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The propagation properties of mid-latitude Rossby waves are well known and are usually revealed in
terms of the dispersion equation either in its diagnostic or wave normal forms, both of which show
that phase propagation is entirely westward and is permitted only if the wave frequency is less than
a certain critical frequency. Here we show that the group velocity diagram is an ellipse whose focus
lies at the origin. This simple result supplements the Longuet-Higgins (1964) interpretation in which
the wave normal curve is an offset circle, in elucidating the propagation properties of Rossby waves.
In the case of a general β, which describes both topographic zonal variations as well as the latitudinal
and spatial variations of the Coriolis effect, we show that these results hold through a rotation to a new
set of coordinates. The stationary phase method shows that the radiation pattern generated by a time
harmonic spatially compact source consists of two sets of hyperbolae exhibiting westward pointing
“Mach-Froude” like lines, in a manner analogous to the generation of capillary-gravity waves by a
moving object on the surface of deep water. These results are confirmed by the Green’s function for
the system which consists of a westward propagating wave superimposed on the Hankel function of
zero order, appropriate to the 2-D Helmholtz equation.

Keywords: Group velocity; Radiation patterns for Rossby waves

1. Introduction

Rossby waves play a central role in geophysical fluid dynamics and dynamical meteorology,
particularly in the dynamics of quasi-geostrophic flow. These waves arise from the latitudinal
variation of the Coriolis force (through the Coriolis parameter f ) and the near balance achieved
between it and the pressure gradient, and are intimately connected with the conservation of
potential vorticity (see, e.g. Vallis 2006). Their reflection properties at coast lines help to
explain certain features of western boundary currents (Pedlosky 1987, Marshall and Plumb
2008). The anisotropic and dispersive propagation properties of Rossby waves (in particular
the “backward” property in which phase and group velocities are opposite in the N-S direction)
have been invoked, together with equatorial heating, to explain dipole-like formation of
equatorial easterly jets accompanied, at higher latitudes, by westerly jets (Diamond et al.
2008). Also an inverse turbulent cascade together with Rossby waves can lead to the formation
of zonal flows (Vallis 2006). These ideas have been further developed recently (Kidston and
Vallis 2012) in models of an eddy-driven jet.
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2 J. F. McKenzie

The properties of planetary waves in a rotating fluid using the β-plane approximation leading
to the Rossby wave equation have been extensively discussed and the reader is referred to the
texts of Gill (1982), Pedlosky (1987, 2003) and Vallis (2006) for a review of the subject.
The use of Fourier analysis, the method of stationary phase, wave normal curves and their
associated reciprocal polars, as methods for calculating the solution to linear wave problems
and the corresponding radiation patterns are elucidated in Lighthills’s work “Waves in Fluids”
(Lighthill 1978).

In this paper, we apply these methods to “mid-latitude” Rossby waves for which the
dispersion equation in both diagnostic and wave normal forms is well known. In particular,
the wave normal in k-space is an offset circle (Longuet-Higgins 1964) which shows that phase
propagation is entirely westward. This diagram also shows that the ray direction, given by
the normal to the curve, is directed eastward for short wavelengths and westward for long
wavelengths. Expressions for the zonal and latitudinal group speeds are readily available but
are usually left in a somewhat unperspicaceous form in which the zonal number kx serves as
a generating parameter for the group velocity diagram (e.g. Farrell and Watterson 1985, Lu
and Boyd 2008). From a few simple algebraic steps which eliminates kx in favour of the zonal
group velocity, it follows that the group velocity is in fact an ellipse (Duba and McKenzie
2012), in which the focus is at the origin. This simple geometrical result supplements the
Longuet-Higgins wave normal circle in revealing the properties of Rossby waves. It is also
shown that in the more general case in which topographic, as well as Coriolis, β plane effects
are present, the corresponding wave normal curves and group velocity diagrams are obtained
by simple rotations through an angle measuring the ratio between the latitudinal and zonal
β-effects.

