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The performances of regular support vector machines and random forests are experimentally com-
pared for hyperspectral imaging land cover classification. Special characteristics of hyperspectral imaging
dataset present diverse processing problems to be resolved under robust mathematical formalisms such
as image classification. As a result, pixel purity index algorithm is used to obtain endmember spectral
responses from Indiana pine hyperspectral image dataset. The generalized reduced gradient optimiza-
tion algorithm is thereafter executed on the research data to estimate fractional abundances in the
hyperspectral image and thereby obtain the numeric values for land cover classification. The Waikato
environment for knowledge analysis (WEKA) data mining framework is selected as a tool to carry out
the classification process by using support vector machines and random forests classifiers. Results show
that performance of support vector machines is comparable to that of random forests. This study makes
a positive contribution to the problem of land cover classification by exploring generalized reduced gra-
dient method, support vector machines, and random forests to improve producer accuracy and overall
classification accuracy. The performance comparison of these classifiers is valuable for a decision maker
to consider tradeoffs in method accuracy versus method complexity.

1. Introduction

The mathematical analysis of hyperspectral images
has been the subject of interest for many
researchers (Plaza et al. 2003, 2008; Sanchez et al.
2010; Iordache et al. 2011; Zhang et al. 2011).
In general, image processing is of great value
because it enables abundant data to be trans-
lated into useful information (Su et al. 2008; Zhang
et al. 2011). The ability to retrieve information
from datasets has motivated researchers to explore
methods of data mining for identifying valid, novel,
potentially useful, and ultimately understandable

patterns in data (Xie et al. 2008; Liu et al. 2009).
Earth observation has increasingly become a prime
source of data in geosciences and related discip-
lines, thereby permitting research into distant past,
present and future. One area of research inter-
est has always been how to relate earth obser-
vation output such as aerial photographs and
satellite images to known features (Xie et al.
2008). The preprocessing of satellite images prior
to features extraction is essential to remove noise
and increase the ability to interpret image data
more accurately. The final product of image
preprocessing is that all images should appear
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as if they were acquired from the same sensor
(Li 2011).

The state of the earth surface evaluation and
monitoring is a major requirement for global
change research. The conservation, preservation,
and sustainable yield of natural resources are
increasingly dependent upon remotely sensed data
for inventory and monitoring of changes. A collec-
tion of digital data such as high resolution satel-
lite images is currently available for this purpose.
Generally speaking, in remote sensing, varieties of
earth objects are present in the direct view of sen-
sors because of the complexity of the target objects
and the limited spatial resolution of remote sensors.
The information contained in a particular pixel of
a remote sensing image is a mixture of informa-
tion on various ground objects, resulting in mixed
pixels (Plaza et al. 2003, 2008; Sanchez et al. 2010;
Iordache et al. 2011; Zhang et al. 2011). The
presence of mixed pixels has a significant impact
on some practical applications of remote sen-
sing images such as information extraction, image
classification, and object detection. It is there-
fore, an important task in remote sensing to dis-
cover objects and corresponding quantity of infor-
mation present in the mixed pixel. This has led
to the invention of hyperspectral remote sensing
techniques to proffer solutions to the mixed pixel
problem in remotely sensed imagery. Hyperspectral
images have been used in many real applications
because of their rich sources of information. Exam-
ples of the useful applications of hyperspectral
imaging include mineral exploration, urban pro-
cesses, agriculture, risk prevention, land cover map-
ping, surveillance system, resource management,
tracking wildfires, detecting biological threats, and
chemical contamination (Hall et al. 1991; Ellis
2001; Lacar et al. 2001; Zhang et al. 2011). These
images provide abundant spectral information to
identify and differentiate between spectrally sim-
ilar, but unique materials. They provide poten-
tial, detailed, and accurate information extrac-
tion as compared to other remotely sensed data
(Karaska et al. 2004). In addition, hyperspectral
images provide a high-resolution reflectance spec-
trum for each pixel in the image (Boardman et al.
1995). As a result, large scale land cover maps con-
structed from remotely sensed data have become
important information sources (Boardman et al.
1995).

