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Abstract
The junction conditions for a higher dimensional spherically symmetric
charged and anisotropic static star are derived in Einstein–Gauss–Bonnet
(EGB) gravity with nonvanishing cosmological constant. It is shown that for
a timelike boundary hypersurface of zero thickness, the generalised matching
conditions across this surface in EGB gravity are satisfied. A sufficient condi-
tion is that the Israel-Darmois conditions are valid. Therefore it is possible to
generate a complete stellar model in EGB gravity. The interior matches to the
exterior higher dimensional charged Boulware–Deser spacetime with cosmo-
logical constant. The barotropic radial pressure has to vanish at the boundary
of the star which is also the case in general relativity.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The second order Lovelock Lagrangian leads to additional structure related to the geometry
of the spacetime manifold which involves sums of terms containing products of the Riemann
tensor, the Ricci tensor and the scalar curvature. This is reflected in the Lovelock tensor which
now appears explicitly in the field equations for spacetime dimensions N⩾ 5. We refer to the
resulting gravitational theory as Einstein–Gauss–Bonnet (EGB) gravity, and it has the desir-
able feature of containing Einstein gravity as a special case [1–8]. An important astrophysical
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application is to model a dense static star in EGB gravity. The exterior spacetime can be taken
to be the Boulware–Deser geometry [9]; the EGB analogue of the Schwarzschild solution in
general relativity, and its extensions to include charge and the cosmological constant [10–18].
It is necessary to solve the nonlinear EGB field equations in the interior spacetime. This is
not a trivial exercise due to the nonlinearity of the dynamics resulting from the appearance
of the second order Lovelock tensor. In recent times certain families of exact solutions have
been found in the interior. The constant density solution was found by Dadhich et al [19].
Exact solutions were obtained by several researchers [20–28] with isotropic pressures. For the
simpler case of anisotropic pressures, particular exact models have been generated [29–39]. It
should be noted, however, that the interior spacetime has to match across a comoving hyper-
surface Σ for a complete description of a stable stellar configuration.

In general relativity, the problem of matching across a comoving surface is paramount in
the modelling of a relativistic star, and its eventual demise where it may collapse under its
own gravity. It is with the presence of the junction conditions that the evolution of the stellar
system can be analysed. Several exact solutions to Einstein’s field equations, with various
matter distributions, have been studied in astrophysical applications [40–47]. In the case of
adiabatic systems, i.e. static stars, an interior spacetime metric with a matter distribution which
is a perfect fluid (there is no heat flux) is matched across the timelike hypersurface to a vacuum
spacetime. It is then expected that the pressure at the boundary of the star vanishes identically;
there is no energy transfer across the surface. It is important to investigate whether this notion
holds true in modified gravity theories, specifically EGB gravity. The embeddings of general
hypersurfaces3 which are null, timelike or spacelike were analysed byMars and Senovilla [48].

The junction conditions at the stellar surfaceΣ are not known in EGB gravity for a spherical
matter distribution. For stellar models in EGB gravity, researchers assume that the matching
conditions from general relativity may be applied; this notion is true for the exact solutions in
[19–39]. This results in an incomplete analysis and we do not have a full picture of the gravita-
tional dynamics. It is therefore necessary to find the full set of junction conditions onΣ so that
we can accurately describe a gravitating static star in EGB gravity. To achieve this we need to
adapt, from the brane world scenario, the matching conditions for two spacetimes across Σ in
the EGB theory, first presented by Davis [49]. Several other treatments have since analysed the
Davis matching conditions, for example see [50–52]. The resulting expressions are complic-
ated and involve terms containing the extrinsic curvature, the trace of the extrinsic curvature,
and the divergence-free part of the Riemann tensor. A careful analysis of the Davis matching
conditions has to be made; this is a more onerous procedure than is the case in general relativ-
ity, however the complications can be resolved. The Davis conditions arise by adapting the
Einstein–Hilbert action with the additional Gibbons–Hawking–York term for the boundary to
eliminate the normal derivatives of the metric variation so that this above-mentioned bound-
ary term is generalised [53–56]. It is interesting to observe that the Davis conditions also arise
independently by using a regularization procedure utilizing delta functions as a sequence of
classical functions, as demonstrated by Chu and Tan [57]. It is necessary to show that the Davis
conditions are satisfied and the interior of the star matches smoothly to the associated exterior
spacetime.

The purpose of this paper is to obtain a full description of a higher dimensional static grav-
itating star in EGB gravity. This involves solving the Davis [49] conditions on the boundary
surfaceΣ. This paper is organised as follows: In the following sectionwe present the formalism

3 Examples of null hypersurfaces are the light cone and the event horizon of a black hole. A timelike hypersurface
can be considered as the boundary of a finite volume in a higher dimensional space; this is relevant to our study. An
example of a spacelike hypersurface is a Cauchy surface.
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of EGB gravity as well as the curvature corrected field equations. In section 3 we discuss the
junction conditions in EGB gravity for a braneworld as presented by Davis [49] and prove that
for a boundary of zero thickness, i.e. a timelike hypersurface separating two spacetimes, the
EGB junction conditions are equivalent to the Israel-Darmois conditions of general relativity.
We then utilise this fact to find the matching conditions for a charged static star with nonvan-
ishing cosmological constant in higher dimensional EGB gravity in section 4.

