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Abstract. Classification of human activities using smallest dataset is achiev-
able with tree-oriented (C4.5, Random Forest, Bagging) algorithms. However,
the KNN and Gaussian Naïve Bayes (GNB) achieve higher accuracy only with
largest dataset. Of interest KNN is challenged with minor feature problem, where
two similar features are predictable far from each other because of limited num-
ber of classification features. In this paper the split-then-join combiner strategy is
employed to split classification features into first and secondary (KNN and GNB)
classifier based on integral conditionality function. Therefore, top K prediction
voting list of both classifier are joined for final voting.We simulated our combined
algorithm and compared it with other classification algorithms (Support Vector
Machine, C4.5, K NN, and Naïve Bayes, Random Forest) using R programming
language with Caret, Rweka and e1071 libraries using 3 selected datasets with 27
combined human activities. The result of the study indicates that our combined
classifier is effective and reliable than its predecessor Naïve Bayes and KNN.
The results of study shows that our proposed algorithm is compatible with C4.5,
Boosted Trees and Random Forest and other ensemble algorithms with accuracy
and precision reaching 100% in most of 27 human activities.

Keywords: Split-then-join · Ensemble · KNN · Gaussian Naïve Bayes ·
Lightweight algorithm

1 Introduction

Human Activity Recognition is focused in classifying human activities based on sensor
signals from accelerometer, gyroscope andGPS. A smartphone comeswith such number
of sensors and permits continuous monitoring of numerous physiological signals. How-
ever, due to limited storage, processing power and limited memory most researchers in
Human Activity Recognition (HAR) use smartphone accelerometer to monitor patients
to provide smart healthcare [1, 2]. Moreover, classification algorithms in HAR plays
crucial role to classify human activities using sensors data. The classification algorithms
also helps researchers to understand human behavior and their environment [1, 2]. How-
ever, classification algorithms differs in terms dataset requirements which have impact
on storage, memory and processing power of devices. Naïve Bayes, KNN and Support
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VectorMachines to accuratelymake predictions requires training dataset withmore clas-
sification features [2, 3, 7]. On the other hand, algorithms such as C4.5, Random Forest
and Bagging performs better with small dataset [8–13]. The evolution of ensemble algo-
rithms, plays a crucial role in joining algorithms to improve their prediction accuracy.
Researchers in [14] proposed number of combing strategies to join a bunch of algorithms,
with the aim to increase their prediction. Most of ensemble techniques use combiner
strategies (combiner, arbiter and hybrid strategies) proposed in [14]. Most researchers
in [9, 12, 13] and [15] employed ensemble algorithms based on voting schemes using
tree-based algorithms, because tree-based algorithms produce higher accuracy than sim-
pler algorithms (Naïve Bayes and KNN). Hence, it is prudent to close the gap between
tree-based algorithms and simpler algorithms. Ensemble algorithms based on combiner
strategies gives the possibilities to improve prediction accuracy of simpler algorithms.
In this paper split-then-join approach is proposed based on [14] strategies and integral
conditionality function to join voting lists of first and secondary classifiers (Gaussian
Naïve Bayes and KNN). The aim of this paper is to augment classification features to
increase classification accuracy of data hungry algorithms. The split-then-join approach
is simulated in R programming language for comparison using three benchmarking
datasets. The remainder of our paper is fashioned as follows: In Sect. 2, related work in
HAR is presented. The methodology and experimentation are presented in Sects. 3 and
4 respectively. Experimental results are presented in Sect. 5. Finally, Sect. 6 presents
conclusion and future work.

