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Abstract –In this paper the dynamic performance of the artificial neural network is compared to the performance of 

a statistical method such as the support vector machine. This comparison is made with respect to an image 

classification application where the performance is compared with regards to generalization and robustness. Image 

vectors are compressed in order to reduce the dimensionality and the salient feature vectors are extracted with the 

principle component algorithm. The artificial neural network and the support vector machine are trained to classify 

images with feature vectors. A comparative analysis is made between the artificial neural network and the support 

vector machine with respect to robustness and generalization. 
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1. Introduction 
Texture and tone are two salient aspects of an image and on occasion the one property can easily 

overlook the other (Seetha et al., 2005-2008). Texture depends on the spatial distribution of gray levels 

within a neighborhood (Tomasi and Manduchi, 1998). Texture displays its characteristics by means of 

pixels, and pixel values and images can be identified by their texture (Chen et al., 1993). Artificial neural 

networks (ANN’s) and support vector machines (SVM’s) have been widely used for image identification 

(Seetha et al., 2005-2008). Image identification using ANN’s and SVM is achieved by extracting key 

textural characteristics during image pre-processing using techniques such as wavelet compression (WC) 

and principle component analysis (PCA), and then training the classifier to identify these characteristics. 

In this paper we will focus on the design and performance of ANN’s and SVM’s for performing reliable 

and repeatable image identification under varying degrees of operational challenges.  

 

2. The ANN  
The ANN has been chosen because of its ability to provide solutions to problems that are 

characterized by high dimensionality noise, nonlinearities and error prone data (Haykin, 1999). The 

artificial neuron in Fig. 1 is the elementary processing unit of an ANN. Each connection to a neuron is 

defined by a weight (w). An activation function (f) shapes the output of the neuron (y) before it is applied 

to the next neuron, or forms the output. Neurons combine to form either feedforward (FF-ANN) or 

recurrent networks, and variants thereof.   

Our study uses a feed-forward ANN architecture (FF-ANN) that has been designed and trained for 

image recognition. The tan-sigmoid output transfer function was chosen because of its universal 

applicability to a wide range of problems (Kilian, 1996). FF-ANN’s consist of three or more layers, 

namely an input layer, one or more hidden layers, and an output layer (Haykin, 1999). Signal propagation 

is unidirectional from input to output. Image identification with ANN’s is done by training the ANN to 
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recognize certain key textural features of an image. Textural features are detected using both pixels and 

pixel values, and is characterized by the spatial distribution of gray levels within a neighbourhood.  
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Fig. 1. Artificial neuron basic processing element 

 
3. Basic Theory of the SVM 

SVM is a statistic based pattern classification technique introduced by Vapnik (1995). SVM is based 

on the concept of structural risk minimization (SRM).  A learning machine’s risk (R) is bound within the 

sum of the empirical risk (Remp) and a confidence interval ψ i.e.   
 
(Vapnik, 1995). 

SVM’s utilize a kernel function to map a nonlinearly separable vector into a higher dimensional space to 

make it linearly separable.  The kernel function is one of the main building blocks of a SVM and can be 

used with a wide range of different learning theories. When we draw a comparison between ANN’s and 

SVM’s, the choice of a suitable ANN architecture for a specific application is analogous to choosing a 

suitable kernel function for a SVM. Single SVM’s are binary classifiers that can be extended by 

integrating several together for solving multiclass data problems (David and Lerner, 2004).   

 

3.1 The optimal Separating Hyperplane  
The SVM algorithm is used to determine the optimal separating hyperplane between two classes of 

data. Assume dataset T has two separable classes and a total of k samples, where these samples are 

represented as (x1, y1), (x2, y2),…, (xk, yk). The class label is represented as { 1,1}y   and is the binary 

value of two classes; 
nx R  where 

nR is an n- dimensional space.  

  Consider the SVM system in Fig. 2: Dataset T is separated into two classes by two parallel hyper-

planes H1 and H2. Hyperplane H3 is the optimal separating hyperplane that lies parallel with 1H  and 2H  

and is equidistant between these two hyperplanes. H3 is defined as , where  denotes matrice 

multiplication, w is the normal vector to 1H  and 2H  , and b represents the bias.  

 

 
Fig. 2. Optimal separating hyperplane for a 2-D and 2-class problem 
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3.2 The Kernel Function 
The kernel function is the key component of the SVM classifier and locates the decision boundaries 

between different classes of data (Cristianini and Shawe-Tayler, 2000). It converts training data from a 

feature space to a higher dimension and makes them linearly separable. Commonly used kernel functions 

include the polynomial function, the radial basis function and the sigmoid function. Binary class data 

being classified must meet the following condition:  
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The margin m in Fig. 2 represents the absolute distance between hyperplanes H1 and H2 and is 

denoted as 
2

m
w

 ( Vapnik,1998). This sets the restriction condition of the optimal separating 

hyperplane for  ensuring that m obtains its maximum value. If we subject 
2

m
w

  to (1) and replace the 

maximization of 
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  with its equivalent minimization of 
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following Lagrange formulation: 
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where ia  is the Lagrangian multiplier. To minimize L(w,b,a) we minimize w and b as follows: 

 

         (3) 

 

and ia is maximized as follows: 
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for any i =1,….,n . The kernel (k)  is defined by k(xi,xj) = xi xj. 