2. EGB–Maxwell field equations

The action of EGB gravity in arbitrary spacetime dimensions N, with cosmological constant,
is given by

S=
ˆ
M
dNx

√
−g(α0 +α1R+α2R2)+Smatter, (1)

where g is the metric tensor on the spacetime manifold M, α0 = Λ is the cosmological con-
stant and α1 = 1 is a constant term associated with the action (R= R, the Ricci scalar) of
general relativity. The term Smatter takes into account the matter content which includes the
electromagnetic field or perhaps other exotic fluids, depending on the context. The coupling
constant α2 = α > 0 is affiliated with the Gauss–Bonnet curvature corrections in the termR2.
Conventional Einstein gravity is regained as a limiting scenario when α→ 0. In EGB gravity,
the dimension of spacetime satisfiesN⩾ 5 withN= 5 presenting as a special dimensional case
of the theory. In dimension N= 4 the EGB theory is indistinguishable from general relativity
and the Gauss–Bonnet term R2 is merely a topological invariant; the two theories differ only
for N⩾ 5.

The Einstein–Gauss–Bonnet-Maxwell (EGBM) field equations are derived by varying the
above action (1), i.e. δS= 0 with respect to the metric g, and can be given in general as

Gab+Λgab = κN(Tab+Eab), (2a)

F[ab;c] = 0, (2b)

Fab;b =AN−2J
a, (2c)

where the Lorentzian signature is (−,+,+, . . . ,+). Here κN andAN−2 are the N-dimensional
Einstein coupling constant and surface area of the (N− 2)-sphere respectively. These are given
by

κN =
2(N− 2)π

N−1
2

(N− 3)Γ
(
N−1
2

) , AN−2 =
2π

N−1
2

Γ
(
N−1
2

) ,
in terms of the gamma function Γ(. . .). The tensor Gab in (2a) is represented by

Gab = Gab−
α

2
Hab,

and Tab is the stress energy tensor. Note that Gab is expressed in terms of the Einstein tensor
Gab and the second order Lovelock tensor

Hab = gabLGB− 4RRab+ 8RacR
c
b+ 8RacbdR

cd− 4RacdeRb
cde, (3)

which are connected by the coupling constant α. When N< 5 the above curvature tensor (3)
is identically zero. The Lovelock invariant is given by

R2 = LGB = R2 +RabcdR
abcd− 4RcdR

cd, (4)
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which involves the squares of the Riemann tensor, Ricci tensor and scalar curvature. When
N= 4 this term (4) is merely a quadratic diffeomorphism invariant, id est a surface term. For
dimensions N< 4, we have that (4) vanishes identically by the Chern–Gauss–Bonnet theorem
[58, 59]. The electromagnetic field tensor is given by

Eab =
1

AN−2

(
Fa

cFbc−
1
4
FcdFcdgab

)
, (5)

which is expressed in terms of the Faraday4 tensor Fab =Φb;a−Φa;b which is antisymmetric,
the electric gauge potential Φ and the surface area AN−2 covering the unit (N− 2)-sphere.
Equation (2b) is the Gauss-Faraday law, a combination, in spacetime, of Faraday’s law of
induction and Gauss’s law for magnetism. The Gauss-Ampère law (2c) is essentially a com-
bination of Gauss’s flux theorem and Ampère’s circuital law on the spacetime manifold. We
have that Ja = σua is the current density, which is expressed in terms of the proper charge
density σ. Equation (2c) implies charge conservation on the spacetime, i.e. Ja;a = 0.

3. Junction conditions in EGB gravity for two spacetime manifolds

The Israel-Darmois junction conditions [60] for the matching of two spacetimemanifoldsM±

across a comoving boundary surface layer Σ of zero thickness are given by

(ds2−)Σ = (ds2+)Σ = ds2Σ, (6a)

K−
ij = K+

ij = Kij
∣∣
Σ
. (6b)

In the above the extrinsic curvature can be written as

K±
ij ≡−n±a

∂2χa±

∂ξi±∂ξ
j
±
− n±a Γ

a
bc
∂χb±
∂ξi±

∂χc±

∂ξj±
, (7)

and ξi are coordinates on Σ. Here, the unit vectors normal to the boundary Σ are n±a (χ
b
±).

