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The higher order curvature corrections in Einstein-Gauss-Bonnet gravity play a significant role in the
dynamics of gravitational collapse. We extend the gravitational collapse of radiating shells of matter in
Einstein-Gauss-Bonnet gravity to higher dimensions, in the context of the cosmic censorship conjecture. In
five dimensions the final collapse terminates with the formation of an extended and weak conical, naked
singularity in the central region. For dimensionsN > 5, we determine that collapse terminates with a strong
curvature singularity which may or may not be naked. Cosmic censorship is affected by higher-order
curvature corrections. A comparison with the higher-dimensional general relativity counterpart is also
given, where the dynamics are affected by the higher dimensions.
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I. INTRODUCTION

When a massive star of mass greater than 8M⊙ (but less
than 40M⊙) reaches the end of the luminous phase of its
life, it experiences a gravitational collapse which is
inwardly directed. This violent process is observed as a
type II supernova and lasts several seconds, due to the very
quick duration (a few days) of the silicon burning process,
the final burning stage of the progenitor star. For truly
massive stars, of the order of 40M⊙ to 50M⊙ and beyond,
the collapse is observed as a superluminous supernova
(SLSN) (or hypernova). An immense amount of energy
(radiation, convection and conduction) is ejected from the
star in the form of neutrinos or photons and so the radiation
effects are important in these later stages [1]. In this regard,
gravitational collapse remains a truly important endeavor in
the research areas of nuclear physics, stellar astrophysics,
high energy physics and general relativity.
Once the hydrogen has burned out in the star’s core, the

next phase of thermonuclear burning—helium—commen-
ces. Hydrogen in some surrounding shell will continue to
burn. Further concentric burning shells are created as one
element after the other is synthesized. Neutrino pairs are
created by the annihilation of electron-positron pairs in the
core. At the exhaustion of each elemental fuel, the core
contracts further until the ignition temperature for the next
step in the next chain is attained, and it is these reignition
steps that halt the collapse. Each successive burning stage is
quicker than the preceding one, however each releases less
energy than the previous since the atomic nuclei become

progressively heavier. 56Fe is the end point of nucleosyn-
thesis (the result of the above mentioned silicon burning).
A hydrodynamical instability sets in, where the inward
pressure of gravity in the star begins to overwhelm the
outward energy being released. A catastrophic collapse
then supervenes where gravity crushes the core to such an
extent that electrons become relativistic and the resulting
collapsed core remnant, and the supernova remnant, are
pushed away from each other during this phase. The core
remnant is either a more compact object like a neutron star
(which may itself collapse further at a later time), or in
the case of truly massive stars, a stellar-mass black hole
with a central singularity which may or may not be naked.
Incidentally, the supernova remnant expands outward at
very high speed (of the order of 104 km=s) interacting with
interstellar gases, and is in fact visible at all wavelengths
between the radio and x-rays.
Within a wide variety of gravitational theories, the

theorems of singularity formation foretell the phenomenon
of spacetime singularities as the end states of gravitational
collapse [2]. Their occurrence depends upon some generic
conditions such as the existence of trapped surfaces,
causality not being violated and the general attractive
nature of gravitation itself. The singularity theorems also
show that there exist a large class of solutions to Einstein’s
field equations which are geodesically incomplete. The
theorems, however, do not regard the nature of the space-
time singularities themselves, i.e., whether it is possible for
future directed null geodesics to escape to infinity from the
close vicinity of the singularities, leaving them naked. The
cosmic censorship conjecture was proposed by Penrose [3]
to avoid such situations; a physically reasonable matter
field which collapses under its own gravity must result in
the formation of a spacetime singularity which is covered at
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all times by a trapping horizon. Therefore, the end state of
continual gravitational contraction must be a black hole,
with a central spacetime curvature singularity, covered by
an event horizon shielding it from any and all external
observers.
A general proof of the conjecture remains evasive as it

stands, and several counterexamples for particular matter
distributions exist in the literature. Spherically symmetric
and dynamical gravitational collapse in general relativity
has been extensively studied and various models exist
which indicate that, based on initial data, collapse termi-
nates in the formation of locally naked singularities [4–10].
The trapped surfaces do not form in a timely enough
manner to shield the singularity from the external universe
in the above cases. These studies also show that families of
outgoing future nonspacelike geodesics emanate from the
naked singularity, escaping to infinity [7,11]. The one
drawback of the above models is that censorship violation
depends on symmetries of spacetime.
It was shown in [9,12,13] that naked singularities arising

as a result of dust collapse, in general relativity, were
eliminated when the transition to higher dimensions was
made; cosmic censorship was restored in higher dimen-
sions under specific physical conditions like the smooth-
ness of the initial data from which the collapse develops in
time. A key aspect of this paper, is that we will demonstrate
that for null radiating matter in higher-dimensional modi-
fied gravity, it will always hold; cosmic censorship is never
violated, and this is irrespective of the increase in dimen-
sions. Dimensions play no part in the end state of collapse.
In modified theories of gravity, Dominguez and Gallo

