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Abstract

We give a complete group classification of the general case of linear systems of two
second-order ordinary differential equations excluding the case of systems which are
studied in the literature. This paper gives the initial step in the study of nonlinear
systems of two second-order ordinary differential equations. It can also be extended
to systems of equations with more than two equations. Furthermore the complete
group classification of a system of two linear second-order ordinary differential equa-
tions is done. Four cases of linear systems of equations with inconstant coefficients
are obtained.

Key words: Group classification, linear equations, admitted Lie group,
equivalence transformation

1 Introduction

In this paper we consider the complete group classification of systems of two
linear second-order ordinary differential equations. Systems of second-order
ordinary differential equations are of great interest in the sciences and arise in
many areas of physics, chemistry and mathematics. One of the main features
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of these differential equations is their symmetry properties. Many results on a
scalar ordinary differential equation were obtained by the founder of symmetry
analysis of differential equations. Lie [1] gave a complete group classification
of a scalar ordinary differential equation of the form

y′′ = f(x, y).

Later this classification was performed in a different way by L.V.Ovsiannikov
[2]. This classification was obtained by directly solving the determining equa-
tions and exploiting the equivalence transformations. The same approach was
applied in [3] for the group classification of more general type of equations of
the form y′′ = P3(x, y; y

′), where P3(x, y; y
′) is a polynomial of third degree

with respect to the first-order derivative y′. In the general case of a scalar ordi-
nary differential equation, y′′ = f(x, y, y′), the application of the method that
involves directly solving the determining equations gives rise to overwhelming
difficulties. The group classification of such equations [4] is based on the enu-
meration of all possible Lie algebras of operators acting on the plane (x, y). Lie
[1] gave the classification of all dissimilar Lie algebras (under complex change
of variables) in two complex variables. In 1992, Gonzalez-Lopez et al. ordered
the Lie classification of realizations of complex Lie algebras and extended it
to the real case [5] 1 . A significant amount of results on the dimension and
structure of symmetry algebras of linearizable ordinary differential equations
is well known (see [4,6–11]).

Whereas symmetry properties of a scalar ordinary differential equation are
well studied in the literature, the group classification of a system of even two
linear second-order equations with constant coefficients is not complete. In
recent works [11–15] the authors focused on the study of systems of second-
order ordinary differential equations with constant coefficients of the form

y′′ = My, (1)

where M is a matrix with constant entries.

In the general case of systems of two linear second-order ordinary differential
equations the more advanced results are obtained in [16], where using the
canonical form,

y′′ =

 a(x) b(x)

c(x) −a(x)

 y,

the authors presented several admitted Lie groups. It has been proven that a
system of two linear second-order ordinary differential equations can have 5,
6, 7, 8 or 15 point symmetries. However the list of all distinguished represen-

1 The mentioned works do not exhaust all papers.
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tatives of systems of two linear second-order ordinary differential equations
was not obtained in [16].

In this paper we give a complete group classification of the general case of
linear systems of two second-order ordinary differential equations. The system
considered here is a generalisation of Lie’s study [1]. We exclude from our
consideration the studied case (1) and the degenerate case given as follows:

y′′ = F (x, y, z), z′′ = 0. (2)

The results found are new and have not been reported in the literature as far
as we are aware.

The paper is organized as follows:

The first part of the paper deals with the preliminary study of systems of
two second-order nonlinear equations of the form y′′ = F (x, y, z) and z′′ =
G(x, y, z) using Ovsiannikov’s approach [2]. This approach involves simplifying
one generator and finding the associated functions. These functions are then
used to solve the determining equations. Using this approach one can classify
second-order nonlinear differential equations but this case has been left for a
current project. The second part of the paper gives a complete treatment of
systems of second-order linear equations. This is then followed by the results,
discussion and conclusion.

2 Preliminary study of systems of nonlinear equations

A system of two second-order nonlinear differential equations of the form

y′′ = F (x, y, z), z′′ = G(x, y, z) (3)

is considered in this section. In matrix form equations (3) are given by

y′′ = F(x,y),

where

y =

 y

z

 , F =

F (x, y, z)

G(x, y, z)

 .

