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In this paper, we investigate the continual gravitational collapse of a spherically symmetric radiation
shell in five-dimensional Einstein-Gauss-Bonnet gravity. We show that the final fate of such a collapse is an
extended and weak curvature naked conical singularity at the centre, which then subsequently becomes
covered by an apparent horizon. This process is entirely different from the five dimensional general
relativity counterpart, where a strong curvature singularity develops at the centre. Since the singularity in
the case of Einstein-Gauss-Bonnet gravity is sufficiently weak, we argue that the spacetime can be extended
through it, which gives us an elegant way of constructing regular black holes in higher dimensions without
violating any energy conditions. We also extend our study to spacetimes with null and string fluids, which
are the counterpart of generalized Vaidya spacetimes in general relativity. We show that similar end states
are also possible in those cases. Higher-dimensional spacetimes are then considered.
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I. INTRODUCTION

When a massive star of around 8 solar masses exhausts
all of its nuclear fuel it must undergo a gravitational
contraction to either a compact star or it must collapse
in a continual manner without achieving an equilibrium
state such as a compact stellar object. The singularity
theorems of general relativity then give the prediction that
the collapse must give rise to a spacetime singularity,
hidden within an event horizon of gravitation or visible to
the external universe. Spacetime curvature as well as
energy densities become arbitrarily high at these distorted
regions. When the internal dynamics of the contraction
result in the delay of an event horizon formation, the
singularity is theoretically visible (or naked) and may
communicate effects to the external universe [1–5].
Without this delay, the covered singularity is a black hole.
A singularity in any physical theory typically implies that
the theory breaks down either at the vicinity of or at the
singularity itself. The consequences thereof is that an
alternate and more complete theory is required, in this
case possibly quantum gravity, revising the given theory.
Gravitational collapse was first studied by Oppenheimer

and Snyder [6] where they described the free-fall contrac-
tion of a spherical body in which the gravitational forces
completely overwhelmed the outward pressure forces. With
regards to dynamical and regular black holes, as well as

those with trapped regions, the generalized Vaidya metric
has extensively been used to study these models [7–9].
With regards to modified theories of gravity, Dominguez
and Gallo [10] later studied black hole solutions in
Einstein-Gauss-Bonnet gravity. The reason for considering
modified theories of gravity lie in the certain shortcomings
of general relativity from both the theoretical and obser-
vational points of view. Since general relativity itself is a
generalisation of Newtonian gravity, extensions of general
relativity are a natural notion. Introducing nonlinear forms
of both the Riemann and Ricci tensor, and the Ricci scalar
is one approach to modifying general relativity. Lovelock
[11,12] showed that it was possible to introduce a poly-
nomial form of the Lagrangian which is of quadratic order,
and this form in turn, generated the Einstein-Gauss-Bonnet
(EGB) action. Curvature terms which are quadratic within
the spacetime manifold appear as corrections to Einstein
gravity, and this theory can be considered as a consequence
of low energy string theory [13,14].
The Boulware-Deser solution [15] was an earlier higher-

dimensional analogue of the vacuum Schwarzschild metric
from general relativity. A comparison between the higher-
dimensional geodesic motion of a Boulware-Deser black
hole and the Schwarzschild geometry was undertaken by
Bhawal [16]. Some work has been done to find asymp-
totically AdS black hole solutions in EGB gravity [17–19].
Ghosh et al. [20] studied the gravitational contraction of a
spherical and inhomogeneous cloud of dust in EGB gravity,
while Ghosh and Maharaj [21] found null dust solutions in
third order Lovelock gravity in arbitrary dimensions for a
spherically symmetric string cloud background. In general
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relativity, Dawood and Ghosh [8] and Ghosh and Dawood
[22] found a large family of solutions to Einstein’s equations
for a spherically symmetric type II fluid in four and higher
dimensions, and showed that the well known black hole
solutions are a particular case of this larger family. The
solutions of [15] are the EGB analogues of the vacuum
solutions in general relativity. An EGB Vaidya-like solution
was described by Kobayashi [23] where the matter fields
were analogous to those found in the four-dimensional
generalized Vaidya spacetimes with type I and type II fluid
distributions. Several radiating Boulware-Deser solutions
were found by Brassel et al. [24] which were themselves the
EGB analogues of those found in [25–27].

