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Abstract We derive the junction conditions for a general
spherically symmetric radiating star with an electromagnetic
field across a comoving surface. The interior consists of
a charged composite field containing barotropic matter, a
null dust and a null string fluid. The exterior atmosphere is
described by the generalised Vaidya spacetime. We generate
the boundary condition at the stellar surface showing that the
pressure is determined by the interior heat flux, anisotropy,
null density, charge distribution and the exterior null string
density. A new physical feature that arises in our analysis is
that the surface pressure depends on the internal charge dis-
tribution for generalised Vaidya spacetimes. It is only in the
special case of charged Vaidya spacetimes that the matching
interior charge distribution is equal to the exterior charge at
the surface as measured by an external observer. Previous
treatments, for neutral matter and charged matter, arise as
special cases in our treatment of composite matter.

1 Introduction

Electromagnetic effects are important in the modeling of
compact objects in general relativity. It has been demon-
strated that the presence of charge affects the rate of gravita-
tional collapse, luminosities, stellar masses and other phys-
ical features. Some recent examples of charged static stars
and their interesting properties are given in [1–6]. In radiat-
ing stars, the radial pressure at the stellar boundary is non-
vanishing [7–10]. As a result, in the modeling of a charged
radiating stellar structure, an additional differential equation
has to be solved, in addition to the field equations. This adds
to the complexity of the modeling process; fewer exact mod-
els of radiating stars are known with electromagnetic fields.
An expansion-free radiating body was developed by Sharif
and Azam [11]. A geodesic stellar body in the presence of
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the electromagnetic field was generated by Ivanov [12] and
Mahomed et al. [13]. Also, the condition for vanishing shear
was made by Charan et al. [14], and the shear-free condition
has been investigated in different physical scenarios [15–
17]. Particular models are known which have nonzero shear
[18–21]. Abebe and Maharaj [22] found charged radiating
stars using Lie symmetry infinitesimal generators to exactly
solve the boundary condition. This class of models admits a
linear equation of state and contains Euclidean stars in the
uncharged limit [23,24]. A general formalism for studying
charged physically acceptable dissipating bodies with spher-
ical symmetry was undertaken in several treatments [25–28]
where the dynamical equations were analysed in relation to
dissipative phenomena.

The matching of general hypersurfaces was considered by
Mars and Senovilla [29] and Fayos et al. [30] in general rel-
ativity. Olmo and Rubiera-Garcia [31] and Yousaf [32,33]
studied the matching conditions in f (R) gravity theories.
Mena and Oliveira [34] considered the collapse of a gravita-
tional body and the formation of trapped surfaces with dif-
ferent topologies. Our principle interest is matching across a
comoving surface in spherical symmetry. The junction condi-
tions for an uncharged radiating star in general relativity were
completed by Santos [35] for a shear-free matter distribution.
De Oliveira et al. [36] extended this result to include electric
charge. Tikekar and Patel [37], Banerjee and Choudury [38],
and Maharaj and Govender [39] considered nonzero shear
viscosity and found the generalised junction conditions with
an electromagnetic field. In a recent treatment, the match-
ing of a composite matter distribution (a combination of a
barotropic fluid, null dust and a null string) to the gener-
alised Vaidya atmosphere was considered by Maharaj and
Brassel [40]. Remarkably, matching across a comoving sur-
face is possible with a composite matter distribution. The
pressure at the boundary is determined by physical matter
variables from both the interior of the star and the exterior
stellar atmosphere. Consequently the radiating star allows
for more general and omnifarious physical behaviour. This
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physical feature is not present in previous investigations. The
results of Santos [35] with interior heat flux, Di Prisco et al.
[41] with interior null fluid, and Maharaj et al. [42] with the
exterior null string, arise as special cases in the generalised
treatment [40].