[14] studied black hole solutions in Einstein-Gauss-Bonnet
(EGB) gravity while Ghosh et al. [15] discussed the
inhomogeneous gravitational collapse of a spherical dust
cloud in the same theory. Some asymptotically AdS black
hole solutions have also been found by [16–18] in EGB
gravity. Brassel et al. [19] recently studied the collapse of a
radiating shell in five-dimensional EGB gravity, and found
that the spacetime itself was inherently regular and the
collapse terminated with the formation of a black hole with
an extended and weak conical singularity. This is funda-
mentally different to the five-dimensional general relativity
counterpart. A brief recap of this is given in a later section.

A. This paper

In this paper, we will extend on the above notions and
consider higher-dimensional collapse in EGB gravity. We
will demonstrate that the dynamics of collapse are consid-
erably different than in the five-dimensional case. In the
following section of the paper, we provide a brief recap on
radiation collapse in arbitrary dimensions in the framework
of general relativity. In Sec. III we discuss N-dimensional
EGB gravity before giving a recap on radiating gravita-
tional collapse in five dimensions [19], in Sec. IV. The
following sections contain the main aspects of this paper.

Section V deals with higher-dimensional radiation shell
collapse in EGB gravity. We demonstrate that the end state
of collapse is a strong central curvature singularity, which is
different to the five-dimensional collapse model. A com-
parison is undertaken between the five-dimensional and
higher-dimensional models and plots are given for various
curvature invariants. Sections VI–VIII deal with the analy-
sis of the singularity, post collapse; whether naked singu-
larities form or not cannot be determined by the analysis,
i.e., cosmic censorship may or may not be violated. Finally,
a brief description and recap of collapse in higher-order
Lovelock gravity is given in Sec. IX.

II. RADIATION SHELL COLLAPSE IN HIGHER-
DIMENSIONAL GENERAL RELATIVITY

In N dimensions, the collapsing pure Vaidya metric is
given by

ds2 ¼ −
�
1 −

2mðvÞ
ðN − 3ÞrN−3

�
dv2

þ 2dvdrþ r2dΩ2
N−2; ð1Þ

with

dΩ2
N−2 ¼

XN−2

i¼1

�Yi−1
j¼1

sin2ðθjÞ
�
ðdθiÞ2:

In the above,mðvÞ is the gravitational mass of the body and
N ≥ 4. For this kind of matter, the energy momentum
tensor is given by

Tab ¼ μlalb; ð2Þ

where la ¼ δ0a. The vector la is in fact a double null
eigenvector of the energy momentum tensor (2). The only
field equation is thus

μ ¼ ðN − 2Þmv

rN−2 ; ð3Þ

where the subscript denotes differentiation with respect to
the temporal coordinate v. In order for the weak energy
condition to be satisfied, it is imperative that

∂mðvÞ
∂v ≥ 0: ð4Þ

Figure 1 depicts the continual contraction of an N-
dimensional radiation shell described by 0 ≤ v ≤ V0. With
regards to a proper spacetime matching, mð0Þ ¼ 0 in the
interior of the shell which implies that the region v < 0 is
Minkowski spacetime. The exterior of the radiation shell,
v > V0, is matched with an N-dimensional Schwarzschild
metric with the mass M ¼ mðV0Þ. The singularity of the
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spacetime is then located at (v ≥ 0, r ¼ 0). The
Kretschmann invariant (K ¼ RabcdRabcd) for (1) is given by

K ¼ 4
ðN − 1ÞðN − 2Þ2

N − 3

mðvÞ2
r2ðN−1Þ ; ð5Þ

which clearly diverges as K ≈ r−2Nþ2 at r ¼ 0. Hence, there
is a strong curvature singularity at the center of the fluid
distribution.
The apparent horizon forms when

�
1 −

2mðvÞ
ðN − 3ÞrN−3

�
¼ 0; ð6Þ

which is to say that the boundary of the trapped surface is
given by

r ¼
�
2mðvÞ
N − 3

� 1
N−3

: ð7Þ

The boundary of the trapped surface begins at the singular
point (v ¼ 0, r ¼ 0) and is extended outward into the
future where it is matched to the event horizon of the
Schwarzschild exterior spacetime. The singularities of
the Vaidya spacetime have been studied in detail by
Joshi [6,7] where it was shown that there exists a set of

open parameter spaces for the mass function, for which the
singular point (v ¼ 0, r ¼ 0) can be locally and globally1

naked. Mkenyeleye et al. [9] conducted a singularity
analysis for spacetimes in general dimensions where it
was shown that the dynamics of the collapse process are
affected by the presence of higher dimensions.

