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Abstract:

The unemployment crisis has been a persistent issue for both developed and developing countries, resulting in an
economic indicator deficit. Women are at a disadvantage and continue to encounter significant obstacles to gaining
employment. Nigeria, like many other developing countries with high unemployment rates, has a 33%
unemployment rate. Consequently, there has been minimal research on the factors that affect women's
unemployment. As a result, the purpose of this study investigates the factors that influence women's unemployment
in Nigeria. Although the Random Forest model has been widely applied to classification issues, there is a gap in the
literature's use of the random forest as a predictor for analyzing factors influencing women's unemployment. The
random forest model was employed in this study because of its characteristics such as strong learning ability,
robustness, and feasibility of the hypothesis space. As a result, the Random forest prediction model was
benchmarked with seven different cutting-edge classical machine learning prediction models, which include the J48
pruned tree, Support Vector Machine, AdaBoost, Logistic Regression, Naive Bayes, Logistic Model Tree, Bagging,
and Random Forest. The experimental results demonstrate that Random Forest outperformed the other seven
machine learning classifier models using ten commonly used performance evaluation metrics. According to the
study's findings, age groups, ethnicity, marital status, and religion were the essential factors affecting women's
unemployment in Nigeria.
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1. Introduction

Unemployment is an intrinsic global issue with a
never-ending economic ripple effect on the population.
According to the International Labor Organization
(ILO), unemployment includes people who are
unemployed, underemployed, have actively looked for
work in the last four weeks and are ready to start work
within the next two weeks, or are unemployed and have
accepted a job that will start within the two next weeks
(Matandare, 2018). In the literature, unemployment is
hypothesized to be a stifling catalyst for many large-
scale developments and growth (Ajamobe, 2021). The
unemployment crisis has been a persistent issue for
both developed and developing countries, resulting in
the waste of many resources. Recently, Africa has
experienced an economic downturn characterized by
high inflation and unemployment, which has affected
African countries to varying degrees (Yaya et al.,
2019). Nigeria, like many other developing countries,
has high unemployment because of an economic
indicator deficit (Ene, 2018). Nigeria is the most
populous country in Sub-Saharan Africa and the tenth
most populous country in the world, with an estimated
population of 200 million people spread across 250
ethnic groups. an oil-rich country, with oil being one of
the world's major natural resources and a major source
of income. Men must lead the labor market in many
countries around the world.

In Nigeria, there have been instances of women
outperforming their male counterparts. Nigeria is a
country where men are perceived to be superior to their
female counterparts, owing to factors such as disparate
cultural beliefs and gender inequality (Olonade et al.,
2021). This is evident in the expectation of a woman's
position being dedicated to housework, specifically the
kitchen, and caring for her husband and children
(Ciciolla & Luthar, 2019). These realities are more
visible in northern Nigeria, where women are expected
not to express themselves when men are present (Sinai
et al., 2017). This has led to and promoted the belief
among the average Nigerian man that it is unacceptable
for the wife to be wealthier or more successful than the
husband (Gibby et al., 2021). Modernization has
introduced a new dimension to gender inequality,
defining it as the unequal treatment of individuals based
on their gender (Ewubare & Ogbuagu, 2017).

FEZR, itk

Despite these problems, the need for equal treatment
of workers remains a large gap that must be filled by all
stakeholders. Women make up 49% of the Nigerian
population, which is more than one-third of the total
national population. However, there is a 6.3%
difference in unemployment rates between men and
women  (Ewing-Nelson, 2021). This disparity
demonstrates that most women rely entirely on their
male counterparts for a living and, as a result, are
helplessly taken for granted or mistreated. Ewing-
Nelson (2021) said that factors like education level,
family background, maternal commitment, cultural
beliefs, and household responsibilities may have
contributed to the subliminal marginalization of men
and women in the labor market.

