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Abstract 

The aim of this study was to assess the efficacy of using artificial neural networks (ANNs) to 
classify hydration status and predict the fluid requirements of endurance athletes. Hydration 
classification models were built using a total of 237 data sets obtained from 148 participants 
(106 males,42 females) in field-and laboratory studies involving running or cycling.  116 data 
sets obtained from athletes who completed endurance events euhydrated (plasma osmolality: 
275-295 mmol.kg

-1
) following ad libitum replenishment of fluid intake was used to design 

prediction models. A filtering algorithm was used to determine the optimal inputs to the 
models from a selection of 13 anthropometric, exercise performance, fluid intake and 
environmental factors.  The combination of gender, body mass, exercise intensity and 
environmental stress index in the prediction model generated a root mean square error of 
0.24 L.h

-1
 and a correlation of 0.90 between predicted and actual drinking rates of the 

euhydrated participants. Additional inclusion of actual fluid intake resulted in the design of a 
model that was 89% accurate in classifying the post-exercise hydration status of athletes.  
These findings suggest that the ANN modelling technique has merit in the prediction of fluid 

requirements and as a supplement to ad libitum fluid intake practices.  Keywords:  

hydration status, classification and prediction, body mass, gender, exercise intensity, 
environmental stress index  
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Introduction 

Maintenance of appropriate hydration 
status can be crucial during endurance 
exercise. While excessive dehydration has 
been associated with an impairment of 
exercise performance

1,2
, exercise-

associated overhydration and 
hyponatraemia can lead to loss of 
consciousness and be life-threatening 

3-5
. 

 
Factors which affect the hydration needs 
of athletes include height, weight, body 
composition, genetic predisposition and 
metabolic rate, level of conditioning, 
exercise intensity and duration, 
environmental conditions, clothing worn 
and heat acclimation 

6
. During exercise, 

their combined effect determines an 
individual’s sweat rate and urinary output 
which are the major contributors to their 
fluid needs. The most recent position 
stand of the American College of Sports 
Medicine (ACSM) suggests  ad libitum 
drinking of 0.4 to 0.8 L/h, with the higher 
rates for faster, heavier individuals 
competing in warm environments and the 
lower rates for the slower, lighter persons 
competing in cooler environments for 
marathon runners who are euhydrated at 
the start 

3
. It however emphasises the 

importance of  individualised fluid and 
electrolyte replacement schedules for 
athletes 

3
.  This necessitates careful 

customisation of their requirements which 
is difficult in view of the numerous above-
mentioned confounders. 
 
There is therefore a need for models 
which are able to make static, pre-event 
predictions of the hourly fluid requirements 
of athletes based on a number of 
physiological and environmental factors 

7-

9
.  These include mathematical models 

that were developed to determine the 
sweat rate of athletes 

10,11
 and have been 

used widely to predict water needs under 
the assumption that the fluid intake 
replaces the expected water lost by 
sweating, and revisions thereof that factor 

in exposure time and clothing systems 
7,9,12

. Engineering models 
13

 have also 
been developed to provide for more 
accurate sweat predictions over a broader 
range of conditions and applications.  
Although the % dehydration associated 
with optimal performance remains a matter 
of debate 

14-16
, it is well accepted  that 

individuals should avoid drinking more 
fluid than the amount needed to replace 
their sweat losses, during prolonged 
exercise

3,8,17
 with blood osmolality being 

accepted as the best haematological 
marker of hydration status 

15,18,19
. 

 
Because of the complexity of defining and 
determining the fluid requirements of 
athletes, we set out to investigate whether 
an artificial neural network (ANN) which 
presents a powerful data modelling tool, 
can be used to capture and represent the 
complex relationships between the 
determinants of fluid requirements and the 
recommended hourly volume of fluid 
intake needed to maintain euhydration.  In 
addition to predicting their fluid 
requirements over a range of exercise 
intensities and environmental conditions, 
these biologically inspired computer 
programs which simulate the way in which 
the human brain processes 
information

20,21
,have found widespread 

use in the fields of medicine 
22,23

 and 
sport

24-29
, and can also offer a simplified 

method of classifying the hydration status 
of athletes. 
 