2 Related Work

Bootstrap Aggregating known as Bagging was invented by Breiman [8]. The technique
combines different numbers of tree decision (ID3, C4.5) to amalgamate various outputs
thereby calculating averages from different decision trees. The employed trees have
equal weights and each subsets of training dataset are chosen randomly. Therefore,
each incorporated decision tree is taken as subset, then majority vote is computed on
each averaged decision tree similar to [14] combiner strategy. Boosting, differently to
Bagging uses different subsets of training dataset by reweighting in each iteration such
that a single learning model is weighted to construct a final strong classifier. If input
dataset with N classification features such that (n_i,k_i) i = 1, …., N where n_i is a
feature vector and k_i is a labelled class k_i ∈ 1,….,T, then iterations are performed with
weaker classifier f(n).However, inBagging,N features are indiscriminately selectedwith
replacement in T iterations from training features [15, 16]. Therefore, weaker classifier
is applied on the indiscriminately selected features and the resulting model is stored.
But, Boosting focuses on creating stronger classifier compared to Bagging, by giving
more influence on successful stronger models. After T iterations, the prediction is made
using weighted voting of the predictions for each successful classifier. Random Forest
was also introduced by Breiman in 2001 aimed at reducing the danger of over-fitting in
constructing ensemble/combined models [8, 15]. One variant of Boosting is AdaBoost,
it creates a linear combination of decision trees [15]. Random Forest classifiers consist
of a collection of decision trees, because more classifiers are more likely to be well-
classified and likely to give appropriate weight to most relevant features [8]. A Random
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Forest creates a tree-like structure given as {h(n,Θk), k = 1,…} and {Θk} of individually
distributed vectors, where each tree casts a unit vote for the most popular class at input
n. That is, the prediction of class in training dataset is obtained by majority vote over the
predictions of individual trees. Most research work in HAR, uses Random Forest and
C4.5 as benchmarking algorithms because they were found to be reliable with smallest
dataset [9, 11, 12].

Hence, researchers in [12] employed a group of classifiers to classify human activities
using dataset collected from 20 participants using researcher’s ASUS ZenFone 5 smart-
phone. During data collection participants used a smartphone inside their front pockets
whilst performing human activities. The smartphone captured tri-axial values for each
recorded human activities at frequency rate of 0.5 and 120 instances were collected per
minute. Researchers in [12] extracted and annotated time domain features similar to [9]
in order to train and test AdaBoost, C4.5, Support Vector Machines (SVM) and Random
Forest usingWEKA. Simulated algorithms (AdaBoost, C4.5, SVM and Random Forest)
reported 98%, 96%, 95% and 93% in accuracy respectively [11]. Authors in [15, 16, 19]
proposed ensemble techniques employing tree-oriented algorithms, because they were
found to be reliable with smallest dataset and reported accuracy above 98%. However,
researchers in [20] proposed a different ensemble model to join a group of expert Naïve
Bayes algorithms and average the experts using weighted majority vote strategy. In their
[20] work, the technique averages probabilities of each employed algorithm and observe
each experts and true classes in a given sample in the dataset. Once, the conditional
probabilities were learned their technique employed weighted voting to classifies each
unknown sample. They [20] analyzed all expert responses which were jointly averaged
to collective classify each sample. The final prediction of their technique is based on indi-
viduals experts. They [20] simulated their technique using 3 datasets (MFeat, Optodigit
and Pendigit) in comparison to bagging and boosting algorithms. The results of their
study, showed slight increment in accuracy close to 97% in all 3 datasets.

A closely related study is reported in [13], they proposed an ensemble technique to
joinNaïve Bayes Tree, KNN andC4.5 algorithms. Themodel follows a similar combiner
strategy proposed in [14]. In the same way as in [20] the technique of [13] averages
voting probabilities of three algorithms, then in each learner a posteriori probability is
generated and a class with maximum posteriori is taken as voting hypothesis. In their
simulations 10-fold cross validation was conducted on each of 28 datasets usingWEKA.
The results of their study revealed that their voting ensemble techniques outperformed
individual simpler classifiers (Naïve Bayes and KNN) excluding C4.5 classifier. The
result presented in [13] are comparable with our reported results in [22]. In this article,
we expand our ensemble algorithm using split-then-join approach to join GNB and
KNN in marriage of convenience using integral conditionality to address minor features
challenges presented in [21–23].

3 Methodology

In this article, split-then-join approach presented in Fig. 1 is used to join KNN and Gaus-
sian Naïve Bayes based on integral conditionality function to improve their prediction
accuracy with reduced training dataset [22].



