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The propagation properties of Rossby waves in zonal and meridional winds are analyzed using the
local dispersion relation in its wave number form, the geometry of which plays a crucial role in
illuminating radiation patterns and ray trajectories. In the presence of a wind/current, the classical
Rossby wave number curve, an offset circle, is distorted by the Doppler shift in frequency and a new
branch, consisting of a blocking line with an eastward facing indentation, arises from waves convected
with or against the flow. The radiation patterns generated by a time harmonic compact source in the
laboratory frame are calculated using the method of stationary phase and are illustrated through a series
of figures given by the reciprocal polars to the various types of wave number curves. We believe these
results are new. Some of these wave patterns are reminiscent of a “reversed” ship wave pattern in which
cusps (caustics) arise from the points of inflection of the wave number curves; whilst others bear a
resemblance to the parabolic like curves characteristic of the capillary wave pattern formed around an
obstacle in a stream. The Rossby stationary wave in a westerly is similar to the gravity wave pattern
in a wind, whereas its counterpart in a meridional wind exhibits caustics, again arising from points of
inflection in the wavenumber curve.

Keywords: Rossby waves; β-plane; Radiation pattern

1. Introduction

Rossby waves play a pivotal role in the transport of energy and momentum in the geophysical
fluid dynamics of quasi-geostrophic flows in atmospheres and oceans. The particular wave
dynamics arise from the latitudinal variation of the Coriolis acceleration (through the Coriolis
parameter f ) and the near balance achieved between it and the pressure gradient. This quasi-
geostrophic balance is described within the framework of the β-plane approximation which
retains the essential dynamics, whilst the spherical geometry is replaced with a Cartesian
β-plane constructed tangential to the surface at a given latitude. These features have all been
extensively discussed in the texts of Gill (1982), Pedlosky (1987), Vallis (2006), and elsewhere.
Some of the latter will be referenced to in the following.

In this well-researched field it may be expected that there is nothing new or interesting
to reveal about the linear behavior of Rossby waves. However, recently it has been shown
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238 C. T. Duba et al.

that the group velocity diagram, at a given wave frequency, is in fact an ellipse whose focus
lies at the origin (Duba and McKenzie 2012, McKenzie under review). This elegant feature
complements the wave number curve, namely an offset circle in wave number space (Longuet-
Higgins 1964), in revealing the propagation properties of Rossby waves. Furthermore, it has
been shown (Rhines 2003, McKenzie under review) that the radiation pattern of Rossby waves
(in the wind-free case) consists of two sets of hyperbolae, confined to westward pointing Mach–
Froude like lines, in a fashion analogous to the gravity-capillary waves generated by an obstacle
in uniform motion on deep water (see Doyle and McKenzie (2013) for a recent treatment of this
classical ship wave problem). These features of the radiation pattern generated by some time
harmonic spatially compact source are illuminated by the use of the method of stationary phase
in calculating the far field disturbance. This method demonstrates that the radiation pattern is in
fact given by the reciprocal polar to the wave normal curve (Lighthill 1978, 1960, p. 372–373)
and this simple geometrical construction provides not only the mathematical expressions for,
but also a means of visualizing, the radiation pattern which, in zonal and meridional winds
reveals new and interesting patterns.

In this paper, we extend the above analysis to include the effects of zonal and meridional
winds which give rise to new and interesting features of the wave number curves resulting
from the Doppler shift in frequency. In a recent paper, Gerkema et al. (2013) call this effect a
“quasi-Doppler shift” referring to the difference between the frequency ω measured by an
observer at rest (the laboratory frame) and the frequency ω̂ measured by an observer moving
with the mean flow. This shift has a profound effect on wave propagation in a moving medium,
particularly if the medium is both dispersive and anisotropic, as is indeed the case for Rossby
waves. The wave number diagrams therefore are important in revealing the propagation
properties of Rossby waves, in much the same way as the Appleton–Hartree refractive index
(Ratcliffe 1972, p. 18, section 2.5) is crucial to the understanding of electromagnetic waves in
a magneto-ionic medium, and of the slowness (k) surfaces in MHD (Lighthill 1960).

