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Abstract: Protection schemes are used in safe-guarding and ensuring the reliability of an electrical
power network. Developing an effective protection scheme for high impedance fault (HIF) detection
remains a challenge in research for protection engineers. The development of an HIF detection
scheme has been a subject of interest for many decades and several methods have been proposed to
find an optimal solution. The conventional current-based methods have technical limitations to ef-
fectively detect and minimize the impact of HIF. This paper presents a protection scheme based on
signal processing and machine learning techniques to detect HIF. The scheme employs the discrete
wavelet transform (DWT) for signal decomposition and feature extraction and uses the support vec-
tor machine (SVM) classifier to effectively detect the HIF. In addition, the decision tree (DT) classi-
fier is implemented to validate the proposed scheme. A practical experiment was conducted to ver-
ify the efficiency of the method. The classification results obtained from the scheme indicated an
accuracy level of 97.6% and 87% for the simulation and experimental setups. Furthermore, we tested
the neural network (NN) and decision tree (DT) classifiers to further validate the proposed method.

Keywords: classification; high impedance fault; power system; support vector machine; wavelet
packet transform

MSC: 49M41

1. Introduction

The power system distribution network forms an integral part of the electricity net-
work value chain. The distribution network serves as an interlink between the power grid
and the customer load segment connected into the network. Power distribution systems
are prone faults. The faults occurring on the system have both technical and economic
impacts. Thus, is it important to design a protection scheme that will respond efficiently
to mitigate the impact of faults [1]. Over the years, overcurrent protection schemes have
been successfully used to detect low impedance faults (LIF) [2]. LIFs occur when there is
an insulation breakdown between the conductor phases or the conductor phases and the
ground. When an LIF occurs, the fault current increases drastically, thus enabling the pro-
tection relay to detect the abnormality on the system and subsequently, tripping the cir-
cuit breaker. However, this is not the case when an HIF occurs. In case of an HIF, the
current magnitude drops below a nominal current threshold value which is unlikely to be
detected by conventional protection schemes. Table 1 shows the typical HIF current mag-
nitudes on different surfaces [3]; it can be observed that the current magnitude on differ-
ent surfaces may affect the protection scheme to detect the HIF accurately.

HIFs usually occur from two common cases. The first case is when a high impedance
object contacts an energized power line, and the second case is when an energized power
line breaks and fall on the ground. In both cases, the fault current developed is usually
minimal to trigger the relay for any protective action. Unlike LIFs, HIF may cause serious
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damages to the environment, humans, and animals as they can cause a fire [4]. It is imper-
ative to design a scheme that will effectively detect HIF to minimize the adverse impact
of faults.

Table 1. Fault magnitude on different surfaces [3].

Surface Current Magnitude (A)
Dry asphalt or sand 0

Dry grass 25

Wet soil 40

Wet grass 50

Reinforced concrete 75

A significant number of methods have been proposed to find an effective solution for
HIF detection. These methods range from classical to heuristic approaches. Initially, cur-
rent-based methods were proposed for HIF detection. In [5,6], the authors proposed an
algorithm based on current magnitude detection. However, these algorithms have often
failed to detect HIFs due to the minimal or no-fault current magnitude to trigger any pro-
tection operation at the point of fault. The techniques based on harmonic content for HIF
detection were proposed in [7-9], where the frequency spectrum of the HIF was used to
detect the variations in the third harmonic content of the current and voltage magnitude.
Based on spectrum and frequency analysis, Cui [10] proposed an algorithm based on Kal-
man filter (KF) analysis to detect HIF in medium voltage power systems. The application
of the KF was used to estimate the effect of harmonic changes on the fault current magni-
tude. Other methods based on KF technique were proposed to detect the high-resolution
of the current magnitude during arching [11]. The application of wavelet transform (WT)
for signal interpretation has been widely used to detect HIF. In [12], the WT technique
was used to distinguish the signal component of HIF from other power system operations
to minimize nuisance trips. A technique based on discrete wavelet transform (DWT) and
frequency range was applied to analyze and detect the signature pattern emitted by HIF
[13]. A technique based on DWT and evolutionary neural network (ENN) was proposed
by Silva [14]. The scheme employed the DWT technique for feature extraction and ENN
for HIF classification; the scheme produced high classification results. New techniques
based on wavelet transform were presented in [15-17], these techniques used DWT for
feature extraction and pattern recognition to detect HIF. In [18], a technique based on
DWT used the residual current magnitude on medium voltage power lines to detect HIFs.
In [19], a feature extraction scheme based on discreet Fourier transform (DFT) was used
to select the HIF signature from a pool of signatures. The DFT output signature was fed
into the extended Kalman filter scheme to detect HIF.

