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Abstract. In this research, we present a new relaxed intertial algorithm without viscosity for solving
common solution of countable family of nonexpansive mappings in real Hilbert spaces. We obtain the
strong convergence results of the proposed method under some wild conditions on the control parameters.
We apply our main results to solve convex bilevel optimization problems. Finally, we present a numerical
example to illustrate the efficiency of our method over some existing methods in the literature.
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1. Introduction

Fixed point theory plays very essential role in the fields of pure and applied mathematics. It has
several applications in engineering and applied sciences. For instance, fixed point theory can be used
to solve signal processing problem, image restoration problem, optimal control problem, equilibrium
problem, variational inequality problem, game theory, among others.

Let C be a nonempty subset of a real Hilbert spaceH . Then, a point x ∈ C is called a fixed point of a
mapping S : C → C if, Sx = x. We denote the set of the fixed points of S by F (S) = {x ∈ C : Tx = x}.
The mapping S is said to be nonexpansive if, for each x, y ∈ C, we have ‖Sx− Sy‖ ≤ ‖x− y‖. S is said
to be quasinonexpansive if F (S) 6= ∅, then ‖Sx− p‖ ≤ ‖x− p‖, ∀p ∈ F (S), x ∈ C.

Many methods have introduced by different authors for approximating the fixed points of various
mappings [1,2,4,5,16–20]. For {αm}, {βm} and {γm} ∈ (0, 1), the Mann [2], Ishikawa [1] and Noor [3]
are given as follows:
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x0 ∈ C,

xm+1 = (1− αm)xm + αmSxm.
(1)


x0 ∈ C,

zm = (1− βm)xm + βmSxm,

xm+1 = (1− αm)xm + αmSzm.

(2)



x0 ∈ C,

wm = (1− γm)xm + γmSxm,

zm = (1− βm)xm + βmSwm,

xm+1 = (1− αm)xm + αmSzm.

(3)

It is not hard to see that Ishikawa method is a two two step Mann method and the Noor method is a
three step Mann method.

The inertial technique has been used widely by many authors in recent years to enhance the speed of
convergence of iterative methods for solving fixed point problems and optimization problems [6–15].
In [9], Jailoka et al. introduced an inertial viscosity method for finding the common fixed point of
a countable family nonexpansive mapping. The authors proved the strong convergence results of
their methods in real Hilbert spaces. Recently, Janngam et al. [15] introduced an inertial viscosity SP
algorithm for solving the convex bilevel optimization problem in real Hilbert space.

It is worth mentioning that the strong converge results of the above methods reply on the viscosity
technique and this make the computation of this methods more complex.

Motivated by the above results, in this research, we present a new relaxed intertial algorithmwithout
viscosity for solving common solution of countable family of nonexpansive mappings in real Hilbert
spaces. We obtain the strong convergence results of the proposed method under some wild conditions
on the control parameters. We apply our main results to solve convex bilevel optimization problems.
Finally, we present a numeral example to illustrate the efficiency of our method over some existing
methods in the literature.

2. Preliminaries

In this section, we give some lemmas that will be useful in obtaining our strong convergence results.

Lemma 2.1. A sequence {Sm} with ∩∞m=1F (Sm) 6= ∅ is said to be satisfy the condition (Z) if for every bounded

sequence {xm} in C such that
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lim
m→∞

‖xm − Smxm‖ = 0,

then, every weak cluster point of {xm} belongs to ∩∞m=1F (Sm) 6= ∅.

For every point u ∈ H, the unique nearest point which is denoted by PCu exists in C such that
‖u− PCu‖ ≤ ‖u− v‖, ∀v ∈ C. The mapping PC is called the metric projection of H onto C and it is
known to be nonexpansive.

Lemma 2.2. [29] LetH be a real Hilbert space and C a nonempty closed convex subset of H . Suppose u ∈ H

and v ∈ C. Then v = PCu ⇐⇒ 〈u− v, v − w〉 ≥ 0, ∀w ∈ C.

Lemma 2.3. Let H be a real Hilbert space. Then for every u, v ∈ H and σ ∈ R, we have

(i) ‖u+ v‖2 ≤ ‖u‖2 + 2〈v, u+ v〉;

(ii) ‖u+ v‖2 = ‖u‖2 + 2〈u, v〉+ ‖v‖2;

(iii) ‖σu+ (1− σ)v‖2 = σ‖u‖2 + (1− σ)‖v‖2 − σ(1− σ)‖u− v‖2.