III. HIGHER-DIMENSIONAL EGB
GRAVITY THEORY

The purpose of this paper is to investigate the gravita-
tional collapse of radiating spacetimes in higher dimensions
in EGB gravity. The Gauss-Bonnet action in N dimensions
is given by

S ¼ −
1

16π

Z ffiffiffiffiffiffi
−g

p ½ðR − 2Λþ αLGBÞ�dNxþ Smatter; ð8Þ

which is a modified form of the Einstein-Hilbert action. In
the above, R is the Ricci scalar, α is the EGB coupling
constant and Λ is the cosmological constant.2 Additionally,
LGB is the Lovelock term, given by

LGB ¼ R2 þ RabcdRabcd − 4RcdRcd; ð9Þ

which is essentially the linear combination of quadratic
terms in curvature. Varying (8) with respect to the action
δS ¼ 0, yields the EGB field equations

Gab ¼ κTab; ð10Þ

where

Gab ¼ Gab −
α

2
Hab: ð11Þ

In the above, Gab is the Einstein tensor, Tab is the energy
momentum tensor and Hab is the Lanczos tensor which is
defined as

Hab ¼ gabLGB − 4RRab þ 8RacRc
b

þ 8RacbdRcd − 4RacdeRb
cde: ð12Þ

In the limit where α → 0, the Lanczos term vanishes and
Einstein gravity will be regained.

IV. RADIATION SHELL COLLAPSE IN FIVE-
DIMENSIONAL EGB GRAVITY

In this section, we will provide the essential results of the
work done in Brassel et al. [19]. Consider the following
metric

FIG. 1. Spacetime diagram of null shell collapse in N-dimen-
sional general relativity.

1Global naked singularities are indeed possible because geo-
desics can cross the final collapsing thin shell before the
formation of the apparent horizon.

2For the purposes of this work, Λ has been set to zero.
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ds2 ¼ −fðv; rÞdv2 þ 2dvdr

þ r2ðdθ2 þ sin2θdϕ2 þ sin2θsin2ϕdψ2Þ; ð13Þ

along with an energy momentum tensor of the null fluid,

Tab ¼ μ̃lalb;

which is similar to (2) in general relativity. Solving the
EGB field equations for this energy momentum tensor,
gives the following

fðv; rÞ ¼ 1þ r2

4α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16MðvÞα

r4

r �
; ð14Þ

where the function MðvÞ is itself a solution of the EGB
field equation

μ̃ ¼ 3

κr3
Mv: ð15Þ

This field equation with MðvÞ is the radiating Boulware-
Deser solution. Similar to the general relativity case, we
must have that

∂MðvÞ
∂v ≥ 0; ð16Þ

for the weak energy condition to be satisfied. By observing
(14), it can be seen that all of the metric functions are well
defined and regular at r ¼ 0, v ≥ 0, implying the absence of
a strong curvature singularity. Further to this notion, the
Kretschmann scalar is calculated as

K ¼ −
1

2αr4
ðr2 þ 16αMÞ−3½ð−r2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ 16αM

p
Þ2

× ð−7r12 − 2r10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ 16αM

p
− 184αr8M

− 2048α2r4M2 − 6144α3M3

þ 32αr6M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ 16αM

p
Þ�; ð17Þ

which diverges as K ≈ r−4, a much slower divergence than
the case (in any dimension) in general relativity. This
slower divergence, coupled with the fact that the metric
functions are all well defined at r ¼ 0, v ≥ 0, is indicative
of a spacetime singularity which is conical and weak in
nature.
In order to gauge the dynamics of the boundary of the

trapped region, we let

fðv; rÞ ¼ 0;

which is

1þ r2

4α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16αMðvÞ

r4

r �
¼ 0: ð18Þ

Solving for the radius r we find

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MðvÞ − 2α

p
: ð19Þ

The implication here is that for v ∈ ½0;M−1ðαÞ�, the conical
singularity at the center (r ¼ 0) remains naked, before
succumbing to the trapping horizon. If we consider Fig. 2,
where MðvÞ ¼ λv, it can be observed that matter, which is
radiating, is falling into a five-dimensional regular black
hole. Within the region 0 < v < α

λ, there is no trapping
horizon of any kind covering the conical singularity, as the
Gauss-Bonnet constant α is delaying its formation. The
apparent horizon finally begins to form at v ¼ α

λ and
encloses a region of trapped and null compact surfaces
which fall into the black hole within α

λ < v < V0. At v ¼
V0 a single event horizon separates the exterior 5-D
Boulware-Deser vacuum from the trapped surfaces at
r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2λv − 2α
p

. Beyond this final event horizon is a black
hole with a weak conically central singularity.

