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We study the gravitational collapse of radiating stars in the context of the cosmic censorship conjecture.
We consider a generalized Vaidya spacetime with three concentric regions. The local internal atmosphere
is a two-component system consisting of standard pressure-free, null radiation and an additional string
fluid with energy density and nonzero pressure obeying all physically realistic energy conditions.
The middle region is purely radiative which matches to a third region which is the Schwarzschild exterior.
We outline the general mathematical framework to study the conditions on the mass function so that
future-directed nonspacelike geodesics can terminate at the singularity in the past. Mass functions
for several equations of state are analyzed using this framework and it is shown that the collapse in each
case terminates at a locally naked central singularity. We calculate the strength of these singularities to
show that they are strong curvature singularities which implies that no extension of spacetime through
them is possible.
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I. INTRODUCTION

The Vaidya metric [1] describes the geometry outside a
spherically symmetric radiating star and it defines outgoing
null radiation. When a supermassive star of mass greater
than eight solar masses reaches the end of the luminous
phase of its life, it experiences an inwardly directed
gravitational collapse. This is a very violent process which
occurs on time scales of the order of seconds and is
observed as a type II supernova. The entire collapse process
is usually divided into early, intermediate, and late stages.
The effects of radiation are important in the later stages of
gravitational contraction when an immense amount of
energy is ejected from the star in the form of neutrinos
or photons.
The notion of collapse was first brought to light by

Oppenheimer and Snyder [2], and they described the free-
fall contraction of a spherical body in which pressure forces
were completely overwhelmed by the gravitational forces.
The equations of collapse—as analyzed analytically in
Refs. [3–7] and numerically in Refs. [8–11]—have pro-
duced significant new insights into gravitational collapse.
A supermassive stellar object, in its very long life, will exist
in a state of suspended collapse, converting its hydrogen
into helium, carbon, neon, oxygen, magnesium, and silicon
through nucleosynthesis and creating an internal pressure
gradient resulting in the release of outward energy (radi-
ation, convection, and conduction). Thermonuclear fusion
ends at iron-56, the most bound nuclear species. Beyond
iron, fusion is no longer exothermic.

The process of gravitational collapse is complicated.
Concentric burning shells are created as one element after
the other is synthesized. Enormous amounts of gamma rays
in the core produce electron-positron pairs which annihi-
late, producing neutrino pairs. Iron-56 is the end point of
nucleosynthesis: a hydrodynamical instability sets in and at
this point gravitational forces will crush the core to an
extent where the electrons become relativistic. The infalling
material in the core overshoots the equilibrium configura-
tion and rebounds from the stiffened core. This generates a
post-bounce-presupernova shockwave which propagates
outward from some point within the collapsing core
reaching relativistic speeds. It is understood that it is this
shockwave that drives the outflow of neutrinos. In view of
this, Glass [12] modeled the emission of neutrinos in
dissipative collapse, and Herrera and Núñez [13] inves-
tigated the associated shock structure and propagation in
the interior of the radiating star. As this shockwave travels
outward, its energy is dissipated by neutrino losses and by
photodisintegration of all the nuclei in its path, and
eventually stalls. The infalling plasma material in the star
(which surrounded the precollapsed core) fills the available
space, generating a decompression shockwave which
travels radially outward at the speed of sound through this
diffuse stellar material (which now begins to free fall). The
free-falling material is seized as it meets the shock front,
and this turns the latter into an accretion shock which is
heated by this falling plasma. A rarefied bubble-like region
develops between the collapsing core and the accreting
shock front and neutrino pairs diffusing from the extremely
hot interior annihilate, expanding this bubble. Through a
complex series of events this shock front drives out all the
matter in a type II supernova. It is understood that the final
result of collapse is a black hole (or collapsar).

*drbrasselint@gmail.com
†Goswami@ukzn.ac.za
‡maharaj@ukzn.ac.za

PHYSICAL REVIEW D 95, 124051 (2017)

2470-0010=2017=95(12)=124051(10) 124051-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.95.124051
https://doi.org/10.1103/PhysRevD.95.124051
https://doi.org/10.1103/PhysRevD.95.124051
https://doi.org/10.1103/PhysRevD.95.124051