This paper addresses the problem of land cover
classification by using (i) a linear spectral mixture
analysis technique, which is commonly accepted
for mixed-pixel classification and (ii) Gene-
ralized Reduced Gradient (GRG) algorithm to esti-
mate fractional abundance in the research data
and thereby obtain the estimated numeric values
for image classification. Land cover refers to the

physical surface of the earth, including various
combinations of vegetation types, soils, exposed
rocks, water bodies, and anthropogenic elements,
such as agriculture and built environments
(Udelhoven et al. 2009; Sanchez et al. 2010). The
purpose of this study is three-fold: The first, is to
identify a collection of pure constituent spectral,
called endmember spectral responses (Heinz and
Chang 2001; Plaza et al. 2004; Martinez et al. 2006;
Plaza et al. 2008; Dobigeon et al. 2009; Sanchez
et al. 2010; Iordache et al. 2011; Zhang et al.
2011). In literature, endmember is also known
as class label, class type, component (Gong and
Zhang 1999). The measured spectrum of each
mixed pixel is expressed as a linear combina-
tion of endmember spectral responses weighed
by fractional abundances, which indicate the
proportion of each endmember spectral response
present in a pixel (Heinz and Chang 2001; Plaza
et al. 2004; Sanchez et al. 2010). The sec-
ond is to explore the GRG optimization algo-
rithm (Abadie and Carpentier 1969; Lasdon
et al. 1974) to estimate the fractional abun-
dances of each pixel in some selected region
of interest and thereby obtain the numeric
values for land cover classification. The third
is to experimentally compare performances of
generalized Support Vector Machines (SVM) and
Random Forests (RF) classifiers to examine the
suitability of the GRG algorithm for solving land
cover classification problems. The GRG method
was initially employed for estimating fractional
abundance (Abe et al. 2012). Machine learning
techniques play an important role in map con-
struction development management (Lacar et al.
2001; Bruzzone and Cossu 2002; Wolter et al. 2005;
Chen et al. 2007).

2. Problem description

The task of land cover classification can be gener-
ally formulated as a linear spectral unmixing prob-
lem. The linear spectral unmixing is a subpixel
classification process that decomposes mixed pixels
and determines the combination of fractional abun-
dances. The basic idea behind linear spectral mix-
ture analysis is that every image pixel is a mixture
of different endmember spectral responses. The
spectrum recorded by the sensor is a linear com-
bination of endmember spectral responses (Kärdi
2007). Linear unmixing model can be mathema-
tically expressed as (Sanchez et al. 2010; Zhang
et al. 2011):

x (i, j) =
P∑

k=1

ak (i, j) ek + n (i, j) . (1)
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The component x(i, j) is spectral response vec-
tor, ak(i, j) is a scalar value representing fractional
abundance of endmember vector ek at pixel, is a
vector that denotes the spectral band error and P
is the total number of endmembers. Equation (1)
operates under two physical constraints on frac-
tional abundances to account for the full composi-
tion of a mixed pixel. These constraints are non-
negativity of all fractional abundance values and
fractional abundance values must sum to unity
(Heinz and Chang 2001; Sanchez et al. 2010). The
purpose of the land cover classification is to eval-
uate the performance of the RF and SVM classi-
fiers per class basis. The GRG algorithm is used
to obtain the estimated numeric values of the
endmembers’ fractional abundance.

3. Design methodology

The study design methodology consists of the
sequence of steps that the input hyperspectral
image undergoes for its land cover to be classi-
fied into one of the desired multiple classes. The
input hyperspectral image has to be taken through
four essential steps of image dimension reduction,
endmember spectral response determination, frac-
tional abundance estimation, and land cover clas-
sification. The experimental dataset used is first
introduced to begin the discussion on the essential
steps of the design methodology.

