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Design and Modeling of the
ANFIS-Based MPPT Controller for
a Solar Photovoltaic System
Maximum power point tracking (MPPT) controllers play an important role in improving the
efficiency of solar photovoltaic (SPV) modules. These controllers achieve maximum power
transfer from PV modules through impedance matching between the PV modules and the
load connected. Several MPPT techniques have been proposed for searching the optimal
matching between the PV module and load resistance. These techniques vary in complexity,
tracking speed, cost, accuracy, sensor, and hardware requirements. This paper presents the
design and modeling of the adaptive neuro-fuzzy inference system (ANFIS)-based MPPT
controller. The design consists of a PV module, ANFIS reference model, DC–DC boost con-
verter, and the fuzzy logic (FL) power controller for generating the control signal for the
converter. The performance of the proposed ANFIS-based MPPT controller is evaluated
through simulations in the MATLAB/SIMULINK environment. The simulation results demon-
strated the effectiveness of the proposed technique since the controller can extract the
maximum available power for both steady-state and varying weather conditions. Moreover,
a comparative study between the proposed ANFIS-based MPPT controller and the com-
monly used, perturbation and observation (P&O) MPPT technique is presented. The simu-
lation results reveal that the proposed ANFIS-based MPPT controller is more efficient than
the P&O method since it shows a better dynamic response with few oscillations about the
maximum power point (MPP). In addition, the proposed FL power controller for generating
the duty cycle of the DC–DC boost converter also gave satisfying results for MPPT.
[DOI: 10.1115/1.4048882]
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1 Introduction
The rapid growth of installed renewable energy sources has

shown a significant change in the energy sector with a move to
replace traditional power generation sources like coal and diesel
with renewable energy sources such as wind and solar [1]. Accord-
ing to the International Renewable Energy Agency (IRENA), the
world installed 176 GW of renewable energy capacity in 2020
with solar and wind having a significant contribution [2]. From
these statistics, it can be argued that the future is characterized by
a mix of energy technologies with renewable energy sources such
as solar, wind, and biomass contributing significantly in the new
global energy economy. Among the mentioned renewable energy
sources, solar photovoltaic (SPV) technology is considered as the
most attractive alternative for power generation [3]. The interest
in SPV is growing worldwide due to the continuous price drop of
both the photovoltaic (PV) modules and solar batteries and the
advances in power electronics [4]. However, SPV systems still
suffer from relatively low energy conversion efficiency [5]. Cur-
rently, the research related to SPV systems is concentrated on
solar cell material modification for improving the efficiency,
design of efficient maximum power point tracking (MPPT) control-
lers for extracting maximum available power from PV modules,
development of efficient power electronic converters and inverters
for stand-alone and grid-connected PV systems, as well as
solving power stability and quality issues by developing advanced

energy management controllers for hybrid SPV systems. The
concept of maximum power point tracking remains an essential
technology for improving the efficiency of PV modules. From
several studies, it is evident that the use of solar modules without
MPPT controllers results in energy wastages, which ultimately
results in the need to install more PV modules for the same
power requirement [6].
All MPPT techniques have one objective, that is, to force the PV

modules always operate at their maximum power point (MPP) for
any given weather conditions based on the maximum power transfer
theorem (MPTT). The power output of PV modules is characterized
by non-linear behavior due to the variation of the solar irradiance
and solar cell temperature. For any given weather condition, the
solar module’s operating point corresponds to a unique point on a
current–voltage (I–V ) curve. The same unique operating point on
the I–V curve also corresponds to a point on the power–voltage
(P–V ) curve. And the operating point of the PV module must
always correspond to the highest value on the P–V curve for the
system to generate the maximum power, as shown in Fig. 1.
However, if the PV module is connected directly to the electrical
load, its operating point is dictated by the load connected, that is,
it can take any value on the P–V curve which might not be the
MPP, depending on the impedance interaction between PV
modules and the connected load. Therefore, MPPT techniques are
employed to continuously adjust the impedance seen by the PV
module to keep the PV module operating at, or close to, its peak
power point under varying solar irradiance, temperature, and load.
Generally, the MPPT controller is composed of a DC–DC power