A. Generalized Vaidya spacetime

The generalization of the Vaidya spacetime was given in
detail by Wang and Wu [14] and includes most of the
known solutions of Einstein’s field equations with the
additional type II fluid. These were further extended by
Brassel et al. [15] for various equations of state. It is written
in terms of the mass of the radiating body and the Petrov-
Pirani-Penrose classification of the metric is type D [16].
The notion that the energy-momentum tensor is linear in
terms of the gravitational mass for these matter fields
prompts this generalization of the spacetime. The gener-
alized Vaidya metric in single (exploding) null coordinates
ðv; r; θ;ϕÞ is given as

ds2¼−
�
1−

2mðv; rÞ
r

�
dv2−2dvdrþ r2ðdθ2þ sin2θdϕ2Þ:

ð1Þ

Here the function mðv; rÞ describes the Misner-Sharp mass
of the stellar interior and can be obtained via integrating the
Einstein field equations with combinations of perfect fluid
and null matter sources.
Generalized Vaidya spacetimes have been widely used in

the study of regular and dynamical black holes [17,18] as
well as black holes with trapped regions [19]. The Vaidya-
Papapetrou model [20,21] is one of the earliest to counter
the cosmic censorship conjecture (CCC). Here, a physically
reasonable matter field satisfying the energy conditions was
found in a shell-focusing central singularity (v ¼ 0, r ¼ 0)
which was formed by imploding shells of radiation.
Radially injected radiation flows into a region which is
initially flat, and is focused into a central singularity of
increasingmass. A central singularity was shown to become
a node with a definite tangent for families of nonspacelike
geodesics, for some nonvanishing measure of parameters in
the model. Thus the singularity is naked, as families of
future-directed nonspacelike geodesic curves going to future
null infinity terminate at the central singularity in the past.
A comprehensive analysis on censorship violation was
given in Refs. [22,23]. Mkenyeleye et al. [24] studied the
gravitational collapse of Vaidya spacetimes in the context of
theCCC.Ageneralmathematical frameworkwas developed
to study the conditions on the mass function where future-
directed nonspacelike geodesics can terminate at the central
singularity in the past. We will use this framework exten-
sively in this paper. The results obtained were further
generalized in higher dimensions in Ref. [25]. Maharaj
et al. [26] showed that the generalized Vaidya model can be
matched smoothly to a heat-conducting interior in the Santos
framework [27]. The physical behavior of this model was
analyzed in detail by the authors of Ref. [28] who inves-
tigated the effect of the exterior energy density on the
temporal evolution of the radiating fluid pressure, luminos-
ity, gravitational redshift, mass flow, and collapse rate at the
boundary of a relativistic star.

B. This paper

The main intent of this paper is to study the gravitational
collapse of generalized Vaidya spacetimes in the context of
the CCC. The mass functions obtained in Ref. [15] for
various equations of state will be analyzed using the general
framework developed in Ref. [24]. It will be shown that for
each mass function, the collapse terminates with a local
central singularity, which is naked. We also calculate the
strength of the naked singularities and show that they are
strong curvature singularities and there does not exist an
extension of spacetime through these singularities. This
paper is organized as follows. In Sec. II we present a
complete outline of how to model an isolated spherical
and physically reasonable radiating astrophysical star via the
generalized Vaidya geometry. In Sec. III we describe the
generalized Vaidya spacetime by analyzing the field equa-
tions; the relevant aphorisms indicative of the geometry of
the generalized Vaidya metric are presented and wemention
the energy conditions for a physically reasonable model. In
Sec. IV we systematically present the mathematical frame-
work of Ref. [24] for a collapsing model, and in Sec. V we
present the conditions for the formation of a locally naked
singularity and its strength. Section VI details the end state
of generalizedmass functions found byBrassel et al. [15] for
various equations of state.

II. THE MODEL OF A RADIATING AND
DYNAMIC RELATIVISTIC STAR

A spherically symmetric isolated astrophysical star is a
combination of three distinct and concentric zones. The
innermost zone is the stellar interior where there is null
fluid matter along with radiation. The middle zone is purely
a radiation zone. The outermost zone is the vacuum
Schwarzschild exterior that extends to a radius of roughly
1 light year (for solar mass stars), beyond which galactic
dynamics begin to take over. In this section we briefly
outline how to model all three of these zones under a
combined framework using a generalized Vaidya class of
metric. The full details of these notions can be found
in Ref. [15].