We consider the system of nonlinear equations here as it will later allow us
to separate equations given into their respective classes. We exclude from the
study the trivial systems where one of the equations can be reduced to the
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system with G = 0. From these classes we will select linear systems of equa-
tions. For this purpose we use equivalence transformations and the respective
solutions of the determinining equations.

2.1 Equivalence transformations

Calculations show that the equivalence Lie group is defined by the generators:

Xe
1 = y∂y + F∂F , Xe

2 = z∂y +G∂F , Xe
3 = y∂z + F∂G, Xe

4 = z∂z +G∂G,

Xe
5 = φ1(x)∂y + φ′′1(x)∂F , Xe

6 = φ2(x)∂z + φ′′2(x)∂G,

Xe
7 = 2ξ(x)∂x + ξ′(x)y∂y + ξ′(x)z∂z + (ξ′′′(x)y − 3ξ′(x)F )∂F + (ξ′′′(x)z − 3ξ′(x)G)∂G,

where ξ(x), φ1(x) and φ2(x) are arbitrary functions.

The transformations related with the generators Xe
1 , X

e
2 , X

e
3 and Xe

4 corre-
spond to the linear change of the dependent variables ỹ = Py with a constant
nosingular matrix P . The transformations corresponding to the generators Xe

5

and Xe
6 define the change

ỹ = y + ϕ1(x), z̃ = z + ϕ2(x).

The equivalence transformation related with the generator Xe
7 is

x̃ = ϕ(x), ỹ = yψ(x), z̃ = zψ(x),

where the functions ϕ(x) and ψ(x) satisfy the condition

ϕ′′

ϕ′ = 2
ψ′

ψ
. (4)

Equation (4) also appears in the group classifcation of a single equation of the
same form [2].

2.2 Determining equations

Consider the generator

X = ξ(x, y, z)
∂

∂x
+ η1(x, y, z)

∂

∂y
+ η2(x, y, z)

∂

∂z
.

According to the Lie algorithm [9], X is admitted by system (3) if it satis-
fies the associated determining equations. The first part of the determining
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equations is

3ξ1(Fy −Gz) + ξ2Gy = 0, ξ1Gy = 0,

ξ1Fz + 3ξ2(−Fy +Gz) = 0, ξ2Fz = 0,

where

ξ(x, y, z) = ξ1(x)y + ξ2(x)z + ξ0(x).

From these equations one can conclude that ξ2
1 + ξ2

2 6= 0 only for the case
where

Fy −Gz = 0, Fz = 0, Gy = 0. (5)

Solving the last conditions (5)leads to the degenerate case

F (x, y, z) = a(x)y + b(x), G(x, y, z) = a(x)z + h(x).

Using a particular solution and equivalent transformations, equations (3) are
reduced to the trivial case of the free particle equation.

We consider the case where the conditions (5) are not satisfied. In this case

ξ1 = 0, ξ2 = 0

and the determining equations are given by

Fz(ξ
′z + zk4 + yk3 + ζ2) + Fy(ξ

′y + zk2 + yk1 + ζ1)

+2Fxξ − ξ′′′y + 3ξ′F − ζ ′′1 − k1F − k2G = 0,

Gz(ξ
′z + zk4 + yk3 + ζ2) +Gy(ξ

′y + zk2 + yk1 + ζ1)

+2Gxξ − ξ′′′z + 3ξ′G− ζ ′′2 − k3F − k4G = 0,

where an admitted generator has the form

X = 2ξ(x)∂x + (yξ′(x) + k1y + k2z + ζ1(x))∂y + (ξ′z + k3y + k4z + ζ2(x))∂z,

and ki, (i = 1, 2, ...) are constant.

We further separate the study of the determining equations into two different
cases:

(a) the case in which there is at least one admitted generator with ξ 6= 0;

(b) the case in which for all admitted generators ξ = 0.
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2.3 Case ξ 6= 0

We consider the generator Xo for which ξ 6= 0. Using the equivalence trans-
formation:

y1 = y + ϕ(x), z1 = z + ψ(x),

the generator Xo becomes

Xo = 2ξ∂x + (ξ′y1 + z1k2 + y1k1 + 2ξϕ′ − ξ′ϕ− ψk2 − ϕk1 + ζ1)∂y1

+(ξ′z1 + z1k4 + y1k3 + 2ξψ′ − ξ′ψ − ψk4 − ϕk3 + ζ2)∂z1 .