3.1 Experimentation dataset

Figure 1 shows the Indiana pine test site in north-
western Indiana collected using the AVIRIS sensor
in 1992. The dataset, which serves as a benchmark
has been extensively researched in recent times
(Landgrebe 1998; Tarabalka et al. 2009; Ul Haq
et al. 2010). The dataset designated 92AV3C is

Figure 1. Indiana pine hyperspectral image.

descriptive of the problem of hyperspectral image
analysis to determine land cover use. Each band
in the dataset has equal dimensions of 145 × 145
(21,025 pixels) of mixed agriculture/forestry lands.
The dataset contains 224 spectral reflectance bands
within a wavelength of 0.4–2.5 μm and nominal
spectral of 10 nm, a 16-bit radiometric resolution,
and a 20 m spatial resolution. The total number
of the spectral bands was reduced to 220 because
four of the spectral bands contain no signal. The
dataset also contains highways and railways, which
were ignored because they are not properly dis-
cernible (Chakrabarty et al. 2012). The processed
image is free of path radiance including the light
scattered by the interaction between surface and
atmosphere (Landgrebe and Biehl 2001). Noise
and water absorption bands (1–3, 104–112, 148–
165 and 217–224) were also removed for the pur-
pose of this study because they can have nega-
tive effect on the classification results (Nascimento
and Bioucas-Dias 2005). The remaining 186 bands
(4–103, 113–147, and 166–216) were used for the
experiment.

The extensive ground-truth data, which is avai-
lable online (Landgrebe 1998) contain 16 classes of
vegetation and background as shown in figure 2. As
pointed out by Landgrebe (1998) and Congalton
(1991), no reference dataset may be completely
accurate, but it is important that the reference
data have high accuracy or else it is not a fair
assessment. Therefore, it is important that refer-
ence data be carefully considered in any accuracy
determination. In this study, 10 land endmem-
bers were used for the classifiers’ investigation
while the remaining were discarded because of
insufficient number of pixels available (Melgani
and Bruzzone 2004; Camps-Valls and Bruzzone
2005; Nascimento and Bioucas-Dias 2005). The
endmembers used are corn-notill, corn-minimum
till, grass/pasture, grass/tree, hay-windowed,
soybeans-notill, soybean-clean, soybeans-minimum
till, woods, and the background.

Figure 2. Indiana pine ground truth and land cover classes.
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3.2 Experiment 1

3.2.1 Image dimension reduction

The method of dimension reduction is aimed at
reducing the number of spectral bands in a hyper-
spectral image and to reduce the time taken to
process the image. This is usually accomplished
by mapping the data from a higher dimensional
space onto a lower dimensional space at the same
time preserving the main features of the original
data. This method does not generate an image
that is different from the original image. Instead,
it was designed to reduce error by finding mini-
mum representation of the original image that ade-
quately keeps the original information for success-
ful unmixing in the lower dimension (Keshava and
Mustard 2002). Among the various algorithms nor-
mally used for dimension reduction are Principal
Component Analysis (PCA) and Maximum Noise
Fraction (MNF) transform. This study applies the
MNF algorithm because it is more computation-
ally effective than PCA algorithm (Chaudhry et al.
2006).

3.2.2 Endmember spectral response determination

The method of endmember spectral response deter-
mination involves identifying the most discrimina-
tive measurements from a set of potentially useful
measurements. An endmember spectral response
is a spectrally pure pixel that portrays various
mixed pixels in a hyperspectral image (Plaza et al.
2004). The endmember spectral response deter-
mination has been widely used in hyperspectral
image analysis because it significantly improves
spatial and spectral resolutions that are provided
by hyperspectral imaging sensors (Keshava and
Mustard 2002; Chaudhry et al. 2006). The deter-
mination of image endmember spectral response
is an important task in hyperspectral image data
exploitation such as image classification (Heinz and
Chang 2001). The endmember spectral responses
ek, k = 1, 2, . . . , P in equation (1) can be deter-
mined by using various algorithms such as Man-
ual Endmember Selection Tool (MEST) (Bateson
and Curtiss 1996), Pixel Purity Index (PPI)
(Gonzalez et al. 2010) and Automated Morpho-
logical Endmember Extraction (AMEE) (Sanchez
et al. 2010), N-FINDER (Winter 1999), Optical
Real-time Adaptive Spectral Identification System
(ORASIS) (Bowles et al. 1995) and Simulated
Annealing Algorithm (SAA) (Bateson et al. 2000).

The PPI algorithm generates from the image a
large number of n-dimensional scattered plots on
random vectors that are called skewer (Chaudhry
et al. 2006; Plaza et al. 2008). The N-FINDR
fully automated a method that locates a set of

pixels with the largest possible volume by infla-
ting a simplex within the image data (Winter 1999;
Plaza et al. 2004). The AMEE uses the morpholog-
ical method where spectral and spatial information
are equally required to derive endmember spectral
responses (Heinz and Chang 2001; Keshava and
Mustard 2002; Plaza et al. 2004; Sanchez et al.
2010).