A. Generalized Boulware-Deser collapse
in five dimensions

It is important to note that the collapse dynamics of the
Boulware-Deser spacetime do not change in the general
setting, i.e., when the spacetime is radiating and inhomo-
geneous. If we allow the mass function to depend on both
the temporal coordinate v and the radius of the star r
[20,21], we have the metric

FIG. 2. Spacetime diagram of null shell collapse in five-
dimensional EGB gravity.
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ds2 ¼ −fðv; rÞdv2 þ 2dvdr

þ r2ðdθ2 þ sin2θdϕ2 þ sin2θsin2ϕdψ2Þ; ð20Þ

with

fðv; rÞ ¼ 1þ r2

4α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16Mðv; rÞα

r4

r �
: ð21Þ

The energy momentum tensor for this two-component fluid
distribution is given by

Tab ¼ μ̃lalb þ ðρ̃þ PÞðlanb þ lbnaÞ þ Pgab; ð22Þ

where

la ¼ δ0a;

na ¼
1

2

�
1þ r2

4α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16Mα

r4

r ��
δ0a þ δ1a:

In the above lclc ¼ ncnc ¼ 0 and lcnc ¼ −1. The EGB
field equations Ga

b ¼ κTa
b are thus, in general, given by

μ̃ ¼ 3

κr3
Mv; ð23aÞ

ρ̃ ¼ 3

κr3
Mr; ð23bÞ

P ¼ −
1

κr2
Mrr; ð23cÞ

with the three energy conditions
(i) The weak and strong energy conditions:

μ̃ ≥ 0; ρ̃ ≥ 0; P ≥ 0 ðμ̃ ≠ 0Þ: ð24Þ

(ii) The dominant energy condition:

μ̃ ≥ 0; ρ̃ ≥ P ≥ 0 ðμ̃ ≠ 0Þ: ð25Þ

Similar to the purely radiating case, there does exist an
open set of mass functions Mðv; rÞ for which the continual
gravitational contraction of the spacetime will terminate
with the formation of a weak conical singularity at the
center of the black hole. Added to this, there will be no
violation of any of the energy conditions, and the singu-
larity can possibly be resolved via an extension of the
spacetime manifold. The trapping horizon is delayed in its
formation due to the nonzero Gauss-Bonnet coupling
constant α, however it eventually does form, covering
the weak central conical singularity within the confines of a
regular black hole.

V. HIGHER-DIMENSIONAL RADIATION SHELL
COLLAPSE IN EGB GRAVITY

The collapse dynamics of null radiation differs with the
presence of higher dimensions. It turns out that in dimen-
sions N > 5, the gravitational contraction of the Boulware-
Deser spacetime always terminates at a strong curvature
singularity contained within a black hole. The N-dimen-
sional purely radiating Boulware-Deser metric is written as

ds2 ¼ −fðv; rÞdv2 þ 2dvdrþ r2dΩ2
N−2; ð26Þ

with the (N − 2)-sphere

dΩ2
N−2 ¼

XN−2

i¼1

�Yi−1
j¼1

sin2ðθjÞ
�
ðdθiÞ2;

and where

fðv; rÞ ¼ 1þ r2

2α̂

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8α̂

N − 3

�
2MðvÞ
rN−1

�s �
: ð27Þ

In the above expression we have set α̂ ¼ αðN − 3ÞðN − 4Þ
for convenience. The metric (26) is singular for all N > 5.
The calculation of the Kretschmann invariant in general
dimensions is a complicated endeavor, however we can
perform a second-order.3 Taylor expansion on (27) about α
(where αM

rN−1 ≪ 1) to acquire

fðv; rÞ ¼ 1 −
�

4

N − 3

�
MðvÞ
rN−3

þ
�

16α̂

ðN − 3Þ2
�
MðvÞ2
r2N−4 : ð28Þ

In dimensions N ¼ 6 and N ¼ 7, we found that K ≈ r−20

and K ≈ r−24, respectively, which is indicative of a very
strong divergence; significantly faster than the five-
dimensional case (K ≈ r−4). Figures 3–5 depict the behav-
ior of the various curvature invariants in dimensions
N ¼ 6 and N ¼ 7. For these plots, we have chosen
α ¼ 2 and MðvÞ ¼ 5.
We also provide in Table I some key differences in the

collapse of the Boulware-Deser spacetime between the case
N ¼ 5 and the cases N > 5.
The apparent horizon forms when

fðv; rÞ ¼ 0; ð29Þ

which implies that

3The reason we expand up to second order is that EGB gravity
is a second-order theory, and so there is no real information loss
with regards to the omission of higher-order terms.
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1þ r2