A. Matching conditions at the boundary layers:
Complete mass function

We note here that the spacetime is divided into three
distinct regions: the stellar interior, the radiation zone, and
the Schwarzschild exterior region. The first boundary layer
between the inner and the intermediate zone, given by
r ¼ rb, is a timelike boundary, whereas the second boun-
dary given by v ¼ V0 is a null boundary. The important
point that all three zones are described by the same class of
metric makes the matching conditions across these boun-
daries extremely transparent.
To match the first fundamental form all we need is the

mass function to be continuous across these boundaries.
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Hence the complete C2 mass function for an isolated stellar
model can be given in the following form:

mðv; rÞ ¼

8>><
>>:

mðv; rÞ r ≤ rb; v ≤ V0;

m1ðvÞ≡mðv; rbÞ r > rb; v ≤ V0;

M ≡m1ðV0Þ≡mðV0; rbÞ r > rb; v > V0:

ð2Þ
We can easily check that this mass function is a solution to
Einstein’s field equations in all three zones mentioned
above, and hence it completely describes the spacetime of
an isolated star that is collapsing. An important point to
note is the boundary v ¼ V0. Between the intermediate and
exterior zones, matter must be infalling in order for the
exterior to be vacuum. Also, as will be discussed later,
matter which is directed inward falls to a central point
which is, in essence, a singularity. To match the second
fundamental form, we need the partial derivatives of the
mass functions across the boundaries to be continuous.
These conditions are given by

∂
∂vmðv; rbÞ ¼

∂
∂vm1ðvÞ; ð3aÞ

∂
∂rmðv; rÞjr¼rb ¼ 0; ð3bÞ

∂
∂vm1ðvÞjv¼V0

¼ 0; ð3cÞ

where r ¼ rb is the timelike boundary and v ¼ V0 is the
null boundary. These boundaries serve as the matching
surfaces for the three concentric regions, which can be seen
in Fig. 1.

So the complete picture is as follows. We have a
spherically symmetric distribution of static or dynamic
type Imatter (a perfect fluid), through which a thick shell of
collapsing null radiation is superposed. This system finally
collapses to a spacetime singularity. Here v ¼ 0 depicts the
first null ray that falls into the central singularity formed at
r ¼ 0. In this paper we will rigorously analyze the nature of
this singularity in terms of its visibility to faraway observ-
ers. Of course in this analysis we are using only collapsing
null shells. On top of this we can also superimpose
outgoing shells from the nontrapped regions, that go to
infinity. However, this will not effect the calculations
around the central singular point which lies in the boundary
of the trapped region in the interior spacetime.

III. FIELD EQUATIONS AND
ENERGY CONDITIONS

The line element for all three regions belongs to the
generalized Vaidya class given by Eq. (1). Note thatmðv; rÞ
is the mass of the star and is related to the gravitational
energy within a given radius r [29,30]. From the above we
have the following quantities:

R0
0 ¼ R1

1 ¼
mrr

r
; ð4aÞ

R1
0 ¼

2mv

r2
; ð4bÞ

R2
2 ¼ R3

3 ¼
2mr

r2
; ð4cÞ

with the Ricci scalar

R ¼ 2

r2
ðrmrr þ 2mrÞ;

where we have used the notation

mv ¼
∂m
∂v ; mr ¼

∂m
∂r :

The Einstein tensor components are

G0
0 ¼ G1

1 ¼ −
2mr

r2
; ð5aÞ

G1
0 ¼

2mv

r2
; ð5bÞ

G2
2 ¼ G3

3 ¼ −
mrr

r
: ð5cÞ

The energy-momentum tensor is defined by

Tab ¼ TðnÞ
ab þ TðmÞ

ab ; ð6Þ

FIG. 1. Depiction of spacetime divided into the three distinct
regions: the stellar interior, a purely radiative zone, and the
vacuum exterior.
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where

TðnÞ
ab ¼ μlalb;

TðmÞ
ab ¼ ð~ρþ PÞðlanb þ lbnaÞ þ Pgab:

In the above,

la ¼ δ0a; na ¼
1

2

�
1 −

2mðv; rÞ
r

�
δ0a þ δ1a;

with lclc ¼ ncc ¼ 0 and lcnc ¼ −1. The null vector la is a
double null eigenvector of the energy-momentum tensor
(6). Hence, the nonzero components are given by

T0
0 ¼ −~ρ; ð7aÞ

T1
0 ¼ −μ; ð7bÞ

T2
2 ¼ T3

3 ¼ P: ð7cÞ

The Einstein field equations ðGa
b ¼ κTa

bÞ become

μ ¼ −2
mv

κr2
; ð8aÞ

~ρ ¼ 2
mr

κr2
; ð8bÞ

P ¼ −
mrr

κr
; ð8cÞ

which describe the gravitational behavior of a string
fluid [31,32].
The energy conditions for this kind of fluid are given by

the following.
(1) The weak and strong energy conditions:

μ ≥ 0; ~ρ ≥ 0; P ≥ 0 ðμ ≠ 0Þ: ð9Þ

(2) The dominant energy condition:

μ ≥ 0; ~ρ ≥ P ≥ 0 ðμ ≠ 0Þ: ð10Þ

In the case whenm ¼ mðvÞ the above energy conditions all
reduce to μ ≥ 0, and if m ¼ mðrÞ, then μ ¼ 0 and the
matter field becomes a type I fluid.