The boundary condition at the stellar surface in [40] was
generated for an uncharged composite matter source. As the
electromagnetic field is an important ingredient in astrophys-
ical phenomena, it is necessary to consider the junction con-
ditions with charge. In this study we extend the results of [40]
to find the junction conditions with charge across a comoving
hypersurface. We find that the interior general matter distri-
bution, including the electromagnetic field, matches to an
external generalised stellar atmosphere, i.e. the generalised
Vaidya metric. This means that we can match a radiating stel-
lar interior with a barotropic fluid, null dust, null string and
an electric field, to an external stellar atmosphere described
by the generalised Vaidya spacetime. This feature should be
incorporated in astrophysical models of radiating stars for
a complete description of gravitating effects. Earlier results
are regained as special cases from the generalised junction
conditions found in this paper.

We utilise units in which G = c = 1. The coupling con-
stant in Einstein’s equations then becomes κ = 8π . The four-
dimensional spacetime manifolds have Lorentzian signature
(−,+,+,+).

2 Einstein–Maxwell equations and junction conditions

The full energy momentum tensor is written as

Tab = (ρ + p)uaub + pgab + qaub + qbua

+εlalb + (μ + P)(lanb + lbna)

+Pgab + πab + Eab. (1)

This matter distribution describes the composite matter pro-
file in the interior of the stellar body. In the above, ρ is the
energy density, p is the isotropic pressure, ε is the energy den-
sity of the internal null dust, μ is the null string energy density
and P is the pressure of the internal null fluid. The vectors
l and n are null. The tensor πab represents the anisotropic
stresses. The timelike vectors q and u represent the heat flux
and fluid velocity respectively. These quantities satisfy

uaua = −1, uaqa = 0,

lala = nana = 0, lan
a = −1,

πabu
a = 0, πa

a = 0.

The quantity Eab defines the electromagnetic energy tensor
which represents the contribution of charge.

The energy momentum tensor (1) may be used to describe
the matter distribution of a radiating star with a generalised
atmosphere. One of the first analytical models for a barotropic
fluid with heat conduction was found by Kolassis et al. [43]
which has a Friedmann-like behaviour within the interior.
The electromagnetic field was introduced to the matter field
by de Oliveira and Santos [36], and later a model for a star
with viscosity, shear and charge was presented by Sharif
and Azama [44]. The relevance of anisotropy in the mat-
ter distribution was emphasised by Herrera and Santos [45],
and an analytical anisotropic model was generated by Naidu
et al. [46]. The energy momentum tensor may also contain
the energy density of a null dust fluid as shown in Herrera
et al. [47] in a stellar setting. This result was extended by
Maharaj et al. [42] so that the external matter field is a
combination of null dust and a null string fluid. The sig-
nificance of multi-component fluids was highlighted in [45]
and these can be attributed to magnetic fields, mixtures of
gases (hydrogen, ionized hydrogen and electrons), rotational
effects, anisotropic velocity distributions, and net radiation
flows entering or leaving the stellar atmosphere. An explicit
model of a two-fluid star in general relativity undergoing
dissipative collapse was found by Govender [48]. The matter
distribution (1) includes all these physical effects.

The Einstein–Maxwell equations are given by

Gab = 8πTab, (2a)

Fab;c + Fbc;a + Fca;b = 0, (2b)

Fab;b = 4π Ja, (2c)

where G is the Einstein tensor, T is the energy momentum
tensor, F is the Faraday tensor (or Maxwell bivector) and J
is the current. We can define

Fab = �b;a − �a;b, (3)

where �a is the electromagnetic potential, and

Ja = ζua, (4)

where ζ is the proper charge density. The electromagnetic
energy tensor can be written in terms of the Faraday tensor
(3) as

Eab = 1

4π

(
Fa

cFbc − 1

4
Fcd Fcdgab

)
. (5)

It is important to note that (5) is trace-free. The various quan-
tities defined above hold in four spacetime dimensions.