Nowadays, researchers are placing more emphasis on computer intelligence-based
techniques to detect HIFs. In [20], a hybrid scheme based on the energy and entropy anal-
ysis of the random behavior of the fault signal to detect HIFs was proposed. Other studies
conducted in [21-24] used the practical neural network (NN)-based algorithm to detect
HIF. A technique based on a combination of packet wavelet transform (PWT) and support
vector machine (SVM) was proposed to detect the HIF [25]. In [26,27], the decision tree
(DT) algorithms were proposed to detect HIF in low voltage power networks. The pro-
posed algorithm produced good results. However, the technique was only used in a sin-
gle-line radial network. In [28], a protection scheme based on unsupervised learning and
convolutional autoencoder was proposed to detect HIF. The scheme was validated using
the IEEE 13-bus test system and produced good results compared to the supervised learn-
ing systems. In another study [29], a hybrid method based on DWT and probabilistic neu-
ral network (PNN) was proposed to detect HIF. The technique used the DWT for feature
selection and PNN for classification of HIF from other non-fault conditions. A technique
based on (WT) for signal processing and feature selection combined with convolutional
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neural network (CNN) classifier was proposed to detect HIF in power distribution net-
work was proposed [30]. In [31], a protection scheme based on empirical mode decompo-
sition (EMD) and artificial neural network (ANN) to detect HIF was proposed. The
scheme utilized the harmonic content of the HIF current signal for classification. A pro-
tection scheme on the WT and back propagation neural network (BPNN) was proposed
to detect HIF [32]. The method was tested using the data from the substation practical
data and an 80% detection accuracy was achieved. Although the technical challenges of
HIF detection and electricity safety in the power system industry has not yet been fully
achieved, there has been significant contributions presented in the literature. Studies also
show a promising trend of using artificial intelligence (Al) techniques to improve the ac-
curacy level of HIF detection schemes. The application of using signal processing abilities
of the wavelet transforms (WT) for feature extraction and pattern recognition has been
widely used to enhance efficiency of protection technology [33,34].

Mathematical models form an integral part of designing rigorous fault diagnostic
techniques in power systems engineering. Most of the engineering solutions have been
developed using mathematical approaches. In the present work, we propose the applica-
tion of mathematical models using machine learning techniques to solve an engineering
problem. The proposed hybrid model demonstrates the applicability of mathematical
models in the engineering fraternity. Our model integrates various segments of mathe-
matics which includes signal processing, feature extraction, optimization, and pattern
recognition. For instance, at the initial stage of our model, a fault signal is decomposed
using DWT to analyze the segments of interest from the unabridged fault signal spectrum;
thereafter, a feature extracting technique is employed using the mathematical statistical
features to select specific features from the entire data spectrum, subsequently these fea-
tures are used as inputs to train, test, and validate the pattern recognition and classifica-
tion mathematical algorithm using SVM. Lastly, the GA technique (Table A1) uses the
biological concept to optimize the parameters of the SVM classifier (Table A2) and thus
improving the classification accuracy. The main contribution of the study is to exhibit the
interrelation between mathematics and engineering.

2. Feature Extraction Based on Discrete Wavelet Transform

Feature extraction can be defined as a mathematical technique used to decode high
dimensional data sets into a smaller dimension without losing the content of the actual
data set. Thus, feature extraction is an essential segment of the protection scheme which
is used to improve the fault classification [35]. In the present work, statistical features are
extracted at each level of signal decomposition. The feature includes the energy and en-
tropy of the fault signal.