Globally, female unemployment is estimated to be
higher than male unemployment, and this is especially
true in Sub-Saharan Africa, where males are thought to
be more dominant than females. Men are expected to
get more lucrative and better jobs, forcing women to
accept low-wage jobs (Mihret, 2019). Furthermore,
most studies on the factors causing women's
unemployment in Nigeria have made no mention of
other emerging ones that may be relevant to this
problem. As a result, the dawn of modernization added
a new dimension to gender inequality, defining it as the
unequal treatment of individuals based on their gender.
Despite this highlighting the need for equal treatment
among workers, the unemployment gap remains a large
gap that must be filled by all stakeholders. As a result,
this paper delves deeper into other possible causes of
this bias or inequality toward women in Nigeria. This
paper investigates the factors that contribute to women's
unemployment in Nigeria, with the main research
question being what are the factors that contribute to
women's unemployment in Nigeria?

The concise structure of this work is as follows. The
relevant literature on women's unemployment in
Nigeria is summarized in Section 2. The study's
materials and methods are addressed in Section 3. The
experimental findings and discussion are presented in
Section 4. The paper's Section 5 contains the
concluding statements.

2. Related Works

The International Labour Organization defines
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unemployment as "the proportion of the economically
active population who are unemployed but available
and seeking work within the previous five weeks"
(Ewing-Nelson, 2021; Ewubare & Ogbuagu, 2017).
Many studies show that unemployment is more
common among women, and this has been proven to be
due to various factors (Matandare, 2018). According to
some studies, women are usually exceptional in most
businesses and have the same level of productivity as
men, but they are not in a better position (Berman,
2018; Zulgaram et al., 2021). However, there is a report
in the literature on the high unemployment rate in
women, as a cursory glance at gender astute reveals the
unemployment rate to be higher for females than their
male counterparts due to the predominantly stout
challenges they face when attempting to enter the labor
force due to early motherhood and a lack of education
(Okolie & Igbini, 2020). According to Mihret (2019),
women's unemployment is higher than men's
unemployment on a global scale.

Existing literature holds unemployment primarily
responsible for various societal ills, including crime,
suicide, poverty, alcoholism, the spread of HIV/AIDS,
gender violence, and prostitution (Biancone & Radwan,
2018; Fakih et al., 2020; Okonko & Okoli, 2020).
Furthermore, unemployment has had a significant
impact on household income, health, government
revenue, GDP, and overall development. Despite
women's critical role in the economic development of
their families and communities, unemployment, among
other factors, impedes their effective performance (Ene,
2018). According to National Bureau statistics from
2010, approximately 68% of 164 million Nigerians are
in relative poverty, with the highest rate of 77.7% in the
North-West and 76.3% in the North-East geographical
zones. Their survey also revealed a trend among women
to enter the labor force in pursuit of careers and
financial independence, owing to improvements in
female education and living standards (Okolie & Igbini,
2020).

Despite ongoing reforms and consolidation in many
corporations in certain sectors facilitate women's
employment. Additionally, a cost of women's
unemployment is an increase in gender-based violence.
According to the authors, unemployed women are more
vulnerable to violence and abuse because they rely on
their spouses for financial support (Tadesse et al.,
2022). As a result, Okonko and Okoli (2020) reported a
high prevalence of HIV among unemployed pregnant
women. Existing literature details the global woes of
unemployment, with varying impacts and severity
(Hammell, 2019). These consequences are felt globally,
with more than 200 million people out of work in 2011
(Ewing-Nelson, 2021).

Unemployment in Nigeria is a consistent and
persistent uprising phenomenon. Even though Nigeria is
known as one of the world's oil giants, brought
significant economic and financial reforms, there are
reports of an alarming increase in unemployment
(Osiobe &  Oseghe,  2020). Consequently,

unemployment is a developmental issue that affects
every developing economy, including Nigeria. The
literature also emphasizes Nigeria's governments' and
policymakers' failure to deal with the unemployment
phenomenon, attributing this to a lack of adequate job
creation provision (Shimfe & Wajim, 2020; Tukur &
Aguiyi, 2022). According to the literature, the
inadequacies of the fundamental structural changes
presenting a structural shift in Nigeria have failed to
provide significant sustainable economic growth and
development that addresses unemployment.