170 M. L. Gadebe et al.

Fig. 1. Split-then-join combiner strategy

Our technique is aimed to address K neighborhood minor features problem, where
two records that are closer to each other are recognized far from each other due to
limited data point [7, 22]. Different to studies in [13, 14] and [20], we used bottom-up
segmentation to select best classification features and thus compress dataset into reduced
class-tree. Then, the reduced class-tree is therefore split to upper and lower classifier
using our unique integral conditionality rule to accommodate GNB andKNNprobability
different structures. The split-then-join combiner strategies is presented in two stages as
follows:

a. Stage One: Lightweight Training Class-Tree
In [22], we introduced lightweight class-tree to normalize and improve training com-
plexity of lazy classifiers inspired by C4.5 [25]. The technique was borrowed from the
C4.5 concept of best attribute selection. Input training dataset with multiple classes
C = {c1, c2,…, cN } represented as TrainerSetN×M class-tree is reduced using R reduc-
tion transformers based on our data segmentation technique defined by Eq. (1) and (2)
[22]:

Data SegmentationR×S =
R∫

S

1

S

N∑
x=1

px (1)

where N is rows and M is features from input TrainerSetN×M and R is compressed
subgroups each with S rows given as R = {r1,r2, . . . ., rs} of all mean averages using
Eq. (2) [22]:

mean = 1

S

S∑
x=1

ix (2)
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Our data segmentation technique is expressed in Algorithm 1 to prepare reduced training
class-tree before actual classification.

Algorithm 1:  Compressed Lightweight Class-Tree Algorithm
1. Required : Multi-featured training dataset as T
2. procedure compressDataset()
3. Set to a value to reduce training dataset predicators
4. Output: reduced training class-tree to empty
5.
6. for each T   do

7. //split the group into R groups
8. cols set to number of attributes in predicator I
9. Set row = //the rows of reduced number of groups
10. for j=1 to cols//for each predicator compute sum and average
11. for  i = 1 to S do //number of reduced splitting group
12. ) // Sum of each predicator in element 
13. end-for
14. //compute mean based on equation 2
15. //accumulates count of reduced tree rows
16. // Store each mean reduced group
17. end-for
18. end-for
19. end

The Algorithm expects a training dataset of any dimension in line 1 with reduction
transformation value of R size in line 2. Then, the algorithm computes number of S rows
for each R group in line 6. Thereafter, the algorithm sums all input predicator is in each
subgroup R and computes the mean average from line 5 to 14.

b. Lightweight Hybrid Majority Vote Classifier
In this stage, reduced class-tree of best mean features φ = {μ1, μ2, . . . ., μr} for each
class cr is used as input training dataset. Our proposed LHMV presented in [22] uses
reduced training dataset to train our classifier based on union of convenience. In this
paper integral conditionality is employed to increase classification feature to minimize
minor-features problems reported in [7, 22, 23, 25]. Such that voting results in the first
and second classifiers prediction results are stored in Dk and Ek vectors and then joint
into union of convenience based on majority voting principle defined by Eq. (3) [22]:

LHMV = argmax
v

∑
(Dk ,Ek )∈Vz

(Dk ∪ Ek), (3)

where K is top potential neighbors in Dk and Ek voting lists of predicted classes labels
in a joint vote list Vz . The combination of GNB and KNN is joint probability function
P(C ≤ RT )∪P(C > RT ) of classification tree C with best mean φ = {μ1,μ2, . . . ., μr}
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to classify real-time instances RT = {r1, r2, r3, rj} that factorizes as splitting integral
function defined by Eq. (4):

P(C|RT ) =
⎛
⎝ ∑

μr≤rj

∑
μr>rj

VCF
(
μr, rj

)
DUVF

(
μr, rj

)
⎞
⎠ (4)

where, VCF
(
μr, rj

)
is Vote Cast Function (VCF) known as probability approximation

condition μr ≤ rj, whereas DUVF
(
μr, rj

)
is the KNN Distance Unit Vote Function

within supplementary integral condition μr > rj to accommodate all missed near-
neighbors not within the first VCF conditionality. Our combiner strategy splits the input
training dataset into first and secondary classifier then later joins their top K neighbors.