2.1. Wavelet Transforms

WT has appeared as a powerful signal processing technique for signal decomposition
and feature extraction over the traditional Fourier transforms [36,37]. There are two
mostly used WTs, namely the continuous wavelet transforms (CWT) and DWT tech-
niques. The CWT of a given x(t) signal can be calculated as:

+o0

CWT(a, b) =% f x(t)rp(#) dt ()

— 00

where, a and b represents the scaling and translation factors. Similarly, the DWT can be
defined mathematically as:

k —nbyal
0 0>dt 2

DWT(m,n) = miﬁ Z x(k) 1/)( o
k
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where, a and b in Equation (1), are transformed to be the functions of integers m,n, k.
The DWT technique can be used to effectively recognize non-stationary signals. The de-
composition process is performed using the multiresolution analysis technique (MRA).
The process is shown in Figure 1. The process begins with a signal passing through both
the high and low pass filters. The low pass filter is replicated by the approximation coef-
ficient (c;) and the high pass filter is replicated by the detail coefficient (d;). At each
level of decomposition, the detail coefficient information from the high pass filter is dis-
carded before the process is re-established in the next level of decomposition. The most
important aspect of using WT technique is the proper selection of a mother wavelet. The
approximation and detail coefficients are mathematically represented as:

¢ = Z x(n).h(2n — k) 3)
K

dj = Z x(n).g(2n — k) (4)
k

where, ¢; is the output from the low pass filter which replicates the approximation coef-
ficients of the original signal, and d; is the output from the high pass filter which repli-
cates the detail coefficient of the original signal.
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Figure 1. MRA decomposition tree.

2.2. Feature Extraction

Feature extraction techniques are valuable tools used as a foundation to most power
system classification and regression problems. Feature extraction techniques are used to
reduce high dimension data spectrum to a minimized sizable data spectrum without los-
ing the essence of the original data set. In the current work, the two statistical features
extracted from the reconstructed signal are the energy and the entropy of the signal. The
energy of the fault current signal y(t) is given by:

t2

Etyt;) = f O dt 5)

ty

where, ty,t, represents the time range for the energy measurement. The entropy EN of
the signal y(t) such that E(0) = 0 is given by:

EN(y) = ZEN(M) (6)
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where, y,; is the decomposed coefficient of the original signal y(t), and EN is the ap-
proximated entropy. A feature matrix is formulated based on the energy and entropy
measurements and subsequently used as input to the classifiers.

3. High Impedance Fault Classification Based on Support Vector Machines

Classification is a mathematical process used to identify specific features of interest
from a wide range of features. This phenomenon has been widely used in power systems
for condition monitoring. It is important to design protection schemes with rigorous pat-
tern recognition abilities to enable prompt protection responses during fault conditions.

3.1. Support Vector Machines

SVMs form part of the statistical learning techniques based on structural risk mini-
mization methods. SVMs have been successfully used in power systems for pattern recog-
nition and classification problems [38]. The objective of using SVMs is to find a separating
margin between two different classes of data called the hyperplane. The hyperplane is
determined by mapping the input vectors into a high dimensional space. Generally, a hy-
perplane is set to be optimal under two conditions, (a) if the data classes are separated by
a greater margin, and (b) if the distance between the closest data class and the hyperplane
is maximal [39]. Suppose we are given the input training data
(1, y1), (X2, ¥2), - (x, ) x; € R™, y; € [+1,—1]. x; indicates the input patterns, and y; is
the desired target output, for instance, y; belongs to the -1 class when the data value is -
0.1, and y; belongs to the +1 class when the data value is +0.1. The input data is mapped
into a feature space by means of a non-transformation function ®.

®:R" — F™ x; — . (x;) (7)

The data are subsequently separated by using the function f in the high dimen-
sional space. The dimensional space (Y?) where (Ye{+1,—1}) is mapped by applying
the function f and is given by:

fiF™ — Y2 . (x;) — f(P. (%)) @®)

Suppose the data are linearly separable, the vector dimension is given w eR" and
the scaler dimension is given by beR, such that the desired output y;(w.x; +b) =21V
data parameters within the training set (i = 1,2,---1). Consequently, the hyperplane can
be determined by computing w.x + b = 1 for the data points nearer to the plane on one
side and, w.x + b = —1 for the data points nearer on the other side of the plane. Thus,
the optimal hyperplane can be computed by solving the quadratic programming problem

given by:
L
1
minz w2 + C (Z e,) )

I=1
Subjectto y;(w.x; +b) 21 —¢, & =0Vi
The optimized problem formulation is solved by using the Langrangian multipliers
defined as:
!