2α̂

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8α̂

N − 3

�
2MðvÞ
rN−1

�s �
¼ 0: ð30Þ

It is important to note that if the dimensions exceed five,
fðv; rÞ tends to infinity. The above equation has no explicit

solution for r unless the dimension N is specified, however,
we can write it as

4MðvÞ
N − 3

¼ rN−5ðα̂þ r2Þ: ð31Þ

If we allow MðvÞ ¼ λv as presented earlier, the above
equation becomes

4λv
N − 3

¼ rN−5ðα̂þ r2Þ: ð32Þ

It is now clear that whenever r ¼ 0, we will have v ¼ 0
unlike in the five-dimensional scenario. Therefore the
apparent horizon begins to form at r ¼ v ¼ 0, for all
N > 5. The presence of the Gauss-Bonnet constant α
has no affect on the collapse and further, does not
delay the horizon formation, as was evident in the five-
dimensional case. Also, when α ¼ 0 this case mirrors the
higher-dimensional general relativity collapse; gravitational

FIG. 4. Log-log plot indicating the behavior of the Ricci tensor
squared.

FIG. 5. Log-log plot demonstrating the divergence of the Weyl
tensor squared.

TABLE I. Comparison between Boulware-Deser spacetimes.

Spacetime dimensions N ¼ 5 N > 5

Regularity Yes No
Kretschmann scalar Divergent Divergent

K ≈ r−4 K ≈ r−20 (N ¼ 6)
K ≈ r−24 (N ¼ 7)

Other diffeomorphism
invariants

All divergent All divergent

Singularity existence Yes Yes
Singularity type Conical Curvature
Singularity strength Weak Very strong

FIG. 3. Log-log plot showing the behavior of the Kretschmann
scalar.

FIG. 6. Spacetime diagram of null shell collapse in N-dimen-
sional EGB gravity.
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collapse ceases with a black hole containing a strong
curvature singularity.
Figures 6 and 7 depict radiating matter falling into a

singular black hole in (N > 5) dimensions. The apparent
horizon forms immediately at r ¼ v ¼ 0 (unlike in the
five-dimensional case) and encloses trapped surfaces in a
compact region for 0 < v < V0. At a time v ¼ V0 the
apparent and event horizons match smoothly to form one
trapping horizon at 4λv

N−3 ¼ rN−5ðα̂þ r2Þ separating the
exterior vacuum Boulware-Deser metric from the trapped
surfaces within the black hole, inside of which is a strong
central curvature singularity.

VI. COLLAPSE MODEL:
SINGULARITY ANALYSIS

We will now examine the gravitational contraction of
higher-dimensional matter and radiation described by the
Boulware-Deser spacetime; a thick shell of type I and
type II matter [so M ¼ Mðv; rÞ] collapses at the centre of
symmetry in a universe which can be considered empty and
asymptotically flat at great distances [6]. If Ka is as the
tangent to nonspacelike geodesics where we have Ka ¼ dxa

dk

(k is the affine parameter), then Ka
;bKb ¼ 0 and

gabKaKb ¼ B; ð33Þ

where B is a constant which delineates different classes of
geodesics. Timelike geodesics are characterized by B < 0
while vanishing B is applicable to null geodesics. The
quantities dKv

dk and dKr

dk are calculated from the Euler-
Lagrange equations

∂L
∂xa −

d
dk

�∂L
∂ _xa
�

¼ 0; ð34Þ

where the Lagrangian is given by

L ¼ 1

2
gab _xa _xb: ð35Þ

For the higher-dimensional Boulware-Deser spacetimes,
these equations are given by
v-component:

dKv

dk
−
1

2

"
r
α̂

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8α̂

N − 3

�
2M
rN−1

�s !

−
r2

4α̂

�
8α̂

N − 3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8α̂

N − 3

�
2M
rN−1

�s −1!

×

��
2M0

rN−1

�
þ 2

�
1 − N
rN

M

��#
ðKvÞ2

þ r
XN−2

i¼1

�Yi−1
j¼1

sin2ðθjÞ
�
ðKθiÞ2 ¼ 0: ð36Þ

r-component:

dKr

dk
−
�

8α̂

N − 3

��
_M

2α̂rN−3

�
ðKvÞ2

þ
"
r
α̂

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8α̂

N − 3

�
2M
rN−1

�s !

−
r2

4α̂

�
8α̂

N − 3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8α̂

N − 3

�
2M
rN−1

�s −1!