This study applies the PPI algorithm (Boardman
1993; Gonzalez et al. 2010), which is available
in the environment for visualizing images (ENVI)
to determine endmember spectral responses from
hyperspectral dataset. The choice of the PPI algo-
rithm is motivated by its publicity in ITTVIS
(http://www.ittvis.com/) ENVI software that was
originally developed by Analytical Imaging and
Geophysics (AIG) (Gonzalez et al. 2010). The PPI
algorithm searches through a set of the vertices of
a convex geometry in a certain dataset to present
pure signatures in the data (Keshava and Mustard
2002; Sanchez et al. 2010). In order to generate the
endmember spectral responses from the study site,
noise whitening and dimensionality reduction was
first performed using the MNF transform (Karaska
et al. 2004; Plaza et al. 2004) before the pixel purity
score is calculated for each point in the image
cube. This was accomplished by randomly gener-
ating lines in the N -dimensional space (an ENVI’s
visualizer that provides an interactive tool for find-
ing endmember spectral responses) containing the
MNF transformed data. In an N -dimensional com-
ponent space, it is assumed that endmember (P)
spectral responses will occur at the vertices of the
hyper-solid or geometric shape bounding the pixel
values in that space. The spectral points were pro-
jected on lines and the points at extremes of each
line were selected by drawing a polygon around few
of the extreme data points to create the endmem-
ber (P) spectral responses. The highest-valued of
these pixels were input to the ENVI visualizer for
the clustering process that developed the individ-
ual endmember (1, 2, 3, . . .,P) spectral response.
The result is not a single map representation as in
thematic image classification but a series of images,
each having the size of the original image (Settle
and Drake 1993; Adams et al. 1995; Van der Meer
and Jia 2012).

3.3 Experiment 2

3.3.1 Fractional abundance estimation

The GRG optimization algorithm was executed to
estimate per pixel fractional abundances by using
spectral responses results obtained in experiment 1.
The previous efforts on linear spectral unmixing
problem (Sanchez et al. 2010; Iordache et al. 2011;
Zhang et al. 2011) have investigated the least

http://www.ittvis.com/
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square (LSU) method (Heinz and Chang 2001)
to estimate a set of fractional abundances as
follows.

a(i, j) = (eT e)−1eT x(i, j). (2)

In equation (2), eT is the transpose of the
matrix e of endmember spectral responses and e−1

represents the inverse matrix of e matrix.
In general, the fractional abundances obtained

from equation (2) can only satisfy the sum to
unity constraint, but the non-negativity of frac-
tional abundances cannot always be guaranteed.
The solutions obtained by the LSU method are
therefore generally not optimal in terms of material
quantification (Heinz and Chang 2001; Du et al.
2008; Sanchez et al. 2010). The linear spectral
unmixing problem has to be formulated as an opti-
mization problem that minimizes the spectral band
error. The reason for the minimization is to obtain
optimal fractional abundances that simultaneously
satisfy the two changing constraints Δ1 and Δ2

with respect to the spectral coordinate (i, j). The
following fully constrained linear spectral unmixing
optimization problem has to be solved by finding a
set of fractional abundances a(i, j) that minimize
the spectral band error in equation (1).

Minimize

J(a) = Δ
{
(x(i, j) − a(i, j)e)T (x(i, j) − a(i, j)e)

}

(3)
subject to

Δ1 =

{
a (i, j)|

P∑

k=1

ak (i, j) − 1 = 0

}
, (4)

Δ2 = {a (i, j)| 0 ≤ ak (i, j) ≤ 1} . (5)

In equation (3), J(a) is the objective function
to be minimized, Δ1 is the abundance sum-to-one
constraint and Δ2 is the abundance non-negativity
constraint with respect to the spatial coordinate
(i, j). The PPI algorithm is first applied to extract
endmember spectral responses from the hyperspec-
tral image before equation (3) can be solved for
optimal fractional abundances using the GRG algo-
rithm (Abadie and Carpentier 1969; Lasdon et al.
1974; Su and Lii 1995). The PPI method efficiently
handles hyperspectral images as it provides a con-
venient and physically motivated decomposition of
an image in terms of relatively few components
(Theiler et al. 2000). Once a set of endmember
spectral responses e = {ek}p

k=1 (where e is a square
matrix having 10×10 dimensionality) is deter-
mined, the corresponding fractional abundances
a (i, j) = {ak (i, j)}p

k=1 in a specific pixel vector
x (i, j ) of the hyperspectral image can be estimated
by using the GRG algorithm.