In section 2, we develop the standard equations of motion on a β-plane and derive the
wave energy equation. Although the Coriolis term makes no contribution to this equation, it
nevertheless has an indirect effect through shaping the propagation properties of the natural
modes (inertial and planetary) of the system. In section 3, we derive the coupled equations for
the northward and eastward mass flux perturbations and the excess pressure (all of which are
shown to be equivalent to the shallow water equations with an appropriate definition of the
Kelvin speed). In the case of Fourier type zonal wave modes, the coupled equations reduce to
a single second-order differential equation for the latitudinal structure of the northward mass
flux.

In section 4, we examine the wave propagation properties revealed by the dispersion equation
in the form of wave number curves at a given frequency ω in the laboratory frame for different
values of the zonal and meridional wind speeds. These diagrams enable the calculation of the
radiation pattern generated by a time harmonic spatially compact source in a steady, uniform
wind, through the reciprocal polar to the appropriate wave number curve. For example, in the
case of a westerly zonal wind, its effect is to distort the Longuet-Higgins circle into an ovoid-
shaped curve, and importantly, to introduce a new branch, due to the Doppler shift, consisting
essentially of a blocking line with an indentation to the right (i.e. eastward) of this line, and
corresponds to propagation arising from waves convected with or against the zonal flow. The
reciprocal polar of the (closed) ovoid curve is a parabolic like curve corresponding to both
eastward and westward energy propagation; whilst that for the line with an indentation we have
an eastward facing deltoid, reminiscent of an inverted or “reversed” Kelvin ship wave. In this
case, the radiation pattern is confined to a Kelvin-like angle (given by a line drawn from the
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Rossby wave patterns in zonal and meridional winds 239

origin to the cusp point which arises from the point of inflection in the wave number curve).
The analysis for westward zonal flow (an easterly) reveals similar features with a parabolic
like curve for the reciprocal polar within which is embedded a Kelvin-like ship wave deltoid
facing the “correct” way (i.e. eastward) associated with the indented line. An analysis of the
effects of a meridional wind, including the stationary wave patterns (obtained as the limit in
which the frequency ω tends to zero) yields similar interesting features but with the presence
of a north-south symmetry.

2. Linearized equations of motion in a zonal wind shear

The linearized continuity equation is given by

Dρe

Dt
+ ∇ · q = 0, (1)

in which D/Dt = ∂/∂t + Ux (y)∂/∂x is the convective derivative, q = ρ0u is the mass
flux perturbation, where ρ0 is the background density, u is the velocity perturbation, ρe is the
density perturbation, and Ux (y) is a given zonal flow sheared in the y (north) direction. The x
(east), y (north), and z (vertical) components of the momentum equation are

Dqx

Dt
− ( f − U

′
)qy = −∂pe

∂x
, (2a)

Dqy

Dt
+ f qx = −∂pe

∂y
, (2b)

Dqz

Dt
= −∂pe

∂z
− ρeg, (2c)

respectively, in which pe is the pressure perturbation and U
′

is the derivative of Ux (y) with
respect to y. We have assumed a β-plane approximation, at a given latitude θ0 on a planet with
radius R. Ω is the earth’s rotation frequency, so that the Coriolis parameter f is given by

f = f0 + βy, β0 = 2Ω

R
cos θ0. (3a,b)

The equation for adiabatic flow (which, in the dissipationless case, is equivalent to the energy
equation) takes the form (Lighthill 1978, p. 292, section 4.2)

g
Dρe

Dt
= N 2qz + g

c2
0

Dpe

Dt
, (4)

in which the square of the Brunt–Väisälä frequency N is given by

N 2 = g

(
− 1

ρ0

dρ0

dz
− g

c2

)
= (g/H)(1 − γ −1), (5)

where H is the density scale height, γ is the ratio of the specific heats, and c0 is the speed of
sound given by

√
γ p0/ρ0. The background state is described by hydrostatic equilibrium and

geostrophic balance, namely

∂p0

∂z
= −ρ0g,

∂p0

∂y
= −ρ0 f Ux (y). (6a,b)

In general, these equations must be supplemented by a background energy equation which
includes heating, cooling, and dissipation processes such as those resulting from viscous and
heat conduction effects, in order to completely determine the background state (ρ0, p0, Ux ).
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240 C. T. Duba et al.