Aw, b, ) =%||w2|| =Y a@iw.x +b) -1 (10)
=1
where, w, b are the primal variables, and « is the dual variable, which are used to mini-
mize the Langrangian function. The solution vector in terms of the training design is com-
puted by using the Karush-Kuhn-Tucker (KKT) conditions. Consequently, upon solving
the optimization problem, the training points with a; > 0 are referred to as support vec-
tors (SVs). The primal variables w and b can be calculated as:
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l
w= Z a; YiXi (11)
i=1
l
b= o= ) ayik(ex) (12)

i=1

where, x represents the test vector. Suppose that a; # 0 and sgn is the signal function,
the optimal decision function can be expressed mathematically as:

l
fG) = sgn (). @y k(x,x) + b (13)

where, k is the kernel function and it is computed by determining the inner product
(P(x;), Px;) in the feature space as a function of the input data set. The classification of
HIF and non-fault conditions is achieved by using different kernel functions, such as the
linear, quadratic, and radial bias function 38.

3.2. Decision Tree

The decision (DT) algorithm has been widely used in pattern recognition and classi-
fication purposes. The main quality of the DT algorithm is its ability to maximize and fix
the data division 39. When using the DT algorithm, the data set is spilt into numerous
branches recursively. This process is repeated until the classification efficiency is
achieved. Subsequently, the DT algorithm is mathematically defined as:

X= {X1’X2"”Xm}T (14)
Xi = {0, x5, x5+, Xin} (15)
S = {51,52,'",51-,“-,51,1} (16)

where, m,n, and S, represents the number of observations, the independent variable
number and the dimensional vector of the variables forecasted from X. The ith compo-
nent of the is represented by X;. The xy,x;,*+,x;j,***, Xin_in represents the autonomous
variable of the component vector, and T is the transpose natation vector. The fundamental
desired output of using the DT algorithm is to predict the S,, based on the X variables.
The challenge of using the DT algorithm is to obtain a best possible tree for efficient clas-
sification due to high space dimension. It is for such reason that an optimal DT algorithm
tree Ty, is designed by solving the optimization problem defined mathematically by:

R(Ty) = mkin{ﬁTk}, k=123..,K (17)
R = ) r@p®) (16) (18)
teT

where, R(T) represents the misclassification error of Ty, Ty is the optimal DT algorithm
to curtail the classification error, T is the binary tree € {TI,TZ,T3 ...,Tk,tl}, k,t and t;
represent the tree index, the tree node and the root node respectively, r(t) represent the
estimate of classification error in node t and p(t) represents the probability of any case
that may drop into node t. Generally, the implementation of the DT algorithm is simple
and produces good results for classification purposes.

4. Proposed Protection Scheme for High Impedance Fault Detection

The detection of HIF with high accuracy has been a technical problem for protection
engineers over the years [39]. The difficulties with HIF detection are well documented and
several techniques have been proposed. In this section, the proposed method for HIF de-
tection using DWT-GA-SVM scheme is discussed. The method uses the first cycle of the
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fault current measured at the source terminal after the occurrence of the fault. Subse-
quently, the measured current is passed through both the high and low pass filters by
means of the DWT technique. The signal is analyzed, thus obtaining the detail and ap-
proximation coefficients using the MRA technique. The decomposition process is com-
puted until the fourth level. Subsequently, the statistical features (energy and entropy) are
extracted from the detail coefficient of the reconstructed signal at level 4. The GA tech-
nique is used to optimize the parameters of the extracted features used to train and test
the SVM and DT for classification of HIF and other power system operations. The logic
architecture of the proposed method is given in Figure 2.

Current and voltage signal
measurements

|

Signal analysis using DWT

A 4
Feature extraction > Optimal feature —P- No operating action
selection ? No
Yes
4
SVM, SVM, SVM, SVM,
HIF?
v YES

Trip circuit breaker

Figure 2. Wavelet transform and support vector machine fault classification scheme.

4.1. Selection of Mother Wavelet

The selection of a mother wavelet is an important aspect of utilizing DWT for signal
processing. Essentially, DWT has been used effectively to decompose and extract features
from non-stationary signals. In the present work, six (6) mother wavelets were tested us-
ing the statistical measures to validate the choice of selection. The comparison was ac-
quired by computing the standard deviation, mean deviation and median absolute devi-
ation. In Table 2, the mother wavelet selection is depicted. From the obtained analysis, the
Daubechies (db4) yielded the best results compared to the other mother wavelets and thus
was selected for the purposes of the current study.
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Table 2. Selection of mother wavelet.