×

��
M0

rN−1

�
þ 2

�
1 − N
rN

M

��#

× ½fðv; rÞðKvÞ2 − 2KvKr�

þ fðv; rÞr
XN−2

i¼1

�Yi−1
j¼1

sin2ðθjÞ
�
ðKθiÞ2 ¼ 0; ð37Þ

where fðv; rÞ is given, as before, by

fðv; rÞ ¼ 1þ r2

2α̂

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8α̂

N − 3

�
2Mðv; rÞ
rN−1

�s !
:

θi-components:

dKθi

dk
þ 2

r
KrKθi þ

XN−2

i¼1

�Yi−1
j¼1

cotðθjÞ
�
ðKθiÞ2 ¼ 0: ð38Þ

Following [5] we can write

Kv ¼ P
r
; ð39Þ

where P ¼ Pðv; rÞ is an arbitrary function. Noting that
B ¼ gabKaKb, we have

FIG. 7. Penrose diagram of null shell collapse inN-dimensional
EGB gravity.
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Kv ¼ dv
dk

¼ P
r
; ð40aÞ

Kr ¼ dr
dk

¼ fðv; rÞ P
2r

þ Br
2P

−
l

2rP
: ð40bÞ

In the above, l is the impact parameter.

VII. CONDITIONS FOR A LOCALLY
NAKED SINGULARITY

We now analyze how the final end state of gravitational
collapse of the higher-dimensional Boulware-Deser space-
time is determined in terms of either a black hole or a naked
singularity. The singularity forming as the final state of
collapse will be naked if there are families of future-
directed nonspacelike trajectories reaching observers suffi-
ciently far away in spacetime, which then terminate in the
past at the singularity. If no such trajectories exist and an
event horizon forms at a time which is sufficiently early, the
collapse terminates with a black hole. The equation for null
geodesics for the spacetime (26) is given by the following

dv
dr

¼ 2

1þ r2
2α̂

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8α̂

N−3 ð2Mðv;rÞ
rN−1 Þ

q � : ð41Þ

The above equation has a singularity ∀N > 5 at v ¼ 0
and r ¼ 0, and its causal nature can be analyzed by utilizing
the techniques associated with differential equation theory

[22–24]. For the purpose of the following analysis, it is
prudent to write Eq. (41) in the following form

dv
dr

¼ 2

1 − ð 4
N−3ÞMðv;rÞ

rN−3 þ ð 16α̂
ðN−3Þ2Þ

Mðv;rÞ2
r2N−4

; ð42Þ

where we have made use of the earlier Taylor expanded
form of the metric (28). Equation (42) can be written in the
separable form

dv
dr

¼ Aðv; rÞ
Cðv; rÞ ; ð43Þ

with the singularity at v ¼ r ¼ 0, where the functions A and
C vanish. If v ¼ r ¼ 0, at the singularity, we can define the
following

M0 ¼ lim
v→0
r→0

Mðv; rÞ; ð44aÞ

_M0 ¼ lim
v→0
r→0

∂
∂vMðv; rÞ; ð44bÞ

M0
0 ¼ lim

v→0
r→0

∂
∂rMðv; rÞ; ð44cÞ

then Eq. (42) can be written, after a lengthy calculation,
near the singularity point as

dv
dr

¼ ð4N − 8Þr2N−4

ð2N − 4Þr2N−4 − ð4ðN−1Þ
N−3 ÞM0rN−1 þ ð 32α̂

ðN−3Þ2 M0 − 4
N−3 r

N−1ÞðM0
0rþ _M0vÞ

; ð45Þ

utilizing the techniques found in [8,22,24].

A. Existence of outgoing nonspacelike geodesics

If we let X be the tangent to the radial null geodesic, i.e.,
if we let X be a limiting value at v ¼ r ¼ 0, the nature
of this limiting value on a singular geodesic can be
determined as

X0 ¼ lim
v→0
r→0

X ¼ lim
v→0
r→0

v
r
: ð46Þ

If we use a suitable mass function, Eq. (45) and l’Hospital’s
rule, an explicit expression can be found for X0 which will
govern the behavior of the null geodesics in the vicinity of
the singularity. This expression can be calculated as

X0 ¼ lim
v→0
r→0

dv
dr

¼ lim
v→0
r→0

� ð4N − 8Þr2N−5

ð2N − 4Þr2N−5 − ð4ðN−1Þ
N−3 ÞM0rN−2 þ ð 32α̂

ðN−3Þ2 M0 − 4
N−3 r

N−1ÞðM0
0 þ _M0X0Þ

�
: ð47Þ

Evaluation of the limits in the above equation it reduces significantly; at the singularity v ¼ r ¼ 0 it becomes

X2
0 þ

M0
0

_M0

X0 ¼ 0: ð48Þ

The nature of the singularity can hence be determined by analyzing the solution to the above algebraic equation which is
valid for all spacetime dimensions greater than five.
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B. Apparent horizon