The perturbation equations (1), (2), and (4) can be somewhat simplified by using the
Boussinesq approximation which filters out high frequency acoustic waves. This is accom-
plished by neglecting Dρe/Dt in (1) which becomes

∇ · q = 0, (7)

and also by letting c0 → ∞ in the second term on the right-hand side of (4) which becomes

g
Dρe

Dt
= N 2qz . (8)

We note that in this approximation the continuity equation no longer evolves the density in
time which is now evolved by the incompressible form, equation (8), for adiabatic flow, with
the implication that there is now no equation which evolves the pressure. However, we note
that, if we do the operation D/Dt on (2c), we obtain

D

Dt

(
∂pe

∂z

)
= − D2

Dt2
qz − g

Dρe

Dt
, (9a)

= −
(

D2

Dt2
+ N 2

)
qz . (9b)

The last result follows from the use of (8) to eliminate ρe. Furthermore, if we do the operation
∂/∂z on (9b) and use continuity in its incompressible form (7) to eliminate ∂qz/∂z, we obtain

D

Dt

(
∂2 pe

∂z2

)
=
(

D2

Dt2
+ N 2

)(
∂qx

∂x
+ ∂qy

∂y

)
. (10)

In what follows we will use the low frequency approximation D2/Dt2 � N 2 (which filters
out higher frequency internal gravity waves with ω ∼ N ) and assume waves of the form
exp(−ikzz) in the vertical direction, so that (10) may be written

Dpe

Dt
= −c2

(
∂qx

∂x
+ ∂qy

∂y

)
, c2 ≡ N 2/k2

z . (11a,b)

Here, c may be called the effective Kelvin speed which, in shallow water theory, is
√

gH , where
H is the depth. In this rather circuitous route, we now have an equation (11a) which evolves
the perturbation pressure pe. Hence, the system has been reduced to three “evolutionary”
equations, namely equations (2a,b) which evolve the horizontal components of the mass flux
(or velocity) in time and (11a) which evolves pe. These are equivalent to the shallow water
equations in which the speed c(≡ N/kz) replaces

√
gH , as already noted.

The system of equations, (1), (2), (4), and (8), possesses a wave energy equation which
follows by taking the scalar product of the momentum equation with q to obtain

D

Dt

[
1

2

(
qx

2 + qy
2 + qz

2
)]

+ U
′
qx qy = −q · ∇ pe − qzρeg. (12)

The terms on the right-hand side may be written in the form

−q · ∇ pe = −∇·(peq), (13)

on using ∇ · q = 0, and

−gqzρe = − g2

N 2

D

Dt
(ρe

2/2), (14)
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Rossby wave patterns in zonal and meridional winds 241

on using (8). Hence (12), after division through by ρ0, assumes the “conservation form” with
“sources”

D

Dt

[
1

2
ρ0u2 + 1

2

g2

N 2

ρe
2

ρ0

]
+ ∇·(peu) = −peuz

(
1

ρ0

dρ0

dz

)
− dUx

dy
ux uy . (15)

On the left-hand side, the first term is the rate of change of the energy density consisting of
the kinetic energy and the thermobaric potential energy (Eckart 1960), and the second term
is the divergence of wave energy flux. The “source” terms on the right-hand side represent
wave interaction with the background state through buoyancy (the first term) and shear flow
(the second term). The latter term can lead to Kelvin-Helmholtz, baroclinic type, instability,
whereas the former can generate convective instability if the atmosphere is unstably stratified,
N 2 < 0. Here we assume N 2 > 0.

3. The latitudinal structure equation

In this section we derive the second-order differential equation for the northward mass flux
to which the zonal mass flux and pressure are related through equations (see below). Its
hydromagnetic version including magnetic as well as velocity shear has been discussed by
Eltayeb and McKenzie (1977) and Mekki and McKenzie (1977). Here, we examine in detail
the effects of the wind, through the Doppler shift, on the propagation properties.

For Fourier wave modes of the form

(qx , qy, pe) = (Qx (y), Qy(y), Pe(y)) exp
[
i(ωt − kx x − kzz)

]
,

equations (2a,b) become

iω̂Qx − ( f − U
′
)Qy = ikx Pe, (16a)

and

iω̂Qy + f Qx = −∂ Pe

∂y
, (16b)

whilst (11a) reduces to

Pe = c2

ω̂

(
kx Qx + i

dQy

dy

)
. (17)

Here ω̂ is the Doppler shifted frequency given by

ω̂ = ω − kxU. (18)

Eliminating Pe from equations (16a,b) using (17) yields the coupled system for Qx and Qy :

(ω̂2 − kx
2c2)Qx = i

[
kx c2 dQy

dy
− ( f − U

′
)ω̂Qy

]
, (19a)

ω̂2 Qy + ω̂
d

dy

(
c2

ω̂

dQy

dy

)
= i

[
ω̂kx c2 d

dy

(
Qx

ω̂

)
+ f ω̂Qx

]
. (19b)

Elimination of Qx in (19b), using (19a), gives the second order differential equation for the
latitudinal structure of Qy(y):

d2 Qy

dy2
−
[

d

dy
ln
(
ω̂2 − c2k2

x

)] dQy

dy
+ κ2 Qy = 0, (20a)
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242 C. T. Duba et al.