Finally, using the method of stationary phase, we show that the radiation pattern generated
by a time harmonic, spatially compact source, consists of two families of hyperbolae. The
one completely surrounding the source corresponds to short wavelengths, permits a portion
of eastward propagation, whereas the other is associated with longer wavelengths and lies
completely to the west. Both patterns are asymptotic to a “Mach-Froude” like angle at which
the short and long wavelengths wave numbers coalesce. These results are also revealed by
the Green’s function, for the time harmonic Rossby wave equation, which consists of the
zero-order Hankel function with a superimposed westward propagating wave.

2. Rossby wave and dispersion equations

The linearized shallow water equations for a rotating layer of fluid of depth H(x, y) lead, in
the “low frequency”, quasi-geostrophic approximation, to the classical Rossby wave equation
for the displacement η of the surface (see the Appendix)

∂

∂t

[
f 2
o

c2
o

−
(

∂2

∂x2
+ ∂2

∂y2

)]
η = −(β × ∇η)z, (1)

in which

β = βt + βc, βt = − f

(
1

c2

∂c2

∂x
,

1

c2

∂c2

∂y

)
, βc =

(
0 ,

∂ f

∂y

)
, (2a–c)

co = √
gH , shallow water speed, (2d)

f = f0 + βy y, βcy = 2Ω cos θ0

R
, f0 = 2Ω sin θ0. (2e–g)
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Group velocity and radiation pattern of Rossby waves 3

The suffix o denotes a reference level. We note here that the definition of β includes both
the topographic β effect given by βt and the Coriolis β effect βc. Equations (1) and (2) extend
the analysis of Pedlosky (1987) to include the Coriolis as well as topographic β-effects. The
scale analysis given in the appendix demonstrates that this extension is not entirely trivial.
Here θ0 is the latitude at which the β-plane is constructed tangent to the surface of the planet
(radius R), rotating with angular frequency Ω , and y measures distance northward while x is
directed eastward.

Equation (1) yields the well-known dispersion equation (Gill 1982, Pedlosky 1987, Pedlosky
2003) for plane waves varying as exp i(ωt − kx x − ky y):

ω = −βykx + βx ky(
k2

x + k2
y + f 2

o /c2
o

) . (3a)

This dispersion equation may also be written in form of wave number (or wave normal) curve,(
ky − βx

2ω

)2

+
(

kx + βy

2ω

)2

= β2
x + β2

y

4ω2
− f 2

o

c2
o

. (3b)

Hence for a given angular frequency ω, the wave normal curve in wave number (kx , ky), space
is circle-centred at

(
βx/2ω,−βy/2ω

)
of radius given by the square root of the right-hand side

of (3b), which requires the frequency ω to be less than the critical frequency (coβ/2 f0), above
which the wave is evanescent. If we write

β = (βx , βy) = β(cos α, sin α), (4)

it is clear that (3b) can be written as the Longuet-Higgins circle (Gill 1982) in the coordinates
(k′

y, k′
x ) obtained from (ky, kx ) by rotating these clockwise through an angle α leading to

equation (3) being replaced by

ω = −βk′
x

k ′
x

2 + k ′
y

2 + f 2
o /c2

o

, k ′
y

2 +
(

k′
x + β

2ω

)2

=
(

β

2ω

)2

− f 2
o

c2
o

. (5a,b)

Figure 1 shows the wave normal circle rotated through an angle α.
In a recent paper (Duba and McKenzie 2012), it is shown that the phase (Vp) and group

(Vg) velocity diagrams are, respectively, circles and ellipses displaced westward. In the present
context of a general β (see (4)), the rotated phase velocity diagram becomes the circle

V̄ ′2
py +

(
V̄ ′

px + m

2

)2 = m2

4

(
1 − 4ω̄2

m

)
, (6)

in which V ′
p is normalized to co, ω̄ = ω/

√
βco and the parameter m which is given by

m = βco
/

f 2
o , (7)

is in fact the ratio of the Rossby speed (at long wavelengths, k ′ → 0) to the shallow water
speed. The dimensionless group velocity V̄ ′

g diagram, rotated clockwise through angle α, may
be written

V̄ ′2
gy

b2
+

[
V ′

gx + m

2

(
1 − 4ω̄2

m

)]2/
a2 = 1, (8a)

in which the semi-major and minor axes of the ellipse are given by

a2 = m2

4

(
1 − 4ω̄2

m

)
, b2 = mω̄2

(
1 − 4ω̄2

m

)
. (8b,c)
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4 J. F. McKenzie

Figure 1. The wave normal curve is the Longuet-Higgins offset circle rotated through an angle α.