The quantities χa± = χa±(ξ
i
±) are the coordinates of the two spacetimes, and they are indeed

functions of the induced coordinates ξi on the boundary surface Σ. The Riemann–Christoffel
connections of the second kind are given byΓabc. These conditions (6) hold in general relativity
as well as various modified theories of gravity in which the Ricci scalar is present in the grav-
itational action. In this regard, certain extra conditions may need to be satisfied. For example
in f (R) gravity, the continuity of the Ricci scalar and its derivative across the boundary also
need to be satisfied [61, 62]. In this section we prove geometrically that if the matching con-
ditions (6) hold in general relativity, they will hold in EGB gravity.

3.1. Braneworld scenario

The conventional Gauss–Bonnet brane world Universe consists of a (N− 1)-dimensional
brane which is embedded into a single N-dimensional bulk spacetime and this brane has a par-
ticular thickness and hence, matter content Sij. Shiromizu et al [63] studied the gravitational
field equations on a 3-brane with the Z2 symmetry; the four dimensional world is described
by a 3-brane which is essentially a domain world within a five dimensional bulk manifold.

4 The Faraday tensor Fab is always trace-free, i.e. F a
a = 0. However, the electromagnetic field tensor Eab is trace-free

only in four dimensions.
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The junction conditions for the embedding of a brane into a bulk manifold were developed by
Davis [49]. The Davis junction conditions accommodate the existence of a brane and are given
by

2〈Kij−Khij〉+ 4α〈3Jij− Jhij+ 2P̂ikljK
kl〉=−κ2

NSij, (8)

where 〈X 〉= 1
2 [X (Σ+)+X (Σ−)] represents the average of the quantity X across the brane.

Note that Kij and K are the extrinsic curvature and its trace respectively, and hij is the induced
metric5. In the above J is the trace of

Jij =
1
3

(
2KKikK

k
j+KklK

klKij− 2KikK
klKlj−K2Kij

)
, (9)

and Pijkl is the divergence-free part of the Riemann tensor, given by

Pijkl = Rijkl+ 2Rj[kgl]i− 2Ri[kgl]j+Rgi[kgl]j. (10)

The caret ‘ˆ’ indicates tensors associated with the induced metric, therefore the term P̂iklj acts
on this metric hij. Explicitly we can write

P̂ijkl = R̂ijkl+ 2R̂j[khl]i− 2R̂i[khl]j+ R̂hi[khl]j. (11)

The quantity Sij is the energy momentum tensor associated with the (N− 1)-brane in the treat-
ment of Davis [49]. It is important to note that these conditions hold on the Gauss–Bonnet
brane world, and will have to be adapted for the case of a boundary hypersurface layer with
zero thickness which is the case for a stellar model.

Such a surface is taken to be a hypersurfaceΣwith vanishing thickness. For our case we are
matching two N-dimensional bulk spacetimes M− and M+ across an (N− 1)-dimensional
hypersurface Σ with zero thickness (so there is no radial contribution dr= 0). Therefore this
(N− 1)-dimensional hypersurface is embeddable into both of the bulk spacesM±, as opposed
to a single bulk in the case of a brane. These features are presented in figure 1 respectively.
For the Gauss–Bonnet brane world, we have an embedding map

Φ : Σbrane −→V,
with the functionΦ taking the (N− 1)-brane isometrically into the bulk manifold V , and all of
the matter content Sij is contained within this brane Σbrane as it moves in the bulk. In the case
of the two N-dimensional bulk spacetimes matching across the hypersurface Σhypersurface =Σ
[48, 60, 64–72], we have the following isometric embedding map

Ψ± : Σ−→M±,

where the coordinates on the boundary are mappable to either bulk spacetime via ξi± 7→ xa± =
Ψi

±(ξ
i
±). The quantities x

a
± are individual points on the manifoldsM±. This embedding map

takes the boundary hypersurface of zero thickness (hence Sij = 0) into both bulk manifolds
M±, in which case the two bulk spaces are essentially glued together with Σ(↪→M±) acting
as an interface.

5 The general induced metric hij arises from the action

S=
ˆ
Σ
dN−1ξ

√
−hK,

where h is the induced metric tensor, and K is the trace of the extrinsic curvature on the boundary Σ. This action is
the Gibbons–Hawking–York term.
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Figure 1. On the left we have an (N− 1)-braneΣbrane, with a nonzero thickness, which is
embedded into a single N-dimensional bulk manifold V with the unit normal vectors n±a
which are orthogonal to the surface of the brane. On the right we have twoN-dimensional
bulk spacetime manifoldsM± which are matched across a single (N− 1)-dimensional
hypersurface layer Σhypersurface =Σ with the unit normal vectors n±a orthogonal to Σ
with dr= 0.

3.2. Stellar surface

Consequently for a stellar model in EGB gravity, the Davis conditions at the stellar surface
become

[Kij−Khij]
±
+ 2α

[
3Jij− Jhij+ 2P̂ikljK

kl
]±

= 0, (12)

across the hypersurface Σ. We have established the important result:

Theorem 1. For the matching of two Lorentzian manifoldsM± across a hypersurfaceΣ, the
junction conditions are given by

(ds2−)Σ = (ds2+)Σ = ds2Σ, (13a)

[Kij−Khij]
±
+ 2α

[
3Jij− Jhij+ 2P̂ikljK

kl
]±

= 0, (13b)

in EGB gravity.

