average 
torque ripple and total loss by 1.55 % and 30.1 % respectively. 
This demonstrates the NSGA-II intelligent optimization 
program is a suitable framework to optimize specified 
objective functions.   

Keywords—average torque, multi-objective functions, pole 
embrace, optimization, reluctance motor, sensitivity  

I. INTRODUCTION

Electric motors are the prime movers of industry. The 
optimum design of these motors is therefore imperative for 
productivity and economic growth. Hence, the need for a 
design that optimizes several objective functions such as 
efficiency, average torque and ripple, torque per rotor 
volume, torque per weight, and the noise,  are desirable [1]. 

 Switched reluctance motors (SRM) have become an 
attractive option for various industrial applications such as 
electrical vehicles, wind generators, flywheel energy storage, 
aeronautics, extractors, air-conditioners, shipbuilding, 
machines tools, centrifugations [2-5]. Thus, SRM is a 
formidable contender to replace traditional machines in 
future manufacturing. Its industrial prospects are particularly 
promising because, while SRM technology is relatively 
simple to manufacture, alternative contenders such as 
permanent magnet machines are more difficult to produce [6, 
7]. However, SRM has high torque ripples associated with its 
performance. In typical applications of SRM where 
improved torque and efficiency, and minimized torque ripple 
are expected, the desired objectives cannot be represented by 
a single based objective function; rather, it is a multi-
objective optimisation problem, despite the fact that different 
objective functions often result in conflicting design 
requirements [8]. As a result, a satisfactory solution must be 
found in order to meet all performance objectives.  

 Genetic algorithm (GA) has been successfully applied to 
various optimization problems which has been reported 
in 
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several research works [9, 10]. In [11], the NSGA-II was 
used to decide the best pole shape design for improving  
SRM performance. [12] discusses the use of a Pareto 
archived evolution strategy based multi-objective 
optimisation to enhance SRM torque of SRM. [13] proposes 
a rigorous system for multi-objective SRM design 
optimization based on a combination of design of 
experiments and particle swarm optimization. A genetic 
fuzzy algorithm for SRM design was proposed in [14]. [15] 
used a Latin hypercube sampling method to optimise the 
switched reluctance generator from the standpoint of 
increasing its performance and reducing the motor’s volume. 
For rapid and accurate SRM optimisation, an improved 
reduced order computational system of flux tubes was 
introduced in [16]. In [17], a non-elitist multi-objective 
genetic algorithm-based design optimisation was addressed 
to enhance the torque and efficiency of SRM. Different 
intelligent algorithms were used in these references for 
multi-objective optimisation of various devices, and good 
results were obtained. However, the effect of rotor and stator 
pole embrace (ratio of pole arc to pole pitch) on the 
performance of the motor has not been considered in the 
multi-criteria optimisation process, hence, this study for 
improvement. 

The aim of this study is to optimize three geometrical 
parameters of a doubly salient 3-phase 6/4 industry SRM to 
improve the average torque and efficiency, minimize average 
total loss and torque ripples. The contribution of this work 
are: optimization of dimensionless parameters; coupling 
Maxwell software to Ansys DesignXplorer under ANSYS 
workbench environment; implementation of combined 
effects of design of experiments, response surface, sensitivity 
analysis, and intelligent algorithm (NSGA-II) based 
optimization of the motor to avoid degradation of one 
parameter as a result of improvement of another requirement. 

II. MATHEMATICAL MODELLING OF SRM
The stator of SRM has three pole pairs, carrying the three 

motor windings, and the rotor has several nonmagnetic poles. 
SRM produces torque by energizing a stator pole pair, 
inducing a force on the closest rotor poles and pulling them 
toward alignment.  
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Fig. 1. Meshed model of the studied motor 

 

TABLE I.  PARAMETERS OF THE INDUSTRY MOTOR 

Part Parameter Values 
Design 
restriction 

Rated voltage 380 V 
Rated speed 1500 rpm 
Power output 1.5 kW 

 
 
Stator 

Pole number 6 
Outer diameter 120 mm 
Inner diameter 75 mm 
Pole embrace 0.45 
Yoke thickness 12 mm 