One can choose the functions ϕ(x) and ψ(x) such that

2ξϕ′ − ξ′ϕ− ψk2 − ϕk1 + ζ1 = 0,

2ξψ′ − ξ′ψ − ψk4 − ϕk3 + ζ2 = 0.

Then the generator Xo is reduced to

Xo = 2ξ∂x + (ξ′y + k1y + k2z)∂y + (ξ′z + k3y + k4z)∂z.

The equivalence transformation

x1 = α(x), y1 = yβ(x), z1 = zβ(x),

where
α′′β = 2α′β′, (α′β 6= 0),

reduces the generator Xo to

Xo = 2α′ξ∂x1 +((2ξβ′/β+ξ′+k1)y1+z1k2)∂y1 +(k3y1+(2ξβ′/β+ξ′+k4)z1)∂z1 .

Choosing β(x) such that 2ξβ′/β + ξ′ = 0 the generator Xo is reduced to the
generator

Xo = 2α′ξ∂x1 + (k1y1 + k2z1)∂y1 + (k3y1 + k4z1)∂z1 .

Notice that in this case
d(α′ξ)

dx1

= 0.

Indeed
d(α′ξ)

dx1

=
(α′ξ)′

α′ = ξ′ +
α′′

α′ ξ = −2ξ
β′

β
+ 2

β′

β
ξ = 0.

Thus the generator Xo is

Xo = k∂x1 + (k1y1 + k2z1)∂y1 + (k3y1 + k4z1)∂z1 ,

6



  

where k = 2α′ξ 6= 0 is constant. We rewrite the generator Xo in the form

Xo = ∂x + (a11y + a12z)∂y + (a21y + a22z)∂z.

The determining equations become

(a11y + a12z)Fy + (a21y + a22z)Fz + Fx − a11F − a12G = 0,

(a11y + a12z)Gy + (a21y + a22z)Gz +Gx + a21F − a22G = 0.
(6)

Here aij, (i, j = 1, 2) are constant. In the matrix form these equations are
rewritten as (

(Ay)t∇
)
F + Fx − AF = 0, (7)

where

A =

 a11 a12

a21 a22

 , ∇ =

 ∂y

∂z

 .

Further simplifications are related with simplifications of the matrix A.

We apply the change ỹ = Py where P is a nonsingular matrix with constant
entries

P =

 p11 p12

p21 p22

 .

Equations (3) become

ỹ′′ = F̃(x, ỹ)

where

F̃(x, ỹ) = PF(x, P−1ỹ).

The partial derivatives ∂y and ∂z are changed as follows

∇ = P t∇̃.

Hence equations (7) are changed as

(
(AP−1ỹ)tP t∇̃

)
(P−1F̃) + P−1F̃x − AP−1F̃ = P−1

((
(PAP−1ỹ)t∇̃

)
F̃ + F̃x − PAP−1F̃

)
= P−1

((
(Ãỹ)t∇̃

)
F̃ + F̃x − ÃF̃

)
= 0,

where

Ã = PAP−1.

This means that the change ỹ = Py reduces equation (7) to the same form
with the matrix A changed. The infinitesimal generator is also changed as

Xo = ∂x + (Ãỹ)t∇̃.
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Using this change, the matrix A can be presented in the Jordan form. For a
real-valued 2× 2 matrix A, if the matrix P also has real-valued entries, then
the Jordan matrix is one of the following three types:

J1 =

 a 0

0 b

 , J2 =

 a c

−c a

 , J3 =

 a 1

0 a

 , (8)

where a, b and c > 0 are real numbers. Notice also that using the dilation of
x, one can reduce c to 1.

2.3.1 Case A = J1

We assume that

A =

 a 0

0 b

 .

In this case the equations for the functions F and G are

ayFy + bzFz + Fx = aF,

ayGy + bzGz +Gx = bG.

The general solution of these equations is

F (x, u, v) = eaxf(u, v), G(x, u, v) = ebxg(u, v) (9)

where

u = ye−ax, v = ze−bx.

The admitted generator is

Xo = ∂x + ay∂y + bz∂z.

2.3.2 Case A = J2

We assume that

A =

 a c

−c a

 .