We observe that the Israel-Darmois conditions (6b) in general relativity contain only the
extrinsic curvatureKij. The adapted Davis conditions (13b) in EGB gravity contain in addition,
the trace K, the EGB coupling constant α and the divergence-free part of the Riemann tensor
Pijkl. It is also important to note that we have not directly utilised the matter content in the
manifolds M− and M+ to generate the condition (13b). The matching conditions therefore
permit a variety of forms for the matter distributions in a stellar model.

The junction conditions in the form (13b) are difficult to analyse or evaluate due to their
complicated structure. It is not possible to show analytically that it can be satisfied in general.
However we can show that (13b) does admit solutions. To show this suppose that the Israel-
Darmois conditions hold in EGB gravity so that

K−
ij = K+

ij . (14)

This implies that the trace of the extrinsic curvature is satisfied

K− = K+, (15)

6
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acrossΣ. Since the quantity Jij is defined in terms ofKij andK, we have from (9), (14) and (15),
that

J−ij = J+ij , (16)

implying the condition on the trace

J− = J+. (17)

We are now in the position to establish an important result for the trace-free part of the Riemann
tensor.

Theorem 2. If the Israel-Darmois conditions hold on the comoving hypersurface Σ, then
the matching of the divergence-free part of the Riemann tensor is identically satisfied on the
surface, i.e.

P−
ijkl = P+

ijkl = P̂ijkl. (18)

Proof. Davis [49] has written the Gauss–Codazzi equations in the form

Rpqrsh
p
ih
q
jh
r
kh

s
l = R̂ijkl+KjkKil−KikKjl, (19a)

niRiqrsh
q
jh
r
kh

a
l = DlKjk−DcKjl, (19b)

R̂jl = Riqkph
c
ih
q
jh
p
l+KKjl−KjkK

k
l, (19c)

whereD represents the covariant derivative. Using the system (19) the normal vectors acting on
the divergence-free part of the Riemann tensor on the hypersurfaceΣ, ni±P̂ijkl, can be expressed
in terms of the extrinsic curvature K±

ij , its trace K
± and the induced metric hij as

ni±P̂ijkl = 2D[lK
±
k]j+ 2DmK

m
±[lhk]j+ 2hj[lDj]K

± + 2Ĝj[kn
±
l]

+ 2(Kmj−Khmj)
±K±

m[kn
±
l] +

(
K2 −KimK

im
)±

hj[kn
±
l] , (20)

where Ĝij is the Einstein tensor on Σ. Using the condition that K−
ij = K+

ij on Σ from (6b), as
well as equation (19b), it can be shown that the terms containing covariant derivatives of the
extrinsic curvature must match across Σ, and so are satisfied on Σ. Consider the first term in
equation (20). It can be written as

2D[lK
±
k]j = [DlKkj−DkKlj]

±,

and invoking (6b), this is satisfied acrossΣ due to the Gauss–Codazzi equation (19b). A similar
argument holds for the other two terms containing covariant derivatives. The remaining terms
in equation (20) all match across the hypersurfaceΣ from (19b). We note that Ĝij is contracted
from R̂ijkl which is given in terms of the extrinsic curvature Kij by (19b). Therefore we have
that

ni±P̂ijkl = 0,

on Σ. Hence equation (13b) is identically satisfied if and only if

P−
ijkl = P+

ijkl = P̂ijkl,

on the hypersurface6 Σ.

6 We note that the divergence-free part of the Riemann tensor is nonzero in general.
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We can then see that the EGB junction condition (13b), using the results (14)–(18), is
identically satisfied. Hence, we have the following existence result:

Theorem 3. If the Israel-Darmois conditions hold, then the EGB junction conditions for the
matching of two spacetime manifoldsM± across a comoving hypersurface Σ are satisfied in
general.

In other words, a sufficient condition for the Davis junction condition (13b) at the hyper-
surface Σ to be satisfied is that the Israel–Darmois condition (6b) admits a solution. This is a
physically important result as theorem 3 ensures that matching across a comoving boundary
hypersurface Σ, connecting two manifolds, is possible in EGB gravity. It is therefore possible
to model stellar structure in EGB gravity, and generate a complete model for a relativistic star.

4. Static star

We now consider the model for a charged spherically symmetric static and anisotropic star in
EGB gravity with nonvanishing cosmological constant. Since the junction conditions in the
previous section are for the general matching of two spacetime manifolds, we emphasise that
the static star is a special case.