First Classifier: Improved Gaussian Naïve Bayes
As the first classier the GNB is improved and implemented for all best mean averages
φ = {μ1, μ2, . . . ., μr} in each class category cr that are within first integral condition
VCF

(
μr, rj

)
as proper distribution function defined by Eq. (5):

VCF
(
μr, rj

) =
r∫

μ

p(μ|r) (5)

Expanded to Eq. (6):

VCF
(
μr, rj

) =
{
1 : μr ≤ rj

0 : otherwise

}
(6)

Provided that the integral condition VCF
(
μr, rj

)
is a proper Cumulative Distribu-

tion Function (CDF) of all best mean averages μr within probability limit function
f
(
μr, rj

) :→ [0, 1] by f
(
μr ≤ rj

)
, which is defined by Eq. (7):

P(I ≤ RT ) = f
(
μr ≤ rj

) =
{
1: μr ≤ i < rj

0 : μr > rj
(7)

As a result, the probability approximation function holds when the area under
VCF

(
μr, rj

)
is in CDF neighborhood. Therefore, each best mean averageμr in class cat-

egory cr is approximated relative to real-time instances rj as p
(
μr|rj

)
products indicated

in Table 1.
The vector DK accumulates all probability products p

(
μr|rj

)
per class category cr

defined by Eq. (8):

Dk =
∏

μr≤rj

p
(
μr|rj

)
(8)

where p
(
μr|rj

)
is probability approximation of all μr ordered as {μ1 ≤ μ2 ≤ μ3 ≤

· · · ≤ μr} in relation to rj within first integral condition f
(
μr ≤ rj

)
per class categorycr .
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Table 1. Joint vote cast function of Gaussian Nearest Neighbours

Therefore, the standard deviation σ under the area of CDF is integral standard normal
distribution, defined by equation (9) [22]:

GNB = f
(
μr, rj

) =
∫ r

μr

1√
2πσ 2

e− (r−μr )

2σ2
2

(9)

where r is a real-time instance and μr is mean average from reduced dataset and σ is a
standard deviation computed using Eq. (10):

Standard deviation − σ =
√√√√ 1

k − 1

k∑
r=1

(rj − μr)2 (10)

We modified and transformed the GNB into Gaussian Majority Probability (GMP)
defined by Eq. (11):

GMP = DK = 1

K

K∑
Dk∈Vk

f
(
μr, rj

)
(11)

where f
(
μr, rj

)
is integral conditional functionof all probability approximationsp

(
μr|rj

)
as majority vote list Dk within f

(
μr ≤ rj

)
, whereas K is number of nearest neighbors

in voting list Vk . Figure 2 portrays possible neighbors given A, B and C classes where
their mean predicators φ = {μ1, μ2, . . . ., μr} are within probability limit f (μr ≤ ri).

The data points circled in green in class C are within first limit function f
(
μr ≤ rj

)
and are accumulated in Dk voting list. However, those circled in yellow are missed
neighbors outside probability limit f

(
μr ≤ rj

)
. Most data points circled in blue are near-

missed neighbors in class B, except one feature circled in red. When looking closely in
Fig. 2, class B has 5 potential neighbors which could have resulted to a majority class in
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Fig. 2. Closest neighbor data point

relation to real time rj; but it is not the case due to f
(
μr ≤ rj

)
condition, thus resulting

into to minor feature problem because eligible features above μr > rj are discarded.