The quadratic is subjected to   

1

0
k

i i

i

a y


  where 0 1,...,i ia k             (5) 

The construction of the optimal separating hyperplane depends on solving the quadratic 

programming problem with equation (4) and equation (5). For the solution just a few of a is non-zero and 

its corresponding samples 1H  and 2H  in Fig. 2 form the support vectors. The SVM classifier is 

concluded as 

    (6) 

For many real classification problems, the data vector set is usually nonlinear separable in the low 

dimension. For such instances the SVM classifier must be trained to solve the classification problem. 
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4. Image Pre-processing 
Image pre-processing involves image capture, image compression and feature extraction (Li et al., 

2008) 

 

4.1 Image Capture 
The cigarette carton images considered in the study are given in Fig. 3. The identification of these 

images will be performed first by using the ANN and then the SVM. A comparison will then be made 

between the SVM and the ANN with regards to their ability to generalize and remain robust in the 

presence of environmental disturbances.  

 

4.2 Data Compression with the Haar Wavelet Transform  
Our image recognition system uses the Haar wavelet transform (HWT) for data compression to 

reduce the dimensionality of image data. Haar wavelet compression was chosen over other traditional 

compression methods because of the transform’s ability to provide a multi-resolution representation of an 

image and to yield a higher compression ratio (Raviraj and Sanavullah, 2007), (Seetha et al., 2005-2008). 

In wavelet compression, an input signal is decomposed into a summation of a series of base functions or 

wavelets that are generated through dilating and shifting operations from a mother wavelet (Zhang et al., 

2000).  

 

 

         
              (a) Aspen                              (b) Lucky Strike                    (c) Winfield 

Fig. 3. Box Images in different positions 

 

 

4.3 Feature Extraction Using PCA 
PCA is a classical statistical data reduction technique that reduces the dimensionality of dataset 

vectors by identifying and extracting only key features of the dataset (Nixon and Aguado, 2008). Reduced 

datasets ease the computation burden during data processing (Nixon and Aguado, 2008). Following 2D-

HWT compression, PCA extracts the most significant elements of the compressed image data set as 

follows: 

  Determine the mean of the compressed data set and subtract its mean from each data 

element to get the average. This produces a data set having a mean of zero and  

i) Determine the covariance matrix, and then calculate the eigenvectors and eigenvalues 

of the covariant matrix.  

Each column of the eigenvector matrix with the highest eigenvalues are the principal components and 

form the feature vector set.  

 

5. Extracting Training Vectors and Ann and Svm Design 
5.1 Extracting the Training Vectors 

A comprehensive set of image vectors for each workpiece is determined as follows:  

i) 3 images of each object from 120
0
, 240

0
 and 360

0
 orientations are captured of each object when the 

object is in a first pose. The 3 images of the object in its first pose are clustered together to form a group. 
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ii) The pose of each object is adjusted 5 times and 3 images are taken of the object in each respective 

pose. From this we will have 5 groups of images, with each group having three images of the same object 

positioned in a certain pose.  

iii) Repeat (i) and (ii) for each object. This results in a total of 15 groups of vectors (5 for each object), 

with each group having three images of each object occupying a specific pose. 

These object vectors have different position orientations and poses to ensure that accurate recognition will 

always take place even under dynamic environmental conditions. Following HWT compression of the 

object image in each of its poses, PCA is applied to the compressed image in order to extract the salient 

feature vectors given in Table 1. These vectors are used to train the ANN and the SVM system. 

 

5.2 Design of the Ann Recognition System  
The ANN system used to perform the recognition function is given in Fig. 4. The size of the input 

layer is determined from the number of rows in the eigenvector data matrix, which is 36 from Table 1. 

The decision to use 9 neurons in the hidden layer was made following a series of experiments. The output 

layer consists of 3 neurons to correspond to the number of objects that must be identified for sorting.  

 

5.3. Construction of the SVM Classifier  
SVM’s use optimization algorithms to determine the optimal boundaries between different classes of 

data (Cristianini and Shawe-Tayler, 2000; Chen et al., 1993) . The three cigarette cartons in Fig. 1 were 

used to generate the three classes of data used in the study. The SVM classifier can only classify two 

different data samples at a time. For this reason we converted our multi-class classification problem into 

two binary class problems and designed a multi-level classifier with two SVM classifiers for classifying 

the images of the three different cigarette brands (See Fig. 5). 

 

5.3.1 SVM Tree Structure  
 Fig. 5 illustrates the SVM decision engine used in this study. From Fig. 5, the test sample on Level 1 

contains three data classes that correspond to the Aspen, Lucky-Strike and Winfield cartons respectively. 