According to (Olorunfemi, 2021), most of the
unemployed youth are females in general, and he could
also reveal that approximately 50% of females in
Nigeria were unemployed between 2008 and 2012.
Considering at the Nigerian system critically, some
employers do not want to hire women because they
require more leave days than their male counterparts,
and this is due to pregnancy, during which most women
are not as productive as they may suffer from many
pregnancy-related medical conditions throughout most
of their pregnancies. It does not end there; they will also
need maternity leave once the baby arrives. Employers,
particularly those in small businesses, face a low
productivity level, which may have a significant impact
on the sustainability of such businesses, particularly in
areas where most employees are women.

Furthermore, there is a cultural value, which is an
important factor to consider regarding unemployment in
Nigeria. Cultural practices in Nigeria do not favor
women in terms of employment compared to their
western counterparts (Enfield, 2019). Furthermore, it is
widely believed and supported in many parts of the
country that women cannot inherit their parents'
properties because they are expected to marry into
another family and receive whatever they require from
that new family. Regardless, they have no right to
inherit in whatever family they are married to; their
husbands are the only ones eligible for any inheritance
that may be available.

Prior research has revealed an alarming rate of
unemployment in Nigeria, which can be attributed to
various factors such as a lack of proper training and
essential employable skills, the state economy and
economic activities, the political agenda, security
reasons, cultural factors, skewed budget allocation, and
an inadequate intervention program (Ewubare &
Ogbuagu, 2017).

Despite all these consequences, there have been
numerous attempts to reduce unemployment in Nigeria,
including educational curriculum changes that include
vocational courses; the Programme Life for Rural
Women; the Family Support Programme; and the
National Directorate of Employment (NDE), which was
established on November 22, 1986. Furthermore,
numerous studies have been conducted to investigate
youth unemployment in Nigeria (Adebimpe et al., 2021;
Uju & Racheal, 2018). This creates a gap and
emphasizes the need for studies that take a different
approach and include women because of their critical
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role in the economy and society. As a result,
investigating unemployment as it relates to women is
critical. It is expected that researching the factors
influencing women's unemployment will make a
significant contribution to efforts to address the issues
raised.

3. Materials and Methods

The dataset came from the National Demographic
and Health Survey (NDHS) (National Population
Commission, 2019), a cross-sectional descriptive
survey of the total population that focused primarily on
the empowerment of women. The 2018 Nigeria
Demographic and Health Survey was conducted by the
National Population Commission (NPC), which
supported data collected from 14 August to December
29, 2018. The data include 41821 study participants,
who were women between the ages of 15 and 49. No
pre-processing of the data was required. The selection
of features is important for machine learning classifier
models. Finding the right features for a classification
model to employ helps it function more effectively
(Mgadi et al., 2021). The dataset in this instance had 13
features; however, 12 of the features were chosen, as
shown in Table 1. (1) highest education level, (2)
Wealth index, (3) type of place of residence, (4)
currently pregnant, (5) currently breastfeeding, (6)
currently marital, (7) households age, (8) woman age at
the first birth, (9) occupational status, (10) region, (11)
ethnicity and (12) age.

Table 1. Description of the NDHS data (n = 41821)

Continuation of Table 1

Others 11404 27.3
Don’t know 30 0.1
Religion Catholic 4436 10.6
Islam 20959 50.1
Other 200 0.5
Other 16070 38.4
Christian
Traditionalist 156 0.4
Household Head Female 7207 17.2
Gender Male 34614 82.8
Wealth index Middle 8859 21.2
poorer 8346 20.0
poorest 7747 185
Richer 8840 21.1
Richest 8029 19.2
Current marital Divorced 543 1.3
Status Partnership 1047 2.5
Married 27841 66.6
Never in 10669 25.5
union
Separated 604 1.4
Widowed 1117 2.7
Age of 0-20 19524 46.7
respondents at 1st  21-40 10453 25.0
birth 40-41 15 0.0
Undisclosed 11829 28.3
Currently No and 37630 90.0
pregnant Unsure
Yes 4191 10.0
Pregnancy Term 0-3 Months 1149 2.7
4-6 Months 1596 3.8
7-10 Months 1446 35
Undisclosed 37630 90.0