Due to the absence of a previously 
recorded attempt to design a network 
which encompasses such a wide range of 
potential confounders, a null hypothesis 
was set. It was hypothesised that an ANN 
will not perform well in classifying or 
accurately predicting the fluid intake 
requirements of endurance athletes.  
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Methods 
Data collection 

Following approval by the relevant 
institutional research ethics committee, 
raw data were obtained from 4 separate 
field studies 

19,30-32
 and 3 separate 

laboratory studies 
18,33,34

 conducted on 
cyclists and runners, in which fluid intake 
was recorded and plasma/serum 
osmolality measurements were made to 
determine the hydration status of the 
participants. 
 
A summary of the databases is provided 
below. 
Database 1(n=63): Twenty-two (7 men, 15 
women) amateur runners took part in a 
three-day trail run in mild environmental 
conditions with ad libitum fluid intake 

19
. 

Distances covered were 29.3 km in Stage 
1(S1), 37.9 km in Stage 2 (S2) and 27.8 
km in Stage 3 (S3) The range of ambient 
temperature and relative humidity over the 
three days was 11.5 - 22.8 ºC and 54 97 
%, respectively.  The main outcome 
measures were individual changes in 
serum osmolality (Sosm), serum sodium 
(s[Na

+
]), plasma volume (PV), urine 

osmolality (Uosm), urine specific gravity 
(Usg) and body mass (BM).  
 
Database 2 (n=26): Thirteen well-trained 
male road cyclists completed two 90-
minute trials in our laboratory at 60-65% of 
peak VO2 in warm, humid (28.2 ± 0.9 º C; 
relative humidity:72.1 ± 3.3%) and 
moderately cool (18.3 ± 0.8 ºC), windy (4.0 
± 1.0 m/s) conditions 

33
.  Ad libitum fluid 

intake was recorded.  Pre-post trial 
assessments included BM, Sosm, urine 
volume and Uosm. 
 
Database 3 (n=54):  The hydration status 
of amateur cyclists who drank ad libitum 
during a three-day, 248 km mountain bike 
race 

32
 was assessed in 18 amateur male 

cyclists.  Daily stage length varied from 
87km (S1) to 90km (S2) and 71km (S3).  
Temperature ranged from 6.0 - 21.4°C 
over the 3 race stages with the main 
outcome measures being stage-induced 
changes in BM, Sosm, s[Na

+
] and Usg.    

 
Database 4 ( n= 8):  The changes in BM, 
total body water (TBW), plasma osmolality 
(Posm), plasma sodium (p[Na

+
]), plasma 

potassium [K
+
], plasma protein 

concentrations [TP], running performance 

and ad libitum fluid intake in an ultra-
marathon mountain race covering 80 km 
were measured on seven male  and one 
female runner 

30
.  

  
Database 5 (n=32):  Changes in BM, 
TBW, Posm, p[Na

+
]), [TP] and ad libitum 

fluid intake were measured in athletes 
during 21.1km and 56 km foot races 

31
. 21 

participants (12 women; 9 men) completed 
the 21.1km event while 12 participants (3 
women; 9 men) completed the 56km 
event.   
 
Database 6 (n=18): The components of 
biological variation and the accuracy of 
potential markers in plasma, urine, saliva 
and BM for static and dynamic dehydration 
assessment in 18 (13 males, 5 females) 
healthy participants were evaluated 

18
.   

The exercise comprised 3 to 5 h of 
work:rest cycles (50 min work:10 min rest) 
on a treadmill (1.56 m/s; 4–7% grade) or 
cycle ergometer (85–120 W) inside an 
environmental chamber set to 40°C and 
20% relative humidity with a 1-m/s laminar 
wind flow and no fluid intake. The main 
outcome measures were Posm, Uosm, saliva 
osmolality, urine colour and BM.  
 

Database 7 ( n=36):  30 males and 6 
females performed work in a 
laboratory according to a similar 
design as that used in database 6, 
with only 90 minutes of rest was 
allowed after 3 hours of intermittent 
walk/rest in more severe heat (50°C) 
34.   
 