IV. COLLAPSING MODEL

We will examine the gravitational contraction of implod-
ing matter and radiation described by the generalized
Vaidya spacetime. Here, a thick shell of radiation and type
I matter collapses at the center of symmetry [22]. If Ka is

the tangent to nonspacelike geodesics withKa ¼ dxa

dk̂
, where

k̂ is the affine parameter, then Ka
;bKb ¼ 0 and

gabKaKb ¼ B; ð11Þ

where B is a constant which characterizes different classes
of geodesics. Null geodesics are characterized by B ¼ 0,
while B < 0 applies to timelike geodesics. The equations
for the quantities dKv

dk̂
and dKr

dk̂
are calculated from the Euler-

Lagrange equations

∂L
∂xϱ −

d

dk̂

�∂L
∂ _xϱ

�
¼ 0; ð12Þ

where the Lagrangian is

L ¼ 1

2
gab _xa _xb: ð13Þ

In the above equations the dot denotes differentiation with
respect to the affine parameter k̂. These equations were
given in Ref. [24]. The components Kθ and Kϕ of the
tangent vector are

Kθ ¼ l cosφ
r2sin2θ

; ð14aÞ

Kϕ ¼ l sinφ cosϕ
r

; ð14bÞ

where l is the impact parameter and φ is the isotropy
parameter defined by sinϕ tanφ ¼ cot θ.
Following Ref. [21], we can write Kv as

Kv ¼ P
r
; ð15Þ

where P ¼ Pðv; rÞ is some arbitrary function. Therefore,
gabKaKb ¼ B gives

Kr ¼ P
2r

�
1 −

2mðv; rÞ
r

�
−

l2

2rP
þ Br
2P

: ð16Þ

Using Eq. (15), we calculate dKv

dk̂
and thus

dP

dk̂
¼ 1

r

�
r2
dKv

dk̂
þ P

dr

dk̂

�
: ð17Þ

If we substitute the Euler-Lagrange equations and Eq. (16)
into Eq. (17), the differential equation satisfied by the
function P results in

dP

dk̂
¼ P2

2r2

�
1 −

4mðv; rÞ
r

þ 2m0ðv; rÞ
�
þ l2

2r2
þ B

2
: ð18Þ
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If the mass function mðv; rÞ and initial conditions are
defined, the function Pðv; rÞ can then be found.

V. THE CONDITIONS FOR A LOCALLY
NAKED SINGULARITY

In this section we analyze how the final fate of collapse is
determined in terms of a naked singularity or a black hole,
given the generalized Vaidya mass function. If there exist
families of future-directed nonspacelike trajectories reach-
ing observers far away in spacetime, which terminate in the
past at the singularity, then the singularity forming as the
final state of collapse is naked. If no such families exist and
an event horizon forms at a sufficiently early time to cover
the singularity, we then have a black hole. The equation of
null geodesics for the metric (1) is given by

dv
dr

¼ 2r
r − 2mðv; rÞ : ð19Þ

This equation has a singularity at v ¼ 0 and r ¼ 0 and its
nature can be analyzed using the standard techniques
associated with the theory of differential equations [33–35].

A. Structure of the central singularity

Equation (19) can generally be written in the separable
form

dv
dr

¼ M̂ðv; rÞ
N̂ðv; rÞ ; ð20Þ

with its singularity at v ¼ r ¼ 0, where the functions M̂ and
N̂ are vanquished. Thus, the analysis of the existence and
uniqueness of the solution to this differential equation
should be carefully considered. If we introduce the new
independent variable t with differential dt such that

dv

M̂ðv; rÞ ¼
dr

N̂ðv; rÞ ¼ dt; ð21Þ

the differential equation (20) may be replaced by

dvðtÞ
dt

¼ M̂ðv; rÞ; ð22aÞ

drðtÞ
dt

¼ N̂ðv; rÞ: ð22bÞ

It can be easily seen that the singular point of Eq. (20) is a
fixed point of the system (22). In order to find the necessary
and sufficient conditions for the existence of solutions to
this system in the region of the fixed point v ¼ r ¼ 0,
Eq. (22) can be written as a differential equation of the
vector xðtÞ ¼ ½vðtÞ; rðtÞ�T on ℜ2 as

dxðtÞ
dt

¼ fðxðtÞÞ: ð23Þ

Several definitions and theorems were given in Ref. [24] on
the methodologies of showing the existence and uniqueness
of solutions to the above system (22) and Eq. (23).