The apparent horizon is one boundary of the trapped
surface region within a given spacetime. As calculated
earlier, it is defined for the higher-dimensional Boulware-
Deser spacetime by

4Mðv; rÞ
N − 3

¼ rN−5ðα̂þ r2Þ: ð49Þ

Therefore, the slope of the apparent horizon is calculated in
the following way

½2M�0 ¼
�
ðN − 3Þ α̂

2
rN−5 þ 1

2
ðN − 3ÞrN−3

�0
; ð50aÞ

2
∂M
∂v
�
dv
dr

�
AH

þ 2
∂M
∂r ¼

�
ðN − 3Þ α̂

2
rN−5

þ 1

2
ðN − 3ÞrN−3

�0
: ð50bÞ

The slope of the apparent horizon at the central singu-
larity is then given by

XAH ¼
�
dv
dr

�
AH

¼ lim
v→0
r→0

�
α̂ðN − 3ÞðN − 5ÞrN−6

4 _M0

þ ðN − 3Þ2rN−4 − 4M0
0

4 _M0

�
: ð51Þ

Evaluating the limits above, reduce the slope of the
apparent horizon to the following

�
dv
dr

�
AH

¼ −
M0

0

_M0

: ð52Þ

C. Sufficient conditions

We are now in a position to state the sufficient conditions
for the existence of a locally naked central singularity for a
collapsingBoulware-Deser spacetime for dimensionsN > 5.
Proposition 1: Consider a collapsing generalized

Boulware-Deser spacetime from a regular epoch with
dimensions N > 5, and a mass function Mðv; rÞ satisfying
all physically reasonable energy conditions, and is at least
C2. If the following are satisfied:
(1) The limits of the partial derivatives of the mass

function Mðv; rÞ exist at the central singularity, and
obey the conditions:

32α̂

ðN − 3Þ2 M0M0
0 ≥ 0; _M0 > 0;

(2) There exist one or more roots (positive and real) X0

to the equation

X2
0 þ

M0
0

_M0

X0 ¼ 0;

(3) At least one of the positive and real roots is less than�
dv
dr

�
AH

¼ −
M0

0

_M0

;

at the central singularity,
then the singularity is locally naked with outgoingC1 radial
null geodesics escaping to the future.

VIII. COSMIC CENSORSHIP

Utilizing the results of the previous sections we will now
show that a naked singularity may or may not be possible
in any dimension greater than five for the generalized
Boulware-Deser spacetime. In order to demonstrate this we
consider (48), which is a second order algebraic equation in
X0. It admits two solutions, namely the trivial solution

X0 ¼ 0;

and

X0 ¼ −
M0

0

_M0

:

The latter solution may be valid if one of _M0 or M0
0 is

negative (in which case, M0 itself is negative), which
cannot happen, by point 1 in Proposition 1. Thus, the
solution is real but negative and can only validate
Proposition 1 if the original mass function is negative,
which is impossible for any spacetime containing matter.
Therefore, for all N > 5 and for any positive and real mass
function Mðv; rÞ, Proposition 1 will never be satisfied.
With this, it is not possible to determine whether naked
singularities are possible in any dimensions higher than
five, since the conditions stated in Proposition 1 are only
sufficient conditions.
This scenario differs from the general relativity counter-

part since the dimensions here, play no role in how the
collapse ensues and terminates; the above solutions are
independent of dimensions entirely and hold for all N > 5.
This is another fundamental distinction between EGB
gravity and conventional relativity.
We can finally use the above to state the following:
Consider a collapsing generalized N-dimensional

Boulware-Deser spacetime from a regular epoch with
N > 5, and a positive and real mass function Mðv; rÞ
satisfying all physically reasonable energy conditions,
and is at least C2 (or equivalently C∞). The final outcome
of gravitational collapse is a strong curvature singularity
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which may be covered within the confines of a stellar-mass
black hole.

IX. HIGHER-ORDER LOVELOCK GRAVITY

Higher order theories of gravity have been the subject of
much study. To modify general relativity, nonlinear forms
of the Riemann and Ricci tensor, and the Ricci scalar were
introduced. The second order equations of motion resulting
from linear forms is advantageous in four dimensions;
however as shown by Lovelock [25,26] it is possible to
introduce a polynomial form of the Lagrangian which is of
quadratic order (EGB gravity) or cubic order and so on.
Static solutions for black holes in higher-order theories
were obtained by Charmousis [27]. The action in Lovelock
gravity is given by