The GRG algorithm uses the endmember set
produced by the PPI to produce a set of endmem-
ber numeric values as follows:

• The first step is to calculate the compute matrix
(eT e)−1eT , where e = {ek}p

k=1 is formed by the
P endmember extracted from the PPI. Using
excel solver for calculation, the compute matrix
is multiplied by all the pixel vectors x(i, j).

• The compute matrix calculated in step 1 is mul-
tiplied by each pixel x(i, j) from the region of
interest, thus obtaining a set of vectors a (i, j),
each containing the fractional abundances of the
P endmembers in each pixel.

The new values obtained were used to train and
test SVM and Random Forest classifiers for the
land cover classification procedure. Using the mix-
ture model, the spectral vectors were converted
to abundance vectors and were classified by the
classifiers. Implementation of the classifiers on the
numeric values was to assess in a benchmark exer-
cise, the computational efficiency and the speed up
between the renowned classifiers in remote sensing
classification.

3.3.2 Land cover classification

The purpose of thematic image classification is to
represent the land cover in terms of a number of
fixed classes where each image pixel represents a
unique endmember which in turn is used to pro-
duce a single map representation. Table 1 shows
the selected region of interest (ROI) from the Indi-
ana pine dataset used for the classification proce-
dure. The newly generated numeric values obtained
from the GRG algorithm in the two steps men-
tioned above were used for the classification proce-
dure. The WEKA (Garner 1995) data mining soft-
ware is selected to build SVM and RF classifiers.
The two classifiers are experimentally compared for
land cover classification.

Table 1. Number of pixels extracted from the
ROI.

Number
Endmembers of pixels

Corn-notill (cnt) 359
Corn-minimum till (cmn) 305
Grass/pasture (gp) 264
Grass/trees (gt) 339
Hay-windowed (hw) 279
Soybeans-notill (snt) 350
Soybean-clean (scl) 203
Soybeans-minimum till (smn) 425
Woods 400
Background (bg) 300

Total number of pixels 3224
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The SVM developed by Cortes and Vapnik
(1995) is a non-parametric supervised learning
classifier that takes root from statistical learning
theory (Winter 1999; Gonzalez et al. 2010). The
training procedure of SVM is aimed at discov-
ering a hyperplane that separates a dataset into
a distinct predefined number of classes in a way
that it is consistent with the training examples.
The classifier works in the sense that it general-
izes a training dataset that is not necessarily lin-
early separable (Lennon et al. 2002). It has been
established to have a high generalized ability to
solve classification problems and for this purpose,
it is extensively used in supervised classification
of hyperspectral images (Winter 1999; Martinez
et al. 2006). The other application domains of
SVM include object detection, and text catego-
rization and it has outperformed the traditional
neural network technique in terms of generaliza-
tion capacity. SVM is relatively not sensitive to
training sample size for it can be applied to either
small or large training datasets (Lennon et al. 2002;
Mountrakis et al. 2011). The algorithm was orig-
inally designed for binary classification, but the
usual method of extending it to multi-class cla-
ssification is to decompose a multi-class prob-
lem into a series of two-class problems. Though
the one-against-all method experiences output sca-
ling problems and suffers from training set incon-
sistency, it is currently the most common SVM
approach due to its simplicity and efficiency
(Bishop 2006; Shao and Lunetta 2012). This study
applies one-against-all, which is one of the most
widely used methods of solving multi-class classifi-
cation problems (Lennon et al. 2002; Liu and Zhen
2005; Mountrakis et al. 2011).