Data analyses 

All variables were analysed using SPSS 
version 19 software (SPSS Inc., Chicago, 
Ilinois) to determine its skewness, kurtosis 
and normality using the Kolmogorov-
Smirnov test.  Central tendencies were 
appropriately presented as mean ± 
standard deviation (SD) or median 
(range).  Bivariate correlation analyses 
were used to determine the relationship 
between the various physiological and 
environmental factors and post-exercise 
hydration status, with a  Posm/Sosm value in 
the range [275-295] mmol.kg

-1
 being used 

as indicative of euhydration 
35-37

, while a 
value in excess of 295 mmol.kg

-1
 indicated 

dehydration 
18,35,38

.   Statistical significance 
was accepted at the 0.05 level.   
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Data pre-processing  

Gender and post-exercise hydration 
status were categorised as follows: 
female=0; male=1; euhydrated=0; 
dehydrated=1.  All the other variables in 
the data set were normalised to lie in the 
range [0-1] by making use of the 
appropriate divisors to avoid rejection of 

those with smaller magnitudes by the 
learning algorithm of the ANN.  
 
Furthermore, temperature, humidity and 
solar radiation were combined into a single 
environmental stress index (ESI) using the 
following equation 

39
: 

SR
HTSRHTESI




1.0

073.0
**0054.0*002.0*03.0*63.0                 [1] 

Where T is the temperature (°C), H is the humidity (%) and SR is the solar radiation (W.m
-2

)   
 
In order to make an optimal selection of 
input variables to the ANN, a filtering 
method 

40
 was used.   Based on the 

guidelines of Walczak & Cerpa 
41

, only 
statistically significant variables for which 
the correlation (r) with the post-exercise 
hydration status exceeded 0.2 were 
selected as possible inputs.  Identification 
and removal of superfluous variables was 
undertaken using partial correlation 
analysis 

40
.  

 
The composite data set (n=237) consisting 
of both euhydrated and dehydrated 
participants, was used to design, train, 
validate and test various classification 

models. Only the data from euhydrated 
participants (n=116)  were then retained 
from the complete data set and used to 
design, validate and test various prediction 
models used to estimate the drinking rates 
of this subset of athletes.  The data sets 
for classification and prediction models 
were each randomised in turn and 
subdivided into a training, validation and 
test subset, respectively.  Thirty percent 
(30%) of the classification (n=71) and 
prediction (n=36) model data sets were 
reserved for testing the respective 
networks, with the remainder used for 
training and validation (Figures 1a and 
1b).
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Figure 1: Data split and cross validation methods 
(a) Data split for Artificial Neural Network classification models 
(b) Data split for Artificial Neural Network prediction models 
(c) 10-fold cross-validation method 

 

Model design 

Randomisation of the classification and 
prediction model datasets as well as the 
designing, validation and testing of the 
ANN models were achieved using 
MATLAB (R2011b, The Mathworks, 
Natick, Massachusetts).  All possible 

combinations of the input variables were 
used to create classification and prediction 
models using feed forward multilayer 
perceptron (MLP) and radial basis function 
(RBF) ANNs with single hidden layers 
(Figures 2a and 2b)

.   
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Figure 2: Artificial Neural Network feed forward models 
(a) Multilayer perceptron (MLP) network 
(b) Radial basis function (RBF) network  

 
The MLP network with one hidden layer, 
incorporating either the logistic sigmoidal 
(logsig) or hyperbolic tangent sigmoidal 
(tansig) activation functions, was used as 

a universal approach element 
42

 and the 
output of this network was determined by 
using  the following formula:

 























  

 

h

j

k

n

i

jiijjkk bbxwfwy
1 1

,k=1,......m                        [2] 

 
Where f is the activation function (either 
logsig or tansig), h is the number of hidden 
layer neurons (limited to a maximum of 30 
during training), wjk and wij are the weights 
of the connections between hidden and 
output layer and between input and hidden 
layer, respectively, b is the polarisation 
values (biases) and x is the data vector.  
For a single output, k is set to 1. 
 
For a logsig function as activation for the 
neurons in the hidden layer, f was given 
by: 

)exp(1

1
)( log

z
zf sig


                       [3] 

 
Similarly, the formula for tansig function as 
activation for the hidden layer neurons 
was given by: 

)exp()exp(

)exp()exp(
)( tan

zz

zz
zf sig




             [4] 

The non-linear output yk was estimated 
using the optimisation method of 
Lavenberg-Marquardt 

43
.  This is a 
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standard method to minimise the mean 
square error (MSE), due to its properties 
of convergence and robustness and the 
decline method of Nguyen and Widrow

44
 

was used to initialise the weights of the 
network.   
 