The field equations (2) are valid for the interior matter
distribution in the spacetime manifold M−. Matching has
to take place across a comoving surface � to an exterior
geometry and matter distribution in the spacetime manifold
M+, via the embedding maps 	± : �± −→ M± and
ξ i± �→ xa± = 	 i±(ξ i±). If we consider the two bulk space-
time manifolds M− and M+, the junction conditions for
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the matching of these two spacetimes over a comoving sur-
face � are given by

(ds2−)�− = (ds2+)�+ = ds2
�, (6a)

K−
i j = K+

i j = Ki j
∣∣
�

, (6b)

where

K±
i j ≡ −N±

a
∂2χa±

∂ξ i±∂ξ
j
±

− N±
a a

bc
∂χb±
∂ξ i±

∂χc±
∂ξ

j
±

. (7)

In the above a
bc are the Christoffel symbols of the sec-

ond kind and N±
a (χb±) are the unit vectors normal to the

boundary �. The coordinates of the spacetimes are written
as χa± = χa±(ξ i±); these are expressed as functions of the
intrinsic coordinates ξ i , that define the boundary surface �,
embedded in the higher dimensional bulk spaces M±. For
further details on the matching of two spacetimes M− and
M+, see the treatments of Santos [35], Herrera and Santos
[45], Israel [49], O’Brien and Synge [50] and Lichnerowicz
[51].

3 The model

We develop the model of a composite radiating star in general
relativity in four dimensions.

3.1 Interior spacetime

We consider the interior spacetime M− to be the general
shearing metric, given by

ds2− = −A2dt2 + B2dr2 + Y 2(dθ2 + sin2 θdφ2), (8)

where the metric functions A = A(r, t), B = B(r, t) and
Y = Y (r, t). The fluid four-velocity u is comoving. The
kinematical quantities are

ωab = 0, (9a)

aa =
(

0,
A′

A
, 0, 0

)
, (9b)

� = 1

A

(
Ḃ

B
+ 2

Ẏ

Y

)
, (9c)

σ 1
1 = σ 2

2 = −1

2
σ 3

3 = 1√
3A

(
Ẏ

Y
− Ḃ

B

)
, (9d)

where we have that ωab is the vorticity tensor, aa is the fluid
four-acceleration, � is the expansion invariant and σ 2 =
1
2σ abσab is the magnitude of the shear. The shear-free line
element can be regained when

Ẏ

Y
− Ḃ

B
= 0,

using (9d) or alternatively when Y = r B.

The anisotropic stress tensor πab is defined as

πab = �

(
NaNb − 1

3
hab

)
. (10)

In the above, the quantity � = p|| − p⊥ is the degree of
anisotropy. We have that p|| is the radial pressure, p⊥ is
the tangential pressure and Na is a unit radial vector. The
quantity hab = gab + uaub is the projection tensor. The
isotropic pressure

p = 1

3
(p|| + 2p⊥), (11)

relates the radial pressure and the tangential pressure. We
regain the isotropic pressure p = p|| = p⊥, when � = 0.

We follow the notation and treatment of Ellis [52] and Ellis
et al. [53] in the definition of the energy momentum tensor
(1). Observe that p = 1

3h
abTab is the isotropic (relativistic)

pressure and πab is the stress tensor due to viscosity. With
the definition (10) we find that we can obtain the equivalent
expression

(ρ + p)uaub + pgab + πab

= (ρ + p⊥)uaub + p⊥gab + (
p|| − p⊥

)NaNb, (12)

with � = p|| − p⊥. The expression (12) is the form that is
often used in the description of anisotropic fluids as pointed
out in references [41,45]. For more discussions on this point
and a derivation, see Herrera and Santos [45] (in particular
page 60) and [54]. We have followed this notation so that
our results can easily be compared with earlier treatments, as
shown later. Our approach has the advantage of regaining the
special case of vanishing anisotropy � = 0 in a transparent
manner. In particular we regain the seminal result of Santos
[35] for nonadiabatic radiating collapse with p|| = p⊥ = p.