4.1. Interior spacetime

For the interior spacetime we make use of the N-dimensional spherically symmetric static line
element

ds2− =−A2dt2 +B2dr2 + r2dΩ2
N−2, (21)

in Schwarzschild coordinates where A= A(r), B= B(r). The metric for the unit (N− 2)-
sphere is

dΩ2
N−2 =

N−2∑
i=1

i−1∏
j=1

sin2(θj)

(dθi)2
 . (22)

The barotropic energy momentum tensor T consists of an imperfect fluid configuration of
matter

T−ab = (ρ+ p∥)uaub+ p⊥gab+
(
p∥ − p⊥

)
VaVb, (23)

where ρ is the energy density, p∥ is the radial pressure and p⊥ is the tangential pressure. The
fluid N-velocity u is given by ua = A−1δa0 and V is a unit radial vector orthogonal to u. Iso-
tropic matter is obtained when p∥ = p⊥. The electromagnetic potential is chosen as

Φa = (ϕ(r),0,0, . . . ,0). (24)

The only surviving Faraday tensor components are

F01
− =−F10

− =
ϕ ′(r)
A2B2

. (25)

Here, the prime indicates differentiation with respect to the radial coordinate r. From the
respective Gauss-Faraday and Gauss-Ampére laws (2b) and (2c) we acquire

ϕ ′ ′ −
(
A ′

A
+
B ′

B
− (N− 2)

1
r

)
ϕ ′ =AN−2σAB

2. (26)

8
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This equation can be integrated to yield

ϕ ′ =
AB
rN−2

l(r), (27)

where

l(r) =AN−2

ˆ r

σBrN−2dr̃,

giving the total charge within the hypersurface Σ.
The EGBM field equation (2) then take the form

κNρ=
N− 2
r4B4

[
r3BB ′ +

N− 3
2

r2B4 − N− 3
2

r2B2

]
+

α̂(N− 2)(B2 − 1)
r4B4

[
2r
B ′

B
+
N− 5
2

(B2 − 1)

]
− κNl2

2AN−2r2N−4
−Λ, (28a)

κNp∥ =
N− 2
r4B4

[
r3B2A

′

A
− N− 3

2
r2B4 +

N− 3
2

r2B2

]
+

α̂(N− 2)(B2 − 1)
r4B4

[
2r
A ′

A
− N− 5

2
(B2 − 1)

]
+

κNl2

2AN−2r2N−4
+Λ, (28b)

κNp⊥ =
(N− 3)(N− 4)

2r2B2
(B2 + 1)+

A ′ ′

AB2
− A ′B ′

AB3
+

(N− 3)
rB2

(
A ′

A
− B ′

B

)
+

α̂

r2B2

[
2

(
A ′ ′

A
− A ′B ′

AB

)
− 2

A ′ ′

A
+

2(N− 5)
rB2

(B2 − 1)

(
A ′

A
− B ′

B

)
+6

A ′B ′

AB3
− (N− 5)(N− 6)

2r2B2
(B2 − 1)

]
− κNl2

2AN−2r2N−4
+Λ, (28c)

σ =
l ′

AN−2BrN−2
. (28d)

In the above we have set α̂= α(N− 3)(N− 4) for convenience. We also note that if N= 4
these field equations reduce to the conventional four dimensional field equations for general
relativity; the Gauss–Bonnet corrections cease to contribute to the gravitational dynamics.

4.2. Exterior spacetime

For the exterior spacetime, we take the higher dimensional vacuum Boulware–Deser-
Wiltshire-(anti) de Sitter [9, 10, 17] solution

ds2+ =−f(r)dv2 − 2dvdr+ r2dΩ2
N−2, (29)

in Eddington–Finkelstein coordinates. Here dΩ2
N−2 is given by (22) and

f(r) = 1+
r2

2α̂

(
1−

√
1+

4α̂
N− 3

(
2M
rN−1

+
2Λ

(N− 1)(N− 2)
− κNQ2

(N− 2)AN−2r2N−4

))
. (30)

The use of the above coordinate system is not unique. Several prior works make use of
these coordinates as they make subsequent calculations easier. The use of conventional
Schwarzschild coordinates will yield the same end result. In the above, we recall that

9
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α̂= α(N− 3)(N− 4) and M is the constant mass which will encompass the entire star upon
completion of the matching. We note the presence of both the cosmological constant Λ and
the charge contribution Q. The function f(r) is the negative branch solution to the vacuum
EGB field equations with cosmological constant and charge. The positive branch solution has
been omitted as it does not contain the general relativistic limit, and so exists only in the EGB
corrected theory. The above solution (29) satisfies the EGBM field equations and reduces
to the N-dimensional Reissner–Nordström-(anti) de Sitter geometry when α→ 0. A general-
isation of Birkhoff’s theorem was proven by Wiltshire [10]: the only spherically symmetric
solutions to the EGBM field equations are the Boulware–Deser-Wiltshire (29) (Λ= 0) and
Bertotti-Robinson type solutions [73, 74]. The metric (29) with Λ = 0 can be transformed to
the Bertotti-Robinson solution; see [10] (page 38) for details. Further, when N= 4 the above
solution reduces to the four dimensional Reissner–Nordström-(anti) de Sitter metric. When
the charge vanishes, in both cases, we acquire the relevant exterior Schwarzschild geometries.