A. Regular black holes and conical singularities

The theorems of singularity formation given by Penrose
and Hawking in [28] indicate the existence of singularities
under certain circumstances. However it has been claimed
that singularities may be unphysical objects created by
the classical theories of gravity, and may not exist in
the universe. These singularities were thought to be the
consequence of the strong symmetry imposed on the
spacetimes when deriving solutions of the Einstein field
questions. An example of this would be that the singularity
at r ¼ 2m in the Schwarzschild metric was a coordinate
singularity which could be removed via a suitable coor-
dinate transformation. No such transformation, however,
could remove the genuine curvature singularity at r ¼ 0.
Further, it was shown that any given spacetime will admit,
provided that the energy conditions and causality are not
violated, singularities within some general framework [28].
Hence, under these conditions in relativity theory, singu-
larities are a general feature. Despite this, Bardeen [29]
found the first static and spherically symmetric regular
black hole, which was a solution to the Einstein field
equations coupled to nonlinear electrodynamics with a
magnetic dipole. The Bardeen black hole was a modifica-
tion of the Reisnner-Nordstöm solution. Several other
regular black hole models were proposed by [30–33].
Ghosh and Amir [34] studied the horizon structure and
ergosphere of a rotating Bardeen black hole and Bambi and
Modesto [35] investigated rotating Bardeen and Hayward
black holes by using the Newman-Janis algorithm. It must
be emphasized that these prior works are contrived in the
sense that coordinate transformations were used to design
the regularity of the solutions, or the singularities may have
been removed altogether and replaced by regular centers.
Borde [30] showed that in a large class of spacetimes where
the weak energy condition is satisfied, the existence of a
regular black hole requires a change in the topology of the
spacetimes. Further examples of these kinds of construc-
tions can be found in the works of Frolov et al [36,37] and
Barrabès and Frolov [38]. They discussed spacetimes with
properties similar to those given above. In their cases,
singularities could possibly be avoided by requiring that

part of the region within the Schwarzschild radius r ¼ 2m,
be joined to de Sitter space through a thin boundary layer.
It should be noted that all of these regular models above

have similar global properties in general relativity. The
difference, however, between these models and the work in
this paper, is that our model does not require the use of any
such construction. The metric spacetime itself, in EGB
gravity, is regular throughout and this is the basis of this
paper. The energy conditions are satisfied and we do not
need to invoke the existence of exotic matter in our
work. This is not the case in other treatments of regular
black holes. However, an addition, we will show that
there exists an extended weak conical singularity at the
centre of the regular spacetime after the cessation of
collapse. Singularities, including conical or “quasiregular”
singularities were discussed in Ellis and Schmidt [39,40]. In
the latter paper, various theorems were proved regarding the
behavior, existence and stability of these singularities. Tod
[41] obtained, by identification of flat space, several metric
spacetimes with different kinds of conical singularities.
Oliveira-Neto [42] used a method relating to the holonomy
of a spacetime to identify conical singularity existence.

B. This paper

In this paper we investigate the continual gravitational
collapse of a spherically symmetric radiation shell in five-
dimensional EGB gravity, to explicitly show that the final
fate of such a process is an extended and weak naked conical
singularity at the center, which then subsequently gets
covered by an apparent horizon. We compare this with
the scenario of five-dimensional general relativity where a
necessarily strong curvature singularity develops at the
center. We also argue that since this conical singularity is
weak enough to be extendable. This is an elegant way of
naturally constructing a regular black hole in higher dimen-
sional spacetimes. The paper is organized as follows: In the
next section we give a brief overview of the already known
results of five-dimensional null shell collapse in general
relativity. In Sec. III, we investigate the collapse of a similar
form of matter in EGB gravity, and explicitly highlight the
basic differences in the nature of the singularities and
boundaries of trapped regions. In Sec. IV, we then generalize
the analysis to collapse with an additional string fluid, and
following this, we consider higher-dimensional spacetimes.