The four-vectors associated with the interior matter dis-
tribution are given by

ua =
(

1

A
, 0, 0, 0

)
, qa =

(
0,

1

B
q, 0, 0

)
,

la =
(

1

A
,

1

B
, 0, 0

)
, na =

(
1

2A
,

1

2B
, 0, 0

)
,

�a = (ϕ(r, t), 0, 0, 0), N a =
(

0,
1

B
, 0, 0

)
,

for the metric (8).
From the system (2), we have

ϕ′′ −
(
A′

A
+ B ′

B
− 2

Y ′

Y

)
ϕ′ = 4πζ AB2, (13a)

ϕ̇′ −
(
Ȧ

A
+ Ḃ

B
− 2

Ẏ

Y

)
ϕ′ = 0, (13b)
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for the electromagnetic field. Integrating (13b) yields

ϕ′ = AB

Y 2 Q(r), (14)

and substituting this into (13a) gives the condition on Q(r)
as

Q(r) = 4π

∫ r

ζ BY 2dr̄ , (15)

which is the conserved total charge contained in the star,
since Ja ;a = 0. Thus the expressions (14) and (15) close the
system (13). The nonzero components of (1) are then given
by

T−
00 = A2

(
ρ + ε + μ + 1

8π

Q2

Y 4

)
, (16a)

T−
01 = −AB(q + ε), (16b)

T−
11 = B2

(
p + ε − μ + 2

3
� − 1

8π

Q2

Y 4

)
, (16c)

T−
22 = Y 2

(
p + P − 1

3
� + 1

8π

Q2

Y 4

)
, (16d)

T−
33 = sin2 θT22, (16e)

where we have utilised (10), (14) and (15). The nonvanishing
components of the Einstein tensor Gab = Rab − 1

2 Rgab are
given by

G−
00 = 2

ḂẎ

BY
+ A2

Y 2 + Ẏ 2

Y 2

− A2

B2

(
2
Y ′′

Y
+ Y ′2

Y 2 − 2
B ′Y ′

BY

)
, (17a)

G−
01 = 2

(
− Ẏ ′

Y
+ ḂY ′

BY
+ A′Ẏ

AY

)
, (17b)

G−
11 = B2

A2

(
−2

Ÿ

Y
− Ẏ 2

Y 2 + 2
ȦẎ

AY

)

+Y ′2

Y 2 + 2
A′Y ′

AY
− B2

Y 2 , (17c)

G−
22 = −Y 2

A2

(
B̈

B
− Ȧ Ḃ

AB
+ ḂẎ

BY
− ȦẎ

AY
+ Ÿ

Y

)

+Y 2

B2

(
A′′

A
− A′B ′

AB
+ A′Y ′

AY
− B ′Y ′

BY
+ Y ′′

Y

)
, (17d)

G−
33 = sin2 θG−

22, (17e)

for the metric (8). The Einstein–Maxwell field equations
G−

ab = 8πT−
ab, with shear and anisotropic pressures, are

therefore

8π(ρ + ε + μ) + Q2

Y 4 = 2

A2

ḂẎ

BY
+ 1

Y 2 + 1

A2

Ẏ 2

Y 2

− 1

B2

(
2
Y ′′

Y
+ Y ′2

Y 2 − 2
B ′Y ′

BY

)
, (18a)

8π

(
p+ε−μ+2

3
�

)
−Q2

Y 4 = 1

A2

(
−2

Ÿ

Y
− Ẏ 2

Y 2 +2
ȦẎ

AY

)

+ 1

B2

(
Y ′2

Y 2 + 2
A′Y ′

AY

)
− 1

Y 2 , (18b)

8π

(
p+P−1

3
�

)
+Q2

Y 4 = − 1

A2

(
B̈

B
− Ȧ Ḃ

AB
+ ḂẎ

BY
− ȦẎ

AY

+ Ÿ

Y

)
+ 1

B2

(
A′′

A
− A′B ′

AB
+ A′Y ′

AY
− B ′Y ′

BY
+ Y ′′

Y

)
,

(18c)

8π(q + ε) = − 2

AB

(
ḂY ′

BY
+ A′Ẏ

AY
− Ẏ ′

Y

)
, (18d)

ζ = Q′

4πBY 2 , (18e)

for the general spherically symmetric metric (8).