 
Rotor 

Pole number 4 
Pole embrace 0.3 
Yoke thickness 9 mm 
Inner diameter 30 m 

TABLE II.  VARIATION RANGES OF THE PARAMETERS 

Parameters Variables Range 
Stator pole embrace, Es P1 0.25 – 0.500 
Stator yoke thickness, Ys P2 9.00–13.00 mm 
Rotor pole embrace, Er P3 0.25 – 0.500 
Avg. Torque, Tavg. P4 4.86 Nm 
Avg. Torque Ripple, T.R P5 3.23 
Efficiency, Eff. P6 85 % 
Avg. Total Loss, Tloss P7 53.8 W 

 

Due to the effect of magnetic saturation on the flux 
linkage-to-angle, λ(θph) curve, the mathematical model of 
SRM is highly nonlinear. The instantaneous torque for the 3-
phase motor adopted in this work is derived from the phase 
voltage equation as: 
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The equation for motion is given as: 
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Thus, the instantaneous torque is: 
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The torque ripple of the motor is given as: 
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The motor efficiency is defined as: 
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θph is the angle per phase; iph is the current per phase; 
Rs is the stator resistance per phase; λph is the flux linkage per 
phase; Vph is the voltage per phase, J is the rotor inertia; ω is 
the mechanical rotational speed; T is the rotor torque; TL is 
the load torque; J is the rotor inertia; Bm is the rotor damping; 
Tpeak is maximum torque; Tmin is torque of intersection of two 
curves; Tm is average torque; Pcu is the copper loss; Pfe is the 
iron loss which depends on the level of magnetization and 
excitation frequency. 

A. The SRM Model 
In this study, a 6/4 SRM as shown in Fig. 1 is used as the 

design case and was designed at the speed of 1,500 rpm, 
power of 1.5 kW and voltage of 380 VAC. The initial 
parameters of the motor are shown in Table I. 2D Finite 
element (FE) modelling of the motor was chosen because of 
its accuracy to model complex geometry and high 
computation time involved in the 3D modelling. The Ansys 
Maxwell 2D package software was used because it allows 
the motor geometry to be parameterized and to create 
different output variables (average torque, T.R, efficiency, 
losses) by means of a visual basic script. 

III. OPTIMIZATION APPROACH 
Optimization is a search problem that seeks better 

objectives of a function. A minimum of two factors are 
required to perform the multi-objective task of the studied 
motor accurately.  First, the mathematical model of the motor 
(as shown in section II) which gives the various motor 
characteristics such as average torque and efficiency for any 
set of variable parameters. The search algorithm is the 
second factor which works on the principle of multi-attribute 
rule.  



FEM model

MOGA model

Variables:
0.25 ≤ Es ≤ 0.5 
9 ≤ Ys ≤ 13 mm
0.25 ≤ Er ≤ 0.5

Constraints:
Avg. torque ≥ 4.86 Nm

Efficiency ≥ 85%

Objectives:
Max. Avg. torque
Max. Efficiency

Min. Avg. torque rip.
Min. total loss

Check Final designInitial conditions:
Machine sizing

Parametric 
analysis

Yes

No

Improved average torque and 
minimized torque ripple?

 
Fig. 2. Illustration of the optimization process 
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Fig. 3. Sensitivity plot of the optimization results 

The details of the search algorithm are explained in Fig. 2 
while Table II shows the range of variable parameters. The 
ANSYS Workbench framework was used to incorporate the 
2D FE model into the main optimization program. After the 
selection of three parameters (stator embrace and yoke 
thickness, and rotor embrace) as the input variables, and four 
parameters (average torque, efficiency, torque ripple, losses) 
as the output variables in the first step, the second step was 
the multi-objective optimization to search for the best 
solution of machine sizing under certain constraints and 
objectives. 