S ¼
Z

dNx
ffiffiffiffiffiffi
−g

p XN=2

k¼0

αkRk þ Smatter; ð53Þ

where we have

Rk ¼ 1

2k
δc1d1…ckdk
a1b1…akbk

Yk
r¼1

Rarbr
crdr ;

and δc1d1…ckdk
a1b1…akbk

is the Kronecker delta. In this paper, we have
considered Einstein-Gauss-Bonnet gravity, which is sec-
ond-order Lovelock gravity. If we now consider third-order
Lovelock gravity, the above action (53) reduces to

S ¼
Z

dNx
ffiffiffiffiffiffi
−g

p ðα0 þ α1Rþ α2R2 þ α3R3Þ; ð54Þ

where α0 is the cosmological term, α1 is the constant
(usually unity) associated with the Einstein-Hilbert action
(R ¼ R), α2 and α3 are constants associated with the
second order (Gauss-Bonnet) and third order Lovelock
terms. In the above, R2 ¼ LGB as before and

R3 ¼ R3 þ 2RabcdRcdefRef
ab

þ 8Rab
ceRcd

bfRef
ad þ 24RabcdRcdbeRe

a

þ 3RRabcdRcdab þ 24RabcdRcaRdb

þ 16RabRbcRc
a − 12RRabRab; ð55Þ

is the third-order Lovelock Lagrangian. Varying the action
with respect to the metric gab gives the Einstein-Gauss-
Bonnet-Lovelock field equations

GE
ab þ α2HGB

ab þ α3H
ð3Þ
ab ¼ Tab; ð56Þ

whereGE
ab is the Einstein tensor,H

GB
ab is the Lanczos tensor

given by (12) and

Hð3Þ
ab ¼ −3ð4RfecdRcdgeRg

bfa

− 8Rfe
gcRcd

faRg
bed þ 2Rb

fcdRcdgeRge
fa

− RfecdRcdfeRba þ 8Rf
bceRcd

faRe
d

þ 8Rc
bfdRfe

caRd
e þ 4Rb

fcdRcdaeRe
f

− 4Rb
fcdRcdfeRe

a þ 4RfecdRcdfaRbe

þ 2RRb
dfeRfeda þ 8Rf

baeRe
cRe

f

− 8Rc
bfeRf

cRe
a − 8Rfe

caRc
fRbe

− 4RRf
baeRe

f þ 4RfeRefRba

− 8Rf
bRfeRe

a þ 4RRbeRe
a

− R2RbaÞ −
1

2
R3gab: ð57Þ

The nontriviality of the above expression requires that the
dimension of the spacetime in third-order Lovelock gravity
has to satisfy N ≥ 7. The field equations of third-order
Lovelock gravity in seven dimensions are the most general
second-order differential equations which produce the
solutions of gravity. For orders of four (and higher), the
field equations will cease to be second-order.
Asymptotically flat, static solutions which represented

black holes with inner and outer horizons were found by
Dehghani and Shamirzaie [28] in third-order Lovelock
gravity. They found that these solutions do not exist in
general relativity and Einstein-Gauss-Bonnet gravity and
were only prevalent in this theory. They further computed
the entropy, temperature as well as other quantities,
including the mass of the black hole solutions. Ghosh et al.
[29] studied black hole solutions and their temperature in a
cloud string back ground in Einstein, Einstein-Gauss-
Bonnet and third-order Lovelock gravity. The presence
of the higher-order curvature corrections greatly affects the
thermodynamics of the black hole solutions. It must be
emphasized that these solutions were also static solutions
and, as it stands, there are no radiating solutions of any kind
in third-order Lovelock gravity. The collapse analysis of
radiating shells undertaken in the earlier sections of this
paper could, in principle, be possible should a radiating
solution be found in third-order Lovelock gravity.

X. DISCUSSION

In this paper, we extended the analysis of radiating shell
collapse in five-dimensional EGB gravity [19] to arbitrary
dimensions. We first provided brief descriptions of five-
dimensional collapse in general relativity and EGB gravity.
We then found that in higher dimensions, the collapse of
the radiating Boulware-Deser spacetime ceases with a
strong central curvature singularity, a fundamentally differ-
ent outcome from the five-dimensional case. Various plots
were given for various curvature scalars and a table was
provided to show the comparison between five-dimensional
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and higher-dimensional contraction. A singularity analysis
was undertaken in full and sufficient conditions for the
formation of a naked singularity were developed. We then
showed that these conditions can never be satisfied for any
positive and real mass function, and therefore, it is not
possible to show that a naked singularity forms upon the
cessation of gravitational collapse. This is fundamentally
different to the higher-dimensional general relativity cases,
where the dimensions themselves affected the dynamics
and the end states of collapse.
We can therefore conclude that the notion of higher-

order curvature indicative of a modified gravitation theory
like EGB gravity, plays a significant role in the dynamics as

well as the gravitational collapse of a radiating spacetime.
In this case, the nature of cosmic censorship is affected by
higher-order theories.
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