Lemma 2.4. [28] Let {uk} be a sequence of non-negative real numbers such that

ak+1 ≤ (1− νk)ak + νkbk, ∀k ≥ 1,

where {νk} ⊂ (0, 1) with
∑∞

k=0 νk =∞. If lim sup
k→∞

bk ≤ 0 for every subsequence {akj} of {ak}, the following

inequality hold:

lim inf
k→∞

(akj+1
− akj ) ≥ 0,

Then lim
k→∞

ak = 0.

3. Propose Algorithm

In this section, we give the our suggested algorithm and outline some of its properties. Firstly, the
strong convergence theorem for the algorithm will be obtained under the following assumptions:
Assumption 3.1. Conditions on the various operators and control parameters.
(A1) Let C be a subset of a real Hilbert space H .
(A2) Sm : C → C is a nonexpasive mapping.
(A3) {γm} ⊂ [a, b] ⊂ (0, 1] and {βm} ⊂ [c, d] ⊂ (0, 1].
(A4) {αm} ⊂ (0, 1) such that limm→∞ αm = 0,∑∞m=1 αm =∞.
(A5) The positive sequence {εm} satisfies limm→∞

εm
αm

= 0.

Below is the proposed method.
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Algorithm 3.2. Relax inertial Ishikawa-type algorithm.
Initialization: Choose ψ > 0, x0, x1 ∈ H1, and setm = 1.

Iterative Steps: Calculate the next iteration point xm+1 as follows:
Step 1: Choose ψm such that ψm ∈ [0, ψ̄m], where

ψ̄m =

min
{
ψ, εm
‖xm−xm−1‖

}
, if xm 6= xm−1,

ψ, otherwise.
(4)

Step 2: Set

wm = (1− α)(am + ψm(am − am−1)) (5)

and compute

zm = (1− βm)wm + βmSmwm. (6)

Step 3: Compute

xm+1 = (1− γm)zm + γmSmzm. (7)

Putm := m+ 1 and return to Step 1.

4. Convergence Analysis

Theorem 4.1. Suppose {xm} is the sequence generated by algorithm 3.2 under Assumption 3.1. Then, {xm}

converges strongly to an element x† ∈ Ω, where ‖x†‖ = min{‖p†‖, p† ∈ Ω}.

Proof. we will divide the proof into four claims as follows:
Claim 1: The sequence {xm} is bounded. Indeed, let x† ∈ Ω. From ‖x†‖ = min{‖p†‖ : p† ∈ Ω}, we
obtain p† = PΩ(0). Then from From (4), we have ψm‖xm − xm−1‖ ≤ εm, ∀m ∈ N. Now, since by
Assumption 3.1 (A5) we have that limm→∞

εm
αm

= 0. This implies that
ψm
αm
‖xm − xm−1‖ ≤

εm
αm
→ 0, asm→∞. (8)

Using (5), we have

‖wm − x†‖ = ‖xm + ψm(xm − xm−1)− αm[xm + ψm(xm − xm−1)]− x†‖

= ‖(1− αk)(xm − x†) + (1− αm)ψm(xm − xm−1)− αmx†‖

≤ ‖(1− αk)‖xm − x†‖+ (1− αm)ψm‖xm − xm−1‖+ αm‖x†‖

= (1− αm)‖xm − x†‖+ αm

[
(1− αm)

ψm
αm
‖xm − xm−1‖+ ‖x†‖

]
. (9)
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By (8), we have

lim
m→∞

[
(1− αm)

ψm
αm
‖xm − xm−1‖+ ‖x†‖

]
= ‖x†‖. (10)

Therefore, a constant C1 > 0 exists such that

(1− αm)
ψm
αm
‖xm − xm−1‖+ ‖x†‖ ≤ C1, ∀m ∈ N. (11)

From (9) and (11), we obtain

‖wm − x†‖ ≤ (1− αm)‖xm − x†‖+ αmC1, ∀m ∈ N. (12)

From (6), we have

‖zm − x†‖ = ‖(1− βm)wm + βmSmwm − x†‖

≤ (1− βm)‖wm − x†‖+ βm‖Smwm − x†‖

≤ (1− βm)‖wm − x†‖+ βm‖wm − x†‖

= ‖wm − x†‖. (13)

Also, by (7), we have

‖xm+1 − x†‖ = ‖(1− γm)zm + γmSmzm − x†‖

≤ (1− γm)‖zm − x†‖+ γm‖Smzm − x†‖

≤ (1− γm)‖zm − x†‖+ γm‖zm − x†‖

= ‖zm − x†‖. (14)

Combing (12), (13) and (14), we obtain

‖xm+1 − x†‖ = (1− αm)‖xm − x†‖+ αmC1

≤ max{‖xm − x†‖, C1}

...