Equation (8) can be written in the polar form of an ellipse, namely

V̄ ′
g = p

1 + e cos χ
, (9a)

in which

p = b2

a
= 2ω̄2

(
1 − 4ω̄2

m

)1/2

, e =
√

1 − b2

a2
=

(
1 − 4ω̄2

m

)1/2

. (9b,c)

The shift along the negative V ′
gx axis

m

2

(
1 − 4ω̄2

m

)
= ep

1 − e2
, (10)

shows that the origin in the (V ′
gy, V ′

gx ) (= V ′
g(sin χ, cos χ)) plane is at the focus of the ellipse

of eccentricity e. In terms of ω̄ and m, the ellipse (9a) may be written

V ′
g = 2ω̄2

/[(
1 − 4ω̄2

m

)−1/2

+ cos χ

]
. (11)

Note that in the limit m → ∞, the V ′
g curve becomes a parabola, as shown by the broken curve

in figure 2.
These forms for the group velocity show that it scales like the square of the frequency

divided by β for low frequencies, but as ω̄ → √
m/2, V ′

g → 0, the ellipse collapses to the
origin, with evanescence for ω̄ >

√
m/2. At a fixed ω, the ellipse becomes more elongated

as m increases, corresponding to the increase of the group velocity with Rossby radius in the
manner of the radical

√
1 − 4ω̄2/m. The maximum “eastward”, “westward” and “northward”

group speeds follow immediately from the major and minor axes as

VE,W = m

2

(
1 − 4ω̄2

m

)1/2 [
±1 −

(
1 − 4ω̄2

m

)1/2]
, (12a)

VN (S) = ω̄m1/2
(

1 − 4ω̄2

m

)1/2

. (12b)
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Group velocity and radiation pattern of Rossby waves 5

Figure 2. The phase Vp and group Vg velocity diagrams. In the limit m → ∞, these tend to the line and parabola,
respectively, as indicated by broken curves.

Figure 3. The maximum westward, eastward (VW,E ) and northward (southward) VN ,S group speeds as a function
of frequency.

These relations are depicted in figure 3. In summary, the group velocity diagram, namely an
ellipse with the focus at the origin and the semi-major and minor axes functions of frequency
and m, demonstrates in a clear fashion the highly dispersive and anisotropic nature of Rossby
wave energy propagation.

3. Radiation pattern (stationary phase and Green’s function)

The propagation properties of the Rossby group velocity outlined in the previous section
are closely connected with and govern the radiation pattern generated by some given time
harmonic, spatially compact source. In fact, it is the group velocity which determines the ray
directions along which disturbances are propagated and constructively interfere to produce
the dominant contribution to the far (radiation) field, along similar lines to the principles of
“geometric optics” and Huyghens principle. The evolution of atmospheric waves generated
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6 J. F. McKenzie

by point impulses has been analysed in a classic paper by Dickinson (1969). Here, we provide
a brief discussion, restricted to Rossby waves on a β-plane, which makes use of the ideas of
stationary phase to elucidate the radiation pattern excited by a given time harmonic, compact
source. We show that the pattern consists of two families of hyperbolae, one corresponding to
short wavelengths and the other to long wavelengths, both of which are asymptotic to a “Mach-
Froude” type line making an angle χm with the west (but see below). This result supplements
the original analysis of Dickinson (1969) and also later work by Rhines (2003).