Mother Wavelet Standard Deviation Mean Deviation Median Absolute Deviation

Db4 2112 2.505 1.955
Db7 3.450 2913 2.085
Db14 3.551 2.588 2.910
Sym4 2.941 3.528 3.201
Sym?7 2.887 3.415 2.580
Sym14 3.815 3.117 3.155

4.2. SVM Implementation

SVMs have been widely used to solve both the classification and the regression prob-
lems in power systems. To minimize the computational and design complexity, four (4)
SVMs are used and each SVM is trained to classify and detect HIF and other power system
operating conditions. The other power system operating conditions include the capacitor
switching (CS), load switching (LS) and normal operation (NO). The four (4) SVMs, are
arranged chronologically as: SVMa for HIF, SVMs for CS, SVMc for LS, and SVMb for NO
respectively. The output of each SVM is either +1 or -1, where +1 indicates that an opera-
tion has occurred in the corresponding SVM, and -1 means there is no operation in any of
the SVMs. In Table 3, the SVM training matrix is depicted. The matrix would then be used
to send a trip pulse to a circuit breaker in a case of an HIF. For instance, the output
[+1,—-1,—-1, 1] would correspond to the presence of HIF leading to a decision to operate
the circuit breaker.

Table 3. SVM classification matrix.

Type of Incident SVMa SVMs SVMc SVMbp
HIF +1 -1 -1 -1
CS -1 +1 +1 -1
LS -1 -1 +1 -1
NO -1 -1 -1 +1

5. Power Distribution System: Case Study

To demonstrate the validity of the proposed method, an Eskom power distribution
system is studied. The model is carried out using the DIgSILENT PowerFactory engineer-
ing software tool. Eskom is South Africa’s dominant electric utility responsible for over
95% of power generation and exporting to some neighbouring countries in Southern Af-
rica. The reduced network segment consists of a substation at 132/22 kV with three out-
going 22 kV feeders named (Siyabuswa 22kV, Verena 22 kV, and Amanda 22kV). The
substation parameters and distribution line parameters are shown Tables 4 and 5, respec-
tively. Additionally, in this paper an HIF case is modelled based on an improved model
proposed in [30]. The model consists of a sending node model based on an AC source
supply, two impedances based on the capacitance, resistance, and inductance of the power
system. The other distinctive property regarding HIF cases is the non-linearity of the cur-
rent magnitude at each cycle of the signal. One major challenge with HIF detection is the
similarity in nature with other power system operation signals such as capacitor switch-
ing, non-linear load switching, and inductive load switching. It is thus imperative, to de-
velop a scheme that can distinguish HIF from other power system operations to minimize
the incorrect tripping of the breaker. Consequently, in this paper, such operations are con-
sidered for the validation of the scheme. Moreover, low impedance fault such as single
line, double line, and three phase faults are included to improve the validity of the scheme.
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Table 4. Substation source parameters.
Short Circuit P Short Circuit C t
Substation Source or (;Z(\:;l‘;) ower or 12?:) urren X/R  Xi/Xo Ri/Ro
Parameters 1140 15.3 132.1 055 0.61

Table 5. Distribution line parameters.

Length Pos=Neg. Seq. Pos =Neg. Seq. Zero. Seq. Ro Zero Seq. Xo

Feeder @2kV) = ' Ri-Re(@km)  Xi-Xe (Q/km) (Q/km) (Q/km)
Siyabuswa 153 0.119 0.168 0.145 1.850
Amandla 12.8 0.119 0.168 0.145 1.850
Verena 19.6 0.119 0.167 0.145 1.850
HIF Modelling

The accurate modelling of HIF has been a challenge to many engineers over the years,
although several models have been proposed. In the current study we adopted a high
resistance and dynamic model to formulate HIF. We assumed that the HIFs exit because
of the tree contacting the energized medium voltage line. The dynamic model is given by:

dg 1

P G -9 (19)
6= 1! (20)

B ‘/aTC
T = AeB9 (21)

where, g, G, represents the time-varying conductance and stationary arc conductance,
respectively, the arc current absolute is given by [i|, the time constant is given by 7, V.
is the arc voltage parameters, A and B are the arc constants.