converter which is controlled by an algorithm to drive the panel’s
operating point to the MPP. The MPPT techniques can be
grouped into two categories: conventional techniques, such as per-
turbation and observation (P&O) [7–9], incremental conductance
(InCon) [10,11], and open-circuit voltage (OCV) method [12,13],
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and based on artificial intelligence (AI) techniques such as artificial
neural networks (ANN) [14], fuzzy logic (FL) [15], particle swarm
optimization (PSO) [16], and adaptive neuro-fuzzy inference system
(ANFIS) [17]. The P&O and InCon are the widely used conven-
tional MPPT techniques because of their simple hardware imple-
mentation and sensor requirements as well as low cost. However,
as reported in Refs. [18–20], these conventional techniques suffer
from various problems such as slow tracking speed, high fluctua-
tions about the MPP, and drift issues involved when there is a
rapidly changing weather condition. Also, conventional techniques
are defined for uniform environmental conditions and they may fail
to track the global maximum power point (GMPP) during non-
linear and partially shaded conditions [21]. Recently, AI-based
MPPT techniques have been proposed to address problems associ-
ated with conventional MPPT techniques. Amongst them, the
FL-based MPPT controller is considered as a powerful one due to
its fast-tracking speed and fewer oscillations as reported in Refs.
[22–25]. The only challenge with this technique is that it heavily
depends on good knowledge about PV systems. Thus, the efficiency
of the FL-based controller well depends on the appropriate design of
fuzzy rules and memberships functions. The ANN-based MPPT
controller is also considered as a powerful technique because of
its ability to solve complex and non-linear functions. However,
ANN-based MPPT controllers have some drawbacks such as the
need for a large amount of training data to ensure accuracy, longer
training times, and the complexity in the design of ANN architec-
tures [26]. To solve these limitations, FL can be integrated with
ANNs to form an ANFIS for MPPT. The studies [27–30] have
proved that ANFIS-based MPPT controllers have a fast dynamic
response and small oscillations about the MPP as compared with
other MPPT techniques. However, it should be noted that most of
the ANFIS-based MPPT controllers that have been presented in
the literature rely on the PI(D) controller for generating the duty
cycle signal for the DC–DC converter as given in Refs. [17,31–
35]. In this study, the FL power controller is proposed for calculation
of the duty cycle and for providing a control signal to the DC–DC
boost converter. Thus, the proposed ANFIS-based MPPT is made
up of a DC–DC boost converter, ANFIS reference model, and FL
controller. The ANFIS reference model is trained with a large
amount of the real data sets to ensure the accuracy and reliability
of the controller.

2 The Architecture of the Adaptive Neuro-Fuzzy
Inference System
The ANFIS is a data learning technique that uses FL to transform

system inputs into the desired outputs with the use of highly inter-
connected artificial neural networks, which are weighted to map the
numerical inputs into desired outputs [36]. The ANFIS combines
the benefits of the two machine learning techniques

(backpropagation and least square error algorithms) into a single
technique. To demonstrate the ANFIS architecture, two fuzzy
IF-THEN rules based on a first-order Sugeno model are considered
as follows [37]:

RULE 1: If x is A1 and y is B1, then f1= p1x+ q1y+ r1
RULE 2: If x is A2 and y is B2, then f2= p2x+ q2y+ r2

where x and y are inputs; Ai and Bi are fuzzy variables; fi represents
outputs within fuzzy sets; pi, qi, and ri are design parameters that
are determined during the training process of the ANFIS
system. The ANFIS architecture is shown in Fig. 2. In this figure,
a circle indicates a fixed node, whereas a square indicates an adap-
tive node. ANFIS has a five-layer architecture, and the nodes in
each layer have similar functions. Each layer is explained in
detail below.
Layer 1
The outputs of layer 1 are the fuzzy membership grades of the

inputs, which are given by the following equations:

O1,i = μAi(x), i = 1, 2 (1)

O1,i = μBi−2(y), i = 3 (2)

where x and y are the inputs to the node i, and Ai and Bi are linguis-
tic labels (high or low) associated with this node functions. μAi(x)
and μBi−2(y) can adopt any fuzzy membership function. For
example, if the bell-shaped membership function is employed,
μAi(x) is given as follows:

μAi =
1

1 +
x − ci
ai

( )2
[ ]

bi

, i = 1, 2 (3)

where ai, bi, and ci are parameters of the membership function.
Layer 2
In layer 2, the nodes are fixed nodes. The layer involves fuzzy

operators, and it uses the AND operator to fuzzify the inputs.
They are labeled with π, indicating that they perform as a simple
multiplier. The output of this layer can be represented as

O2, i = wi = μAi(x) ∗ μBi(y), i = 1, 2 (4)

These are the so-called firing strength of the rules.
Layer 3
In layer 3, the nodes are also fixed nodes labeled by N, to indicate

that they play the normalization role to the firing strengths from the
previous layer. The output of this layer can be represented by