The random forests classifier is an ensemble
that builds several decision trees randomly as
proposed (Breiman 2001; Pal 2005; Rodriguez-
Galiano et al. 2011) for the classification of mul-
tisource remote sensing, geographic data, and
hyperspectral imaging. There are various ensem-
ble classification methods proposed in recent
times that have been proven to considerably im-
prove classification accuracy. The most famous
and widely used ensemble methods are boosting
and bagging (Breiman 1996, 2001). The boosting
method is based on sample re-weighting technique,
but a bagging method uses bootstrapping. RF clas-
sifier uses bagging or bootstrap aggregating to yield
an ensemble of classification and regression trees.
The method works by searching only a random
subset of the features for a split at each node to
minimize the correlation between the classifiers in
the ensemble. The method selects a set of features
randomly and creates an algorithm with a boot-
strapped sample of the training dataset (Breiman
2001; Pal 2005; Rodriguez-Galiano et al. 2011).

This method provides a potential benefit that it
is computationally lighter than methods based on
boosting or bagging and often produces excel-
lent results (Breiman 2001; Pal 2005; Rodriguez-
Galiano et al. 2011). The RF algorithm uses Gini
index (Breiman 2001) as a feature selection mea-
sure. In this case, the impurity of a feature is mea-
sured against the classes. For our experiment, 10
trees were constructed and the out of bag error was
0.5471 while considering 186 random features and
10 output targets.

4. Results and discussion

The discussion on the results of our research on
endmember spectral response determination is pre-
sented. The session also discusses the performance
of the SVM and RF classifiers investigated.

4.1 Results of endmember spectral response
determination

The first experiment performed was aimed at
obtaining endmember spectral responses from the
image dataset by using the ENVI software appli-
cation. The MNF transformation of the input
hyperspectral image was performed for dimension
reduction. In the next stage, a set of (P) end-
member spectral responses is selected by applying
the PPI algorithm. Figure 3 shows the result
obtained, wherein the extreme pixels correspond to
endmember spectral responses in each projection
that is recorded. The total number of times that
each pixel is marked as extreme is noted. A thresh-
old value of 65% is used to define how many pixels
are marked as extreme at the ends of the projected
vector.

Figure 3. Purest pixels occur at edges of the projected
vector.
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The estimated number of endmember spectral
responses and the corresponding spectral signa-
tures were obtained by using ENVI visualizer.
At the completion of specified iterations, PPI 10
images (P) were created in which the value of each
pixel corresponds to the number of times that a
pixel was recorded as extreme. The bright pixels in
the PPI image are generally the image endmember
spectral responses to characterize the vegetation
structure. Figure 4 shows the generated images and
the Root Mean Square (RMS) error of the image.

4.2 Results of land cover classification

The SVM and RF classifiers were evaluated by
using error confusion matrix method, which is a
representation of the entire thematic classifica-
tion result. According to Congalton (1991), the
error confusion matrix can be used to compute
the overall accuracy and the individual endmember
accuracy. The error confusion matrix is a widely
accepted method to report error of raster data
and to assess the classification accuracy of a clas-
sifier. The matrix expresses the number of sample
units allocated to each endmember as compared

to the reference data. The diagonal of the matrix
designates agreement between the reference data
and the interpreted endmember (Nascimento and
Bioucas-Dias 2005). Table 2 shows the result of the
error confusion matrix for the performance of SVM
classifier. This result shows that scl, snt, cnt have
100% classification accuracy because none of their
pixel members is misclassified while others have
some of their pixels misclassified and therefore are
not 100% accurate.

Table 3 shows the result of the error confu-
sion matrix for the performance of RF classifier.
Similarly, it can be observed that using the RF
classifier, all the endmembers have a few of the
endmembers misclassified.

Comparing the performance of each classifier
on individual endmember, SVM produces a higher
level of classification accuracy per endmember as
compared to RF. The entire accuracy assessment
procedure is that the error confusion matrix must
be a representative of the entire area mapped from
the remotely sensed data (Congalton et al. 1983;
Story and Congalton 1986). The overall accuracy
for correctly classified instances, incorrectly cla-
ssified instances, unclassified instances and Kappa
statistics are identified from the error confusion

Figure 4. Generated images and RMS error from PPI method.
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Table 2. Support vector machines’ error confusion matrix.