In this case equations (6) become

(ay + cz)Fy + (−cy + az)Fz + Fx − aF − cG = 0,

(ay + cz)Gy + (−cy + az)Gz +Gx + cF − aG = 0.
(10)
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Introducing the variables

u = e−ax(y cos(cx)− z sin(cx)), v = e−ax(y sin(cx) + z cos(cx)),

equations (10) become

Fx − aF − cG = 0, Gx + cF − aG = 0.

The general solution of these equations is

F (x, u, v) = eax (cos(cx)f(u, v) + sin(cx)g(u, v)) ,

G(x, y, z) = eax (− sin(cx)f(u, v) + cos(cx)g(u, v))
(11)

where f(u, v) and g(u, v) are arbitrary functions. The admitted generator is

Xo = ∂x + (ay + cz)∂y + (−cy + az)∂z.

2.3.3 Case A = J3

We assume that

A =

 a 1

0 a

 .

In this case equations (6) become

(ay + z)Fy + azFz + Fx − aF −G = 0,

(ay + z)Gy + azGz +Gx − aG = 0.
(12)

As in the previous case we introduce the variables

u = e−ax(y − zx), v = e−axz

so that equations (12) become

Fx − aF −G = 0, Gx − aG = 0.

The general solution of these equations is

F (x, u, v) = eax (f(u, v) + xg(u, v)) , G(x, y, z) = eaxg(u, v), (13)

where f(u, v) and g(u, v) are arbitrary functions. The admitted generator is

Xo = ∂x + (ay + z)∂y + az∂z.
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2.4 Case ξ = 0

Substituting ξ = 0 into the determining equations, one finds that

(a11y + a12z + ζ1)Fy + (a21y + a22z + ζ2)Fz = a11F + a12G+ ζ ′′1 ,

(a11y + a12z + ζ1))Gy + (a21y + a22z + ζ2)Gz = a21F + a22G+ ζ ′′2 ,
(14)

or in a matrix form (
(Ay)t∇+ h

)
F = AF + h′′

where

A =

 k1 k2

k3 k4

 , h(x) =

 ζ1(x)

ζ2(x)

 .

Similarly to the case where ξ 6= 0 we use the Jordan forms (8) of the matrix
A. The admitted generator has the form

Xo = (k1y + k2z + ζ1(x))∂y + (k3y + k4z + ζ1(x))∂z.

2.4.1 Case A = J1

Assuming that A = J1, equations (14) for the functions F and G are

(ay + h1)Fy + (bz + h2)Fz = aF + h′′1,

(ay + h1)Gy + (bz + h2)Gz = bG+ h′′2.

The general solution of these equations depends on a value of a and b:

• Case: a 6= 0, b 6= 0

aF + h′′1 = (ay + h1)f(x, v), bG+ h′′2 = (bz + h2)g(x, v),

v = (bz + h2)
a(ay + h1)

−b.

• a 6= 0, b = 0

aF + h′′1 = (ay + h1)f(x, v), G =
h′′
2

a
ln(ay + h1) + g(x, v),

v = z − h2

a
ln(ay + h1).

• a = 0, b = 0, h1 6= 0

F =
h′′
1

h1
y + f(x, v), G =

h′′
2

h1
y + g(x, v),

v = z − h2

h1
y.

10



  

Here f(x, v) and g(x, v) are arbitrary functions.

2.5 Case A = J2

In this case equations (14) become

(ay + cz + h1)Fy + (−cy + az + h2)Fz = aF + cG+ h′′1,

(ay + cz + h1)Gy + (−cy + az + h2)Gz = −cF + aG+ h′′2.
(15)

Introducing the variables

y = y − (a2 + c2)−1(ah1 − ch2), z = z − (a2 + c2)−1(ch1 + ah2),

F = F − (a2 + c2)−1(ah′′1 − ch′′2), G = G− (a2 + c2)−1(ch′′1 + ah′′2)

equations (15) become

(ay + cz)F y + (−cy + az)F z = aF + cG,

(ay + cz)Gy + (−cy + az)Gz = −cF + aG.

In the variables
y = veau sin(cu), z = veau cos(cu),

these equations are

F u = aF + cG,

Gu = −cF + aG.