Features Categories Frequency Percentage
(%)
Region Northcentral 7772 18.6
Northeast 7639 18.3
Northwest 10129 24.2
Southeast 5571 13.0
South-south 5080 121
Southwest 5630 135
The type of place  Urban 24837 59.4
of residence Rural 16984 40.6
Age 15-19 8423 20.2
20-24 6844 16.4
25-29 7203 17.2
30-34 5997 14.3
35-39 5406 12.9
40-44 4057 9.7
45-49 3891 9.3
Educational level  Higher 4342 104
No education 14398 344
Primary 6383 15.3
Secondary 16698 39.9
Ethnicity Ekoi 275 0.7
Fulani 2953 7.1
Hausa 10765 25.7
Ibibio 801 1.9
Igala 457 1.1
Igho 5714 13.7
ljaw 1201 2.9
Kanuri 873 2.1
Tiv 976 2.3
Yoruba 5372 12.8

In the literature, there are various cross-validation
techniques for choosing a sample to use as training data.
Actual samples were separated into k equal-sized
subsamples using the k-fold cross-validation approach.
The classification model is tested using each subsample
as the validation data, and the process is repeated k
times. This method has an advantage over repeated
random subsampling because training and validation are
performed for each at least once (Raju et al., 2018).
Because it helps reduce the variability of accuracy
estimations for statistical comparison, 10-fold cross-
validation was performed in this study (Berrar, 2019).
To determine the relevant elements that impact
women's employment in Nigeria, a machine learning
approach was used. All eight machine learning
classifier models had their classification rules adopted
during the training stage; as a result, the testing stage is
used to evaluate the classification rules' accuracy. To
execute algorithms and acquire statistical findings,
WEKA, a data mining tool, was employed. The design
of the NDHS women unemployment in Nigeria used in
this study is depicted in Figure 1.
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Figure 1. The study design of women unemployment in Nigeria
using machine learning classifier models

3.1. J48 Pruned Tree

Using information gain, J48 pruned tree constructs
the decision tree from the training data set and evaluates
the same after selecting an attribute for data splitting.
The algorithm then iterates over smaller selections. If
every instance in a subset belongs to the same class, the
splitting process comes to an end. The decision tree's
leaf node, which presents the outcomes, is then formed.
Considering that decisions are made using the Depth-
first technique, J48 is marginally improved from C4.5
(Ratra et al., 2021).

3.2. Support Vector Machine

To separate and organize features, a support vector
machine built a hyperplane. To determine the best
hyperplane, support vectors are produced on either side
of the hyperplane, with each vector maximizing the
distance between them. A more precise decision
boundary between the category features is produced by
a larger vector distance around the hyperplane
(Hansrajh et al., 2021; Mqgadi et al., 2021). Depending
on where they are on the hyperplane, the data points are
divided into several classes. The primary goal is to
increase the gaps between the hyperplane and the data
point. Support vector machines, which have been
successful in many real-world applications, give
conspicuous qualities including margin maximization
and nonlinear classification using kernel tricks (Naicker
et al., 2020).

3.3. AdaBoost

AdaBoost, an ensemble learning algorithm, is used
to improve the precision of decision trees and other
weak binary classifiers. Here, weak classifiers add

sequentially in contrast to random forest. A dataset with
N feature variables will produce N decision stump. All
decision stumps were initially given equally weighted
data. Based on the lower value of Entropy, the base
model, which is the first stump, will be chosen.
Following that, each observation is updated with a new
weight adjusted depending on performance and overall
inaccuracy (Chhillar, 2021).

