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Abstract—Globally, the importance of  power
interconnections is growing due to the possibility of power
exchange, Thus, the effective solution of bulk power
transmission over large distances is achievable with High
Voltage Alternating Current (HVAC) which has losses along the
transmission line. High Voltage Direct Current (HVDC) uses
converters to transform AC power into DC, resulting in
superior active and reactive power compensation and reduced
losses. The Flexible AC Transmission System (FACTS)
combines shunt and series convectors for improved voltage
control and power stability, and it enables the transmission of
large amounts of electricity over long distances with lower losses
than a conventional system. This study implements a load flow
model between three substations with bulk power coupled by
long-distance transmission lines to compare and conclude which
technology is best for transferring bulk power over long
distances to offer secure and sustainable electricity.

Keywords—Flexible AC Transmission System (FACTS), High
Voltage Alternating Current (HVAC), High Voltage Direct
Current (HVDC), Power Exchange, Power interconnection.

I. INTRODUCTION

The majority of countries face numerous issues when it
comes to electricity use [1]. The power interconnection offers a
significant change that allows the export of electricity to
developing countries through transmission linesusing HVAC,
HVDC, and FACTS [2]. Thus, in comparison to HVAC,
HVDC enables the transportation of large amounts of power
over thousands of kilometers (km) with reduced losses than
HVAC, as losses rise with length [3]. Population growth
increases power demand, which affects voltage stability and
unbalanced reactive power [4]. FACTS devices are recognized
as the optimal technique for stabilizing the system voltage and
optimizing the system'spower to improve the power grid's
stability. It is characterized as the precise operation of the
electric grid to restore equilibrium following an abnormal
circumstance suchas a generator trip, low or high voltage,
increase in power consumption, or load rejection [5].
Consequently, the overhead transmission lines are considered
a critical component of the power system since they transport
electricity from generators to load centers [6].

This study uses three Southern African Power Pool
(SAPP) substations (SS) to power load centers far from the
generating plant. These three utilities exchange electricity on
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demand. This research is inspired by current and proposed
interconnections in the SAPP, such as Zambia and
Zimbabwe's power interconnection between Kariba North and
Kariba South SS. South Africa, Botswana, and Zimbabwe
export power from SA's Matimba and Zimbabwe's Insukamini
to Botswana's Phokoje SS [7]. The ZIZABONA power
interconnection with four countries — Zimbabwe, Zambia,
Botswana, and Namibia — includes a 400kV, 101km line
connecting Hwange and Livingstone via Victoria Falls, a
400kV, 231km line connecting Livingstone and Zambezi, and
a 400kV, 76km line connecting Victoria Falls and
Pandamatenga [8]. Proposed 210km BO-SA Power
interconnection between Botswana and South Africa for a
400kV transmission line between Mahikeng, South Africa,
and Gaborone, Botswana [9]. Southern Africa has 10
countries: South Africa, Lesotho, Swaziland, Namibia,
Botswana, Zimbabwe, Zambia, Malawi, Angola, and
Mozambique. Malawi and Angola are not connected to SAPP.
Malawi has an installed capacity of 362 MW to meet a demand
of 472 MW, and its electricity access is approximately 12%,
SAPP has about 67.71GW installed capacity, a population of
180.121 million, and a peak demand of approximately
46678MW, implying that by utilizing power connections in
the SAPP region, all countries can have access to electricity
[10, 11].

Power-sharing has various possible benefits, including
increased influence over public policy, the inclusion of all
members involved in decision-making, and increased political
order stability [12]. Other advantages of increasing the
electricity market among SAPP countries include cost
reduction through increased market competition, enhanced
electricity supply, cost savings through less generation
reserved, and effective resource usage through generational
pooling [13].

This article discusses how power exchange can be done in
SAPP countries to expand electricity access. This research is
based on three SAPP countries: South Africa with Eskom
Utility, Swaziland with SEC Utility, and Mozambique with
EDM Utility. and within this utility, this study is utilizing
Matimba SS, Edwaleni SS, and Cahora Bassa to exchange
power to satisfy their growing demand.
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II. IMPLEMENTATION OF SAPP POWER GRID
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Fig. 1. Example SAPP Existing and planned power interconnections (2016)

Fig.1. illustrates all of the countries connected to the
SAPP's member countries [14]. SAPP was formed in 1995
[15]. The purpose of constantly altering the pool was to
develop a more efficient regional power distribution system;
the distribution of energy sources withinthe region is the
rationale for power exchange [16]. This study is focusing on
countries that currently lack access to electricity to meet rising
demand. Swaziland is the study's target country, with
approximately 12 percent ofthe population having access to
electricity. With the assistance of power exchanges and
interconnections, Swaziland will be able to increase
electricity access in the country. Table I stipulate the
transmission lines distances and the generating unit of each
SS