O3, i = wi =
wi

w1 + w2
, i = 1, 2 (5)

Outputs of this layer are called normalized firing strengths.
Layer 4

Fig. 1 Current–voltage and power–voltage curves for a PV
module [7]

Fig. 2 Adaptive neuro-fuzzy inference system architecture [37]
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In layer 4, the nodes are adaptive. The output of each node is
simply the product of the normalized firing strength and a first-order
polynomial (for a first-order Sugeno model). The output of this
layer can be written as follows:

O4, i = wifi = wi( pix + qiy + ri), i = 1, 2 (6)

where �w is the output of layer 3 and pi, qi, and ri are the consequent
parameters.
Layer 5
In layer 5, there is only one single fixed node labeled with

∑
x.

This node performs the summation of all incoming signals. The
overall output of the model is given by

O5, i =
∑
i

�wfi =
∑

i wifi∑
i wi

(7)

3 System Modeling
3.1 Modeling of the Solar Photovoltaic Module. Photovol-

taic is a process of converting solar irradiance into electricity
using semiconductor materials that exhibit a property known as
the photovoltaic effect [38]. The general model of a solar cell can
be derived from the physical characteristics of a diode, which is
usually called the single diode model. Figure 3 shows the equivalent
circuit for a single diode model. From Fig. 3, the current source, IL,
represents the flow of electrons when solar radiation hits the surface
of a solar PV cell. And the diode represents the characteristic beha-
vior of the PN junction of the solar PV cell. The model has two
resistances, namely, series resistance and parallel resistance. The
series resistance (Rs) represents current losses due to metal contacts
within the solar PV cells, and the parallel resistance (RSH) accounts
for current leakages through the resistive path in parallel with the
intrinsic device [17]. Several solar cells have to be connected to
form a solar PV module. The output current of the solar PV
module is given as

I = I ph − Io[e
((q(V+IRs))/(nKNsT))−1] − Ish (8)

where Iph is the photo-current; Io is the saturation current; q is the
electron charge; V is the output voltage of the PV module; n is
the ideality factor of the diode; K is the Boltzmann constant; Ns

represents the number of solar cells connected in series; T is the
solar cell temperature; and Ish is the current through the shunt resis-
tor. The current generated from the incidence of radiation at a given
temperature is expressed as

I ph = Isc + ki(T−298)
G

1000

[ ]
(9)

where Isc represents the short circuit current; ki is the temperature
coefficient of the Isc at standard test conditions (STCs); and G is
the solar irradiance. The reverse saturation current of the diode is

given by

Irs =
Isc

e((q Voc)/(n NsK T))−1
(10)

where Voc is the open-circuit voltage. The module’s saturation
current at any given temperature is given by

Io = Irs
T

Tn

( )3

e[(q Ego((1/Tn)−(1/T)))/n K] (11)

where Tn= 298 K; Ego is the bandgap energy. In this study, the
ART solar module—360 Wp, 39.0 V Si-monocrystalline type
module is used. The parameters of the module at STC are given
in Table 1.
By using the parameters presented in Table 1, the MATLAB/SIMU-

LINK model of the solar module is created. After modeling, the
MATLAB/SIMULINK PV module model has to be verified or validated
to check if resembles the characteristics of the actual module as
given in the manufacturer’s datasheet. The model is simulated
under STCs without connecting any load. STC is a testing condition
for manufacturers to check the performance of solar modules, and it
specifies that the module must be tested under a solar cell tempera-
ture of 25 °C, the irradiance of 1000 W/m2, and an air mass of 1.5
(AM1.5) [39]. The peak power point of the simulated MATLAB/SIMU-

LINK model was 360 Wp which is given in the manufacturer’s data-
sheet. The I–V and P–V curves of the simulated MATLAB model of
the PV module at 25 °C and different solar irradiance are given in
Figs. 4 and 5.

3.2 Proposed ANFIS-Based MPPT Controller. The pro-
posed ANFIS-based MPPT controller is made up of the ANFIS
reference model, FL power controller, and a DC–DC boost con-
verter as shown in Fig. 6. This MPPT controller is based on the
fact that by knowing the maximum possible power output of a
PV module for a given set of solar irradiance and temperature,
the real-time MPP of the solar module can be perfectly tracked.
The ANFIS reference model gives out the expected value of the

maximum power output from the PV modules at a specific tempera-
ture and irradiance. At the same irradiance and temperature, the
actual power output which is coming from the PV module is mea-
sured and compared with the reference value from the ANFIS
model. The difference between the two power values is calculated
to give an error, which is then fed to the FL power controller to gen-
erate a control signal. The signal generated by the FL power control-
ler is given to the pulse width modulator (PWM). The PWM
generates a signal at a high level of frequency to control the duty
cycle of the DC–DC power converter and force PV modules to
operate at the MPP.