≤ max{‖xm0 − x†‖, C1},

Therefore, the sequence {xm} is bounded. Consequently, {zm}, {wm}, {Smzm} and {Smzm} are bounded
sequences.
Claim 2: The following inequality holds for some C2 > 0:

βm(1− βm)‖wm − Smwm‖2 + γm(1− γm)‖zm − Smzm‖2 ≤ ‖xm − x†‖2 − ‖xm+1 − x†‖2 + αmC2.

(15)
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Indeed from, (12), we have

‖wm − x†‖2 ≤ (1− αm)2‖xm − x†‖2 + 2αmC1(1− αm)‖xm − x†‖+ α2
mC

2
1

≤ (1− αm)‖xm − x†‖2 + αm[2C1(1− αm)‖xm − x†‖+ αmC
2
1 ]

≤ ‖xm − x†‖2 + αmC2, (16)

where C2 = max{2C1(1− αm)‖xm − x†‖+ αmC
2
1 : m ∈ N}.

Now, from (6) and Lemma (2.3), we have

‖zm − x†‖2 = (1− βm)‖wm − x†‖2 + βm‖Smwm − x†‖2 − βm(1− βm)‖wm − Smwm‖2

≤ (1− βm)‖wm − x†‖2 + βm‖wm − x†‖2 − βm(1− βm)‖wm − Smwm‖2

= ‖wm − x†‖2 − βm(1− βm)‖wm − Smwm‖2. (17)

Also, from (7) and Lemma (2.3), we have

‖xm+1 − x†‖2 = (1− γm)‖zm − x†‖2 + γm‖Smzm − x†‖2 − γm(1− γm)‖zm − Smzm‖2

≤ (1− γm)‖zm − x†‖2 + γm‖zm − x†‖2 − βm(1− γm)‖zm − Smzm‖2

= ‖zm − x†‖2 − βm(1− γm)‖zm − Smzm‖2. (18)

Combing (16), (17) and (18), we have

‖xm+1 − x†‖2 ≤ ‖xm − x†‖2 − βm(1− βm)‖wm − Smwm‖2 − γm(1− γm)‖zm − Smzm‖2 + αmC2.

This implies that

βm(1− βm)‖wm − Smwm‖2 + γm(1− γm)‖zm − Smzm‖2 ≤ ‖xm − x†‖2 − ‖xm+1 − x†‖2 + αmC2.

Claim 3: The following inequality holds for allm ∈ N:

‖xm+1 − x†‖2 ≤ (1− αm)‖xm − x†‖2 + 2(1− αm)ψm‖xm − x†‖‖xm − xm−1‖ (19)

+ψ2
m‖xm − xm−1‖2 + 2αm〈−x†, wm − x†〉

= (1− αm)‖xm − x†‖2

+αm


2(1− αm)ψmαm ‖xm − xm−1‖‖xm − x†‖

+ψm‖xm − xm−1‖ψmαm ‖xm − xm−1‖

+2‖x†‖‖wm − xm+1‖+ 2〈−x†, xm+1 − x†〉

 . (20)

Indeed, from Lemma 2.3, (5), (17) and (18), obtain

‖xm+1 − x†‖2 ≤ ‖wm − x†‖2

= ‖(1− αm)(xm − x†) + (1− αm)ψm(xm − xm−1)− αmx†‖2
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≤ ‖(1− αk)(xm − x†) + (1− αm)ψm(xm − xm−1)‖2 + 2αm〈−x†, wm − x†〉

≤ (1− αm)2‖xm − x†‖2 + 2(1− αm)2ψm‖xm − x†‖‖xm − xm−1‖

+(1− αm)2ψ2
m‖xm − xm−1‖2 + 2αm〈−x†, wm − x†〉

≤ (1− αm)‖xm − x†‖2 + 2(1− αm)ψm‖xm − x†‖‖xm − xm−1‖

+ψ2
m‖xm − xm−1‖2 + 2αm〈−x†, wm − x†〉

= (1− αm)‖xm − x†‖2

+αm


2(1− αm)ψmαm ‖xm − xm−1‖‖xm − x†‖

+ψm‖xm − xm−1‖ψmαm ‖xm − xm−1‖

+2‖x†‖‖wm − xm+1‖+ 2〈−x†, xm+1 − x†〉

 . (21)