κ2 ≡
ω̂2 − f

(
f − U

′)
c2

+ kx ( f − U ′) d

dy
ln
(
ω̂2 − c2k2

x

)
− kx

2 −
(
β − U

′′)
kx

ω̂
, (20b)

in which we have used d f/dy = β, dω̂/dy = −kxU
′
. At this stage the latitudinal wave

number κ2 (given by (20b)) describes gravity-inertial waves (the first term of left-hand side
of (20b) and Rossby waves (the last two terms) in the presence of a zonal shear (the middle
term). Equation (20) yields an invariant (related to the Wronskian) by multiplying it by Qy

∗,
and its complex conjugate form by Qy , to obtain

Im

{(
Qy

∗dQy/dy − QydQy
∗/dy

)
(
ω̂2 − kx

2c2
) }

= const. (21)

From the viewpoint of wave dynamics this quantity is related to the conservation of wave
action except at critical points where it undergoes a discontinuous jump (Booker and Bretherton
1967, Dickinson 1968).

The connection to the classical Rossby wave latitudinal structure equation is obtained in the
limit c → ∞ in which (20a) reduces to

d2 Qy

dy2
+
(

−kx
2 − (β − U

′′
)kx

ω̂

)
Qy = 0. (22)

In the slowly varying (JWKB) approximation, this yields the local Rossby wave dispersion
equation for ky , namely

ky
2 + kx

2 = −βe
kx

ω̂
, (23a)

where

βe ≡ β − U
′′ = d

dy

(
f − U

′)
. (23b)

These results follow directly from equations (2a,b), the z component of the curl of which yields

D

Dt

(
∂qy

∂x
− ∂qx

∂y

)
+
(
β − U

′′)
qy = 0, (24)

since as c → ∞ we have the 2-D incompressibility equation

∂qy

∂y
+ ∂qx

∂x
= 0. (25)

The operation ∂/∂x of (24) and the use of 2-D incompressibility condition (25) to eliminate
qx , yield the classical Rossby wave equation (for infinite Rossby radius), namely

D

Dt

(
∂2qy

∂x2
+ ∂2qy

∂y2

)
+ (β − U

′′
)
∂qy

∂x
= 0. (26)

For Fourier wave modes ∝ Qy(y) exp i(ωt − kx x) this yields (22) for the latitudinal structure,
in agreement with the limit obtained from our more general analysis in which c �= ∞.

This last result (26) and (24) essentially express conservation of total (planetary plus zonal
shear plus wave) vorticity. At the outset one could choose a derivation with the idea of using
conservation of potential vorticity for a shallow layer, which would involve taking the curl of
the horizontal components of the equation of motion (to give (∇ × u)z), but this would still be
coupled to an equation for the horizontal divergence, and together with suitable approximations
as given above, would lead to the Potential-Vorticity equation (Rhines 2003).
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Rossby wave patterns in zonal and meridional winds 243

4. Radiation pattern in a wind

In this section, the radiation pattern generated by a time harmonic spatially compact source
in a uniform wind is analyzed. This is equivalent to calculating wave generation by traveling
forcing effects (Lighthill 1960). The effects of the frequency Doppler shift play an important
role in wave propagation in a moving medium. This is revealed through the geometry of the
wave number curves in the laboratory frame, which in turn determine the radiation pattern
using the method of stationary phase. For uniform winds, U , the local dispersion equation is
given by (20b), which, with derivatives of U put to zero and ω̂ � f , simplifies to

k2
y + k2

x + f 2/c2 = − βkx

ω − k · U
. (27)

The quantity ω̂ = ω − k · U is sometimes referred to as the “intrinsic” frequency (Bretherton
and Garrett 1968, Dickinson 1968, Lighthill 1978), and where it is zero the wave is said to
exhibit critical level behavior (Booker and Bretherton 1967). At such a level the wave action
undergoes a discontinuous jump.