Second Classifier: Improved Supplementary KNN Classier
In the second classifier all eligible near-missed predicators with smallest distance closer
to real-time data point rj are preserved by employing secondary KNN Distance Unit
Vote Function (DUVF) defined by Eq. (12):

DUVF(μr > ri) = DI
(
μr, rj

)
(12)

where DI is smallest similarity distance of all best mean φ = {μ1, μ2, . . . ., μr} in
relation to real time instances RT = {r1, r2, r3, rj} satisfying f (μr > ri) condition. We
modified the distance DI to include integral limit function, such that only best mean μr

greater than real-time rj are accommodated using Eq. (13) (see Table 2)

DI(I > ri) =
√√√√ k∑

x=1

∫ μx

rx

(μx − rx)
2 (13)

Table 2. KNN distance vote cast unit
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Consequently, producing a vector EK of all top K smallest neighbors within the
secondary integral f (μr > ri) condition to accumulate all smallest nearest neighbors
based on DI distance of Eq. (13) for a specific class cr . Finally, both majority vote lists
DK andEK in Eq. (11) and (13) are joint asmajority vote of convenience JV K = DK ∪EK

known as LHMV defined by Eq. (14):

LHMV = JV K=argmax
v

∑
(Dk ,Ek )∈Vz

(Dk ∪ Ek), (14)

where,Vz is a majority vote vector with predicted class categories parallel to Dk in
conjunction with voting list Ek . Thus, the Eq. (14) computes a majority class from Dk
and Ek voting list, such that a class category with more votes is assigned to new instance
as class label. The LHMV Eq. (14) is expanded into Algorithm 2.

Algorithm 2: Lightweight Hybrid Majority Vote Algorithm

Our LHMV algorithms require training dataset and test dataset to classify human
activities.Dataset can be divided into training and test dataset using specific ratio 0.7:0.30
or 0.6:0.4 or 50:50 or any splitting ratio. In line 5, training TrainerSetN×M is reduced
to training class-tree reducedTreeR×M using Algorithm 1 as preloaded training dataset.
Therefore, each row of real time test vector is extracted from dataset RT J in line 8. Then,
probability approximation is estimated between test attribute rj and training attribute
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mean μr to compute standard deviation σ for each human activity class category Cr in
training dataset, see line 13 and line 14 of Algorithm 2. Thereafter, each probability
approximation is accumulated into Dk only if the first limit function f

(
μr ≤ rj

)
is met

otherwise, smallest distance is computed and accumulated into Ek vector. Thereafter,
Dk and Ek majority neighbors are sorted in descending and ascending order respectively
and joined into marriage of convenience as JV K majority vote vector in line 21. Lastly,
the first Kth human activity class in each vector Dk and Ek are matched and any human
activity category with more votes is assigned to new instance rj as a predicted class.

4 Experimentation

We selected four HAR datasets consisting of raw continuous random variables with 27
combined human activities classes. All the datasets PAMAP2, WISDM and Dataset-
HAR-PUC-Rio-Ugulino (PUCRU) were downloaded from UCI of machine learning
repository. Thereafter, we removed unimportant attributes such as subject id, gender,
age, BMI, weight and height. We then normalized all datasets by removing missing
values and capped features to 302 rows per human activity as listed in Table 4. We
converted all datasets into Comma Separated Values (CSV) files to meet requirements
of R programming language [26, 28, 29].

Table 3. Publicly available human activity recognition dataset

Source Dataset Sensor Features Instances Classes

[4] PAMAP2 3 Colibri wireless inertial
measurement units

9 3624 12 classes by 302
instances

[29] WISDM Smartphone and
Smartwatch
Accelerometer

6 5436 12 classes by 302
instances

[30] PUCRU Wearable devices
Accelerometer

12 1208 5 classes by 302
instances

We simulated our LHMValgorithmand compared itwith SVM,C4.5,KNN,Boosted
Tree (BT), Naïve Bayes and Random Forest (RT) in R programming language. The
comparison is conducted in R programming language using Caret, e1071 and Rweka
libraries [26, 28]. During simulation we used 60 rows as transformation reductions per
human activity to compress every dataset to best mean classification class-tree similar
to [23]. On each existing R classifiers we used R default settings. In our simulation
setup, we used cross validation approach proposed by Kuhn [26, 28]. We employed K-
fold cross validation approach to randomly partition each dataset, one after another, into
equal K sub-sets; such that K-1 is used as training and K subset is used as testing on
each personalized dataset. The cross-validation algorithm iterates K times, such that all
K-fold instances are used as both training and exactly once as testing. The results of
cross validation are presented in precision, accuracy, recall and f-measure.
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5 Experimental Results

We present the results of comparison (LHMV against KNN, SVM, C4.5, BT, and Ran-
dom Forest (RF)) using three selected datasets given in Table 3. All algorithms using
WISDM dataset (consisting of 6 tri-axial values) achieved accuracy, precision, recall
and f-measure of 100% across all human activities as shown in Table 4.