Claim 4: The sequence {‖xm − x†‖2} converges to zero.
Indeed, from Lemma 2.4, (20) and (8), it suffices to prove that lim supj→∞〈−x†, xmj+1 − x†〉 ≤ 0 and
limj→∞ ‖wmj − xmj+1‖ = 0, for every subsequence {‖xmj − x†‖} of {‖xm − x†‖} fulfilling

lim inf
j→∞

(‖xmj+1 − x†‖ − ‖xmj − x†‖) ≥ 0. (22)

In what follows, suppose {‖xmj − x†‖} is a subsequence of {‖xm − x†‖} such that (22) holds. Then,
from (15) and Assumption 3.1, we have

lim sup
j→∞

[
βm(1− βm)‖wmj − Smjwmj‖2 + γm(1− γm)‖zmj − Smjzmj‖2

]
≤ lim sup

j→∞

(
‖xmj − x†‖2 − ‖xmj+1 − x†‖2 + αkjC2

)
= − lim inf

j→∞

(
‖xmj+1 − x†‖2 − ‖xmj − x†‖2

)
≤ 0.

This implies that

lim
j→∞

‖wmj − Smjwmj‖ = 0 (23)

and

lim
j→∞

‖zmj − Smjzmj‖ = 0. (24)

Again, from (5), we have

‖wmj − xmj‖ =‖xmj + ψmj (xmj − xmj−1)− αm[xmj + ψm(xmj − xmj−1)]− xmj‖

≤ψmj‖xmj − xmj−1‖+ αmj‖xmj‖+ αmψmj‖xmj − xmj−1‖

=αmj
ψmj
αmj
‖xmj − xmj−1‖+ αmj‖xmj‖+ α2

mj

ψmj
αmj
‖xmj − xmj−1‖ → 0 as j →∞. (25)
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Now, from (7) and (24), we have

‖xmj+1 − zmj‖ ≤ (1− γmj )‖zmj − Smjzmj‖ → 0 as j →∞. (26)

Using (26) and (24), we have

‖xmj+1 − xmj‖ ≤ ‖xmj+1 − zmj‖+ ‖zmj − Smjzmj‖ → 0 as j →∞. (27)

Next, from (25) and (27), we have

‖wmj − xmj+1‖ ≤ ‖wmj − xmj‖+ ‖xmj+1 − xmj‖ → 0 as j →∞. (28)

By (26) and (28), we have

‖zmj − wmj‖ ≤ ‖zmj − xmj+1‖+ ‖xmj+1 − wmj‖ → 0 as j →∞. (29)

Since {xm} is bounded, a subsequence {xmj} of {xm} exists such that xmj ⇀ ū as j →∞. By (25), we
know that wmj ⇀ ū as j → ∞. From (29), it follows that zmj ⇀ ū as j → ∞. Since Sm satisfies the
condition Z, then it implies from (24) that ū ∈ Ω. Furthermore, since the sequence {xmj} is bounded,
then a subsequence {xmji} of {xmj} exists such that xmji ⇀ z̄ ∈ H as i→∞ and

lim
i→∞
〈−x†, umji − x

†〉 = lim sup
j→∞

〈−x†, xmj − x†〉. (30)

Since x† = PΩ(0), we get

lim sup
j→∞

〈−x†, xmj − x†〉 = lim
i→∞
〈−x†, xmji − x

†〉 = 〈−x†, z̄ − x†〉 ≤ 0. (31)

From (27) and (31), we have

lim sup
j→∞

〈−x†, xmj+1 − x†〉 = lim sup
j→∞

〈−x†, xmj − x†〉 = 〈−x†, z̄ − x†〉 ≤ 0. (32)

Applying Lemma 2.4 to (20) and recalling (28), (32), (8) and the fact that limj→∞ αmj = 0, we have
that

lim
k→∞

‖xm − u†‖ = 0.

It follows that {xm} strongly converges to the point x† = PΩ(0). �

5. Application to Convex Bilevel Optimization Problem

Bilevel optimization has received a lot of attention in recent years due to its applications in machine
learning such as signal processing [23], image restoration [24], hyperparameter optimization [21, 22]
and reinforcement learning [25]. It is defined as a mathematical program in which an optimization
problem contains another optimization problem as a constraint. In this part of the article, we consider
the bilvel optimization problem in which the following minima are sought:
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min
x∈T∗

ω(x), (33)

where ω : Rn → R is strongly convex and differentiable, T∗ is a nonempty set of inner level optimizers
satisfying

min
x∈Rm

{φ1(x) + φ2(x)}, (34)

where φ1 : Rm → R is a differential and convex function such that Oφ1(x) is L-Lipschitz continuous
and φ2 : Rn → R ∪ {∞} is a convex, proper, and lower semi-continuous function. Let Γ denote the
solution set of (33).