In order to accommodate the fact that an 
RBF network also has a feed forward 
structure consisting of a single hidden 
layer, with the activation function being 
mostly built up of Gaussian rather than 
sigmoid as in MLP networks, the output of 
the RBF network was given by:

 











 
M

j

jkj

M

j

kjkjk k
xwcxwxy c

1 21

),()(                         [5] 

Where x is the input vector, wkj are the 
weights in the output layer, M is the 
number of neurons in the hidden layer 
(limited to a maximum of 100 during 
training), ck are the RBF centres in the 
input vector space, ‖.‖2 denotes the 
Euclidean norm and Фj is the Gaussian 
activation function, given by: 

22

1
)(




r
r                             [6] 

With σ
2
 being the spread parameter 

(limited to a maximum of 10 during 
training) 
 
To determine the error calculations used 
to train an ANN, training of the ANN and 
performance assessment was done using 
the following objective function:  

2

1

)()(ˆ
2

1













N

s

sysy
N

E         [7] 

Where N is the number of data samples 
used to train the ANN, y is the true output 
of the network and ŷ is the estimated 
output of the network.   

 
In order to train the ANN based on as 
many examples as possible and obtain the 
best models, a 10-fold cross validation 
approach was used to develop the 
models.  The training+validation subset 
(Figure 1c) was split into ten 
approximately equal portions, such that 
each portion was used in turn for 
validating the classifications/predictions of 
the ANN models in addition to adjusting 
the network parameters, while the 
remainder was used for training.  For 
example, 9/10th of the training + validation 
subset was used for training and the 
remaining 1/10th for validation.  This 
procedure was repeated 10 times.  The 
training of the ANN was terminated when 
a satisfactory compromise was reached 
between minimisation of the training set 
error and the quality of the generalisation 

of the validation data set. The model 
selected was the one that had the smallest 
average mean squared error on the 
validation data set (MSEval).  

 
Model performance assessment  

The classification and prediction test data 
sets were used to assess the performance 
of the classification and prediction ANN 
models, respectively.  Performance of the 
classification models in classifying the 
post-race hydration status of athletes was 
analysed using correlation (r) and 
sensitivity/specificity analyses, receiver 
operating characteristics curves (ROC) 
and the area under the ROC curves 
(AUC).  Performance of the prediction 
models in being able to correctly predict 
the drinking rate of the euhydrated 
athletes were measured using coefficient 
of determination (R2), root mean squared 
error (RMSE), mean bias error (MBE) and 
coefficient of variation of the root mean 
squared error (CVRMSE).  The outputs 
from the predictive networks were first de-
normalised before comparing them with 
the actual measured data.   
 

2
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)()(ˆ
1













N

s

sysy
N

RMSE

                                    [ 8 ]  
 

 

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N

s
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1
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                                    [ 9 ]  
 

)ˆ(ymean

RMSE
CVRMSE 

         [ 1 0 ]  

 
Results 

The composite data base consisted of 237 
individual data sets which were obtained 
from six smaller databases derived from 
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148 participants (106 males; 42 females) 
ranging in age from 18 to 56 years (Table 
1).  In 34% (n=80) of the data sets, the 
participants were either amateur or 
professional cyclists, while the remainder 

of the data was obtained from amateur 
runners.   There was a wide variation in 
the anthropometric characteristics of the 
athletes as well as in the environmental 
conditions (ESI = 9.4 - 35.6).

 
Table 1:  Environmental factors and physical characteristics of the participants comprising the 
total data set (n=237) and subset relying on ad libitum fluid replacement ( n=183) 

 

 Total data set (n = 237) Ad libitum subset (n=183) 
 Mean (±SD) Min Max Mean (±SD) Min Max 
Age, y 34 ± 10 18 56 37 ± 8 18 56 
Body fat, % 19.6 ± 4.0 8.2 30.6 18.8 ± 4.3 8.2 30.6 
Mass, Kg 74.9 ± 12.9 49.1 109.8 72.6 ± 11.9 49.1 103.2 
BMI 24.4 ± 3.2 18.7 35.4 23.7 ± 2.5 18.7 30.9 
BSA*, m