a b c d e f g h i j <– Classified as

246 0 0 0 15 0 0 0 1 2 | a = gp

0 203 0 0 0 0 0 0 0 0 | b = scl

0 0 350 0 0 0 0 0 0 0 | c = snt

0 1 0 424 0 0 0 0 0 0 | d = smn

0 0 0 0 333 6 0 0 0 0 | e = gt

0 0 0 0 0 359 0 0 0 0 | f = cnt

0 0 0 0 1 0 278 0 0 0 | g = hw

0 0 0 0 0 4 0 301 0 0 | h = cmn

8 0 0 0 0 0 0 0 391 1 | i = woods

5 0 0 0 7 2 0 0 0 286 | j = bg

Table 3. Random forests error confusion matrix.

a b c d e f g h i j <– Classified as

247 0 0 0 15 0 1 0 1 0 | a = gp

0 203 0 0 0 0 0 0 0 0 | b = scl

0 0 347 0 0 2 0 1 0 0 | c = snt

0 0 3 420 0 1 0 1 0 0 | d = smn

1 0 0 0 332 6 0 0 0 0 | e = gt

0 1 0 2 0 356 0 0 0 0 | f = cnt

0 0 0 0 1 0 278 0 0 0 | g = hw

0 0 1 0 0 4 0 300 0 0 | h = cmn

2 0 0 0 0 0 0 0 398 0 | i = woods

0 0 0 0 9 2 1 0 3 285 | j = bg

matrices (Congalton 1988, 1991). The overall accu-
racy is calculated by dividing the total correct
(which is the sum of the major diagonal) by
the total number of pixels in the error confu-
sion matrix (Story and Congalton 1986; Congal-
ton 1991; Gómez and Montero 2011; Zhou et al.
2011). If all the non-major diagonal elements of
the error confusion matrix are zero, then no area
in the map has been misclassified and the classi-
fier accuracy is 100%. Otherwise, there are certain
percentages of misclassified instances (Congalton
1988; Nascimento and Bioucas-Dias 2005). In our
experiment, 53 instances = 1.66% and 58 instances
= 1.8% were misclassified by SVM and RF classi-
fiers, respectively.

The Kappa statistics (Story and Congalton 1986;
Congalton 1991) is a discrete multivariate tech-
nique for determining whether the remotely sensed
classification is better than a random classifica-
tion and whether two or more error confusion
matrices are significantly different from each other.
The outcome of performing Kappa analysis is a
KHAT statistics, which can be viewed as a mea-
sure of accuracy or agreement (Congalton et al.
1983; Story and Congalton 1986; Landgrebe 1998;
Nascimento and Bioucas-Dias 2005; Gómez and
Montero 2011; Zhou et al. 2011). The Kappa coef-
ficient of agreement is a measure of how well the

accuracy of the classifier compares to the reference
or ground truth data (Congalton and Mead 1983).
It ranges from –1 to 1, with negative values mean-
ing agreement worse than expected, low negative
values (0 to –0.10) generally implying no agreement
between the classified land cover and ground truth,
while 1 indicates complete agreement. Table 4
shows the result of error, Kappa statistics, and
overall accuracy of the classification. According to
this result, no unclassified instance during the SVM
and RF classification procedures and the overall
classification accuracies of the classifiers are seen
to be comparable. The difference between the per-
formance results is 0.14%, in favour of SVM, but
this difference is insignificant. However, the RF cla-
ssifier has more endmembers that are incorrectly
classified as compared to SVM classifier.

Mean absolute error (MAE) is described as the
sum of absolute errors divided by the number of
predictions. This is measured set of predicted value
to real value. Root mean square error (RMSE) is
defined as square root of the sum of squares error
divided by the number of predictions. This mea-
sures the difference between the values predicted
by the classifier and the actual values observed.
The smaller the values of RMSE and mean abso-
lute error (MAE), the better the performance of
the classifier. Relative absolute error (RAE) is the
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Table 4. Spectral unmixing classification accuracy.

Classifier CCI ICI UI KS MAE RMSE RAE (%) RRSE (%) Accuracy (%)

SVM 3171 53 0 0.9817 0.0033 0.0573 1.8343 19.1535 98.34

RF 3166 58 0 0.9799 0.0286 0.0875 15.954 29.2364 98.20

Note: CCI: correctly classified instances, ICI: incorrectly classified instances, UI: unclassified instances, KS: Kappa statistic,
MAE: mean absolute error, RMSE: root mean squared error, RAE: relative absolute error, RRSE: root relative squared
error, A: accuracy.