6. Results and Discussion

This section discusses the simulation results of HIF and other power system cases.
The signal processing of a fault current improves the classification scheme. The DWT has
been successfully used to analyze and track points of interest withing a range of a signal.
However, the selection of a mother wavelet is an essential part of using DWT efficiently.
As depicted in Table 2, a db4 mother wavelet was selected for purposes of signal decom-
position. Some of the fourth level decomposition coefficients are depicted in Figure 3. The
simulations were performed using the sampling frequency of 12.5 kHz.
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Figure 3. (a)-(d) level decomposition.

The HIF current signal obtained from the simulation platform is shown in Figure 4.
The results emphasize the random behavior of HIF signals. As indicated by the signal, the
positive and negative cycles exhibit different current magnitudes for a similar fault. In
addition, the fault magnitude depletes with time resulting in difficulties of detection. Gen-
erally, HIFs are associated with arching. This phenomenon of arching has been widely
used to develop the possible detection schemes for HIFs. The HIF arc voltage is shown in
Figure 5. The signal indicates a significant increase on the voltage at the incipient of the
fault. However, the signal is not uniformly distributed and decreases in magnitude over
time.

0.7
Time(sec)

-6

Time (s)

Figure 4. HIF current signal.
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Figure 5. HIF arc voltage.

6.1. Classification of HIF

The art of protection engineering encompasses the segment of classification. In tech-
nical terms, classification can be defined as a systematic method of organizing features
according to their category. In the present work, the SVM, DT, and NN mathematical
techniques are used primarily to classify HIF and other technical operations on the power
system. The description of the different signal events considered for the classification
schemes is shown in Table 6.

Table 6. Description of different signal events.

Signal Events Class Identification
High impedance fault Al
Normal current A2
Capacitor switching A3
Inductor switching A4
Load switching A5
Line to ground fault Ab
Line to line fault A7
Line to line to ground fault A8
Three phase fault A9
Three phase fault to ground Al0

The classification accuracy of signal events (A1-A5) and (A6-A10) using the SVM and
DT techniques are shown in Tables 7 and 8, respectively. The results show 97.3% accuracy
using SVM for signal events (A1-A5) and 95.5% accuracy using the DT technique, as well
as an accuracy level of 98.5% and 97.8% using the SVM and DT techniques for (A1-A5)
and (A6-A10), respectively. To demonstrate the effectiveness of using the GA technique
for optimal feature selection, a comparison between the optimal features and non-optimal
features used for classification is shown in Table 9.
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Table 7. Classification of A1-A5 signal events.
SVM DT

Al A2 A3 A4 A5 Al A2 A3 A4 A5
Al 96 1 0 1 95 2 0 0 1
A2 2 94 2 0 1 9% 0 2 1
A3 2 0 95 1 2 1 0 9% 2
A4 1 1 0 98 1 1 1 0 97 0
A5 0 2 1 2 9% 0 1 2 1 98
Accuracy (%) =97.3 Accuracy (%) =95.5
Table 8. Classification of A6-A10 signal events.
SVM DT

A6 A7 A8 A9 A10 A6 A7 A8 A9 A10

A6 98 1 0 0 1 97 1 2 0 1
A7 1 93 1 1 0 1 98 0 1 0
A8 1 0 97 1 1 0 1 98 0 0
A9 1 1 0 92 1 0 0 2 95 1
Al10 0 1 1 0 98 1 2 1 0 95

Accuracy (%) =98.5

Accuracy (%) =97.8

The performance of the SVM, DT and NN classifiers is presented Tables 9-11 respec-
tively. The results show that SVM has a high accuracy level compared to the DT and NN
classifiers. The accuracy precision of the SVM, DT, and NN is given by 97.6%, 96.5%, and
95.4%, respectively.

Table 9. SVM classification performance.