3.2.1 Design of the DC–DC Boost Converter. Maximum
power point tracking algorithms are implemented using highly effi-
cient DC–DC power converters. There are several topologies of
DC–DC power converters which can be used for maximum
power point tracking and these include the boost converter, buck
converter, Cùk converter, and SEPIC converter. Because of its

Fig. 3 Equivalent circuit of a single diode model [40]

Table 1 Specifications of the ART-solar-360 Wp

Quantity Value

Maximum power, PMPP 360 Wp
The voltage at MPP, VMPP 39.0 V
The current at MPP, IMPP 9.24 A
Voc 47.5 V
Isc 9.71 A
Number of cells, Ns 72
Temperature coefficient of the Isc, ki 0.050%/°C
Temperature coefficient of the Pmax −0.39%/°C
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Fig. 4 Power versus voltage curve

Fig. 5 Current versus voltage curve

Fig. 6 ANFIS-based MPPT controller
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simplicity and ability to step up the voltage, the boost converted is
adopted in this study. A boost converter is made up of two semicon-
ductor switches (diode and MOSFET), an inductor and a capacitor
as shown in Fig. 7.
The working principle of the boost converter is based on the fact

that the inductor L resists sudden changes in input current. Assum-
ing continuous conduction mode of operation, the converter has two
states of operation which are given below.

(a) ON state
During this state, the MOSFET switch S will be on and the

diode switch D will be off. The diode will be open-circuited
because the n side of the diode will be at higher voltage com-
pared with the p side which will be shorted to the ground.
The current flows through the inductor and then to the
MOSFET. The inductor stores energy in the form of a mag-
netic field. On the other side of the circuit, the current flows
from the capacitor to the load. The ON state duration is given
by TON=D+ T, where D is the duty cycle and T is the
switching frequency.

(b) OFF state
In this state, the control signal turns off the MOSFET and

the diode is turned on. The inductor discharges and the
current flows through the diode to the filter capacitor and
the load. The capacitor stores energy in the form of charge.
The filter capacitor in the output circuit is assumed to be
large such that the resistor–capacitor (RC) time constant is
higher than the switching frequency to ensure constant
output voltage.

Fig. 7 DC–DC boost converter

Table 2 Selected parameters of the boost converter

Parameter Symbol Value

Input voltage VMPP 39 V
Input current IMPP 9.24 A
Duty ratio DMPP 0.35
Inductor L 3.7 mH
Load resistance R 10 Ω
Output capacitor Co 87.5 μF
Input capacitor Ci 4000 μF
Switching frequency f 20 kHz

Fig. 8 ANFIS reference model architecture

Journal of Solar Energy Engineering AUGUST 2021, Vol. 143 / 041002-5



The boost converter is designed at STC of the solar module. The
solar module specifications are given in Table 1. Thus, the PV
output current, IPV= IMPP, output voltage, VPV=VMPP, and output
power, PPV=PMPP. Therefore, the input/output voltage and

current relationships of a DC–DC boost converter are given by

Vo =
VMPP

1 − D
(12)

Io = (1 − D)IMPP (13)

where Vo is the output voltage of the converter, VMPP is the input
voltage to the converter, Io is the output current of the converter,
and IMPP is the input current to the converter. The relationship
between the load resistance (R) and optimal internal resistance of
the PV module (RMPP) is given as

R =
RMPP

(1 − DMPP)2
(14)

where R=Vo/Io, RMPP=VMPP/IMPP, and DMPP is the duty cycle

Fig. 9 Surface view of the ANFIS reference model

Table 3 Fuzzy rules for the FL power controller

E/CE Very low Low Neutral High Very high

Very low VH VH H VL VL
Low H H H VL L
Neutral H H N L L
High H H L L VL
Very high H H L L VL

Fig. 10 Membership functions of E
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at MPP at STC. Since the range of the duty cycle is between 0 and 1,
the load resistance must be equal or greater than the optimal internal
resistance of the PV module (R≥RMPP). Using the load resistance
of 10 Ω and assuming a lossless converter (Po=PPV), the output
voltage of the converter is determined as

Vo =






PoR

√
= 60 V (15)

The duty cycle at MPP at STC is determined as

DMPP = 1 −
VPV

V0
= 0.35 (16)

The PV module’s voltage varies with the current and to minimize
the ripples, the minimum value of the inductor has to be designed
for 1% of current ripples (ΔIPV) at a high-frequency value of
20 kHz as given below [40]

L ≥ VPV × DMPP

2 × ΔIPV × f
= 3.7 mH (17)

Additionally, the minimum value of the input capacitor has to be
designed for 1% of the voltage ripples as given below [40]

C ≥ DMPP

2 × ΔVo × f × R
= 87.5 μF (18)

In this study, the input capacitor Ci is incorporated to reduce the
ripples of the input voltage as well as to deliver alternating
current to the inductor. The selected design parameters of the

DC–DC boost converter are given in Table 2.