Table 4. Comparison results using WISDM dataset

Measurements SVM C4.5 RF BT KNN NB LHMV

Accuracy 0 100 100 100 100 100 100

Precision 0 100 100 100 100 100 100

Recall 0 100 100 100 100 100 100

F-Measure 0 100 100 100 100 100 100

However when PAMAP2 dataset (consisting 9 raw tri-axial attributes from
accelerometer, gyroscope and magneto devices) is used, the Random Forest, C4.5 and
Boosted Tree achieved 100% in all human activities in accuracy, precision and recall as
shown in Table 5.

Table 5. Comparison results using PAMAP2 dataset

Measurements SVM C4.5 RF BT KNN NB LHMV

Accuracy 97 100 100 100 97 97 90

Precision 97 100 100 100 97 97 86

Recall 97 100 100 100 100 100 98

F-Measure 97 100 100 100 98 98 91

The results are similar to preliminary results of tree-based and ensemble algorithms
presented in [10, 12], but with improved accuracy, precision and recall above 97% in
KNN and Naïve Bayes. Algorithms SVM and KNN reported nil in all human activities
as shown in Table 6 using PUCRU training instances whereas all other algorithms,
including our LHMV, reported precision, accuracy, recall and f-measure of 100% in
static human activities (sitting and standing).

The improved classification accuracy in simpler algorithms is owed to usage of
largest training datasets; a confirmation that Naive Bayes and KNN performs optimally
than other sophisticated algorithms using largest dataset [22, 23]. The similarity between
Naïve Bayes and LHMV in all the presented results is owed to the implementation of
GNB as our first classifier andKNN as second classifier using split-then-join strategy. As
observed, failure of one classifier (KNN) as shown in Table 6 does not affect the predic-
tion of another classifier unless both classifiers fails. Overall, we can therefore conclude
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Table 6. Comparison results using PUCRU dataset

Measurements SVM C4.5 RF BT KNN NB LHMV

Accuracy 0 100 100 100 0 99 83

Precision 0 100 100 100 0 100 83

Recall 0 100 100 100 0 99 83

F-Measure 0 100 100 100 0 100 83

that our LHMV is reliable, effective using reduced classification features of different
sizes and is competitive with other algorithms. Our novel split-then-join strategy is effec-
tive and suitable to join simpler algorithms based on integral conditionality as compared
other strategies presented in [13, 14, 20]. Moreover, the experimental results are compet-
itive with voting ensemble strategies implemented in [10–13, 20]. The results confirm
that ensemble algorithm increases predictions accuracy and outwit simpler algorithms
(SVM, KNN and Naïve Bayes) [14, 16].

6 Conclusion and Future Work

The split-then-join approach to join GNB and KNN algorithms is presented in this
paper. The split-then-join approach compresses and split the training dataset into first
and second classifiers and then join their voting lists in marriage of convenience for
final prediction. The results of our simulations showed that our LHMV is effectives
and competitive with tree-oriented and other ensemble algorithm yet using small and
reduced training dataset. We can conclude that our split-then-join approach as the union
of convenience improved classification accuracy, precision, recall and f-measure ofKNN
and Naïve Bayes classifiers. The results reveals that if one algorithm fails, it does not
impact the prediction unless both algorithms fails. In all training datasets, our algorithm
reached the accuracy and precision between 80% and 100%. In future, we intend to
evaluate time-complexity of our LHMV to determine its viability to be implemented on
resources constraint smartphone with reduced small training instances.
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