3.2 Exterior spacetime

For the exterior spacetime manifold M+, the generalised
Vaidya metric, with Eddington retarded coordinates (v, r, θ, φ),
is given as

ds2+ = −
(

1 − 2m(v, r)
r

)
dv2

−2dvdr + r2(dθ2 + sin2 θdφ2). (19)

Here the function m(v, r) describes the Misner–Sharp mass
of the star, which is also called the mass function [55,56].
It gives a measure of the gravitational energy within a given
radius r.

The exterior energy momentum tensor is defined by

T+
ab = T (n)

ab + T (m)
ab , (20)

which is a superposition of null dust and null string fluids.
We can write

T+
ab = ε̄l̄a l̄b + (μ̄ + P̄)(l̄a n̄b + l̄bn̄a) + P̄gab. (21)

Here, ε̄ is the energy density of the null dust radiation, μ̄ is the
null string energy density and P̄ is the null string pressure.
In the above we have

l̄a = (1, 0, 0, 0), n̄a =
(

1

2

[
1 − 2m(v, r)

r

]
, 1, 0, 0

)
.
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The null vector l̄a is a double null eigenvector of the energy
momentum tensor (20). The nonzero components of (20)
are

T+
00 = ε̄ + μ̄

(
1 − 2m

r

)
, (22a)

T+
01 = μ̄, (22b)

T+
22 = r2P̄, (22c)

T+
33 = sin2 θT+

22, (22d)

which represents a Type II fluid. The nonzero components of
the Einstein tensor are given by

G+
00 = − 2

r3
(2mmr − rmr + rmv) , (23a)

G+
01 = 2mr

r2
, (23b)

G+
22 = −rmrr, (23c)

G+
33 = sin2 θG+

22, (23d)

where we have used mv = ∂m
∂v

and mr = ∂m
∂r .

The Einstein field equations G+
ab = 8πT+

ab for the exterior
spacetime manifold M+ are then given by

8πε̄ = −2mv

r2
, (24a)

8πμ̄ = 2mr

r2
, (24b)

8πP̄ = −mrr

r
. (24c)

In the field equations (24), ε̄, μ̄ and P̄ depend on the coor-
dinates v and r in the external atmosphere of the star.

4 Matching

We now generate the matching conditions of the two bulk
spacetimes given by (8) and (19) respectively. The unit nor-
mal vectors N±

a to � are given by

N−
a = [0, B(r�, t), 0, 0], (25a)

N+
a =

(
1 − 2m

r�
+ 2

dr�
dv

)− 1
2
(

−dr�
dv

, 1, 0, 0

)
. (25b)

The nonvanishing extrinsic curvature components (6b) for
the interior and exterior spacetimes are given by

K−
ττ =

(
− 1

B

A′

A

)
�

, (26a)

K−
θθ =

(
YY ′

B

)
�

, (26b)

K−
φφ = sin2 θK−

θθ , (26c)

K+
ττ =

( `̀v
v̀

− v̀
m

r2
+ v̀

mr

r

)
�

, (26d)

K+
θθ =

(
v̀

(
1 − 2m

r

)
− rr̀

)
�

, (26e)

K+
φφ = sin2 θK+

θθ , (26f)

for M− and M+ respectively, and the derivative ` ≡ d
dτ

on
the hypersurface �. Therefore, the necessary and sufficient
conditions on the spacetimes for the first junction condition
(6a) to be valid are

(Adt)� =
(

1 − 2m

r
+ 2

dr
dv

)
�

, (27a)

Y� = r�(v). (27b)

Using equations (26a), (26b), (26d) and (26e), we have the
second junction conditions
(

− 1

B

A′

A

)
�

=
( `̀v

v̀
− v̀

m

r2
+ v̀

mr

r

)
�

, (28a)