3.2.2 Design of the ANFIS Reference Model. The ANFIS
reference model has two input variables (solar irradiance and tem-
perature) and one output variable (reference maximum power
output). The temperature and irradiance values for the particular
site used in this study have been obtained from the PVGIS
website. By simulating the MATLAB/SIMULINK model of the PV
module (presented in Table 1) without connecting any load, the
reference maximum power output values are generated. The
input/output data sets are then used to train the ANFIS reference
model. The model was trained with the help of 145 data sets and
using triangular membership functions. Figure 8 shows the
ANFIS reference model architecture with five membership func-
tions for solar irradiance and three membership functions for
temperature.
Figure 9 shows the structure of the surface view plot of the

ANFIS reference model, and the mapping between inputs and
outputs is demonstrated.

3.2.3 Design of the Power Controller. The power controller is
based on FL, and it is used to generate the control signal for the con-
verter. The signal is generated based on the error between the actual
power output of the PV module and the reference power output
given by the ANFIS reference model. The FL power controller
has two input variables (error E and change in error CE) and one
output variable (duty cycle increment ΔD). Triangular membership
functions were used for each variable in the design of the FL

Fig. 11 Membership functions of CE

Fig. 12 Illustration of the P&O MPPT technique [20]
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controller. Five membership functions were chosen for each vari-
able and defined as: Very Low (VL), Low (L), Neutral (N), High
(H), and Very High (VH). The ranges of the variables are given
as E (−100 to 100), CE (−1 to 1), and D (−0.1 to 0.1).
The controller is designed with 25 fuzzy rules shown in Table 3.

Rows and columns represent the input variables (E) and (CE), and
the output variable (ΔD) is located at the intersection of the row and
the column (Figs. 10 and 11).

3.2.4 Design of the Perturbation and Observation MPPT
Controller. The P&O MPPT technique is the widely used MPPT
method for improving the efficiency of SPV modules. In this tech-
nique, a perturbation is first introduced to the operating voltage of
the PV module. The PV module’s power output after the

perturbation is then calculated and compared with the previous
power output. The difference in the two power output values
(ΔP) is calculated and if theΔP is greater than zero, the perturbation
is kept in that direction. When ΔP becomes less than zero, the per-
turbation is reversed and this process is repeated until the MPP is
reached. Figure 12 illustrates the P&O MPPT technique.
In this paper, the P&O MPPT technique is for comparison with

the proposed ANFIS-based MPPT technique. The P&O MPPT
technique is explained in detail in Refs. [9,19,41–44].

Fig. 13 At STC, with and without the proposed MPPT controller

Fig. 14 Under varying solar irradiance, with and without the proposed MPPT controller
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4 Simulation Results and Discussion
As stated before, if the PV module is connected directly to the

load, its operating point is rarely at the MPP. MPPT techniques
are employed to match the internal resistance of the PV module
to the load resistance for maximum power to be transferred
to the load. To analyze the dynamic behavior of the proposed
ANFIS-based MPPT controller, different scenarios were considered
and simulated in the MATLAB/SIMULINK environment.
Scenario 1: At STC, with and without the proposed MPPT

controller

The proposed MPPT controller is simulated at STC (1000 W/m2

and 25 °C) and then compared with the simulation of the same
circuit but without the MPPT controller. Figure 13 shows the PV
module power output with the proposed MPPT (black line) and
without the MPPT controller (white line). In both graphs, the
PV power output rises sharply from zero up to about the MPP
(360 W) after a time of 20 ms. For the system with the MPPT
controller, the power output settles at MPP since the MPPT control-
ler will be continuously forcing the PV module to operate at
the MPP. For the system without the controller, the PV power

Fig. 16 Under varying solar irradiance, comparing with the P&O MPPT controller

Fig. 15 At STC, comparing with the P&O MPPT controller

Journal of Solar Energy Engineering AUGUST 2021, Vol. 143 / 041002-9



output drops and settles at around 200 W. This is because the load
resistance does not match the internal resistance of the module and
there is no external circuit which can force the PV to find its MPP.
Scenario 2: Under varying irradiance, with and without the pro-

posed MPPT
In this case, the proposed controller is evaluated with an operat-

ing temperature of 25 °C and sudden changes in solar irradiance
(1000 W/m2, 850 W/m2, 500 W/m2, and 50 W/m2).
Figure 14 shows the PV power output curves for the two systems.