The general solution of the last equations is

F (x, u, v) = eau (cos(cu)f(x, v) + sin(cu)g(x, v)) ,

G(x, u, v) = eau (− sin(cu)f(x, v) + cos(cu)g(x, v))

where f(x, v) and g(x, v) are arbitrary functions.

2.5.1 Case A = J3

In this case equations (14) become

(ay + z + h1)Fy + (az + h2)Fz = aF +G+ h′′1,

(ay + z + h1)Gy + (az + h2)Gz = aG+ h′′2.
(16)

The general solution of the equations depends on a and h2. If we consider the
case for which a = 0, then similarly to the previous case, we introduce the
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variables
z = z − h1, G = G− h′′1

so that equations (15) become

zF y + h2F z = G,

zGy + h2Gz = h′′2.

If h2 = 0, then

F (x, y, z) = y
z+h1

f(x, v) + g(x, v),

G(x, y, z) = −h′′1 + f(x, v)

where v = z + h1.

If h2 6= 0, then

F (x, y, z) =
h′′
2

2
u2 + uf(x, v) + g(x, v),

G(x, y, z) = −h′′1 + h′′2u+ f(x, v)

where u = z+h1

h2
, v = y − (z+h1)2

2h2
.

If a 6= 0 we introduce the variables

y = y − a−2(ah1 − h2), z = z − a−1h2,

F = F − a−2(ah′′1 − h′′2), G = G− a−1h′′2.

Equation (15) becomes

(ay + z)F y + azF z = aF +G,

(ay + z)Gy + azGz = aG.

In the variables
y = uveau, z = veau

the equations are

F u = aF +G,

Gu = aG.

The general solution of these equations is

F (x, u, v) = eau (uf(x, v) + g(x, v)) ,

G(x, u, v) = eauf(x, v)

where f(x, v) and g(x, v) are arbitrary functions.
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3 Systems of linear equations

Linear second-order ordinary differential equations have the following form,

y′′ = A(x)y′ +B(x)y + f(x), (17)

where A(x) and B(x) are matrices, and f(x) is a vector. Using a particular
solution yp(x) and the change

y = ỹ + yp,

we can, without loss of generality assume that f(x) = 0. The matrix A(x) or
B(x) can also be assumed to be zero if we use the change, y = C(x)ỹ, where
C = C(t) is a nonsingular matrix. In the present paper the matrix A(x) is
reduced to zero. In this case the linear equations (3) are linear functions of y
and z:

F (x, y, z) = c11(x)y + c12(x)z, G(x, y, z) = c21(x)y + c22(x)z. (18)

Any linear system of equations admits the following generators

y∂y + z∂z, (19)

ζ1(x)∂x, ζ2(x)∂x (20)

where ζ1(x) and ζ2(x) are solutions of the equations:

ζ ′′1 = c11ζ1 + c12ζ2, ζ
′′
2 = c21ζ1 + c22ζ2.

For the classification problem one needs to study equations which admit gen-
erators different from (19) and (20).

3.1 Equivalence transformations

Calculations show that the equivalence Lie group is defined by the generators:

Xe
1 = z∂y + c21∂c11 + (c22 − c11)∂c12 − c21∂c22 ,

Xe
2 = y∂z − c12∂c11 − (c22 − c11)∂c21 + c12∂c22 ,

Xe
3 = y∂y + z∂z, Xe

4 = y∂y − z∂z + 2(c12∂c12 − c21∂c21),

Xe
5 = 2ξ(x)∂x + ξ′(x)y∂y + ξ′(x)z∂z + (ξ′′′(x)− 4ξ′(x)c11)∂c11

−4ξ′(x)c12∂c12 − 4ξ′(x)c21∂c21 + (ξ′′′(x)− 4ξ′(x)c22)∂c22 ,
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where ξ(x) is an arbitrary function.

As is similar to nonlinear equations the transformations related with the gen-
erators Xe

1 , X
e
2 , X

e
3 and Xe

4 correspond to the linear change of the dependent
variables ỹ = Py with a constant nosingular matrix P . The transformations
corresponding to the generators Xe

5 is

x̃ = ϕ(x), ỹ = yψ(x), z̃ = zψ(x)

where the functions ϕ(x) and ψ(x) satisfy the condition

ϕ′′

ϕ′ = 2
ψ′

ψ
.