The multi-objective optimisation problem can be stated 
as [18]: 
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The vector )(
→→

XF includes several objective functions, 
the goal is to seek to minimize (or maximize) the objective 

functions that are sometimes contradictory, since reducing 
one goal leads to an increase in another, so the solution is 
often a compromise between these objectives [19], thus, 
there is need for intelligent algorithm which will help the 
designer to select the best candidate without sacrificing the 
other parameters of the motor 

A. NSGA-II for SRM Design Optimization 
The optimization process is carried out using MOGA 

method (Multi-objective Genetic Algorithm). It is a variant 
of NSGA-II (Non-dominated Sorted Genetic Algorithm-II) 
based on controlled elitism concepts [19]. It supports various 
goals and constrains when aiming for a global maximum, 
making it ideal for the purpose of this study. The concept of 
NSGA-II is to produce the design space points of M 
populations at random [20]. In a model vector M called a 
chromosome, the system is discretized into P parameters. 
According to the natural terms of genetic theory, each 
parameter mj, ( j =1… P) is referred to as a gene. A gene can 
be classified as a binary encoding of a parameter given by 
[21]: 
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Fig. 4. Response points plots of the motor’s parameters 
(a) Avg. Torq./Ys (b) Avg. Torq. Rip./Ys (c) Eff/Ys (d) Loss/Es 

 
The n-bit string of the binary representation of mj is b1, 

b2… bn-1, and mj
min and mj

max are the minimum and 
maximum admissible values for mj, respectively. These 
individuals’ genes are combined in meaningful ways to 
create new solutions, which are then analysed and ranked 
using an objective function value. 

After non-dominated sorting, the genetic algorithm’s 
three basic operations of selection, crossing, and mutation 
yield the first generation of progenies. The selection’s role is 
to pick individuals from the population based on their fitness. 
Secondly, starting with the second generation, the parent and 
progeny populations are merged and non-dominated sorted 
quickly using the equations below: 

Offspring1= a*Parent1+ (1-a) *Parent2      (16) 

Offspring2= (1-a) *Parent1+a*Parent2      (17) 

 Finally, the genetic algorithm’s basic procedure generate 
a new progeny population. A polynomial mutation operator 
is used to enforce mutation for continuous parameters as 
depicted in (18) 

 

C= P + (Upper Bound – Lower Bound)⸹  (18) 

Where C is the child, P is the parent, and ⸹ is a small 
variance that can be determined using a polynomial 
distribution. The new population would gradually contain 
better chromosomes (best individuals or parameters) and will 
eventually converge to an optimal population with the best 
chromosomes [19]. 

IV. OPTIMIZATION RESULTS AND DISCUSSIONS 
For the solution of this study, the NSGA-II algorithm is 

set for 2000 estimated number of evaluations with 100 
numbers of samples per iteration. The maximum allowable 
pareto percentage is 70, while the maximum number of 
candidates is 3. The Pareto optimal frontier approach is the 
multi-objective optimization design method used in this 
study. This method generates a set of optimal solutions that 
satisfy the design requirements and the NSGA-II algorithm 
optimized distribution map of the motor output. According to 
the motor’s design specifications, the average torque is the 
most important factor, followed by the efficiency, ripple and 
the total loss. Therefore, the final selected candidate will 
have improved average torque reliability. 
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A. Design of Experiment (DOE) 
Table II shows design points/solutions of DOE of the 

model which will be used to build a response surface. The 
method of DOE adopted in this work is central composite 
design approach. It determines how many and which design 
points should be solved for the most efficient approach to 
optimization [22]. 

TABLE III.  DESIGN SOLUTIONS OF DOE 

S/N P1 P2 P3 P4 P5 P6 P7 
1 0.38 11.65 0.38 3.964 9.11 98.23 37.86 
2 0.25 11.65 0.38 4.737 12.03 98.61 35.37 
3 0.50 11.65 0.38 2.683 5.56 97.28 39.92 
4 0.38 10.50 0.38 3.904 9.01 98.11 39.92 
5 0.38 12.80 0.38 4.027 9.24 98.32 36.62 
6 0.38 11.65 0.25 3.642 9.22 94.61 110.26 
7 0.38 11.65 0.50 2.238 4.51 96.54 42.58 
8 0.27 10.72 0.27 3.475 8.05 96.16 73.70 
9 0.48 10.72 0.27 3.721 9.62 98.12 37.84 
10 0.27 12.59 0.27 3.636 8.33 96.29 74.36 
11 0.48 12.59 0.27 3.856 9.83 97.16 59.88 
12 0.27 10.72 0.48 3.777 8.03 80.17 496.43 
13 0.48 10.72 0.48 1.499 2.75 94.07 50.17 
14 0.27 12.59 0.48 3.575 8.21 94.21 116.74 
15 0.48 12.59 0.48 1.529 2.82 93.95 52.33 