The SVM is a binary classifier and can only differentiate between two classes of data at a time. For this 

reason at Level 1 the SVM is trained to recognize the Aspen-Lucky-Strike vector combination as the one 

group and the Winfield carton vectors as the other group. At Level 2 the SVM is trained to differentiate 

the Lucky-Strike from the Aspen carton.  
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Fig. 4.  36: 9: 3 MLFF sigmoidal ANN for the cigarette carton recognition system 

 

Table 1. 36 x 15 feature vectors to train the ANN and the SVM 
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Fig. 5. Structure of the multiclass SVM decision tree  

 
 

5.3.2 Selection of the SVM Kernel Function 
The performance of a SVM depends largely on its kernel function  and proper selection of the kernel 

function will determine how well the SVM generalizes (Cristianini and Shawe-Tayler, 2000). However, 

there is no set theoretical technique to determine a kernel function. For this reason we followed an 

iterative process to try the different kernel functions, and finally chose a linear kernel function based on 

its performance for the Level 1 and Level 2 SVM classifiers. 

 

5.3.3 SVM Classification Results 
Table 2 shows the results of the SVM1 classifier. The 0 denotes the target vectors of the Aspen-

Lucky-Strike combination and 1 denotes the Winfield carton target vectors. On Level 2, the SVM2 

classifier differentiates between the Aspen and Lucky Strike cartons. In Table 3 for the SVM2 classifier, 

the 0 denotes the Aspen carton and the 1 represents the Lucky Strike carton.   From these results we can 

conclude that the three different boxes were recognized successfully with a recognition rate of 100%. 

 

6. Comparing the Dynamic Performance of the ANN to that of the SVM  
6.1 Generalization Ability  

The SVM and NN were first compared with regards to their ability to generalize. Image data was 

used as training data for the NN and SVM classifier. We used five ANN classifiers and five SVM 

classifiers to test for generalization. These were trained using 3, 6, 9, 12 and 15 samples respectively for 
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each cigarette boxes, and each test sample had 20 images of each cigarette box. From Fig. 6, for small 

quantities of training set samples the SVM classifier has stronger generalization ability than the ANN 

classifier for the same training conditions. For larger training data sets, the performance of the SVM and 

NN are comparable and reinforces the fact that ANN’s usually produce good results when large quantities 

of data are available. 

 

6.2 Robustness 
A comparison between the SVM and the ANN classifier was also done to test their ability to reject 

noise disturbances from external environmental factors. Artificial ‘salt and pepper’ noise was used to test 

the immunity of the SVM and ANN classifiers to noise interferences. Varying degrees of ‘salt and 

pepper’ noise was applied to 15 test sample images to compare the robustness of the SVM classifier to 

that of the ANN. The results of these tests are given in Fig. 7 and Fig. 8. From Fig. 7 we observe the 

following: For small quantities of data and low noise levels (See Fig. 7) the SVM exhibits slightly better 

robustness than the ANN. When large data quantities are available the ANN outperforms the SVM.   

 

 
Table 2.  Level 1 classification for SVM1  

 

 
 

 

 

Table 3. Level 2 classification for SVM2  

 

 
 

 

 

80 79
84

90 93

39
46

53

93

84

0

10

20

30

40

50

60

70

80

90

100

3 6 9 12 15

The quantity of test sample

T
h

e
 c

o
rr

e
c
t 

c
la

s
s
if

ic
a
ti

o
n

 r
a
te

(%
)

 
Fig. 6. Generalization performances of the ANN and SVM classifiers   

(The diamond represents the SVM classifier; the square represents the ANN classifier) 
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Fig.7. Robustness test with level 0.2 salt and pepper noise 
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Fig. 8. Robustness test with 0.4 level salt and pepper noise 

 

 

7. Analysis, Summary and Conclusion 
The paper has described the procedure to be followed when designing an image classification system 

with either ANN’s or SVM’s. The binary classification structure of the SVM is extended by fusing 

multiple SVM’s in order to classify multiclass data. The steps followed to pre-process the data for either 

the SVM or the ANN system is identical. To minimize computation burden, the dimensionality of image 

data is reduced with the HWT and PCA. This reduced dataset retains all the salient feature vectors which 

are applied to the classification system. The performance of the feed-forward ANN system was compared 

to that of the multiclass SVM with respect to generalization ability and robustness in the face of noise. 

The results were given in Fig. 6 to Fig. 8. From Fig. 6 we observe the following with regards to 

generalization: The SVM consistently outperforms the ANN irrespective of  data size. For large quantities 

of data the performance of the ANN improves and reinforces the fact that ANN’s require large quantities 

of data to produce an appreciable performance. With regards to robustness the following is observed: The 

SVM and ANN performance is comparable for small data quantities and same noise levels. The 

performance of the SVM deteriorates significantly for large data quantities. These results show that a well 

designed and trained ANN will have the inherent ability to consistently remain immune when faced with 

disturbances. 
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