II. RADIATION SHELL COLLAPSE IN
FIVE-DIMENSIONAL GENERAL RELATIVITY:

A BRIEF RECAP

In five dimensions, the collapsing pure Vaidya spacetime
reads as

ds2 ¼ −
�
1 −

mðvÞ
r2

�
dv2 þ 2dvdr

þ r2ðdθ2 þ sin2θdϕ2 þ sin2θsin2ϕdψ2Þ; ð1Þ
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where mðvÞ is the gravitational mass of the body. The
energy momentum tensor for this kind of matter is given by

Tab ¼ μlalb; ð2Þ
where la ¼ δ0a. The null vector la is a double null eigen-
vector of the energy momentum tensor (2). Therefore, the
only field equation Ga

b ¼ κTa
b is given by

μ ¼ 3

κr3
mv; ð3Þ

where the subscript denotes differentiation with respect to
the time coordinate v. We note that for the weak energy
condition to be satisfied we must have

∂mðvÞ
∂v ≥ 0: ð4Þ

Let us now consider the continual collapse of a five-
dimensional radiation shell described by 0 ≤ v ≤ V0

(see Fig. 1). For a proper spacetime matching, in the
interior of the shell we must have mð0Þ ¼ 0, and that
makes the spacetime region v < 0 that of Minkowski.
The exterior of the shell (v > V0) is matched naturally
with a five-dimensional Schwarzschild spacetime with the
Schwarzschild mass M ¼ mðV0Þ. The spacetime singular-
ity is then located at (v ≥ 0, r ¼ 0). For the Vaidya
spacetime in 5 −D the Kretschmann scalar is given by

K ¼ 72mðvÞ2
r8

: ð5Þ

It can clearly be seen that at r ¼ 0, the above invariant
diverges as K ≈ r−8, hence there exists a strong curvature
singularity at the center.
The boundary of the trapped surface (or the apparent

horizon) is given by�
1 −

mðvÞ
r2

�
¼ 0; ð6Þ

which is to say r ¼ ffiffiffiffiffiffiffiffiffiffi
mðvÞp

. The apparent horizon starts at
the initial singular point (v ¼ 0, r ¼ 0), and extends out-
wards into the future, where it then matches smoothly to the
event horizon of exterior Schwarzschild spacetime.
Singularities for the Vaidya spacetime have been exten-
sively studied by [1–5], and it has been shown that there
exists an open set of parameter spaces for the mass function
mðvÞ, for which the initial singular point (v ¼ 0, r ¼ 0) can
be locally naked. However the singular points (v > 0,
r ¼ 0) are covered by the horizon. It is important to note
that geodesics can cross the last collapsing thin shell before
the formation of the apparent horizon and so globally naked
singularities are possible.

III. RADIATION SHELL COLLAPSE IN
FIVE-DIMENSIONAL EGB GRAVITY

We will now investigate the same process of radiation
shell collapse with the same form of null matter described
by the energy momentum tensor (2), but in the case of five
dimensional EGB gravity. In this theory, the modified form
of the Einstein-Hilbert action in five dimensions is

S ¼ −
1

16π

Z ffiffiffiffiffiffi
−g

p ½ðR − 2Λþ αLGBÞ�d5xþ Smatter: ð7Þ

The above action is called the Gauss-Bonnet action where α
is the EGB coupling constant, R is the five-dimensional
Ricci scalar, LGB is the Lovelock term and Λ is the
cosmological constant. The above action has no direct
usefulness in dimensions of four or less since the Lovelock
term does not contribute to the field equations, but is in
general, nonvanishing in dimensions higher than four. The
importance of the Lovelock term lies in the fact that the
equations of motion are second order and quasilinear
despite the fact that the Langrangian is quadratic in the
curvature tensors and the Ricci scalar.

A. The EGB field equations

Varying the above action with respect to the metric we
get the required EGB field equations:

Gab ¼ κTab; ð8ÞFIG. 1. Spacetime diagram of null shell collapse in 5 −D
general relativity.
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where

Gab ¼ Gab −
α

2
Hab: ð9Þ

In the above, Gab is the Einstein tensor, Tab is the energy
momentum tensor and Hab is the Lanczos tensor which is
defined as

Hab ¼ gabLGB − 4RRab þ 8RacRc
b

þ 8RacbdRcd − 4RacdeRb
cde; ð10Þ

where the Lovelock term is given by

LGB ¼ R2 þ RabcdRabcd − 4RcdRcd: ð11Þ

In the limit where α → 0, the Lanczos term vanishes and
Einstein gravity will be regained.