4.1. Method of stationary phase

Asymptotic approximations to Fourier integrals, representing the solution of linear wave
problems, can be evaluated by the method of stationary phase (for a detailed account, see
for example, Lighthill’s classical book “Waves in Fluids” 1978, p. 351–361). In the far, or
radiation, field the dominant contribution to a Fourier integral, representing the solution of
the problem, comes from those portions of the rapidly oscillating phase which are stationary
with respect to the component of the wave number over which the integration is being carried
out. For example, in the case of a two-dimensional problem such as on a β-plane, the phase
Φ(x, k) may be written, in Cartesian co-ordinates, in the form

Φ = ωt − kx x − ky y, (28)

in which ω is the (given) angular frequency of the source, and k = (kx , ky) is the two-
dimensional wave number vector. These quantities are related through a dispersion relation
(for example (27) above) arising from the Fourier image of the wave operator which appears
as a simple pole, thus through the calculus of residues, reducing the two-dimensional Fourier
integral to a single integral over either (kx , ky) space (using the residue theorem), and is given
by some relation

D(ω − k · U, kx , ky) = 0. (29)

Here D is an algebraic function representing the Fourier image of the wave operator in which
the Doppler shifted frequency ω̂ = ω − k · U arises from winds or flows of velocity U relative
to the laboratory frame. This relation can be written in the polar form

D(ω − kU cos(θ − α), k, θ) = 0 (30)

in which k = k(cos θ, sin θ), U = U (cos α, sin α), and may have solutions

k(θ) = ki (θ, ω, α, U ), (31)

where i = 1, 2, . . . , n represents the possible n roots of the dispersion equation representing
different modes of propagation. We refer to the solutions ki (θ) as the polar form of the wave
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244 C. T. Duba et al.

Figure 1. The geometrical interpretation of the reciprocal polar of the wave number curve. The example shown is
actually appropriate to the wave number k(θ) for stationary waves on deep water (k(θ) ∼ 1/ cos2 θ) generated by a
uniformly moving source (ship).

number diagrams at given values of (ω, α, U ) in the laboratory frame. Writing the space
coordinates (x, y) in polar form r(cos χ, sin χ), the phase given by (28) of the i th mode may
be written

Φi = r(χ)ki (θ) cos (θ − χ), (32)

where we now regard θ , the wave number angle, as the variable over which the Fourier integral
is taken. For large r (i.e. the far field) the phase Φi is stationary with respect to θ if

∂Φi

∂θ
= 0, (33)

which implies
k

′
i (θ)

ki (θ)
= tan (θ − χ), (34)

or

tan χ = tan θ − (k
′
/k)i

1 + tan θ(k ′
/k)i

= − 1

∂ky/∂kx
, (35)

which defines the ray direction χ in terms of θ .
The radiation pattern is given by (32) which for a given phase Φi may be written as

r(χ) = Φi

ki (θ) cos (θ − χ)
, (36)

in which θ may be regarded as a generating parameter for χ through (34), which shows that
the ray direction χ is perpendicular to the wave number diagram at a given θ . The curve
given by (36) is therefore the reciprocal polar of the wave number curve and lends itself to
the geometrical interpretation shown in figure 1 in which OP represents the wave number
vector and OQ is the radius vector of the reciprocal polar to the curve (see also Lighthill 1978,
p. 372-373).

D
ow

nl
oa

de
d 

by
 [

D
U

T
 L

ib
ra

ry
],

 [
M

s 
T

ha
m

a 
D

ub
a]

 a
t 0

2:
23

 2
4 

Ju
ly

 2
01

4 



Rossby wave patterns in zonal and meridional winds 245

Figure 2. The family of deltoids (reciprocal polars) for the classic ship wave pattern. The semi-angle of the Kelvin
wedge is sin−1 (1/3) ∼ 19.5◦) and arises from the point of inflection of the wave number curve.

This particular figure is, in fact, appropriate to the stationary wave number diagram for
surface gravity waves generated by a uniformly moving source, and gives rise to the deltoid
shape characteristic of the classic ship wave pattern exhibiting a Kelvin-wedge cusp associated
with the point of inflection of the wave number curve (as shown in figure 2).