We have seen, in the previous section 2, that in the case of a general β, the classic Rossby
wave and dispersion equations may be obtained by simple rotations in space (and/or wave
number vector) through an angle measuring the ratio of the latitudinal to zonal β-effects. It
is therefore sufficient to only consider the usual β effect since the case of a general β simply
involves a rotation of axes. Hence, we consider the disturbance generated by a given time
harmonic source, exp(iωt)S(x, y), can be calculated from the Rossby wave equation

∂

∂t

[(
∂2

∂x2
+ ∂2

∂y2

)
− κ2

o

]
Ψ + β

∂Ψ

∂x
= eiωt S(x, y), (13)

in which Ψ is a disturbance variable (such as the displacement η) and S(x, y) is a given spatial
distribution of the source, and κ2

o = f 2
o /c2

o is the square of the inverse Rossby radius. This
wave equation also applies to a general β (i.e. topographic as well as Coriolis), as noted in
section 2, by a rotation through an angle α to a new set of axes (x ′, y′), and therefore the
solutions developed in this section also apply to the rotated system. This equation can be
solved either using Fourier analysis or by standard Green’s function approach. In the former
method, if s(kx , ky) is the 2-D Fourier transform of S(x, y), then Ψ (x, y) may be written as
the Fourier synthesis of plane waves in the form,

Ψ = ieiωt

(2π)2

∫ ∞

−∞

∫ ∞

−∞
s(kx , ky)e−i(kx x+ky y)[

ω
(
k2

y + k2
x + κ2

o

) + βkx
] dkx dky . (14)

The ky integration is facilitated by the residue theorem using the fact that the integration has
simple poles at

ky = ±
√

κ2
e −

(
kx + β

2ω

)2

, κ2
e =

(
β

2ω

)2

− κ2
o . (15a,b)

Equation (15a,b) is simply the dispersion equation for Rossby waves. The result for Ψ is

Ψ = − eiωt

4πω

∫ ∞

−∞
s(kx , ky)e−i(kx x+ky y)

2ky
dkx , (16)

in which ky is given by equation (15a,b). The sign in front of the radical for ky is chosen
according to the well-known property of Rossby waves, namely that the northward (southward)
group velocity is in the opposite direction to the phase velocity ω/ky . Hence, if we calculate
the disturbance in the half space y ≷ 0, we must choose ky ≶ 0 to ensure that the energy
propagates “away” from the source. In the case of a point source for which the Fourier transform
s(kx , ky) is simply a constant representing its strength, the integral in (16) can be shown to
represent a westward zonal propagation combined with a zero Hankel function (but see the
discussion below of the Green’s function).

The main contribution to plane wave integrals of the form (16) comes from those points of
the (ky, kx ) wave normal curve for which the phase φ(x, y) = kx x + ky y is “stationary” for
large values of (x, y), which corresponds to the radiation field. Thus, the phase is stationary
(and the main disturbance Ψ results from constructive interference) at those points (x, y) for
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Group velocity and radiation pattern of Rossby waves 7

Figure 4. The radiation pattern of Rossby waves generated by a compact source around the origin. The “short”
wavelengths completely surround the origin, whilst the “long” wavelengths lie entirely westward. Both families of
hyperbolae are asymptotic to a “Mach-Froude” type cone making an χm with the west.

which

x + ∂ky

∂kx
y = 0, (17a)

which is equivalent to the ratio y/x , as given by the ratio of the group velocities i.e.

y

x
= ∂ω/∂ky

∂ω/∂kx
= − 1

∂ky/∂kx
, (17b)

(see, e.g. Karoly and Hoskins 1982, Shaman et al. 2012, for a detailed discussion of devel-
opments in Rossby wave of ray tracing). In this last form, it is clear that the direction of the
ray (group velocity) is parallel to the normal to the wave normal curve. The Rossby wave
dispersion equation (the offset circle) gives stationary phase as occurring at

∂ky

∂kx
= −

[
kx + β/(2ω)

]
ky

= −[
kx + β/(2ω)

]
±

√
κ2

e − [
kx + β/(2ω)

]2
= − x

y
. (18)

Squaring (18) yields(
kx + β

2ω

)2

= κ2
e

x2

r2
, k2

y = κ2
e

y2

r2
, (19a,b)

where r2 = x2 + y2. Inserting these values for (ky, kx ) into the phase

φ = −(kx x + ky y) (20a)

yields

φ = β

2ω

[
x +

√
1 −

(
2ωκ

β

)2

r

]
. (20b)

Thus for a given value of the phase φ, the curve given by (20) provides the radiation pattern in
a fashion similar to that of the classic ship wave, involving the Kelvin wedge angle. Equation
(20b) may also be written in the polar (r, χ) form
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8 J. F. McKenzie

Figure 5. The wave normal curve showing that at a given wave normal angle θ there are two values of k, corresponding
to short and long wavelengths. The critical ray direction χm appears when the two values of k coalesce, and is parallel
to the normal to the circle pointing along the radius in the direction χm .