(
YY ′

B

)
�

=
(

v̀

(
1 − 2m

r

)
− rr̀

)
�

, (28b)

Using the Eq. (28b), we can write the mass function, with
the aid of (27) as

m(v, r) =
[
Y

2

(
1 + Ẏ 2

A2 − Y ′2

B2

)]
�

, (29)

which is expressed only in terms of the metric potentials A,
B and Y , and contains the total energy within �. Using (27)
and the mass function (29), and substituting these into (28b)
gives

v̀� =
(
Y ′

B
+ Ẏ

A

)−1

. (30)

Differentiating (30) with respect to τ , gives `̀v. Substituting
v̀, `̀v and the mass function (29) into (28a) yields after some
calculation, the condition at the stellar surface

2Ẏ ′

ABY
− 2

ḂY ′

AB2Y
− 2

A′Ẏ
A2BY

− 2
mr

r2

− 1

A2

(
−2

Ÿ

Y
− Ẏ 2

Y 2 + 2
ȦẎ

AY

)

− 1

B2

(
Y ′2

Y 2 + 2
A′Y ′

AY

)
+ 1

Y 2 = 0. (31)

Observe that the result (31) is a shearing generalisation of
the shear-free equation to which it reduces to when σ = 0.
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The Eq. (31) can be written in terms of the matter variables,
with the aid of the field equations (18b) and (18d), as

8π(q + ε)� =
[

8π

(
p + ε − μ + 2

3
� − 1

8π

Q2

Y 4

)
+ 2

mr

r2

]
�

.

This simplifies to

8πp

∣∣∣∣
�

=
[

8π

(
q + μ − μ̄ − 2

3
�

)
+ Q2

Y 4

]
�

, (32)

since 2mr
r2 = 8πμ̄ in (24b). We observe from (11) and (32)

that an equivalent form of our result is

8πp||
∣∣∣∣
�

=
[

8π (q + μ − μ̄) + Q2

Y 4

]
�

, (33)

so that p and � have been replaced by the radial pressure p||.
The form (32) makes it easier to compare with earlier results.
For example, when � = μ = μ̄ = Q = 0 we regain the
boundary condition of Santos [35] and with � = Q = 0, we
regain the result of Maharaj and Brassel [40]. In addition, the
boundary condition (32) has to be considered together with
the field equations (18) for a complete model of a radiating
star. The anisotropy � (or the tangential pressure p⊥) affects
the dynamics of the model.

The pressure p at the stellar surface � depends on exterior
quantity μ̄, the interior quantities μ, q, � and the charge
l of the radiating star. These physical quantities determine
the evolution of the radiating star in general relativity. Our
result emphasises the importance of taking into consideration
different matter distributions in the energy momentum tensor
(1), for the interior, and the matter tensor (20), for the exterior.
The matter variables q, μ, μ̄, � and l directly affect the
pressure p at the stellar surface. Our result (32) reduces to
that of Maharaj and Brassel [40]

p

∣∣∣∣
�

=
(
q + μ − μ̄ − 2

3
�

)
�

, (34)

in the absence of charge. The significant physical observa-
tion that follows from our analysis of the Einstein-Maxwell
system is that the internal charge directly affects the pres-
sure at the boundary of the radiating star. It leads to greater
pressure at the stellar surface slowing down gravitational col-
lapse. This is consistent with many static relativistic models
in which the presence of charge distributions close to the stel-
lar surface may be significant, and this works against grav-
itational collapse, see for example [2,57–59]. As far as we
are aware, this is a new physical feature for a radiating star
with the generalised Vaidya spacetime describing the exter-
nal stellar atmosphere. The charged Vaidya spacetime is a
special case in which (32) takes a simpler form. We discuss
the change in the form of (32) for the charged Vaidya exterior
in the next section.