4.3. Matching

The (N− 1)-dimensional induced metric to the boundary surface Σ which takes into account
the representation of the interior spacetimeM− in comoving coordinates is of the form

ds2Σ = hijdξ
idξj,

=−dτ 2 +R2dΩ2
N−2, (31)

where the unit (N− 2)-sphere is given by (22). In the above,R=R(τ) and we have coordin-
ates ξi = (τ,θ1,θ2, . . . ,θN−2). The coordinate τ is defined only on Σ. The reason for utilising
a comoving boundary Σ is the fact that the mass function on Σ is no longer constant, but a
function of the interior radial coordinate. The mass of the star contains all of the matter from
the interior across any point on the comoving boundary. The unit spacelike normal vectors
take the form

n−a = [0,B(rΣ),0,0, . . . ,0], (32a)

n+a = [−r̀, v̀,0,0, . . . ,0], (32b)

where we have that`= d
dτ .

The first junction conditions (6a) then yield

A(rΣ)̀t= 1, (33a)

rΣ =R(τ), (33b)

rΣ(v) =R(τ), (33c)(
1+

r2

2α̂
(1−F)+ 2

dr
dv

)
Σ

=

(
1
v̀2

)
Σ

, (33d)

where have set

F(r) =

√
1+

4α̂
N− 3

(
2M
rN−1

+
2Λ

(N− 1)(N− 2)
− κNQ2

(N− 2)AN−2r2N−4

)
,

10
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for neatness. Therefore, the necessary and sufficient conditions for the matching of the two
metrics across Σ are

(Adt)Σ =

(
1+

r2

2α̂
(1−F)+ 2

dr
dv

) 1
2

Σ

, (34a)

rΣ = rΣ(v). (34b)

For the interior spacetime manifoldM−, the extrinsic curvature components are calculated
(using (7) and (21)) as

K−
ττ =

(
− 1
B
A ′

A

)
Σ

, (35a)

K−
θ1θ2

=
( r
B

)
Σ
, (35b)

K−
θ2θ2

= sin2 θ1K
−
θ1θ1

, (35c)

...

K−
θN−2θN−2

=

N−2∏
j=1

sin2(θj)

K−
θ1θ1

. (35d)

Using (7) and (29) with (30), the extrinsic curvature components for the exterior manifold
M+ can be written, after a lengthy calculation, as

K+
ττ =

(
`̀v
v̀
− v̀

[
r
2α̂

(
F − 1
F

)])
Σ

, (36a)

K+
θ1θ1

=

(
v̀r
[
1+

r2

2α̂
(1−F)

]
− r̀r

)
Σ

, (36b)

K+
θ2θ2

= sin2 θ1K
+
θ1θ1

, (36c)

...

K+
θN−2θN−2

=

N−2∏
j=1

sin2(θj)

K−
θ1θ1

. (36d)

The necessary and sufficient conditions for the validity of the second set of junction condi-
tions (6b) to be satisfied are therefore(

− 1
B
A ′

A

)
Σ

=

(
`̀v
v̀
− v̀

[
r
2α̂

(
F − 1
F

)])
Σ

, (37a)

( r
B

)
Σ
=

(
v̀r
[
1+

r2

2α̂
(1−F)

]
− r̀r

)
Σ

. (37b)

It is possible to obtain the mass function M by eliminating the variables v̀, r and r̀ from
equation (37b). A tedious calculation yields the mass function to be

11
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M=

{
N− 3
2

[
rN−3

(
1− 1

B2

)
− ΛrN−1

(N− 1)(N− 2)

+
κNQ2

(N− 2)(N− 3)AN−2rN−3
+ α̂rN−5

(
1− 1

B2

)2
]}

Σ

=ME+MGB, (38)

where we have defined

ME =
N− 3
2

[
rN−3 − rN−3

B2
− ΛrN−1

(N− 1)(N− 2)

+
κNQ2

(N− 2)(N− 3)AN−2rN−3

]
, (39a)

MGB =
N− 3
2

α̂rN−5

(
1− 1

B2

)2

. (39b)

The first quantityME is the mass of the star in the general relativity limit [75–77]. The second
quantity MGB is the additional contribution from the EGB corrections. The total mass func-
tion (38) can be interpreted as the gravitational massM of the star within the boundary hyper-
surface Σ.