B. Solution to the field equations
for spherically symmetric null fluid

Let us consider the energy momentum tensor of the null
fluid to be the same as general relativity,

Tab ¼ μ̃lalb; ð12Þ

where la ¼ δ0a. Also let us consider the metric ansatz in the
following form:

ds2 ¼ −fðv; rÞdv2 þ 2dvdr

þ r2ðdθ2 þ sin2θdϕ2 þ sin2θsin2ϕdψ2Þ: ð13Þ

Solving the EGB field equations for the energy momentum
tensor (12), gives the following solution

fðv; rÞ ¼ 1þ r2

4α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16MðvÞα

r4

r �
; ð14Þ

where the function MðvÞ is a solution of the EGB field
equation

μ̃ ¼ 3

κr3
Mv: ð15Þ

Again we note that just like general relativity, for the weak
energy condition to be satisfied we must have

∂MðvÞ
∂v ≥ 0: ð16Þ

C. Collapsing radiation shell, singularity
and apparent horizon

Again, just as in GR, consider the continual collapse of a
five dimensional radiation shell described by 0 ≤ v ≤ V0.

It is easy to see from the solution (14) thatMð0Þ ¼ 0makes
the spacetime region for v < 0 flat spacetime, whereas the
exterior of the shell (v > V0) is matched naturally with a
five-dimensional Boulware-Deser spacetime with the mass
M0 ¼ MðV0Þ. The metric of the exterior spacetime is then
given as

ds2 ¼ −fðrÞdv2 þ 2dvdr

þ r2ðdθ2 þ sin2θdϕ2 þ sin2θsin2ϕdψ2Þ; ð17Þ

where

fðrÞ ¼ 1þ r2

4α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16M0α

r4

r �
: ð18Þ

Now, interestingly, a closer inspection of the metric (14)
reveals that all the metric functions are well defined and
regular at v ≥ 0, r ¼ 0, depicting the absence of a real
strong curvature spacetime singularity. To understand the
above observation more carefully, we calculate the
Kretschmann invariant, which is given by

K ¼ −
1

2αr4
ðr2 þ 16αMÞ−3

h�
−r2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ 16αM

p �
2

×
�
−7r12 − 2r10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ 16αM

p
− 184αr8M

− 2048α2r4M2 − 6144α3M3

þ32αr6M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ 16αM

p �i
: ð19Þ

We can immediately see that the Kretschmann invariant
diverges as K ≈ r−4, which is a much slower divergence
than the GR case. Figure 2 shows the behavior of various
curvature scalars, where we have chosen α ¼ 2 and
MðvÞ ¼ v. The slower divergence denotes a singularity
which is weak in nature, and furthermore the metric
functions being well defined at v ≥ 0, r ¼ 0 depicts the
emergence of a weak conical singularity at the center.

FIG. 2. Log-log plot showing the behavior of the Kretschmann
scalar, the Ricci tensor squared and the Weyl tensor squared.
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To see the dynamics of the apparent horizon, which is the
boundary of the trapped region, we consider

fðv; rÞ ¼ 0; ð20Þ

which is to say that

1þ r2

4α

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16αMðvÞ

r4

r !
¼ 0: ð21Þ

Solving for r we get

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðMðvÞ − αÞ

p
: ð22Þ

This implies that for v ∈ ½0;M−1ðαÞ�, the conical singu-
larity at the center (r ¼ 0) remains naked, before it
eventually becomes trapped.
Now since the singularity at the center is a sufficiently

weak conical singularity, where the metric functions remain
regular, it is evident that this singularity can be resolved,
that is, one can in principle construct a spacetime extension
through it. This gives us an elegant way to construct a
regular black hole in higher dimensions without violating
any energy conditions. To illustrate this more transparently
let us assume, e.g., the case when

MðvÞ ¼ λv: ð23Þ

Equation (22) becomes

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λv − 2α

p
: ð24Þ

At r ¼ 0, we have that v ≠ 0 (as would be the case in
Einstein gravity) but is in fact v ¼ α=λ. So this conical
singularity has a window period of existence in which it is
uncovered, and this depends solely on the Gauss-Bonnet
term α, in the sense that it delays the horizon formation.
This is the fundamental difference between EGB gravity
and general relativity. In the case of α ¼ 0 the apparent
horizon would form at r ¼ v ¼ 0 covering the singularity.
We can describe the nature of the apparent horizon and the
trajectories of null geodesics graphically. In Figs. 3 and 4 a
radiating matter distribution is focused into a five-dimen-
sional regular black hole. In the region 0 < v < α

λ there is a
conical singularity with no trapping horizon as the Gauss-
Bonnet term α delays the formation of the apparent horizon
in this region. The apparent horizon forms at v ¼ α

λ and
encloses a compact region of trapped surfaces for
α
λ < v < V0. At v ¼ V0 the apparent and event horizons

join smoothly as a single trapping event horizon at r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λv − 2α

p
separating the exterior Boulware-Deser vac-

uum from the trapped surfaces. Beyond the event horizon is
a black hole with a quasiregular (or weak conically
singular) center.