2
 1.9 ± 0.2 1.5 2.4 1.9 ± 0.2 1.5 2.3 

Distance, km 45 ±25 17 90 53.2 ± 23.4 21.1 90 
Exercise intensity**, 
km.h

-1
 

7.9 ± 2.8 4.3 16.0 8.6 ± 2.8 4.3 16 

Duration, h 4.3 ± 2.2 1.5 12.8 4.5 ± 2.4 1.5 12.8 
Temperature, °C 23.9 ± 13.0 12.3 50 17.2 ± 3.5 12.3 29.7 
Humidity, % 62 ± 25 20 96 74.5 ± 10.8 44.4 95.8 
Solar radiation, W.m

-2
 834 ± 132 0 467 108.4 ± 141.4 0.0 467.2 

Environmental stress 
index *** 

19.4 ± 8.3 9.4 35.6 15.4 ± 3.6 9.4 27.2 

Drinking rate, L.h
-1

 0.404 ± 0.400 0.000 2.000 0.523 ± 0.381 0.874 2.000 
Sweat rate****, L.h

-1
 0.912 ± 0.433  0.185 3.067 0.877 ± 0.458 0.185 3.067 

Ratio of  Drinking / 
Sweat rate, % 

47 ± 36 0 200 62 ± 38 10 327 

Pre-race plasma 
osmolality, mmol.kg

-1
 

291 ± 6 276 316 291 ± 6 276 316 

Post-race plasma 
osmolality, mmol.kg

-1
 

295 ± 8 273 316 293 ± 7 275 310 

Note :  Max: maximum, Min: minimum; BMI=body mass index; BSA=body surface area 
 *computed using formula of Du Bois & Du Bois 

57
;  

**cycling pace converted to an approximate running pace using a factor of  2.5
58,59

; 
 ***computed using formula of Moran & Epstein

39
;  

 ****estimated using the formula [(pre-mass - post mass) + fluids intake - urine 
voided]/exercise duration; assuming that 1g weight loss is equivalent to 1ml sweat loss  
 
In 77% of the cases (n=183), the athletes 
were allowed ad libitum drinking, with fluid 
restriction employed in the remaining 
cases.  Of the composite data set, 85% 
(n=201) of the subjects started the event 
with a plasma osmolality (Posm) within the 
normal reference range for euhydration 
(275- 295 mmol.kg

-1
), 49% (n=116) 

completed the events with Posm in this 
reference range, while the remaining 51% 
(n=121) completed the events dehydrated 
(Posm ≥ 296 mmol.kg

-1
).  This provided a 

balanced set of data for training, validating 
and testing the ANN models.  None of the 
subjects completed their event both 
overhydrated (Posm <275 mmol.kg

-1
) and 

hyponatraemic (plasma sodium < 134 
mmol.L

-1
).  

 

The athletes displayed a wide variability in 
drinking and sweat rate with mean (±SD) 
drinking (L.h

-1
) and sweat rates (L.h

-1
) of 

0.404 (±0.400) and 0.912 (±0.433), 
respectively (Table 1).  In the group of 
athletes completing the race with Posm in 
the euhdrated range  (n=116), the mean 
(±SD) drinking rate (L.h

-1
), sweat rate (L.h

-

1
) and drinking/sweat rate ratios (%) were 

0.582 (±0.438), 0.944 (±0.518) and 66 
(±44), respectively.  Of the athletes that 
were allowed ad libitum fluid intake 
(n=183), 63% (n=116) of them finished the 
event euhydrated, with the remaining 37% 
(n=67) falling into the dehydrated category 
of which 94% (n=63) of them had taken 
part in either the multiday cycle or trail 
runs.  
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Table 2 presents the results of the 
bivariate correlational analyses conducted 
on the entire data set.  From the entire set 
of variables listed (n=13), only pre-race 

hydration status (PH), height (H) and 
exercise duration (DU) were found to be 
non-significant (p>0.05) in determining the 
post-exercise hydration status

.  
 