4.2. Rossby radiation pattern in a zonal wind

Here, we extend the work of McKenzie (under review) on the radiation pattern of Rossby
waves to include the effects of winds or flows. In the case of a constant zonal flow U x̂ the
Rossby wave dispersion relation (27) becomes

k2 + f 2/c2 = − βk cos θ

(ω − Uk cos θ)
, (37)

which is a cubic for k(θ). In the classic case of f 2/c2 = 0 (corresponding to infinite Rossby
radius) this equation reduces to a quadratic with solutions

k±(θ) = ω

2U cos θ

(
1 ±

√
1 + 4Mr cos2 θ

)
, Mr ≡ βU/ω2. (38a,b)

Mr is a “Rossby” Mach number measuring the flow speed in units of the speed ω2/β charac-
teristic of the Rossby zonal wave speed. At mid-latitudes this speed ranges from 80 ms−1 for
two day wave periods to 20 ms−1 for four day periods. Therefore, Mr may take a wide range
of values from the very small to of the order of or greater than unity depending upon the wind
speed and the wave period.
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246 C. T. Duba et al.

Figure 3. The wave number curves k±(θ) for Rossby waves in a westerly zonal wind (U > 0), illustrating the
relation between the ray direction χ and the wave number angle θ for each curve.

4.2.1. Westerly wind

In the case of a westerly wind (U > 0, Mr = 10), the wave number curves given by (38a) are
shown in figure 3.

The k−(θ) is the closed ovoid-like curve lying in kx < 0 (corresponding to westward phase
propagation) modified slightly by the flow so that it extends to kx = k−(θ = π) rather than
−β/ω, whereas the k+(θ) is a new mode arising from the zonal flow, consisting of the line
kx = ω/U with the forward facing indentation at kx = k+(θ = 0).

The relation between the ray angle χ and the wave number angle θ follows from (35) in
which we use (38a) for k(θ) yielding

k′(θ) = ω

2U

sin θ

cos2 θ
(A ± 1) , (39)

and hence

tan χ = t (1 ∓ 1/A)(
1 ± t2/A

) , t ≡ tan θ (40a,b)

with

A =
√

1 + 4Mr cos2 θ. (40c)

The variation of χ for k±(θ) wave number curves at Mr > 1 are shown in figures 4(a),(b).
The k±(θ) curves for various Mr are shown in figure 5.

The radiation pattern for the closed Rossby wave normal diagram k−(θ) yields a family
of parabolic like curves as shown in figure 6(a) for the case Mr = 10. These are similar to
the case of no flow (Rhines 2003, McKenzie under review), which consists of two families of
hyperbolas, these being the reciprocal polars of the Longuet-Higgins offset circle. On the other
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Rossby wave patterns in zonal and meridional winds 247

(a)

(b)

Figure 4. (a) The (χ, θ) curve for the k+(θ). The maximum deviation (χm ) of the ray from the east arises from the
point of inflection in the k+(θ). Note ∃ two values of θ for any given χ(<χm). (b) The (χ, θ) curve for the k−(θ)

wave number curve.

hand the reciprocal polar of the westward branch (k+(θ)), namely the “indented line”, yields
the radiation pattern as the family of deltoid-like curves shown in figure 6(b) for Mr = 10.

These curves resemble a “reverse” ship wave with the disturbance confined to a Kelvin-like
wedge angle which is given by the ray direction at the point of inflection of the k+(θ) in
figure 3. To a good approximation this critical wedge-angle χI is given by

tan χI =
(

3

4

)3/2 (√1 + 4Mr − 1
)

2
, (41)
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248 C. T. Duba et al.

Figure 5. The k+,−(θ) wave number curves for various values of Mr .

which shows that χI → 0 as Mr → 0, χ± � 22◦ for Mr = 1, and χ− → 90◦ as Mr → ∞.
The “reversed” ship wave pattern (figure 6(b) arises from the shape of the k+(θ) (figure 3)
exhibiting the indentation to the right (i.e. k(θ) cos θ increases with θ ).

4.2.2. Easterly wind

For U < 0 the wave number curves, for various values of Mr < 0 are shown in figure 7.
The open branch with the asymptote kx = ω/U and the indentation at kx = k+(θ = π) now

lie entirely westward (kx < 0). We note that as Mr → −1/4 the open and closed branches
coalesce and for |Mr | > 1/4 are joined as shown in figure 7 for Mr = −0.3 and −0.275. The
associated radiation patterns are shown in figures 8 and 9.