3.2 Case ξ 6= 0

Using the obtained general forms of equations admitting an infinitesimal gen-
erator with ξ 6= 0 linear systems of equations (9), (11) and (13) have the
following form:

f(u, v) = α11u+ α12v, g(u, v) = α21u+ α22v. (21)

3.2.1 Case A = J1

The functions F and G become

F = α11y + eαxα12z, G = e−αxα21y + α22z

where α = a− b.

Notice that if α12 = α21 = 0, then the linear system of equations is a linear
system with constant coefficients. This case has been studied [12,13]. For the
same reason, one assumes that α 6= 0. Hence, without loss of generality one
can assume that αα12 6= 0. Using the dilation of x and then z, one can set
α = α12 = 1. Thus,

F = α11y + exz, G = e−xα21y + α22z. (22)

Since for α21 = 0 the equations are reduced to the case where G = 0. One also
has to assume that α21 6= 0.
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3.2.2 Case A = J2

Substituting (21) into the functions F and G one finds

F = y(cos2(cx)α11 + cos(cx) sin(cx)α12 + cos(cx) sin(cx)α21 + sin2(cx)α22)

+ z(cos2(cx)α12 − cos(cx) sin(cx)α11 + cos(cx) sin(cx)α22 − sin2(cx)α21),

G = y(cos2(cx)α21 − cos(cx) sin(cx)α11 + cos(cx) sin(cx)α22 − sin2(cx)α12)

+ z(cos2(cx)α22 − cos(cx) sin(cx)α12 − cos(cx) sin(cx)α21 + sin2(cx)α11).

Using trigonometry formulae, and introducing the constants α, β, c1 and c2:α11 α12

α21 α22

 =

 β + c2 α− c1

α+ c1 −β + c2

 ,

one can rewrite functions F and G in the form

F = y(cos(2cx)β + sin(2cx)α+ c2) + z(cos(2cx)α− sin(2cx)β − c1),

G = y(cos(2cx)α− sin(2cx)β + c1)− z(cos(2cx)β + sin(2cx)α− c2).

Without loss of generality one can assume that β = 0. If β 6= 0, then the
change ỹ = Py with the matrix

P =

 cos(2θ) sin(2θ)

− sin(2θ) cos(2θ)


and the angle θ satisfying the equation,

βτ 4 + 4ατ 3 − 6βτ 2 − 4ατ + β = 0,

reduces the functions F and G to the form

F = y(γ sin(2cx) + c2) + z(γ cos(2cx)− c1),

G = y(γ cos(2cx) + c1) + z(−γ sin(2cx) + c2).

Here τ = tan θ. Since for γ = 0 the linear system of equations is a linear
system with constant coefficients one has to consider γ 6= 0. Without loss of
generality one can set γ = 2c = 1:

F = y(sin(x) + c2) + z(cos(x)− c1),

G = y(cos(x) + c1) + z(− sin(x) + c2).
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3.2.3 Case A = J3

Substituting (21) into the functions (18) one finds

F = y(α11 + α21x) + z(α12 + (α22 − α11)x− α21x
2),

G = yα21 + z(−α21x+ α22).
(23)

In particular for α21 = 0 one has G = zα22. Using an equivalence transforma-
tion one can reduce α22 = 0:

F = (y − zx)α11 + zα12, G = 0. (24)

This corresponds to the case which is omitted from the study. Thus one has
to assume that α21 6= 0. Without loss of generality one can set α21 = 1:

F = y(α11 + x) + z(α12 + (α22 − α11)x− x2),

G = y + z(−x+ α22).
(25)

3.3 Case ξ = 0

Substituting (18) into (14) and splitting it with respect to y and z one has

a21c12 − a12c21 = 0, a12(c11 − c22) + (a22 − a11)c12 = 0,

(a11 − a22)c21 + a21(c22 − c11) = 0,
(26)

ζ ′′1 = ζ1c11 + ζ2c12, ζ
′′
2 = ζ1c21 + ζ2c22. (27)

The admitted generator is of the form

Xo = (a11y + a12z + ζ1(x))∂y + (a21y + a22z + ζ1(x))∂z.

Equations (27) define the trivial set of the admitted generators (20). The
nontrivial generators

Xo = (a11y + a12z)∂y + (a21y + a22z)∂z (28)

are defined by equations (26). Equations (26) can be simplified by using the
Jordan form of the matrix A.