B. Nature of the fixed point v= r= 0

Since the partial derivatives of the functions M̂ and N̂
exist and are continuous in the neighborhood of the fixed
point, the system can be linearized near the fixed point and
thus the general behavior of this system near the singularity
is homologous to the characteristic equations

dv
dt

¼ Avþ Br; ð24aÞ

dr
dt

¼ CvþDr; ð24bÞ

where A ¼ M̂vð0; 0Þ, B ¼ M̂rð0; 0Þ, C ¼ N̂vð0; 0Þ, and
D ¼ N̂rð0; 0Þ, with

M̂v ¼
∂M̂
∂v ; M̂r ¼

∂M̂
∂r ;

and

N̂v ¼
∂N̂
∂v ; N̂r ¼

∂N̂
∂r :

In the above, AD − BC ≠ 0. The singularity of Eq. (24) can
be classified as a node if ðA −DÞ2 þ 4BC ≥ 0 and BC > 0.
It is otherwise a center of focus. In Eq. (19) we have that
Mðv; rÞ ¼ 2r andNðv; rÞ ¼ r − 2mðv; rÞ. If v ¼ 0 and r ¼ 0
at the central singularity we can define the following limits:

m0 ¼ lim
v→0
r→0

mðv; rÞ; ð25aÞ

_m0 ¼ lim
v→0
r→0

∂
∂vmðv; rÞ; ð25bÞ

m0
0 ¼ lim

v→0
r→0

∂
∂rmðv; rÞ: ð25cÞ

The null geodesic equation can then be linearized near the
central singularity as

dv
dr

¼ 2r
ð1 − 2m0

0Þr − 2 _m0v
: ð26Þ

It can be clearly seen that this equation has a singularity at
v ¼ 0 and r. It is possible to determine the nature of this
singularity by observing the discriminant value of the
characteristic equation. The roots of the characteristic
equation are

χ ¼ 1

2

�
ð1 − 2m0

0Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2m0

0Þ2 − 16 _m0

q �
: ð27Þ
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In order for the singularity at v ¼ 0 and r ¼ 0 to be a node,
we must have that

ð1 − 2m0
0Þ2 − 16 _m0 ≥ 0; _m0 > 0: ð28Þ

Hence, if the mass function mðv; rÞ is chosen such that the
above condition (28) is satisfied, the singularity at the origin
will then be a node and outgoing nonspacelike geodesics can
exit the singularity with a defined value of the tangent.

C. Existence of outgoing nonspacelike geodesics

We can now choose a generalized Vaidya mass function
with the following properties.
(1) Themass functionmðv; rÞ obeys all of the physically

reasonable energy conditions throughout the
spacetime.

(2) The partial derivatives of the mass function must
exist and are continuous on the entire spacetime.

(3) The limits of the partial derivatives of the mass
function mðv; rÞ at the central singularity obey the
conditions ð1 − 2m0

0Þ2 − 16 _m0 ≥ 0 and _m0 > 0.
A mass function with the above properties would ensure the
existence and uniqueness of the solutions of the null
geodesic equation in the immediate vicinity of the central
singularity. Also, the central singularity will be a node of
C1 solutions with definite tangents.
If we consider the tangents of these curves at the

singularity, we can find the condition for the existence
of outgoing radial nonspacelike geodesics from the nodal
singularity. Let X be the tangent to the radial null geodesic.
If the limiting value of X is finite and positive at the singular
point, we can then see that the outgoing future-directed null
geodesics terminate in the past at the central singularity.
The existence of these radial null geodesics characterizes
the nature (a naked singularity or a black hole) of the
collapsing solutions. To determine the nature of the limiting
value of X at v ¼ 0 and r ¼ 0, we define the following:

X0 ¼ lim
v→0
r→0

X ¼ lim
v→0
r→0

v
r
: ð29Þ

Using Eq. (26) and l’Hôpital’s rule (for the C1 null
geodesics) and simplifying, we acquire

X0 ¼
2

ð1 − 2m0
0Þ − 2 _m0X0

: ð30Þ

Solving the above for X0 gives the following:

X0 ¼ b� ¼ ð1 − 2m0
0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2m0

0Þ2 − 16 _m0

p
4 _m0

: ð31Þ

If one or more positive real roots exist for Eq. (30), then the
singularity may be locally naked if the null geodesic lies
outside the trapped region. In the following subsection we

will consider the dynamics of the trapped region to find
conditions for the existence of such geodesics.