Notice that the bilevel optimization model contains the inner level minimization problem (34) as a
constraint to the outer level optimization problem (33). It well known from (33) that

u∗ ∈ Γ if and only if 〈Oω(u∗), x− u∗〉 ∀x ∈ T∗. (35)

Several algorithms have been developed for solving the problem (34) [6,26]. The main algorithm is the
proximal forward-backward approach, or proximal gradient method, defined by the iterative equation

xm+1 = proδmφ2(I − δmOφ1)(xm), m ∈ N, (36)

where δm > 0 is the step-size, proφ2 is the proximity operator of φ2, and Oφ1 is the gradient φ1 [6].
Equation (36) is called the forward-backward splitting method algorithm (FBSA). This algorithm can
be used to solve the inner level optimization problem if φ1 is Lipschitz continuous [6].

On the other hand, the proximal gradient method can be seen as fixed point algorithm, where the
iterated operator is given by

S := proδmφ2(I − δOφ1) (37)

and is called the forward-backward mapping [27]. The forward-backward mapping, S, is well
known to be nonexpansive if 0 < δ < 2

L , where L is a Lipschitz constant of δOφ1 and, in this case,
F (S) = argmin{φ1(x) + φ2(x)}.

Next, we give our main results in this section as follows:

Theorem 5.1. Let φ1 : H → H be a convex and differentiable function such that Oφ1 is Lipschitz continuous

with constant Lφ1 > 0 and φ2 : H → (−∞,∞] are proper lower semi-continuous and convex functions. Let

{cm} ⊂ (0, 2
Lφ1

) with cm → c asm→∞, where c ∈ (0, 2
Lφ1

). Suppose {xm} is the sequence generated by the

following algorithm:
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Algorithm 5.2. Relax inertial Ishikawa iterative algorithm.
Initialization: Choose φ > 0, u0, u1 ∈ H1, and setm = 1.

Iterative Steps: Calculate the next iteration point xm+1 as follows:
Step 1: Choose ψm such that ψm ∈ [0, ψ̄m], where

ψ̄m =

min
{
ψ, εm
‖xm−xm−1‖

}
, if xm 6= xm−1,

ψ, otherwise.

Step 2: Set

wm = (1− α)(am + ψm(am − am−1))

and compute

zm = (1− βm)wm + βmprocmφ2(I − cmOφ1)wm.

Step 3: Compute

xm+1 = (1− γm)zm + γmprocmφ2(I − cmOφ1)zm. (38)

Putm := m+ 1 and return to Step 1.

Suppose conditions (A3)–(A5) holds, then {xm} converges strongly to an element solution of (33).

Proof. Put Sm = (I − cmOφ1), where cm = (0, 2
Lφ1

). We also know that Sm is nonexpansive. Hence, the
proof follows from that of Theorem 4.1. �

6. Numerical Experiment

In this section, we present an example to show the computational advantage of our suggestedmethod
by comparing it with some well known existing methods.

Example 6.1. Let H = C = R and the mapping S : K → K be defined by Sx = x
8 . Let αm = βm = θm =

γm = 1
m+1 , ψ = 0.86, εm = 100

(m+1)2
and choose the stopping criteria Em = ‖xm+1 − xm‖ < 10−4. The

obtained numerical results are demonstrated in the following table and figure:

Table 1. Numerical results of Example 6.1
Algorithm 3.2 Picard-Ishikawa 2 Noor Ishikawa Mann

CPU time (sec.) 0.0020 0.0032 0.0035 0.0042 0.0042
No of Iter. 3 4 5 6 13
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Number of iterations

0 2 4 6 8 10 12 14

E
m

10-6

10-5

10-4

10-3

10-2

10-1

100

Mann

Ishikawa

Noor

Picard-Ishikawa

Algorithm 2.2

Figure 1. Graph of Table 1.

7. Conclusion

In this article, we have introduced an Ishikawa-type algorithm that employed inertial technique to
enhance its speed of convergence. Under some standard assumptions, we proved the strong conver-
gence results of the proposed method to the common solution of countable family of nonexpansive
mapping. We applied the obtained results to solve convex optimization problems. We demonstrated
the computational advantage of our method over some existing methods
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