 

Table III displays the initial optimisation size and a 
comparison of the motor output, demonstrating that the 
motor’s performance has significantly improved following 
the DOE approach with reduced optimization time from 65 
mins to 10 mins. P1, P2, P3, P4, P5, P6, and P7 represent Es, 

Ys and Er, avg. torque, efficiency, avg. torque ripple, and 
total loss, respectively. 

B. Sensitivity Analysis 
As shown in Fig. 3, the global sensitivity chart shows 

sensitivity of each of the output parameters with respect to 
input variables [23]. The stator pole embrace, Es, and yoke 
thickness, Ys, are clearly the key parameters for achieving 
the optimization goals. The pole-embrace of the rotor, Er, 
should be constrained and be closely associated with these 
two strategic parameters. The output parameters of average 
torque, average torque ripple, and efficiency, have a positive 
and negative sensitivity with Ys and Es respectively, while 
the total loss has a positive and negative sensitivity with Es 
and Ys respectively. All these sensitivity patterns are 
consistent with general motor design experience which 
further highlights the practical implementation and 
significance of the adopted optimization tool in this work. 
Also, the chart may be used to determine the proportion of 
importance. 

C. Response Surface 
Fig. 4 is the response points that show the positive trend 

of the input parameters with the output parameters as given 
by sensitivity chart of Fig. 3. The plots show the impact that 
the parameters have on one another. 

D. Optimization Tradeoffs 
A trade-off plot which represents the pareto front of the 

design is shown in Fig. 5. The plot shows the pareto points at 



which an improvement in the goal of an output parameter 
will be achieved without sacrificing another parameter under 
the constraints defined in the optimization program [23]. The 
“candidate point” in the plots represents the best design that 
was chosen considering the levels of priority adopted in this 
work. 

TABLE IV.  PARAMETERS OF THE CANDIDATE  
Input Parameters Values Output Parameters Values 
Es  0.375 Tavg. 5.59 Nm 
 Ys  11.65 mm T.R 3.18 
Er 0.375 Eff. 96.20 % 

            -      - Tloss  37.63 W 
 

The final candidate’s parameters and performance are 
specified in Table IV. It can be shown that the final design 
has the highest overall output in terms of average torque and 
the efficiency, with improvements of 15% and 13.2% over 
the base design, respectively. 

V. CONCLUSION 
This paper presents an optimization solution applied to a 

3-phase, four pole, 1.5 kW switched reluctance motor. The 
finite element 2D model of the motor was analyzed using 
Maxwell 2D software which offers accuracy needed for the 
parametric simulation of the motor while the multi-objective 
optimization was performed in Ansys workbench 

The NSGA-II intelligent optimization algorithm adopted 
in the work was used to optimize the parameters that have a 
significant impact on the objective function, reducing the  
optimization time from 65 mins to 10 mins and increasing 
the motor’s optimization performance, making it a feasible 
and effective method of optimization. A final design that is 
superior to the base design was achieved based on the 
optimization and sensitivity analysis results. 

The comprehensive performance of the optimized design 
in terms of average torque and efficiency were 5.59 Nm and 
96.20% respectively, which are 15 % and 13.2 % better than 
the base model. There was a 30.1 % and 1.55 % reduction in 
average total loss and torque ripple in the optimized model 
when compared with the base design. This shows the 
viability of the NSGA-II intelligent optimization program as 
a framework to optimize the specified objective functions. 
However, further work is required to include more objective 
functions and to use this framework for specific applications. 
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