Figure 5. Producer accuracies of RF and SVM classifiers on land cover dataset.

total absolute error, using the same type of nor-
malization (Witten and Frank 2005). Root relative
squared error (RRSE) uses the total squared error
and normalizes it by dividing by the total squared
error of the default classifier (Witten and Frank
2005).

The two observers’ error matrices were used
to calculate an inter-rater agreement statistics
(Kappa) to evaluate the agreement between the
two classification results. The result of Kappa
statistics agreement was 0.977035, which shows
that we did not obtain 100% agreement.

In order to further evaluate the results of the
classification accuracy so as to establish which of
the two classifiers performed better, the McNe-
mar’s test, which is a non-parametric statisti-
cal test, was conducted on the generated results.
According to Japkowicz and Shah (2011), the
McNemar’s test relies on the following four values
observed on the testing set. The number of mis-
classified instances by both classifiers, the num-
ber of misclassified instances by SVM but cor-
rectly classified by RF, the number of misclassified
instances by RF but correctly classified by SVM,
and the number of correctly classified instances by
both classifiers. Results obtained from McNemar’s
test revealed that the null hypothesis that SVM
and RF performed equally with 1–α confidence
(α = 0.5) was rejected.

The performances of SVM and RF classifiers
were also examined by using the producer accuracy
metrics. The producer accuracy is the accuracy of
each endmember obtained by dividing the number
of correctly classified pixels by the total number
of pixels in the corresponding row. Figure 5 shows
this result, wherein the performance of SVM clas-
sifier is comparable with that of RF classifier. The
reason for the low producer classification accuracy
obtained for grass/pasture (gp) and perennial veg-
etation (gt) classes is because they have less leaves
cover that may not be distinguished in terms of
endmembers (Landgrebe 1998).

The overall classification accuracy result shows
that RF based classification algorithm can increase
land cover classification accuracy (Congalton and
Mead 1983; Rosenfield and Fitzpatrick-Lins 1986;
Demir and Ertürk 2007). This result further shows
that classification accuracy of RF classifier is com-
parable with that of SVM classifier, which per-
forms slightly better than RF with a difference of
0.14%. In terms of the time taken by the classi-
fiers to build their classification models, RF cla-
ssifier took an average of 2.7 s, but SVM took an
average of 26 s. This result directly implies that
using RF classifier instead of regular SVM classifier
is by far computationally efficient. Comparing the
results obtained in this study with that which were
obtained by previous authors (Palsson et al. 2012)
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who used pansharpening technique on IKONO and
QuickBird datasets, RF performance is compara-
ble with SVM. The experiment conducted by Bosch
et al. (2007) who used multiclass classification on
general scene images reported that RF was much
faster than SVM, which this study also confirmed.

5. Conclusion

This study implemented PPI algorithm for end-
member spectral response determinations. The
method generated a series of eight images, each
having the size of the original image. The study
also aimed at establishing performance compar-
ison between SVM and RF classifiers for land
cover classification. Spectral unmixing scheme for
hyperspectral image procedure was used in the
preprocessing of the dataset. Environment for
visualizing image (ENVI) tool was used to extract
endmember spectral response of the region of inter-
est. The GRG optimization technique was used
to estimate fractional abundance of each pixel in
the region of interest after obtaining endmember
spectral responses and pixel values of the end-
members. The normalized numeric values of the
fractional abundances were then used for land
cover classification.

The Kappa statistics was computed to evalu-
ate the agreement between the classification results
obtained by SVM and RF classifiers. We also
explored the McNemar’s test to verify the results
of classification accuracy. In addition, performance
assessment was done by using overall accuracy
results and the error confusion matrix to compute
producer accuracy. Experimental results demon-
strate that the generation of regular SVM and
RF based land cover classification systems signif-
icantly improve overall accuracy, producer accu-
racy, and user accuracy. The comparability and
high accuracy performance of SVM and RF indi-
cate that the GRG method is effective for solving
a linear spectral unmixing problem of land cover
classification.
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