β

2ω
r = φ

/[ √
1 −

(
2ωκ

β

)2

+ cos χ

]
. (21)

This represents two families of hyperbolae, one for φ > 0 and the other for φ < 0, both of
which asymptote at the critical angle χm where

cos χm = −
√

1 −
(

2ωκ

β

)2

. (22a)

These two families of radiation patterns are the long and short waves shown in figure 4. The
family which completely surrounds the origin corresponds to the short wavelengths, whilst
the family lying completely to the left of the origin is of long wavelength. The portions of the
wave normal curve giving rise to each family are shown in figure 5. The critical angle χm ,
occurring where the two roots for k(θ) coalesce, is directed along the inward radius where k
is tangential to the circle, showing that

cos χm = − κe

β/(2ω)
, (22b)

at which r → ∞ in accordance with (22a). This type of radiation pattern is similar to that of
capillary-gravity waves generated by a moving source on deep water in which the capillary
waves (short wavelengths) lie both ahead and entirely surround the object whilst the gravity
waves (long wavelengths) lie completely behind (but see Doyle and McKenzie 2013, for a
detailed discussion of this case). The existence of the asymptote at angle χm is a type of
“Mach” type line which arises whenever the difference between the wave normal angle and
the ray angle is 90 degrees (see e.g. Lighthill 1978, in which the stationary phase condition
equation (17), yielding the radiation pattern, is interpreted as the reciprocal polar of the wave
normal curve).

Finally, we note that these conditions also follow naturally from the Green’s function of
the wave equation (13), obtained by putting S(x, y) = 4πδ(x)δ(y), and interpreting the kx

integral in (16) as a zero-order Hankel function combined with a superimposed westward wave
shift.
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Group velocity and radiation pattern of Rossby waves 9

Alternatively, we may seek a fundamental solution of equation (13) in the form

Ψ = exp

[
i

(
ωt + β

2ω
x

)]
R(r), (23)

where R(r) satisfies the Helmholtz equation namely,

1

r

d

dr

(
r

dR

dr

)
+ κ2

e R = 0, (24)

in which κ2
e is the square of the wave number given by (15b). This is the Bessel equation

of zero order and argument (κer ). Hence, the Green’s function, which has a logarithmic
singularity at the origin (the source point) and yields outgoing waves at infinity, is the zero-
order Hankel equation (Morse and Feshbach 1953), combined with the superimposed westward
phase propagation, that is to say,

Ψ = 1

ω
exp

[
i

(
ωt + β

2ω
x

)]
H(1)

0 (κer). (25)

Observe that the superimposed westward phase propagation takes place at the phase speed
ω2/2β which is the zonal speed associated with the centre of the Longuet-Higgins circle. The
asymptotic form of H(1)

0 (κer) as r → ∞, immediately shows that the phase, which gives the
radiation pattern, is

β

2ω
x + κer = const . (26)

This is in agreement with the arguments from stationary phase which lead to equation (21)
for the two families of hyperbolae. We note that this also generalizes Rhines’ result on the
Green’s function to allow for finite Rossby radius c/ f0 through the wave number given by
(15b). The latter inclusion gives rise to the two families of hyperbolae rather than the single
family of parabolas, which reflects the fact that in the limit m → ∞ the group velocity tends
to a parabola.