We can now state our result as the following theorem:

Theorem 1 Consider two four-dimensional spacetime man-
ifolds M− and M+ connected by the three-dimensional
comoving boundary surface �. The interior spacetime M−
is described by the general spherically symmetricmetric with
a matter field containing a combination of a barotropic fluid,
an electromagnetic field, null dust and a null string fluid.
The exterior spacetime M+ is described by the generalised
Vaidya metric containing null dust and a null string fluid.
The pressure at the boundary � is then given by

8πp

∣∣∣∣
�

=
[

8π

(
q + μ − μ̄ − 2

3
�

)
+ Q2

Y 4

]
�

,

relating the internal heat flux q, the string density μ, the
anisotropy � and the total charge Q = Q(r)

∣∣
�
to the exter-

nal string density μ̄.

5 Charged Vaidya

The mass functionm(v, r), given by equation (29) describing
the exterior spacetime, is valid for all types of matter distribu-
tions and represents the gravitational energy contained in an
four-dimensional hypersphere within the boundary �. The
physical features of the model will determine the various
forms of m(v, r) that are permissible. Dawood and Ghosh
[60] list the forms of m(v, r) corresponding to Type II flu-
ids and their related energy conditions. These contain the
Vaidya, charged Vaidya, ds/Ads global monopole, Husain
and Harko-Cheng metrics as indicated in [60].

In the context of radiating stars, the charged Vaidya metric
is of particular importance. It is illuminating to observe the
role of the mass function for a charged distribution. The mass
function in this case becomes

m(v, r) = M(v) − Q2

2r
, (35)

which gives

mr = Q2

2r2
. (36)

Equation (29) can then be written as

M(v) =
[
Y

2

(
1 + Ẏ 2

A2 − Y ′2

B2

)
+ Q2

2r

]
�

. (37)

With the form of (35), the exterior spacetime (19) becomes

ds2+ = −
(

1 − 2M(v)

r
+ Q2

r2

)
dv2

−2dvdr + r2(dθ2 + sin2 θdφ), (38)
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which is the charged Vaidya spacetime in four dimensions.
Also, from the Einstein field equation (24b), we get

8πμ̄ = Q2

r4
. (39)

Hence equation (32) becomes

p

∣∣∣∣
�

=
{
q + μ − 2

3
�

}
�

, (40)

where we have used the fact that Y� = r� from (27b).
It is interesting to observe that the charge distribution Q(r)

of the stellar interior does not appear in the boundary con-
dition (40). This is true only for the mass function (35) cor-
responding to the charged Vaidya exterior atmosphere. On
physical grounds we interpret this to mean that an external
observer detects only the charge distribution contained within
the boundary of the star with no charge contribution from the
external Vaidya atmosphere.

In the case when μ = � = 0, the condition (40) reduces to
the results of Tikekar and Patel [37], Maharaj and Govender
[39] and Di Prisco et al. [41].

6 Special cases

It should be noted that the above Theorem 1 holds in the
presence of null matter, shear, anisotropy and charge, and it
is the most general result known for spherical symmetry. We
are now in the position to state several consequences in the
form of corollaries.

Corollary 1 The boundary condition (32) holds for a com-
posite matter distribution across a comoving surface �. The
interior matter distribution comprises of null dust, a null
string, barotropic matter and an electromagnetic field. The
exterior matter distribution is a combination of null dust and
a null string.

Corollary 2 The interiormanifoldM− is the general spher-
ically symmetric metric and the exterior M+ is described
by the generalised Vaidya metric; both spacetimes match
smoothly across �.

Corollary 3 The interior manifold M− may be expanding,
accelerating and shearing in general. The special cases of

– conformally flat,
– expansion-free,
– geodesic,
– shear-free,

spacetimes arise as particular cases of the boundary condi-
tion (32).

Corollary 4 In the absence of charge, the boundary condi-
tion is given by (34). All previous treatments with uncharged
matter are contained in our cases.

Corollary 5 The isotropic pressure p on the surface � may
be nonzero even if the heat flux vanishes for a composite
matter distribution.