If A = J1 then equations (26) become

(b− a)c12 = 0, (b− a)c21 = 0.
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Since for b = a the generator (28) is also trivial, one has to assume that b 6= a.
The last condition gives

c12 = 0, c21 = 0.

In this case the linear system of equations is reduced to the degenerated case
G = 0. Similar reduction occurs for A = J3. Indeed, if A = J3, then equations
(26) are

c21 = 0, c22 = c11.

If A = J2 then equations (26) give

c12 + c21 = 0, c22 = c11.

Here one has to assume that c12 6= 0. Using the equivalence transformation of
the form

t = ϕ(x), u = yψ(x), v = zψ(x),

where ϕ′′

ϕ′ = 2ψ
′

ψ
, one can reduce c12 = 1. Thus, in this case one has to also

assume that c′11 6= 0.

4 Solutions of the determining equations

The preliminary study has led us to the following linear systems which admit
generators different from (19):

F = α11y + exz, G = e−xα21y + α22z, s (29)

F = y(sin(x) + c2) + z(cos(x)− c1),

G = y(cos(x) + c1) + z(− sin(x) + c2),
(30)

F = y(α11 + x) + z(α12 + (α22 − α11)x− x2),

G = y + z(−x+ α22),
(31)

F = yc+ z,G = −y + zc (32)

where αij = αij and ci = ci (i, j = 1, 2) are constant, c = c(x) and α21c
′ 6= 0.
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4.1 Admitted Generators

Cases Determining Equations Admitted Generator

(29) (3) with (29) ∂x − z∂z

(30) (3) with (30) 2∂x + z∂y − y∂z

(31) (3) with (30) ∂x + z∂y

(32) (3) with (30) z∂y − y∂z.

5 Discussion

Here we give comparisons of our study with results found in [16]. Since the
complete comparison is very cumbersome we only do it for the case where
in [16] there is two or more admitted generators. We further show that these
cases are either equivalent to degenerate cases with the trivial second equation
(G(x, y, z) = 0) or the case which is equivalent to the constant matrix A.

Indeed, the case (I.4.2) of [16] corresponds to the matrix

A =

 0 b(x)

0 0


For this case G(x, y, z) = 0.

The case (I.6.5) of [16] corresponds to the matrix

A =

 0 b(x)

γb(x) 0


with a particular function

b(x) = b0g
−1(x)

where g(x) = (c1x
2/2 + c2x+ c3) 6= 0 and γ is constant. The admitted gener-

ators found in [16] are

X6 = z∂y + γy∂z, X7 = 2g(x)∂x + g′(x)(y∂y + z∂z).

In this case the change

x1 = α(x), y1 = yβ(x), z1 = zβ(x),
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where

2gβ′/β + g′ = 0, α′′β = 2α′β′ (α′β 6= 0),

reduces the generator X7 to

X7 = ∂x1 ,

which means that this case is equivalent to the case of two linear equations
with constant coefficients.

Similarly one can show that the cases (I.8.2) and (II.3.3) of [16] are equivalent
to linear systems with constant coefficients.

6 Conclusion

We have given a complete group classification of the general case of linear
systems of two second-order ordinary differential equations excluding the case
of systems which are equivalent to systems of type (1) and the degenerate case
(2). As a starting point we gave a preliminary study of systems of two second-
order nonlinear equations of the form y′′ = F (x, y, z) and z′′ = G(x, y, z)
using Ovsiannikov’s approach [2]. This involved simplifying one generator and
finding the associated functions which were used to solve the determining
equations. The study here can be considered as the first step in the study of
nonlinear systems of two second-order ordinary differential equations and can
be applied to systems of equations with more than two equations.

A comparison of our study with results found in the literature [16] is given in
the Section on the Discussion.

The complete group classification of a system of two linear second-order ordi-
nary differential equations was done. We found four cases of linear systems of
equations which are not equivalent to the system (1) and the degenerate case.
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Highlights

• A complete group classification of the general case of linear systems of two
second-order ordinary differential equations is given.

• Four cases of linear systems of equations with inconstant coefficients are
obtained.

• A preliminary study of systems of two second-order nonlinear equations
of the form y′′ = F (x, y, z), z′′ = G(x, y, z) is given.
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