4. Summary

This paper elucidates certain propagation properties of Rossby waves. The first is that the group
velocity diagram at a given frequency is an ellipse, whose focus coincides with the origin.
This property stands alongside the Longuet-Higgins (1964) wave normal diagram which is a
circle whose centre is displaced “westward”. The second interesting property is the radiation
pattern of Rossby waves generated by a time harmonic, spatially compact source. The method
of stationary phase shows that this pattern consists of two families of hyperbolae, the one
corresponding to short wavelengths completely surrounds the source (in a fashion similar to
capillary waves which lie both ahead and behind an object in a stream), whereas the long
wavelength one lies entirely westward; both sets of waves being asymptotic at a “Mach” type
angle. This property is also revealed by the Green’s function which is a combination of the zero-
order Hankel function with superimposed westward propagation. These results supplement the
work of Dickinson (1969) on the excitation of atmospheric waves by point sources.
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10 J. F. McKenzie
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Appendix A: Rossby wave equation for topographic and Coriolis contributions to the β

effect

The linearized shallow wave equations for the mass flux vector Q = H u (u is the horizontal
velocity) and the surface elevation η may be written (e.g. Pedlosky 1987, Duba and McKenzie
2012)

∂ Qx

∂t
− f Qy = −c2 ∂η

∂x
, (A.1)

∂ Qy

∂t
+ f Qx = −c2 ∂η

∂y
, (A.2)

∂η

∂t
+

(
∂ Qx

∂x
+ ∂ Qy

∂y

)
= 0, (A.3)

in which c = √
gH is the shallow water speed, H(x, y) is the depth and f (y) is the Coriolis

parameter (frequency).
Operating on the first two equations yields(

∂2

∂t2
+ f 2

)
Qx = −c2

(
∂2η

∂t∂x
+ f

∂η

∂y

)
, (A.4)(

∂2

∂t2
+ f 2

)
Qy = −c2

(
∂2η

∂t∂y
− f

∂η

∂x

)
. (A.5)
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Do ∂(A.4)/∂x + ∂(A.5)/∂y, use (A.3) and rearrange to obtain

∂

∂t

[(
∂2

∂t2
+ f 2

)
η − ∇·(c2∇η)

]
=

(
∇( f c2) × ∇η

)
z
+ 2 f f ′Qy . (A.6)

A similar equation for Qy may be obtained by taking ∂/∂x of the curl of equations (A.1)
and (A.2), to complete the system of coupled equations. However, we wish only to describe
Rossby waves which are characterized by low frequencies (∂/∂t � f ) and whose motions
are in quasi-geostrophic balance. In such a case, we may neglect ∂2/∂t2 compared with f 2 on
the left-hand side of (A.6); Qy may be approximated with its geostrophic value, namely

Qy ≈ c2

f

∂η

∂x
, (A.7)

and f and c are replaced with their reference values ( fo and co) except where their derivatives
are taken to give the Coriolis and topographicβ-effects.The wave equation (A.6) then simplifies
to the classic Rossby wave equation (1) of the text, but with a generalized β.

This low frequency, quasi-geostrophic result can be justified in the following manner. The
small parameter ε = ω/ f and the dimensionless variables,

x = (co/ fo)x̄, t = t̄/ω, η = Hoη̄, Qy = Hoc0 Q̄y, (A.8a–d)

together with the reference shallow water speed co = √
gHo and Rossby radius co/ fo, where

the overbar indicates dimensionless variables are introduced. We further assume that the
variations in H̄ and f̄ are also of O(ε), that is

H̄ = 1 + εh̄(x̄), f̄ = 1 + εβ̄c ȳ. (A.9a,b)

With this ansatz, (A.6) takes the form

ε
∂

∂t

[(
ε2 ∂2

∂t2
+ (1 + εβ̄c y)2

)
η̄ − (1 + εh̄)∇̄2η̄ − ε∇̄h̄ · ∇̄η̄

]

= ε(1 + εβ̄c y)
(∇̄h̄ × ∇̄η̄

)
z − ε(1 + εh̄)β̄c

∂η̄

∂ x̄
+ 2ε2 ∂ Q̄x

∂t
β̄cy . (A.10)

Dividing through by the small parameter ε gives,

∂

∂t

(
η̄ − ∇̄2η̄

)
= (

(∇̄h̄ − β̄c) × ∇̄η̄
)

z + O(ε). (A.11)

Restoring the dimensions to (A.11) leads to the Rossby wave equation (1) in the text.
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