Class TP FP Precision  Recall F-Measure = ROC
Al 0.952 0.000 0.975 0.966 0.983 0.988
A2 0.919 0.000 1.000 0.965 0.960 0.967
A3 0.966 0.000 0.952 0.958 0.983 0.988
A4 0.935 0.002 0.955 0.938 0.966 0.985
A5 0.953 0.001 0.985 0.933 0.980 0.976
A6 0.950 0.000 1.000 0.960 0.966 0.958
A7 0.961 0.004 0.998 0.955 0.952 0.960
A8 0.911 0.001 0.952 0.961 0.955 0.976
A9 0.915 0.004 0.965 0.979 0.982 0.971
A10 0.973 0.043 0.980 0.982 0.904 0.988
Avg 0.944 0.006 0.976 0.961 0.961 0.976
Table 10. DT classification performance.

Class TP FP Precision  Recall F-Measure = ROC
Al 0.991 0.000 0.960 1.000 0.991 0.970
A2 0.920 0.000 0.991 0.990 0.990 0.966
A3 0.933 0.000 0.990 0.980 0.995 0.985
A4 0.985 0.000 0.961 0.985 0.977 0.990
A5 0.968 0.003 0.950 0.930 0.988 0.900
A6 0.987 0.000 0.910 0.975 0.970 0.988
A7 0.980 0.014 0.960 0.957 0.966 0.955
A8 0.981 0.010 0.988 0.911 0.960 0.975
A9 0.971 0.035 0.991 0.980 0.991 0.961
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A10 0.981 0.043 0.950 0.990 0.955 0.992
Avg 0.969 0.011 0.965 0.970 0.978 0.968

Table 11. NN classification performance.

Class TP FP Precision  Recall F-Measure = ROC
Al 0.902 0.000 0.915 0.990 0.905 0.955
A2 0.915 0.000 0.943 0.955 0.922 0.950
A3 0.945 0.000 0.955 0.965 0.959 0.980
A4 0.955 0.000 0.940 0.952 0.960 0.970
A5 0.915 0.003 0.933 0911 0.977 0.911
A6 0.920 0.010 0.990 0.933 0.950 0.916
A7 0.991 0.000 0.982 0.960 0.960 0.958
A8 0.900 0.010 0.922 0.915 0.955 0.988
A9 0.980 0.050 0.985 0.930 0.965 0.966
A10 0.975 0.045 0.975 0.945 0.977 0911
Avg 0.941 0.012 0.954 0.946 0.953 0.951

The screenshots demonstrating the impact of the kernel function to maximize the
hyperplane and thus, improving classification accuracy between HIF and LS, and HIF and
CS are depicted in Figures 6 and 7, respectively. As shown in both figures, the hyperplane
maximally separates the two different classes of data events and thus improving the ac-
curacy of the protection scheme.

® -1:LS
1:HIF
O Support Vectors

06

02r

1

-1 -08 -06 -04 -02

Figure 6. SVM classification between HIF and LS.
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Figure 7. SVM classification between HIF and CS.

6.2. Experimental Analysis

To validate the proposed HIF detection scheme, an experimental setup was con-
ducted. The experiment was conducted at a high voltage engineering lab in Mpumalanga
province in South Africa. The experimental data are presented in Table 12.

Table 12. Experimental setup data.

Description Parameters

Source 5 A, 50 Hz, 2.5% short circuit impedance using transformer
Transformer 10 kVA, 110/132 kV, 4.5%

Capacitor High Voltage 100 pF, 100 kV, Low voltage 100 nF

Atmospheric conditions T =31 °C

The electrical circuit and experimental setup for HIF detection is shown in Figures 8
and 9, respectively. The instrument used to perform the experiment is the ICM8 power
analyzer. The HIF voltage and current magnitude measured from the experimental setup
are shown in Figure 10 and Figure 11, respectively. To accurately measure the experi-
mental parameters, the experimental error of margin must be minimized. These errors
occur as a result of the measuring instruments such the voltage transformer, the current
transformer, and the ICM8 power analyzer. Another element which may increase the er-
ror is the saturation of both the voltage and current transformers. However, in the case of
HIF the current magnitude is minimum and such fault cannot lead to saturation. Thus,
during the HIF, the current transformer operates linearly.