FIG. 3. Spacetime diagram depicting matter falling into a black
hole with conical singularity. The nonzero Gauss-Bonnet con-
stant α acts as a delay term in the formation of the apparent
horizon.

FIG. 4. Penrose diagram with a depiction of matter falling into a
black hole. There is an extended weak conical singularity
formation in the region 0 < v < α

λ and there exist families of
trajectories escaping to infinity from the black hole. The apparent
horizon only begins to form in the region α

λ < v < V0. We have a
radiating distribution of matter focused into the regular black hole
region and at v ¼ α

λ, a shell of null radiation falls through this
radiating distribution of matter and into the black hole.
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We finally present a comparison in Table I between the
Vaidya spacetime in general relativity and the radiating
Boulware-Deser spacetime in EGB gravity.

IV. EXTENSION OF OUR RESULTS
TO GENERALIZED VAIDYA-LIKE
SPACETIMES IN EGB GRAVITY

An inhomogeneous and radiating spacetime in EGB
gravity is possible if we allow the mass function to depend
on both the radius of the star r and the retarded null
coordinate v

M̃ → Mðv; rÞ: ð25Þ

We will then have

ds2 ¼ −fðv; rÞdv2 þ 2dvdr

þ r2ðdθ2 þ sin2θdϕ2 þ sin2θsin2ϕdψ2Þ; ð26Þ

with

fðv; rÞ ¼ 1þ r2

4α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16Mðv; rÞα

r4

r �
: ð27Þ

For generalized matter with a string fluid an energy
momentum tensor is given by

Tab ¼ μ̃lalb þ ð ρ̃þ PÞðlanb þ lbnaÞ þ Pgab; ð28Þ

where we have that

la ¼ δ0a;

na ¼
1

2

�
1þ r2

4α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16Mα

r4

r ��
δ0a þ δ1a;

with lclc ¼ ncnc ¼ 0 and lcnc ¼ −1. The null vector la is a
double null eigenvector of the energy momentum tensor
(28). The EGB field equations Ga

b ¼ κTa
b hence become

μ̃ ¼ 3

κr3
Mv; ð29aÞ

ρ̃ ¼ 3

κr3
Mr; ð29bÞ

P ¼ −
1

κr2
Mrr: ð29cÞ

When ρ̃ ¼ P ¼ 0, the above equations reduce to
the single solution (15) obtained for the case of the
radiating Vaidya-Boulware-Deser metric. Furthermore
when μ̃ ¼ ρ̃ ¼ P ¼ 0, we reacquire the original vacuum
case with constant mass. For this kind of fluid, the energy
conditions become
(1) The weak and strong energy conditions:

μ̃ ≥ 0; ρ̃ ≥ 0; P ≥ 0 ðμ̃ ≠ 0Þ: ð30Þ

(2) The dominant energy condition:

μ̃ ≥ 0; ρ̃ ≥ P ≥ 0 ðμ̃ ≠ 0Þ: ð31Þ

When the mass function reduces to M ¼ MðvÞ the above
energy conditions all reduce to μ̃ ≥ 0 as presented earlier,
and if M ¼ MðrÞ, then we have that μ̃ ¼ 0 and the matter
field becomes a type I fluid.
Now, from the solution (27) it is clear that whenever the

mass function Mðv; rÞ, is regular and least C2 at the centre
r ¼ 0, we get a similar situation as in the previous section.
In other words, there exist open sets of possible mass
functions Mðv; rÞ, for which the continual collapse ends in
the formation of a naked and extended weak conical
singularity, that in principle can be resolved with an
extension of the spacetime manifold. The trapping horizon
formation is delayed by the Gauss-Bonnet constant α,
however it eventually forms, covering the conical singu-
larity. Hence, we can now make the following statement:
Consider a five-dimensional collapsing inhomogeneous

and radiating Boulware-Deser spacetime from a regular
epoch, with a generalized mass functionMðv; rÞ that obeys
all physically reasonable energy conditions and is at least
twice differentiable in the entire spacetime. Such a
spacetime is always regular. Although the Kretschmann
invariant is positive and divergent at the center, the
divergence is sufficiently weak and so the collapse will
always terminate with the formation of an extended
naked weak curvature conical singularity, and eventually
a black hole with a conical singularity. Resolving this
weak conical singularity will make this a dynamically
formed regular black hole with no violation of the energy
conditions.