It can be noted that the proposed MPPT controller presents a good
performance under varying solar irradiance since it perfectly tracks
the MPP for different solar irradiances levels. For the PV module
without the MPPT controller, the system does not operate at the

MPP. However, it should be noted that between 0.4 s and 0.8 s,
the system without the controller operates around the MPP. This
is because, during that period, the optimal internal resistance of

Fig. 18 Zoomed view of the oscillations of the P&O MPPT controller

Table 4 Data sets of solar irradiance and temperature

Solar irradiance (W/m2) Temperature (°C)

633 30.6
440 25.2
222 20.1
30 15.2

Fig. 17 Membership functions of ΔD
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the solar module is almost equal to the load resistance of the circuit.
At 25 °C, 500 W/m2, the optimal internal resistance of the PV
module is given by

RMPP =
V2
MPP

PMPP
= 8.5Ω

Which is almost equal to the load resistance of 10 Ω. Because of
that, the PV module can operate at almost MPP without the inclu-
sion of any controller to control its operating point.
Scenario 3: At STC, comparing with the P&O MPPT controller
The performance of the proposed ANFIS-based MPPT controller

is also evaluated by comparing it with the P&O MPPT technique at
STC. It can be noted from Fig. 15 that for both MPPT controllers,
the PV module power output rises sharply up to the MPP with the
rise time of 20 ms. For the system with the ANFIS-based MPPT
controller, the power output settles and maintains that value.
However, for the system with the P&O MPPT controller, the
power output oscillates about the MPP before settling down. The
power output of the P&O technique settles at the MPP after 80
ms as shown in Fig. 15.
Scenario 4: Under varying solar irradiance, comparing with the

P&O MPPT controller
At this point, the performance of the proposedMPPT controller is

evaluated by comparing it with the P&O MPPT controller under
varying solar irradiance levels (1000 W/m2, 850 W/m2, 500 W/m2,
and 50 W/m2).
Both controllers exhibit satisfactory tracking performance, but

the degree of accuracy is different as shown in Fig. 16. The ANFIS-
based MPPT controller displays a fast response to sudden changes
in solar irradiance levels with small oscillations about the MPPT.
For the P&O MPPT controller, the tracking speed is lower and
oscillations are much higher. The P&OMPPT controller also exhib-
its the drift phenomenon (caused by the incorrect decision to either
decrease or increase the duty cycle for fast-changing irradiance
levels). It must be also noted that the efficiency of the P&O
MPPT technique is very poor for lower solar irradiance level (at
500 W/m2) as illustrated in Fig. 16 (between 40 and 60 ms). This
is because the P&O method uses a fixed step to either decrease or
increase the duty cycle (non-adaptive) but for the ANFIS-based
MPPT controller, ΔD changes (from −0.1 to 0.1 as shown in
Fig. 17) depending on the error given to the FL power controller,

which makes the proposed MPPT technique efficient for any
given solar irradiance level and temperature (Fig. 18).
Scenario 5: Under varying solar irradiance, varying temperature

and comparing with the P&O MPPT controller
The performance of the proposed ANFIS-based MPPT is also

evaluated under varying solar irradiance and temperature by com-
paring it with the P&O MPPT technique. In general, the efficiency
of PV modules decreases with an increase in solar cell temperature.
Four real environmental data sets of solar irradiance and tempera-
ture are used. Table 4 shows these data sets.
Figure 19 shows the power output curves of the two controllers.

The proposed ANFIS-based MPPT shows a better response for
changing solar irradiance and temperature. For the P&O MPPT
controller, the accuracy and tracking speed is slower and this
results in power wastages since the SPV system will not be operat-
ing at the MPP. The reason for this poor performance is because
the P&O technique relies on fixed steps to update the duty
cycle of the DC–DC boost converter and it takes time for this con-
troller to locate the new MPP for rapidly changing environmental
conditions.