From (33a)–(33c) we have that r̀= 0. Using this fact and substituting the mass function (38)
into (37b) yields an expression for v̀ as

v̀=

[
B

(
1+

r2

2α̂
(1−D)

)]−1

, (40)

where we get

D =

(
1+

8α̂
rN−1

[
rN−3

2
− rN−3

2B2
− ΛrN−1

(N− 1)(N− 2)

+
κNQ2

(N− 2)(N− 3)AN−2rN−3
+

α̂

2
rN−5

(
1− 2

B2
+

1
B4

)]) 1
2

, (41)

and where we used the fact that r= r on Σ. Since the expression (40) depends solely on the
radial coordinate r, we have that the second derivative `̀v= 0. Therefore, upon substituting (40)
into (37a), a lengthy calculation finally yields the boundary condition at the surface of the star

{
N− 2
r4B4

[
r3B2A

′

A
− N− 3

2
r2B4 +

N− 3
2

r2B2

]
+Λ+

κNQ2

2AN−2r2N−4

+
α̂(N− 2)(B2 − 1)

B4

[
2A ′

r3A
− N− 5

2r4
(B2 − 1)

]}
Σ

= 0. (42)

This is a highly nonlinear differential equation involving the Gauss–Bonnet coupling constant
α̂, the cosmological constant Λ and the charge Q from the exterior. It is important to realise
that this result holds on the comoving surface Σ. Using the field equation (28b), the above
expression is equivalent to writing(

p∥ −
l2

2AN−2r2N−4
+

Q2

2AN−2r2N−4

)
Σ

= 0. (43)

12
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On the boundaryΣ of the star, wemust have that l=Q. Therefore the barotropic radial pressure
satisfies the condition

p∥
∣∣
Σ
= 0. (44)

Therefore the barotropic radial pressure p∥ vanishes at the stellar boundary Σ in EGB gravity,
as is the case in general relativity. However, it is important to realise that despite the fact
that p∥ = 0 on Σ, it contains contributions associated with the second order Lovelock tensor
through theGauss–Bonnet coupling constant α̂ from the field equations (2). The corresponding
differential equation to be solved at the boundary Σ is different in EGB gravity as can be seen
by the EGBM field equation (28b).

The absence of our general analysis involving the Davis junction conditions may lead
to incorrect physical models. We have shown that the Israel-Darmois conditions of general
relativity imply that the Davis junction conditions in EGB gravity are satisfied. There are some
other points to be observed from the boundary condition in EGB gravity. Firstly, the boundary
condition depends on the Gauss–Bonnet coupling constant α̂, the spacetime dimension N, the
charge Q and the cosmological constant. Secondly the spacetime dimension N= 5 is special
as the barotropic pressure term in (28b) reduces to a simpler form. Note that ρ and p⊥ in the
EGBM field equation (28) also reduce to a simpler form when N= 5.

We can now state the following theorem:

Theorem 4. Consider two N-dimensional manifolds connected by the (N− 1)-dimensional
hypersurface Σ. The interior spacetime is static with anisotropic matter, an electromagnetic
field and cosmological constant. The exterior spacetime is the Boulware–Deser-Wiltshire-
(anti) de Sitter metric. The boundary condition in EGB gravity at the stellar surface is then

p∥
∣∣
Σ
=
[
p∥E + p∥GB

]
Σ
= 0,

which relates the Gauss–Bonnet coupling constant α̂, the spacetime dimension N, the charge
Q and the cosmological constant Λ.

5. Special cases

The boundary condition (44) holds for a charged anisotropic matter distribution with cosmo-
logical constant in EGB gravity. It shows that the total radial pressure p∥ on the surface is a
vanishing quantity. This condition presents as a highly nonlinear differential equation which
depends on the interior gravitational potentials A(r) and B(r), their derivatives, the cosmolo-
gical constant Λ, the dimension N of spacetime and additionally, the Gauss–Bonnet coupling
constant α. Some special external spacetimes in N dimensions which are of physical interest
in EGB gravity and general relativity, are indeed special cases of our result.

5.1. EGB gravity

The interior spacetime is spherically symmetric and static, with a charged distribution ofmatter
with anisotropy. The exterior spacetimes which form a subclass of our general result are then
given by the following:

• Boulware–Deser (Λ = Q= 0):

ds2 =−f(r)dv2 − 2dvdr+ r2dΩ2
N−2,

13
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with

f(r) = 1+
r2

2α̂

(
1−

√
1+

4α̂
N− 3

(
2M
rN−1

))
.

• Boulware–Deser-(anti) de Sitter (Q= 0):

ds2 =−f(r)dv2 − 2dvdr+ r2dΩ2
N−2,

with

f(r) = 1+
r2

2α̂

(
1−

√
1+

4α̂
N− 3

(
2M
rN−1

+
2Λ

(N− 1)(N− 2)

))
.

• Boulware–Deser-Wiltshire (Λ = 0):

ds2 =−f(r)dv2 − 2dvdr+ r2dΩ2
N−2,

with

f(r) = 1+
r2

2α̂

(
1−

√
1+

4α̂
N− 3

(
2M
rN−1

− κNQ2

(N− 2)AN−2r2N−4

))
.

5.2. General relativity

In the case when α̂→ 0, we then have that the charged interior with anisotropy is matched to
the higher dimensional metrics from general relativity, which are given by:

• Schwarzschild:

ds2 =−
(
1− 2M

(N− 3)rN−3

)
dv2 − 2dvdr+ r2dΩ2

N−2.