The experiment was conducted in two stages. In the first stage, the tree resistance
was measured when there was physical contact between the tree and the energized con-
ductor. The voltage applied on the tree was then increased steadily in steps to measure
the current and the voltage values and thus, estimated the tree impedance as shown in
Figure 12. The dotted line was obtained using the experimental data and the solid line
gives the initial resistance value. The resistance value also depends on the atmospheric
conditions and the location on the tree where the measurement is obtained. In the second
stage of the experiment, the voltage was applied to the conductor while moving the tree
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very close to the energized conductor resulting in an arc. The movement of the tree from
the energized conductor varied between 2-5 cm; in these instances, the arc current was
established.

Capacitor divider

Figure 8. HIF experimental setup.

Conductor

1-¢ Transformer

Source 5A 10kVA,.110/132kV

2

Tree

Figure 9. HIF electrical circuit.
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Figure 10. HIF current and voltage measurements.
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Figure 11. Measure neutral (U,), and residual voltage (U,).
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Figure 12. Tree resistance measurement.

The results of the classification validation of the proposed scheme for the simulation
and experimental based analysis are presented in Tables 13 and 14, respectively. From the
results presented in Table 13, the classification accuracy of SVM is reported to be 97.6%
compared to the DT and NN classification results of 96.5% and 95.4%, respectively. In
addition, the time required to classify the fault using SVM is reported to be 0.90ms com-
pared to the time required to classify the fault by the DT and NN classifiers. These results
emphasize the importance of computational efficiency and processing time reduction.
Thus, our proposed model uses less time to detect the fault with high accuracy. The clas-
sification accuracy is determined by calculating the ratio between the correctly classified
instances and the total instance tested.

Table 13. Classification accuracy of different classifiers using simulation data with GA.

Time Required Time Required to

Total Number of Total Number of

lassifi Total A
Classifiers and to Build Model Classify the Fault otal Number Correctly Classi- Incorrectly Clas- ccvracy
Wavelet . of Instances . . (%)

(Minutes) (ms) fied Instances sified Instances
SVM & DWT 2.51 0.90 4000 3904 96 97.6
DT & DWT 10.3 0.92 4000 3860 140 96.5
NN & DWT 15.3 0.95 4000 3816 184 95.4
Table 14. Classification accuracy of different classifiers using experimental data with GA.
Time Re- . .
dired to Time Required Total Number Total Number of Total Number of
Classifiers q. to Classify the Correctly Classi- Incorrectly Clas- Accuracy (%)
Build Model of Instances ] .
) Fault (ms) fied Instances sified Instances
(Minutes)
SVM 1.25 0.75 100 87 13 87.0
DT 3.22 0.88 100 85 15 85.0
NN 4.50 0.91 100 83 17 83.0

7. Conclusions

In this study, we proposed an HIF detection technique. The technique uses mathe-
matical models for signal analysis, feature extraction, optimization, and classification to
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detect the HIF. The study of HIF has been conducted over many years to find an optimal
solution. Generally, HIF can cause severe consequences such as infrastructure damage
and possible human fatalities. It therefore is imperative to design a protection scheme that
will effectively detect HIF. In the present work, a hybrid mathematical protection scheme
is proposed; the scheme uses DWT to decompose and analyze different fault signals using
the db4 mother wavelet. Thereafter, the statistical features from the decomposed signals
are extracted to build a feature matrix. Consequently, the feature matrix is used to test,
train, and validate the SVM classifier. The GA is used to improve the performance of the
classifier. The results presented depict that HIF can be detected with an accuracy level of
97.6% using SVM compared to the DT and NN classifier with accuracy levels of 96.5% and
95.4%, respectively, for simulation-based data instances. Finally, we conducted an exper-
iment to test the validity of the proposed method. The experimental results show that the
HIF can be classified correctly using SVM with an accuracy of 84% compared to the clas-
sification accuracy 85% and 83% when using the DT and NN classifiers, respectively. The
development of a hybrid protection for HIF detection is made possible by using mathe-
matical models. In future studies, the HIF detection with high penetration levels of renew-
able distributed generation will be considered.
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Appendix A

In this section, the GA, and SVM parameters are given in Tables Al and A2, respec-
tively.

Table Al. GA parameters.

Parameter Value
Probability of mutation (pm) 0.005
Probability of cross over (pc) 0.010

Population size (N) 1000

Table A2. SVM parameters.

SVM RBF Kernel Parameters
SVMa v =50
o
SVMs v =50
o
SVMc v =250
o
SVMb v =250
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