5 Conclusion
The design, modeling, and evaluation of the proposed ANFIS-

based MPPT controller were presented in this paper. By knowing
the maximum possible power output of a PV module for a given
set of solar irradiance and temperature, the real-time MPP of the
solar module was thoroughly tracked. The components and the sub-
systems of the proposed MPPT controller were modeled and simu-
lated in MATLAB/SIMULINK environment. The proposed MPPT
controller was evaluated by comparing it with a circuit without
the MPPT controller as well as with the P&O MPPT technique.
Simulation results reveal that the proposed ANFIS-based MPPT
can effectively track the maximum power point of PV modules
under different weather conditions with the same level of consis-
tency. The proposed FL power controller which was used to gener-
ate the control signal to the boost converter also gave satisfying
results for MPPT.

Fig. 19 Under varying solar irradiance, varying temperature comparing with the P&O MPPT controller

Journal of Solar Energy Engineering AUGUST 2021, Vol. 143 / 041002-11



Acknowledgment
The authors would like to thank the National Research Founda-

tion of South Africa (NRF) and the Durban University of Technol-
ogy for their financial support.

Conflict of Interest
There are no conflicts of interest.

References
[1] Owusu, P. A., and Asumadu-Sarkodie, S., 2016, “A Review of Renewable

Energy Sources, Sustainability Issues and Climate Change Mitigation,” Cogent
Eng., 3(1), pp. 1–14.

[2] I.-I. R. E. Agency. “Renewables Account for Almost Three Quarters of New
Capacity in 2019,” IRENA, https://www.irena.org/newsroom/pressreleases/
2020/Apr/Renewables-Account-for-Almost-Three-Quarters-of-New-Capacity-
in-2019, Accessed 2020.

[3] Ahmadi, M. H., Ghazvini, M., Sadeghzadeh, M., Nazari, M. A., Kumar, R.,
Naeimi, A., and Ming, T., 2018, “Solar Power Technology for Electricity
Generation: A Critical Review,” Energy Sci. Eng., 6(5), pp. 340–361.

[4] Malinowski, M., Leon, J., and Abu-Rub, H., 2017, “Solar Photovoltaic and
Thermal Energy Systems: Current Technology and Future Trends,” Proc. IEEE,
105(11), pp. 1–15.

[5] Hossain, J., and Mahmud, A., 2014, Renewable Energy Integration: Challenges
and Solutions, Springer Science & Business Media, New York, p. 1.

[6] Rosu-Hamzescu, M., and Oprea, S., 2013, “Practical Guide to Implementing
Solar Panel MPPT Algorithms,” Microchip Technology Inc.

[7] Sharma, D., and Purohit, G., 2012, “Advanced Perturbation and Observation
(P&O) Based Maximum Power Point Tracking (MPPT) of a Solar Photo-
Voltaic System” 2012 IEEE India International Conference on Power
Electronics (IICPE), Delhi, India, Dec. 6–8.

[8] Sweidan, T. O., and Widyan, M. S., 2017, “Perturbation and Observation as
MPPT Algorithm Applied on the Transient Analysis of PV-Powered DC Series
Motor,” 8th International Renewable Energy Congress (IREC), Amman,
Jordan, Mar. 21–23, pp. 1–6.

[9] Kamran, M., Mudassar, M., Fazal, M. R., Asghar, M. U., Bilal, M., and Asghar,
R., 2018, “Implementation of Improved Perturb & Observe MPPT Technique
With Confined Search Space for Standalone Photovoltaic System,” J. King
Saud Univ.—Eng. Sci., 32(1), pp. 432–441.

[10] Putri, R. I., Wibowo, S., and Rifa’i, M., 2015, “Maximum Power Point Tracking
for Photovoltaic Using Incremental Conductance Method,” Energy Procedia, 68,
pp. 22–30.

[11] Safari, A., and Mekhilef, S., 2011, “Incremental Conductance MPPT Method for
PV Systems,” 24th Canadian Conference on Electrical and Computer
Engineering(CCECE), Niagara Falls, ON, Canada, May 8–11, pp. 000345–
000347.

[12] Das, P., 2016, “Maximum Power Tracking Based Open Circuit Voltage Method
for PV System,” Energy Procedia, 90, pp. 2–13.

[13] Ch, S. B., Kumari, J., and Kullayappa, T., 2011, “Design and Analysis of Open
Circuit Voltage Based Maximum Power Point Tracking for Photovoltaic
System,” Int. J. Adv. Sci. Technol., 2, pp. 51–60.

[14] Dzung, P. Q., Le Dinh, K., Hong Hee, L., Le Minh, P., and Nguyen Truong Dan,
V., 2010, “The New MPPT Algorithm Using ANN-Based PV,” International
Forum on Strategic Technology, Ulsan, South Korea, Oct. 13–15, pp. 402–407.