It is important to note that our analysis is general and
all previous treatments of the matching conditions across a
comoving surface are contained in our treatment. The pres-
ence of a composite matter distribution leads to several inter-
esting physical features. For example, consider the treatment
of [35] whom matches an interior uncharged fluid to the exter-
nal pure Vaidya spacetime leading to (p = q)� . Therefore
the pressure vanishes if and only if the heat flux is absent.
For the composite distribution the isotropic pressure p in
(32) may be nonzero even if the internal flux is absent with
q = 0. This is possible because of the presence of the matter
quantities μ, μ̄, � and Q in (32).

Particular spacetimes of physical interest are related to the
boundary condition (32) across a comoving surface �. The
relevant spacetimes include the Schwarzschild, Reissner–
Nordström, Vaidya, charged Vaidya, composite and charged
composite metrics. We find the spacetimes by specifying par-
ticular forms of the mass function m(v, r). The various pos-
sibilities are listed in Table 1.

7 Discussion

We have modeled a radiating star with general spherical sym-
metry containing a composite matter distribution in the pres-
ence of an electromagnetic field across a comoving surface
�. We summarized our result in Theorem 1 with the pres-
sure at � given by Eq. (32). To cater for various physical
scenarios we have taken the stellar interior to contain a com-
bination of a barotropic fluid, null dust and a null string fluid
in the presence of an electromagnetic field. The stellar exte-
rior consists of a combination of null dust and a null string
fluid. The matching conditions show that the pressure at the
surface � depends on the internal heat flux q, the anisotropy
�, the charge Q, the string density μ and the external string
density μ̄. This shows that they dynamical behaviour of a
composite stellar object is more complex than relativistic
stars which have only the Vaidya as the exterior. The pres-
sure p at � may be nonzero even if q = 0 for a composite
fluid; for a barotropic fluid in Vaidya space, q = 0 implies
that p = 0 on �. We considered the special case of the
charged Vaidya spacetime and showed that the relationship

8πμ̄ = 2mr
r2 = Q2

r4 holds. This condition leads to the equation

p

∣∣∣∣
�

=
(
q + μ − μ̄ − 2

3
�

)
�

,
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Table 1 Spacetimes, mass functions and boundary conditions

Spacetime Mass function Matter quantities at the boundary � Pressure at the boundary �

I. Schwarzschild m = M μ̄ = P̄ = ε̄ = 0 p = 0

μ = P = ε = 0

� = q = 0

Q = 0

II. Reissner-Nordström m = M − Q2

2r μ̄ = P̄ = ε̄ = 0 p = 0

μ = P = ε = 0

� = q = 0

Q(r)

III. Vaidya m = M(v) μ̄ = P̄ = 0, ε̄(v) p = q

μ = P = ε = 0

� = 0, q(r, t)

Q = 0

IV. Charged Vaidya m = M(v) − Q2

2r μ̄ = P̄ = 0, ε̄(v) p = q

μ = P = ε = 0

� = 0, q(r, t)

Q(r)

V. Composite m = m(v, r) μ̄(v, r), P̄(v, r), ε̄(v, r) p = q − μ − μ̄ − 2
3 �

μ(r, t), P(r, t), ε(r, t)

�(t, r), q(r, t)

Q = 0

VI. Charged composite m = m(v, r) μ̄(v, r), P̄(v, r), ε̄(v, r) p = q − μ − μ̄ − 2
3 �

μ(r, t), P(r, t), ε(r, t) + 1
8π

Q2

r4

�(t, r), q(r, t)

Q(r)

and the charge Q does not appear explicitly in the bound-
ary condition which is consistent with earlier treatments. For
other forms of the mass function m(v, r), in an electromag-
netic field, the charge Q(r) appears explicitly in the bound-
ary condition. We regained the physically important space-
times in relativistic astrophysics corresponding to the met-
rics of Schwarzschild, Reissner–Nordström, Vaidya, charged
Vaidya and the composite. The general case is the charged
composite distribution considered in this paper. These physi-
cally interesting cases for the general composite distribution
are listed in Table 1.
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