D. Apparent horizon

The causal behavior of the trapped surfaces developing
within the spacetime usually decides the occurrence of either
a naked singularity or a black hole during the collapse
evolution. The apparent horizon is the boundary of the
trapped surface regionwithin the spacetime. The equation of
the apparent horizon for the generalized Vaidya spacetime is
given as

2mðv; rÞ
r

¼ 1: ð32Þ
Hence, the slope of the apparent horizon can be calculated at
the central singularity (v → 0, r → 0) as

�
dv
dr

�
AH

¼ 1 − 2m0
0

2 _m0

: ð33Þ

All of the above can now be stated in the following
proposition.
Proposition 1. Consider a collapsing generalized

Vaidya spacetime from some regular epoch, with a mass
function mðv; rÞ that obeys all of the physically reasonable
energy conditions and is differentiable in the entire space-
time. The central singularity is locally naked with outgoing
C1 radial null geodesics escaping to the future if the
following conditions are satisfied:

(i) The limits of the partial derivatives of the mass
function mðv; rÞ at the central singularity obey the
conditions ð1 − 2m0

0Þ2 − 16 _m0 ≥ 0 and _m0 > 0.
(2) There exists at least one root X0 (real and positive)

of Eq. (30).
(3) At least one of the positive real roots is less than

ðdvdrÞAH at the central singularity.

VI. STRENGTH OF THE SINGULARITY

If we consider the null geodesics parametrized by the
affine parameter k̂ and terminating at the shell-focusing
singularity v ¼ r ¼ k̂ ¼ 0, we can compute the strength of
the singularity (according to Ref. [36]). The strength of the
singularity is the measure of its destructive capacity in the
sense of whether the extension of spacetime is possible
through the singularity or not [37]. Following Clarke and
Krolack [38] and Mkenyeleye [24], a singularity would be
strong if the condition

lim
k̂→0

k̂2ψ ¼ lim
k̂→0

k̂2RabKaKb > 0 ð34Þ

is satisfied, where Rab is the Ricci tensor. Given a suitable
mass function, from Ref. [24] it can be shown that

lim
k̂→0

k̂2ψ ¼ 1

4
X2
0ð2 _m0Þ > 0: ð35Þ
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If this above condition is indeed satisfied for some positive
and real root X0, then we can conclude that the naked
singularity observed is strong. An interesting note is that
when the energy conditions are satisfied, and if a naked
singularity is developed as an end state of collapse, the
naked singularity is always strong.

VII. END STATE OF GENERALIZED
VAIDYA SPACETIMES FOR SEVERAL

EQUATIONS OF STATE

In this section we present solutions to the Einstein field
equations (8) for various equations of state, as found by
Brassel et al. [15]. A direct integration of the resulting partial
differential equations was possible in general for the linear,
quadratic, and polytropic equations. Those solutions for the
linear cases generalize all of those obtained by Husain [39]
and others, as well as the complete summary of solutions
presented in Ref. [14], and are therefore the most general
solutions known. Also, using Eq. (30), the equations of the
tangents to the null geodesics at the central singularity are
calculated for thesevariousVaidyamass functions.We show
that it is possible to obtain at least one real and positive value
of X0 for each mass function, and each of these mass
functions are open sets in their functional space. Below, we
include each solution with its equation of state.
(1) For the linear equation of state P ¼ k~ρ the mass

function found is

mðv; rÞ ¼ c1ðvÞ
r1−2k

1 − 2k
þ c2ðvÞ: ð36Þ

Using Eq. (30), we obtain the following:

2X2kþ1
0 þ 2_c2X2

0 − X0 þ 2 ¼ 0: ð37Þ

When _c2 ¼ 0.01 and k ¼ −1, the above equation
becomes a cubic and it is possible to find two positive
and real roots. One such root is X0 ¼ 2.862560272
which means the singularity is naked. We also have
that c2 ¼ 0.01v and c1 ¼ v2k [from Eq. (25)] for
v > 0. In Fig. 2, a naked singularity forms at the
origin and we have a static distribution of matter
focused into this central singularity of growing mass.
Null radiation shells fall through this static distribu-
tion terminating at the singularity. For v > 0 and
those values of c1 and c2 we have infalling light-like
matter described by the generalized Vaidya metric
[specifically, Eq. (36)] reaching the singularity. We
also have that limk̂→0k̂

2ψ ¼ 1
4
X2
0ð2 _m0Þ ¼ 0.04097 >

0 so the condition for a strong singularity is satisfied.
The real root is less than the slope at the apparent
horizon,

X0 <

�
dv
dr

�
AH

¼ 37.79632254;

and thus the third condition of Proposition 1 is
satisfied. Therefore, the central singularity is naked
and strong with outgoing C1 radial null geodesics
escaping to the future.

(2) For the generalized linear equation of state P ¼
k~ρþ k2 we have

mðv; rÞ ¼ −κk2
3ð2kþ 2Þ r

3 þ c1r1−2k

1 − 2k
þ c2: ð38Þ

By using Eq. (30), the equation we obtain is
identical to Eq. (37) and so all of the conditions
of Proposition 1 are satisfied as well. An interesting
observation is that this solution generalizes all those
contained in Refs. [14,39], so those particular cases
should satisfy all of these conditions too.

(3) The quadratic equation of state P ¼ k~ρ2 gives

mðv; rÞ¼ c2−2

0
B@ r
2c1

−

ffiffiffi
η

p
arctan

� ffiffi
2

p ffiffiffiffi
c1

p
rffiffi

η
p

�

2
ffiffiffi
2

p
c3=21

1
CA; ð39Þ

where η ¼ 4k=κ. Making use of Eq. (30), we have

2

�
_c2 þ

_c1
2c21

�
X2
0 − X0 þ 2 ¼ 0: ð40Þ

If we let _c2 ¼ 0.01 and _c1 ¼ 0 (so _m0 > 0), the
above equation reduces to

FIG. 2. Linear: Here v ¼ 0 depicts the first collapsing null ray
falling into the central singularity through a static distribution of
matter. A naked singularity forms at the origin with families of
trajectories γ1 and γ2 escaping to infinity from the singularity.
A shell of null radiation falls through a static distribution of
matter, and into the singularity. Nonspacelike curves such as γ3,
which are emitted after the event horizon, cross the apparent
horizon and fall back into the singularity.
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2ð0.01ÞX2
0 − X0 þ 2 ¼ 0; ð41Þ

which admits two positive real roots. One of these
roots is X0 ¼ 2.087121525 so we have a naked
singularity. We also have that c2ðvÞ ¼ 0.01v and
c1 ¼ const, and in Fig. 3 we have a dynamical type I
and light-like fluid distribution focused into the
central singularity of growing mass forming at the
origin. Again, at v ¼ 0, a shell of radiation falls
through this type I fluid and into the central singu-
larity. In the region where v > 0 and for those values
of c1 and c2 we have the generalized Vaidya solution
(39) collapsing to the singularity. Also, limk̂→0k̂

2ψ ¼
1
4
X2
0ð2 _m0Þ ¼ 0.02178 > 0; thus, this singularity is

indeed strong. Finally, this X0 is also less than
ðdvdrÞAH ¼ 50 so the third condition of Proposition 1
is satisfied.

(4) The generalized quadratic case P ¼ k~ρ2 þ k2 ~ρþ k3
yields

mðv; rÞ ¼ −
1

η

Z
ðr2 tanð

ffiffiffi
ζ

p
ðln r − c1ÞÞ

ffiffiffi
ζ

p
Þdrþ c2;

ð42Þ
where again η ¼ 4k=κ. We have set ζ ¼ k3κη − k22 −
2k2 − 1 for convenience. Equation (30) becomes

2_c2X2
0 − X0 þ 2 ¼ 0;

which, if we set _c2 ¼ 0.01, becomes identical to
Eq. (41). Thus, all of the conditions will be satisfied
for this case.