TABLE I. Comparison between Vaidya and Boulware-Deser
spacetimes.

Spacetime Vaidya Boulware-Deser

Theory of gravity Einstein Einstein-Gauss-Bonnet
Regularity No Yes
Dimensions (N) All N ≥ 4 5 ¼ N ≠ 6; 7;…
Kretschmann scalar Divergent Divergent
Other diffeomorphism
invariants

All divergent All divergent

Singularity existence Yes Yes
Singularity type Curvature Conical
Singularity strength Strong Weak
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V. HIGHER-DIMENSIONAL BOULWARE-DESER
SPACETIMES

The gravitational collapse scenario of the Boulware-
Deser spacetime differs in higher dimensions. In fact, in
dimensions N > 5, the collapse will always terminate
with a singularity, which may or may not be naked. The
N-dimensional purely radiating Boulware-Deser metric is
given by

ds2 ¼ −fðv; rÞdv2 þ 2dvdrþ r2dΩ2
N−2; ð32Þ

with

dΩ2
N−2 ¼

XN−2

i¼1

�Yi−1
j¼1

sin2ðθjÞ
�
ðdθiÞ2;

and where

fðv; rÞ ¼ 1þ r2

2α̂

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8α̂

N − 3

�
2MðvÞ
rN−1

�s !
:

In the above we have that α̂ ¼ αðN − 3ÞðN − 4Þ.
The above metric is singular for all N > 5. The for-

mation of the apparent horizon occurs when

fðv; rÞ ¼ 0; ð33Þ

which is to say

1þ r2

2α̂

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8α̂

N − 3

�
2MðvÞ
rN−1

�s !
¼ 0: ð34Þ

It is important to note that if N > 5, fðv; rÞ tends to infinity.
The above equation cannot be solved explicitly for r,
however, we can write it as

4MðvÞ
N − 3

¼ rN−5ðα̂þ r2Þ: ð35Þ

An explicit solution is possible if the dimension N is
specified. If we assume, e.g., that N ¼ 6, then Eq. (35)
becomes quadratic

r2 þ α̂r −
4M
3

¼ 0; ð36Þ

and admits the solutions

r ¼ −
1

2
α̂� 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α̂2 þ 48MðvÞ

q
: ð37Þ

Following the same ansatz as earlier, we let MðvÞ ¼ λv
where λ is a constant. We then have

r ¼ −
1

2
α̂� 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α̂2 þ 48λv

p
: ð38Þ

At r ¼ 0 we have that v ¼ 0 unlike in the five-dimensional
case, so the apparent horizon forms at r ¼ v ¼ 0. In the
case of α ¼ 0, the apparent horizon also forms at r ¼ v ¼ 0
as is the case in Einstein gravity. Therefore in dimensions
six and higher, the Boulware-Deser spacetime is singular
and the Gauss-Bonnet constant α has no affect on the
collapse dynamics; there is no delay in the formation of the
horizon caused by the α term.

VI. CONCLUSION

In this paper we transparently demonstrated that the final
outcome of the continual gravitational collapse of a spheri-
cally symmetric radiation shell in five-dimensional EGB
gravity is an extended and weak naked conical singularity at
the centre, which then subsequently becomes covered by an
apparent horizon. The trapping horizon formation is delayed
by the presence of the Gauss-Bonnet constant α. This
scenario is dramatically different from five-dimensional
general relativity, where during the collapse of a radiation
shell, a necessarily strong curvature singularity develops at
the centre. We then extended this result to generalized
Vaidya-like spacetimes to show that whenever the mass
function remains regular and at least twice differentiable in
the entire spacetime, an absolutely similar picture emerges.
Now, since the conical singularity that develops at the

centre is weak enough to be extendable, this is an elegant
way of naturally constructing a regular black hole in
higher dimensional spacetimes, without violating any
energy conditions.
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