3.4. Logistic Regression

In each data set, the Logistic Regression inducer
looks for a link between the independent variable and
the class label that is based on likelihood. The objective
is to develop a probability function that accepts features
as inputs and outputs the likelihood that an instance
belongs to a particular class. The logistic regression
needs significantly fewer computational resources and
does not require scaling of the input features (Mutanga
et al., 2022).

3.5. Naive Bayes

A straightforward machine learning technique called
Naive Bayes (NB) uses the Bayes theorem to calculate
class probabilities while assuming that the features are
independent. The class with the highest likelihood then
receives the predictions. Their probability distributions
must be estimated to derive probabilities from
continuous features. Usually, kernel density estimation
is used for this. The classifier has demonstrated that it
can compete with more sophisticated classifiers even
though the independence assumption of NB rarely holds
in practice (ljaz et al., 2021).

3.6. Logistic Model Tree

The C4.5 method and logistic regression (LR)
functions are combined in the logistic model tree. The
LogitBoost approach is used to fit the logistics
regression functions at a tree node after the information
gain ratio technique has been used to divide the tree into
nodes and leaves. The C4.5 algorithm chooses features
using the entropy strategy since it is the quickest way to
produce accurate classification results (Nhu et al.,
2020).

3.7. Bagging

Bootstrap aggregating, also known as bagging,
entails giving each model in the ensemble the same
weight when voting (Kabari & Onwuka, 2019). The
different iterations of the base predictive model are
created by bootstrap replications, which use one of the
most widely used methods for data resampling in
statistical research. Predictive model bagging is a
framework that reduces variance and avoid overfitting
(Lin et al., 2022).

3.8. Random Forest

The random forests framework is an ensemble
learning method that, during training, integrates a
collection of decision trees and creates a class
representing the mode of the classes found inside the
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various trees (Lin et al., 2022).

In random forests, each tree in the group is
constructed using a bootstrap sample, or an example is
drawn with substitution, from the training set (Dutta et
al., 2018). Similarly, when dividing a node during tree
construction, the split that is chosen is no longer the
best split across all features. Instead, the split that is
chosen is the best split among a selection of traits that
were chosen at random. The bias of the forest slightly
increases due to this unpredictability, but because of
averaging, its volatility also decreases, often more than
making up for the increase in propensity, leading to an
overall superior model. Overfitting is a general problem
in decision trees; hence, random forests help prevent it.

4. Results and Discussion

The random forest learning model outperformed the
other seven classical learning models with an accuracy
of 86.9% as shown in Table 2. The J48 pruned tree
achieved an accuracy of 75.2%, followed by Support
Vector Machine (71.1%), AdaBoost (71.0%), Logistic
Regression (72.0 %), Naive Bayes (68.0 %), Logistic
Model Tree (74.2 %), and Bagging (70.7 %). Because
random forest had the advantage of guaranteeing
greater levels of accuracy and efficiency, it
outperformed the next conventional learning model,
Bagging, by 9.6% in terms of accuracy.

Table 2. Performance evaluation metrics of the machine learning classifier models

Accuracy (%) Precision Recall F-measure MCC
Random Forest 86.9 0,869 0,869 0,869 0,713
J48 pruned tree 75.2 0,746 0,752 0,744 0,436
Support Vector Machine  71.1 0,700 0,711 0,699 0,335
AdaBoost 71.0 0,700 0,710 0,686 0,320
Logistic Regression 72.0 0,710 0,720 0,709 0,357
Naive Bayes 68.0 0,692 0,680 0,684 0,323
Logistic Model Tree 74.2 0,735 0,742 0,734 0,413
Bagging 77.7 0,773 0,777 0,772 0,498

Furthermore, Table 1 results show that the Random
Forest learning model outperforms other traditional
learning models. The bagging learning model is the
closest to the RF learning model, with precision, recall
and F-measure scores of 0.773, 0.777, and 0.772
respectively. RF achieved the greatest average
precision, recall and F-measure score of 0.869.
Consequently, MCC essentially measures the
correlation between the predicted and actual series. The
bagging learning model reached second best with a
score of 0.498, while the random forest learning model
had the best score of 0.713 for MCC.