In figure 8, we observe that the family of deltoids lie entirely to the west (in the direction
of the wind) and, in contrast to the case of a westerly, the deltoids face the same way as
would a Kelvin ship wave. This is because in the corresponding wave number curves (labeled
Mr = −0.225), the line with the indentation lies to the right of the asymptote (i.e. to the west).
In the latter, the deltoid “interacts” with the parabolic-like curves.

4.2.3. Stationary wave

For the case of stationary waves in the laboratory frame, in which we let ω = 0 and consider
the case f 2/c2 �= 0 so that equation (37) becomes

k2 = (β/U ) − ( f 2/c2), kx = 0. (42a,b)

Hence, the wave normal diagram becomes a circle of radius
√

(β/U ) − ( f 2/c2) if U is
westerly and less than βc2/ f 2, which is the long wavelength zonal phase speed of the Rossby
wave, but is otherwise evanescent when U < 0. However, the line kx = 0 is also part of the
wave number diagram, whose complete form is shown in figure 10(a).
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(a)

(b)

Figure 6. (a) The radiation pattern corresponding to the k−(θ) wave normal is a family of parabolic-like curves,
which is reminiscent of the capillary waves generated by an object in a stream. (b) The radiation pattern (family of
reciprocal polars- deltoids) for the k+(θ) wave number for Mr = 10. The pattern looks like an “reversed” ship wave
pattern. The cusps result from the point of inflection in the k+(θ) curve and confine the pattern to a semi-wedge
angle χm .

The direction of the arrows (rays) are obtained from the limiting form of the general wave
normal diagram as ω → 0 (Mr → ∞) as shown in figure 5. This case is similar to the
two-dimensional internal gravity wave pattern generated in a horizontal flow (Lighthill 1978
p. 415, 416 figures 108(a),(b)). The reciprocal polar is shown in figure 10(b) and consists of
the semi-circle (taken twice), the double line ky = 0 (for kx > radius of circle) and the two
lines extending westwards.
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250 C. T. Duba et al.

Figure 7. The k+,−(θ) curves in an easterly wind (U < 0) for various values of Mr . For |Mr | > 1/4 the curves
coalesce as shown.

Figure 8. The corresponding radiation pattern for |Mr | < 1/4. The deltoids lying entirely to the west correspond to
the open branch (plane with an indented line), whereas the parabolic like curves are associated with the closed ovoid,
and lie both ahead (east) and behind (west).

4.3. Radiation patterns in a meridional wind

In the case of a constant meridional wind/flow, U ŷ, the Rossby wave dispersion relation (27)
becomes

k2 + f 2/c2 = − βk cos θ

ω − kU sin θ
. (43)
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Rossby wave patterns in zonal and meridional winds 251

Figure 9. The radiation pattern, for |Mr | > 1/4 and various Φ, which involves an “interaction” between the deltoids
and paraboloids.

We consider the classic case c → ∞ (but return to c finite in the case of stationary waves,
given at the end of this section). Equation (43) becomes a quadratic for k(θ) with solutions
(after factoring out k = 0)

k± = ω

2U sin θ

(
1 ±

√
1 + 4Mr sin θ cos θ

)
. (44)

The k+(θ) and k−(θ) wave number curves for various Mr are shown in figure 11. Note that
for (Mr > 1/2) the open and closed curves (for k+ and k−, respectively) coalesce.

The radiation patterns (reciprocal polars) are calculated using equations (36) with (35) and
the wave number curves k±(θ) given by (44). We obtain from (35) and (44) the relation between
the ray angle χ and the wave number angle θ :

tan χ = tan θ

(
1 ± B

A tan2 θ

)/(
1 ∓ B

tan2 θ

)
(45a)

with

A ≡
√

1 + 2Mr sin 2θ, B ≡ (1 + 2Mr tan θ)/(1 ± A) . (45b,c)

The corresponding radiation patterns for Mr ≤ 0.5 are shown in figure 12 (for k+(θ)) and
figure 13 (for k−(θ)). The cusps in the radiation pattern shown in figure 12 arise from the
points of inflection in the wave number curve k+(θ) for Mr = 0.4.