TABLE L TRANSMISSION LINE LENGTH & THE SS GENERATING
UNIT
Generating unit Transmission line (Km)

SS Name (MW)

Matimba SS 6x665 Matimba — Edwaleni (495)

Edwaleni SS 1x5 & 4x3 Matimba — Cahora Bassa
(1439)

Cahora Bassa 5x415 Edwaleni — Cahora Bassa
(1210)

III. TRANSMISSION LINE TECHNOLOGY

Due to population growth, Southern Africa needs to meet
electrical demand and modernize its power infrastructure to
boost electricity generation. Even with existing infrastructure,
operating a large interconnected power system is complicated,
resulting in power loss, voltage instability, and unreliable
operation [17]. Switching from HVAC to HVDC may be
cheaper for long-distance electricity transmission. DC lines
are more advantageous over 500km because they have no

reactance and can transfer more power for the same conductor
size [18]. Compared to HVAC, HVDC is most often used to
integrate, collect, and transmit large-scale renewable
resources to load centers. This grid boosts reliability,
flexibility, and redundancy by sharing resources [19, 20].
According to [18]. DC is preferable. Due to their superior
qualities, smart super grid development, creative applications,
and merging of HVDC and FACTS are occurring [21].

HVDC and FACTS can handle the planning system, which
requires changes in how the system is supplied. New
electronic power technologies with self-commutated
converters can supply weak or passive networks and control
reactive and active power separately. FACTS devices and
HVDC increase transmission line capacity [21]. Unified
power flow controllers (UPFCs) and static compensators
(STATCOMs) may solve power system reliability issues.
UPFCs are FACTs devices capable of series and shunt
compensation to minimize power quality disturbances in a
power system [22]. This research used the Static Var system
(SVC) as part of the FACTS devices to manage system
voltage by managing reactive power [4]. The advantages of
HVDC over HVAC are stipulated in [23] And Fig.2. HVDC
Line Commutated Converters (LCC) is used in this study to
compare with HVAC. HVDC LCC's benefits and
characteristics are listed in [24].
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Fig. 2. Advantages of HVDC over HVAC.

IV. SAPP POWER GRID LOAD FLOW MODELS OF
THREE POWER UTILITIES

The SAPP power grid is implemented under the
supervision of a reliable grid, which is essential for every grid
to have strong reliability; the characteristics of a good power
grid are mentioned below.

=  The grid that can withstand the loss of
onetransmission line

= Acceptable voltage in every busbar of the
system

= Components such as transformers,
generators, and transmission lines must not

Authorized licensed use limited to: Durban University of Technology. Downloaded on October 04,2022 at 18:05:08 UTC from IEEE Xplore. Restrictions apply.



2022 IEEE PES/IAS PowerAfrica

beoverloaded.
= [ts generating capacity must be greater than
theload demand all the time.

Frequent blackouts or power outages are an obvious
symptom of an unreliable electric grid [25]. Interconnected
power grids are generally safe and reliable, but due to their
complexity, inadequate connections, human errors,
malfunctions, and protective strategy failure leading to a
cascade may occur [7]. Thus the transformers, generators, and
line loading must bewithin the limit of (80% - 100%), and all

the Busbar Voltages must be kept within the tolerance of = 5%
of their Nominal value
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Fig. 3. Edwaleni, Cahora Bassa & Matimba SS.

Each SS was built separately, as shown in Fig.3. The
Matimba SS has (6 x 665 MW) installed capacity on their
generator and all produce an active power of 3840 MW,
Edwaleni SS has (3 x 4MW) and (1 x 5 MW) installed
capacity and produces a maximum power of 15. 7MW, and

Cahora Bassa has (5 x 415MW) installed capacity and
produces a maximum power of 2025MW. As previously
stated, Swaziland is the most disadvantaged of the three SAPP
countries, with a total installed capacity of only 64MW
attempting to meet a demand of 223 MW.

The load flow model in Fig.4. is built with three power
utilities from various SAPP countries. Matimba from Eskom,
Edwaleni from SEC, and Cahora Bassa from EDM, with the
primary goal of increasing Edwaleni SS's access to electricity.
The spacing between the substation and their load center is
fixed at 100km. Fig.3. shows how these SS are interconnected
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Fig. 4. SAPP Power Grid HVAC connecting three SAPP countries

The load flow study is carried out by adjusting the loads
on the electric network and analyzing the entire system
behavior such as line overload, power loss, and voltage
stability, as shown in Fig.5. When operating alone, Edwaleni
SS can only produce 15.7MW. With the power
interconnection shown in Fig.5. the three load centers are fed
with 1000MW each, with Cahora Bassa and Matimba SS
exporting 623 MW and 387.8 MW, respectively, though some
power is lost along the transmission line. As previously stated,
the electricity grid is still running within the restricted limit.
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Fig. 5. SAPP Power Grid with three 1000MW SS interconnected.