The largest portion of the ROC and PRC areas is
covered by RF (0.945) as shown in Table 3. Higher
values for kappa statistics, which range from 0 to 1,
assume a stronger inter-rate agreement. It is a more

accurate projection of a Percentage treaty than usual. As
shown in Table 3, RF continues to perform better than
other traditional learning models, recording a kappa
statistic score of 0.713.

Additionally, it can be shown that AdaBoost
outperforms other learning models in terms of MAE
value, having the highest value (0.371), while Random
Forest has the lowest value (0.244). Finally, the length
of time needed to construct the model differs, with
Naive Bayes recording the shortest training time (11.9
seconds) and Random Forest recording the longest
training time (18.9 seconds). RF outperformed the other
seven classical learning models on all nine performance
evaluation parameters, despite having the highest
training time.

Table 3. ROC area, PRC area, the Kappa statistics, mean absolute error and training time of the machine learning classifier models

ROC Area PRC Area Kappa Statistics Mean Absolute Error  Training Time (s)
Random Forest 0,945 0,945 0.713 0.224 18.5
J48 pruned tree 0,775 0,776 0.429 0.352 12.6
Support Vector Machine 0,653 0,653 0.327 0.289 12.8
AdaBoost 0,756 0,750 0.297 0.371 13.2
Logistic Regression 0,768 0,768 0.350 0.367 12.0
Naive Bayes 0,736 0,738 0.322 0.351 11.9
Logistic Model Tree 0,792 0,798 0.407 0.348 12.6
Bagging 0,850 0,851 0.494 0.317 16.1

The confusion matrix for the random forest, which
produced the most accurately categorized class for the
unemployed women in Nigeria in the NDHS dataset, is

shown in Figure 2.

&

True Class

Z
o

Figure 2. Random forest confusion matrix
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5. Conclusion

Ensemble classifiers like Random Forest used in this
work outperformed other classical machine learning
models because of the inherent problem of significant
variation, which makes it difficult for classical machine
learning models to correctly categorize the dataset. The
factors examined in this study provide significant
insights with potential recommendations to reduce
women's unemployment and assist the primary drivers
of sustainable employment in Nigeria in the
investigation of  factors influencing women's
unemployment in Nigeria. Only secondary data from
the Nigeria Demographic and Health Survey were used
in this study (NDHS). In this study, the twelve factors
identified to be explored and investigated were as
follows: highest education level, wealth index, type of
place of residence, currently pregnant, currently
breastfeeding, currently marital, households ages,
woman age at the first birth, occupational status, region,
ethnicity and age. In this study, a random forest was
used to analyze each of these factors and determine
their effects on women unemployed in Nigeria. Because
the results were acquired using the NDHS dataset, the
variables and models developed can be used to estimate
new data produced in the future to analyze factors
influencing women's unemployment. Instead of
traditional attempts to analyzing the influencing factors
associated with women's unemployment, this study
applied machine learning, a current statistical,
algorithmic approach. The outcome shows that, out of
the twelve categories, age groups, ethnicity, marital
status, and religion are the four main factors affecting
women's unemployment in Nigeria. As a result, the
results might not be representative of the
unemployment problem in other developing countries.
Generalization, on the other hand, was not intended
because the goal was to emphasize the significance of
the identified factors that influence women's
unemployment in Nigeria. This study offers insightful
information on the phenomenon of women's
unemployment for governmental and non-governmental
issues. To strengthen future research on women
unemployment, the criteria considered during data
collection should be expanded as literature has shown
that women are more susceptible to unemployment,
which might be caused by gender health inequality
(Acevedo et al., 2020).
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