In the case of Mr > 1/2, the open and closed curves “interact”, or coalesce, as already
noted and illustrated in figure 11. The reciprocal polars for Mr = 0.45, 0.5, and 0.55 are
shown in figure 14. In this case, the k(θ) curve given by (44) is complex in the angular range
θ− > θ > θ+, where

sin θ± =
√

1 ±√
1 − (1/4)M2

r

2
. (46)

The angles θ+,− lie in the second quadrant.
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(a)

(b)

Figure 10. (a) The stationary wave number in a westerly wind. The arrows indicate the ray directions which can be
deduced from figure 6 for the case of Mr = 100 (ω small). (b) The corresponding reciprocal polar.

In the case of stationary waves (ω = 0), the dispersion equation becomes

k2 = β

U
cot θ − f 2

c2
= β

U
(cot θ − cot θc) , (47)

where

cot θc = U

β

c2

f 2
. (48)
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Figure 11. The wave number curves k+(θ) and k−(θ) in a meridional wind for various values of Mr . The curves
coalesce for Mr ≥ 1/2.

Figure 12. The radiation pattern for the wave number k+(θ) for various Φ with Mr = 0.4.

cot θc is therefore another Rossby “Mach” number where the flow speed is measured in units of
the long wavelength Rossby speed which, at mid-latitudes, takes values from about 120 ms−1

in an ocean of depth 4 km to around 200 ms−1 in the atmosphere.
The wave number diagrams and their associated reciprocal polars are shown, respectively,

in figures 15 and 16 for various values of θc. The radiation patterns for various Φ are shown
in figure 17 for the case θc = 90◦.
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254 C. T. Duba et al.

Figure 13. The radiation pattern for k−(θ) wave number for various Φ at Mr = 0.4, exhibiting the parabolic-type
curves similar to capillary waves.

Figure 14. Reciprocal polar curves for the wave number curves for a meridional wind (as shown in figure 11) for
Mr = 0.45, 0.5, and 0.55. Note the two “Mach”-like lines, which appear for Mr = 0.55 on the k-curve, and which
are associated, in the wave number curves of figure 11, with the asymptote tangent lines drawn from kx , ky origin to
the two points where the rays are normal to the wave number curve.
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Rossby wave patterns in zonal and meridional winds 255

Figure 15. Stationary wave number curve in meridional wind for various θc .

Figure 16. Reciprocal polar curve corresponding to stationary wave normal forms (taken twice) for a meridional
wind (figure 15).
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Figure 17. The stationary radiation pattern in a meridional wind.

5. Summary

For Fourier type zonal plane wave modes, we derive a second-order differential equation
describing the latitudinal structure of Rossby type wave perturbations on a β-plane in zonal
(and meridional) winds.

We have followed Lighthill (1978) to show how the local dispersion equation, when inter-
preted as a wave number diagram in k space at a given frequency ω, can be used to construct the
radiation pattern generated by a time harmonic compact source in a laboratory frame relative
to which zonal and meridional winds flow/blow. The effect of the Doppler shift in frequency,
due to the mean flow, on the wave number curve (the Longuet-Higgins offset circle in the
rest frame) is quite dramatic and is highlighted by a series of figures 3–8. The most important
effect is the appearance of a new branch in k-space caused by the background wind consisting
of a blocking line with an indentation. In the case of a zonal wind, the new branch consists
essentially of the line (kx = ω/U ) with the indentation facing to the right. In the case of a
westerly flow, the radiation pattern associated with this branch is a family of deltoids which
resemble a reverse ship wave pattern (see figure 6(b)). On the other hand, the radiation pattern
associated with the distorted Longuet-Higgins circle is a family of parabolic-like curves rather
similar to the wind-free case (e.g. see figure 6(a)). In the case of a westward wind (an easterly
flow), the radiation pattern is shown in figure 8 with the family of deltoids lying entirely to
the west and embedded in the parabolic like patterns associated with the closed wave number
curve. However, if |Mr | > 1/4 an interaction between the deltoids and the parabolic curves
as depicted in figure 9 arises. The case of a meridional wind is slightly more complicated but
again these diagrams (figures 11–17) depict the diversity of the radiation patterns. In the case
of stationary waves in the laboratory frame, we obtain the interesting figures 12 and 14 for the
zonal and meridional cases, respectively. The new results here have the wave number curves
in zonal and meridional flows and their reciprocal polars which provide the various Rossby
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radiation patterns. These provide the Rossby wave problem equivalent to the classic ship wave
problem (involving both gravity and capillary waves) and internal gravity waves in a wind.
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