• Schwarzschild-(anti) de Sitter:

ds2 =−
(
1− 2M

(N− 3)rN−3
− 2Λr2

(N− 1)(N− 2)(N− 3)

)
dv2

− 2dvdr+ r2dΩ2
N−2.

• Reissner–Nordström:

ds2 =−
(
1− 2M

(N− 3)rN−3
+

κNQ2

(N− 2)(N− 3)AN−2r2N−6

)
dv2

− 2dvdr+ r2dΩ2
N−2.

Therefore the analysis in this paper includes both the boundary conditions ofN-dimensional
general relativity (α̂= 0, p∥GB = 0) and the extensions to EGB gravity (α̂ 6= 0, p∥GB 6= 0). Ours
is a unified treatment.

6. Matching

The results found in this paper can be used to match any static charged interior matter distri-
bution to the exterior Boulware–Deser-Wiltshire spacetime in EGB gravity. To illustrate the

14
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matching across the stellar boundary Σ we consider the exact solution found by Bhar and
Govender [29] with N= 5 for a charged static sphere. The model satisfies the requirements for
a physically acceptable relativistic sphere and has a quark equation of state.

The Bhar-Govender model has the interior metric potentials in (21) with the forms

A2 = eb̃r
2+c̃, B2 = eãr

2

, (45)

where ã, b̃ and c̃ are constants. For the quark equation of state

p= βρ− γ, (46)

we obtain the matter variables

ρ=
1

3B4(1+β)π2r2

[
−12α(ã+ b̃)+ 3γπ2r2B4 + 3B2(ã+ b̃)(4α+ r2)

]
, (47a)

p∥ =
1

3B4(1+β)π2r2

[
−12αβ(ã+ b̃)+ 3γπ2r2B4 + 3βB2(ã+ b̃)(4α+ r2)

]
, (47b)

l2 =
1

2(1+β)r2

[
12α(b̃− ãβ)+B4(3+ 3β− 3π2γr2)

−3B2
(
1+β+(b̃− ãβ)(4α+ r2)

)]
. (47c)

The exterior spacetime is the Boulware–Deser-Wiltshire metric with Λ = 0 and N= 5.
Matching at the stellar surface r=R gives the conditions

e−ãR2

= 1+
R2

4α

(
1−

√
1+

8αM
R4

− 2αQ2

R6

)
, (48a)

eb̃R
2+c̃ = 1+

R2

4α

(
1−

√
1+

8αM
R4

− 2αQ2

R6

)
. (48b)

The stellar condition p∥ = 0 then gives a value for b̃ in the form

b̃=
ã
χ

[
4αβ+R2e2ãR

2

(1+ 2β+ 4αβã)−βeãR
2

(4α+R2)
]
, (49)

with χ =−4αβ+ eãR
2
+R2e2ãR

2
(1+ 4αã). From (48a) and (48b) we obtain

c̃=−(ã+ b̃)R2. (50)

From the above we observe that ã follows from (48a). The constant b̃ is given by (49), and c̃
follows from (50) for specific choices of α, β and γ. The charge Q= l(R) contains α, β, γ,
ã, b̃ and c̃. Hence, values for ã, b̃ and c̃ are obtainable once the mass M and the radius R of
the star are fixed. Alternatively it is possible to fix values of ã and R to obtain b̃, c̃ and M for
different values of the coupling constant α. The latter approach is followed in [29] to study the
behaviour of a quark star in EGB gravity.

7. Conclusion

In this article we have constructed a higher dimensional gravitating and electrically charged
static star in the presence of Λ in EGB gravity. This involved solving the Davis [49] condi-
tions on the surfaceΣ. We presented the formalism of EGB gravity as well as the modified field
equations, and then analysed the Davis junction conditions in EGB gravity [49] for a brane-
world. It was proved that for a timelike hypersurface separating two spacetime manifolds, i.e. a
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boundary of zero thickness, the Israel-Darmois conditions of general relativity imply that the
Davis conditions are satisfied. We then made use of this fact to generate the matching condi-
tions for a static and charged star with nonvanishing cosmological constant in EGB gravity in
higher dimensions. It was shown that the barotropic radial pressure p∥ on the boundary of the
star vanishes so that

p∥
∣∣
Σ
= 0.

When the Gauss–Bonnet coupling constant α̂→ 0 we then regain the boundary condition of
N-dimensional general relativity. This is an important physical result as it allows us to have
a complete model of a gravitating static star in EGB gravity. It then becomes possible to test
various physical properties and parameters like the energy conditions, sound speed, adiabatic
index, surface redshift and the collapse rate at late times. This is the basis of ongoing work.
The results in this paper should be extendable to the radiating star case where the pressure at
the boundary does not vanish. The presence of the higher order curvature corrections from the
second order Lovelock tensor should influence the evolution of the radiating star.
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