[15] Mahamudul, H., Saad, M., and Ibrahim Henk, M., 2013, “Photovoltaic System
Modeling With Fuzzy Logic Based Maximum Power Point Tracking
Algorithm,” Int. J. Photoenergy, 2013, p. 762946.

[16] Liu, Y., Huang, S., Huang, J., and Liang, W., 2012, “A Particle Swarm
Optimization-Based Maximum Power Point Tracking Algorithm for PV
Systems Operating Under Partially Shaded Conditions,” IEEE Trans. Energy
Convers., 27(4), pp. 1027–1035.

[17] Aldair, A. A., Obed, A. A., and Halihal, A. F., 2018, “Design and Implementation
of ANFIS-Reference Model Controller Based MPPT Using FPGA for
Photovoltaic System,” Renew. Sustain. Energy Rev., 82, pp. 2202–2217.

[18] D’Souza, N. S., Lopes, L. A., and Liu, X., 2010, “Comparative Study of Variable
Size Perturbation and Observation Maximum Power Point Trackers for PV
Systems,” Electric Power Syst. Res., 80(3), pp. 296–305.

[19] Kamala Devi, V., Premkumar, K., Bisharathu Beevi, A., and Ramaiyer, S., 2017,
“A Modified Perturb & Observe MPPT Technique to Tackle Steady State and
Rapidly Varying Atmospheric Conditions,” Sol. Energy, 157, pp. 419–426.

[20] Kumar, A., Chaudhary, P., and Rizwan, M., 2015, “Development of Fuzzy Logic
Based MPPT Controller for PV System at Varying Meteorological Parameters,”
2015 Annual IEEE India Conference (INDICON), New Delhi, India, Dec.
17–20, pp. 1–6.

[21] Lyden, S., and Haque, M. E., 2015, “Maximum Power Point Tracking Techniques
for Photovoltaic Systems: A Comprehensive Review and Comparative Analysis,”
Renew. Sustain. Energy Rev., 52, pp. 1504–1518.

[22] Ben Salah, C., and Ouali, M., 2011, “Comparison of Fuzzy Logic and Neural
Network in Maximum Power Point Tracker for PV Systems,” Electric Power
Syst. Res., 81(1), pp. 43–50.

[23] Gupta, A., Kumar, P., Pachauri, R. K., and Chauhan, Y. K., 2014, “Performance
Analysis of Neural Network and Fuzzy Logic Based MPPT Techniques for Solar
PV Systems,” 2014 6th IEEE Power India International Conference (PIICON),
Delhi, India, Dec. 5–7, IEEE, pp. 1–6.

[24] Chim, C. S., Neelakantan, P., Yoong, H. P., and Teo, K. T. K., 2011, “Fuzzy
Logic Based MPPT for Photovoltaic Modules Influenced by Solar Irradiation
and Cell Temperature,” 2011 UkSim 13th International Conference on
Computer Modelling and Simulation, Cambridge, UK, Mar. 30–Apr. 1, IEEE,
pp. 376–381.

[25] Menniti, D., Pinnarelli, A., and Brusco, G., 2011, “Implementation of a Novel
Fuzzy-Logic Based MPPT for Grid-Connected Photovoltaic Generation
System,” 2011 IEEE Trondheim PowerTech, Trondheim, Norway, June 19–23,
IEEE, pp. 1–7.

[26] Jiang, L. L., Nayanasiri, D. R., Maskell, D. L., and Vilathgamuwa, D. M., 2015,
“A Hybrid Maximum Power Point Tracking for Partially Shaded Photovoltaic
Systems in the Tropics,” Renew. Energy, 76, pp. 53–65.

[27] Khaehintung, N., Sirisuk, P., and Kurutach, W., 2003, “A Novel ANFIS
Controller for Maximum Power Point Tracking in Photovoltaic Systems,” The
Fifth International Conference on Power Electronics and Drive Systems
(PEDS), Singapore, Nov. 17–20, pp. 833–836, Vol. 2.

[28] Khosrojerdi, F., Taheri, S., and Cretu, A., 2016, “An Adaptive Neuro-Fuzzy
Inference System-Based MPPT Controller for Photovoltaic Arrays,” 2016 IEEE
Electrical Power and Energy Conference (EPEC), Ottawa, ON, Canada, Oct.
12–14, pp. 1–6.

[29] Noman, A. M., Addoweesh, K. E., and Alolah, A. I., 2017, “Simulation and
Practical Implementation of ANFIS-Based MPPT Method for PV Applications
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