As illustrated in Fig.6, the load flow model is run again
with an increase in their load cent In Fig. 6, the load flow
model is run again with an 1800MW load center. The
Edwaleni Network has voltage instability..
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Fig. 6. Three interconnected SS with 1800MW load each.

In Fig.7, Matimba SS and Edwaleni SS were modeled with
a 2000MW load. Edwaleni SS voltage instability increases
with load demand. Edwaleni SS imports 471.9MW from
Matimba and 1590MW.
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Fig. 7. Three SAPP SS with different load demands.

This power interconnection is performed over long
distances, resulting in power loss across the transmission line.
The load flow using the HVDC LCC link is carried out to
minimize losses in Fig.8. as compared to Fig.7., whereby
Eskom — EDM TL transports 161,8MW and can transmit
205,4MW with the addition of HVDC LCC.

The load flow is implemented again in Fig.9 by employing
HVDC LCC in (EDM-SEC) with 1210km TL length and
power set point of 300MW in HVDC line to support and
enhance HVAC line of EDM — SEC. The losses are
minimized, and the power is optimized with the help of the
HVDC LCC link, but the voltage instability is still affecting
the system, as seen in Fig. 8 and 9.
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Fig. 9. Three SAPP SS with HVDC LCC in EDM-SEC.

Eskom -ba SS SEC -ni SSs EDM Cal-assa SSs

: 2025.0
37480 157
523.5 3329 o
198.418 17.494 o7
' Matimba SU Transf Edwalenl SU Transt {1y./Cahora Bassa SU Transt
+ 4.5 l e prvy % 58.5
-3744.0 ® 187 -2025.0
4163 -328.5 » 2640
Matimba Sub Trans 1 >3 Edwaloni Sub Trans 1 3 Cahorra Bassa Sub Trans | 1-545
3T F v & % 75‘- LI } ¥ [783 !
19 | 1000 20082 2192 146 A3T4 2083 2090 3220 ks azn z1a 1 300.0 1743.2 -99.9
46 | 208 243 1867 oo jsee 23 346.9 688 972 -46.3 1.2 695 3.6 1052 201.6 305
dore 3%z  oev 1oas ES om T0i2 637 0241 023 spm GEC 0263 0464 0241 1308 0079
— es ) e 4
a o
g VoG Lce eomsec|
a0 Eskom - EDM 2
s & 29 g0
I} e HVDE LEC Eskom-EDM ag
Ze Ta I
£8 23 s
3 5% g
EI 3 S
-2000.0 v 2 -1700.0
1‘3:‘: b %6
awatons sub Trans Gahorn Rassa sub Trans 1
7535 e i 7523
089 zm o 503 20000 .0 ose woo o
490 31268
Matimba Sub Yram || % 1524 0.238 430
Edwalen! SD Transt .
Matimba SD Transt X LA Cahora Bassa SD Trans
812 ‘ Kk o5
-2000.0 -2000.0 17000
0.0 -0.0
108551 | oad Contre Edwaleni 58111k 196008 Load Centre Cahora Bassa SSi1kv 90761
P -
ey e he
106.551 90.761
Load Centre Marimba SSH1KV |
Matimba Cahora Bassa

Fig. 10. The complete model of the three SAPP SS Power interconnection

The entire model is then run with the load demand, as
shown in Fig.7, to conclude the usefulness of both the Static
Var System and the HVDC LCC link in a network to
optimizeand stabilize the system, as shown in Fig.10. The
models wereused to examine the load flow when HVAC,
HVDC, and FACTS devices, were used. The analysis was
performed by altering the load of the three interconnected
SS.Using this model, it is seen in Table II that the HVDC
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system has fewer electrical power losses when compared to

HVAC and Facts devices.
TABLE II. POWER LOSSES FOR EACH MODEL
Name Power loss
MW)
HVAC Load flow 101.70
HVAC With Static Var System 100.56
HVDC Load flow 85.53
HVDC Load flow With SVS 84.63

V. CONCLUSIONS

The models were constructed to study load flow when

HVAC, HVDC, and FACTS devices were used, The
investigation was conducted by altering the load on the three
interconnected SS; it was discovered that when load demand
increases, the grid's reliability decreases, Grid losses are
avoided by the use of HVDC over the long transmission line
(TL), and voltage is controlled with the SVC.
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