(5) For the polytropic equation of state P ¼ k~ργ , we
have a mass function of the form

mðv; rÞ ¼
Z �

ðγ þ 1Þkκ
�
2

κ

�
γ

×
r2−2γ

2 − 2γ
þ ð1 − γÞc1

� 1
1−γ
drþ c2: ð43Þ

It should be noted that this solution was first
presented in Ref. [39]. Using Eq. (30), we have

2_c2X2
0 − X0 þ 2½ð1 − γÞc1�

1
1−γX0 þ 2 ¼ 0: ð44Þ

If we let c1 ¼ 1, _c2 ¼ 0.01 with γ > 0 we have the
following

2ð0.01ÞX2
0 − X0 þ 2½ð1 − γÞc1�

1
1−γX0 þ 2 ¼ 0;

which is not solvable for any integer γ > 0. If we let
γ ¼ 1

2
, Eq. (44) will admit two positive real roots.

One of these is X0 ¼ 5, and thus the singularity is
naked. Also, we have limk̂→0k̂

2ψ ¼ 1
4
X2
0ð2 _m0Þ ¼

1
8
> 0 so the condition for a strong singularity is

satisfied. Finally, ðdvdrÞAH ¼ 25 > X0 so the final
condition is satisfied.

In all the above cases, c1 ¼ c1ðvÞ and c2 ¼ c2ðvÞ are
integration functions. A summary of the algebraic equations
for X0 for each equation of state is presented in Table I.

FIG. 3. Quadratic: Here v ¼ 0 depicts the first collapsing null
ray falling into the central singularity, superposed onto a dynamic
and collapsing distribution of type I matter. In this case the naked
singularity forms at the origin as before with escaping null
geodesic trajectories γ1 and γ2. However, due to the form of the
mass function (39) for the quadratic equation of state here, we
instead have an injected radiation flow into an initially radiated
region (consisting of a type I fluid) focused into the central
singularity of growing mass, as opposed to a static region in the
preceding case (Fig. 2).

TABLE I. Equations of tangents X0 to the singularity curve and values of limk̂→0k̂
2ψ for several generalized Vaidya mass functions.

Equation of state Equation for tangent to the singularity curve X0 limk̂→0k̂
2ψ

Linear 2X2kþ1
0 þ 2_c2X2

0 − X0 þ 2 ¼ 0 1
4
X2
0ð2_c2Þ

Generalized linear 2X2kþ1
0 þ 2_c2X2

0 − X0 þ 2 ¼ 0 1
4
X2
0ð2_c2Þ

Quadratic 2½_c2 þ _c1
2c1
�X2

0 − X0 þ 2 ¼ 0 1
4
X2
0ð2½_c2 þ _c1

2c1
�Þ

Generalized quadratic 2_c2X2
0 − X0 þ 2 ¼ 0 1

4
X2
0ð2_c2Þ

Polytropic 2_c2X2
0 − ð1 − 2½ð1 − γÞc1�

1
1−γÞ þ 2 ¼ 0

1
4
X2
0ð2_c2Þ
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VIII. CONCLUSION

In this work we detailed the general mathematical
framework to describe the gravitational collapse of a
generalized Vaidya spacetime in the context of the CCC.
The structure of the central singularity was studied in order
to show that it can be a node with outgoing null geodesics
emerging from a singular point with a definite value of the
tangent, depending on the parameters in the problem and the
nature of the generalized Vaidya mass function in question.
We considered a spherically symmetric radiating star. We

noted that any astrophysical star is a combination of three
distinct concentric zones: the innermost two-component
matter zone, the middle radiation zone, and the outermost
zone which is the vacuum Schwarzschild exterior. The
mass functions obtained in Ref. [15] for various equations
of state were analyzed using this mathematical framework
and it was shown that in each case, the collapse terminates
with a local central singularity which is naked. The
strengths of these naked singularities were calculated
and it was shown that they are strong curvature singularities
and no extension of spacetime through them exists. This
has consequences which are far reaching as their presence
will no longer make the global spacetime asymptotically
simple. This is to say that the theorems of black hole

dynamics may require some reformulation. With this, for
any realistic mass function, there exists an open set for
which the central singularity is naked in the parameter
space, and the CCC is violated. That is, the occurrence of a
naked singularity is a phenomenon which can be referred to
as “stable,” despite any changes in the matter field due to a
combination of a radiation-like field with a collapsing
perfect fluid. With regard to pure type I matter fields, this
result is well known [23,40].
It is important to note that during the later stages of

gravitational collapse, the generalized Vaidya spacetime is
more realistic and physically reasonable than pure dust-like
matter or perfect fluid fields. Any collapsing star must
radiate and so there exists a combination of a perfect fluid
and lightlike matter for this period in the evolution of
the star.
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