Table 2:  Results of bivariate correlational analyses with post-exercise hydration status 
(n=237)  
 

 Correlation (r) Statistical significance 

Age, y  -0.15 p<0.05 
Gender  0.24 p<0.01 
Body Fat, %  0.30 p<0.01 
Height, m   0.17 p>0.05 
Body mass, Kg  0.38 p<0.01 
BMI 0.40 p<0.01 
BSA, m2 0.34 p<0.01 
Distance, km  -0.15 p<0.05 
Exercise Intensity, km.h-1  -0.47 p<0.01 
Duration, h  0.10 p>0.05 
Environmental stress index  0.40 p<0.01 
Drinking rate, L.h-1  -0.44 p<0.01 
Pre-race hydration status, 
mmol.kg-1  

0.12 p>0.05 

Note: BMI=body mass index; BSA=body surface area as computed using formula of Du Bois 
& Du Bois 57 
 
The variables exercise intensity (EI), 
environmental stress index (ESI), body 
mass (BM), gender (G) and drinking rate 
(FI) that were identified using the filtering 
method, allowed for 15 different input 

combinations to the ANN models (Table 
3).  As the purpose of the prediction 
models was to estimate the drinking rate 
of athletes, FI was removed as an input 
variable into these models (Table 4).   
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Table 3:  Results for the ANN classification models (n=237)  

  MSEval (r) Sensitivity Specificity AUC Best model for input combination* 

Model 

no. 

Variables MLP RBF MLP RBF MLP RBF MLP RBF MLP RBF Network Activation 

function** 

Structure*** 

C1 FI, ESI 0.11 0.15 0.43 0.49 0.71 0.80 0.71 0.74 0.71 0.74 MLP tansig 2 : 11 : 1 

C2 FI, EI 0.12 0.14 0.49 0.38 0.88 0.62 0.58 0.75 0.73 0.68 MLP tansig 2 : 8 : 1 

C3 FI, EI, ESI 0.11 0.12 0.51 0.52 0.60 0.74 0.89 0.78 0.74 0.76 RBF Gaussian 3 : 40 : 1 

C4 FI, G 0.12 0.13 0.59 0.57 0.91 0.91 0.66 0.63 0.79 0.77 MLP logsig 2 : 3 : 1 

C5 FI, ESI, G 0.12 0.14 0.61 0.60 0.88 0.80 0.72 0.80 0.80 0.80 MLP logsig 3 : 29 : 1 

C6 FI, EI, G 0.11 0.14 0.69 0.52 0.86 0.80 0.83 0.72 0.85 0.76 MLP tansig 3 : 20 : 1 

C7 FI, EI, ESI, G 0.11 0.13 0.74 0.66 0.85 0.85 0.88 0.80 0.87 0.83 MLP tansig 4 : 30 : 1 

C8 FI, BM 0.11 0.14 0.69 0.66 0.97 0.86 0.69 0.81 0.83 0.83 MLP logsig 2 : 15 : 1 

C9 FI, ESI, BM 0.11 0.15 0.64 0.58 0.77 0.83 0.86 0.75 0.82 0.79 MLP tansig 3 : 18 : 1 

C10 FI, EI, BM 0.11 0.14 0.68 0.61 0.94 0.80 0.72 0.81 0.83 0.80 MLP tansig 3 : 11 : 1 

C11 FI, EI, ESI, BM 0.11 0.13 0.75 0.54 0.89 0.89 0.86 0.64 0.87 0.76 MLP logsig 4 : 16 : 1 

C12 FI, G, BM 0.11 0.15 0.55 0.53 0.82 0.85 0.72 0.66 0.77 0.76 MLP tansig 3 : 12 : 1 

C13 FI, ESI, G, BM 0.12 0.16 0.65 0.61 0.91 0.83 0.72 0.77 0.82 0.80 MLP logsig 4 : 17 : 1 

C14 FI, EI, G, BM 0.10 0.13 0.69 0.71 0.83 0.86 0.86 0.86 0.84 0.85 RBF Gaussian 4 : 30 : 1 

C15 FI, ESI, EI, G, BM 0.09 0.14 0.78 0.55 0.83 0.77 0.94 0.78 0.89 0.77 MLP tansig 5 : 19 : 1 

Note:  G=gender; BM=body mass; EI=exercise intensity; ESI=environmental stress index;  FI=drinking rate; MLP=multi-layer perceptron; RBF=radial basis 
function; MSEval=average of mean squared error for all models computed on validation dataset; AUC=area under receiver operating curve; r=correlation 
coefficient.; tansig=hyperbolic tangent sigmoid; logsig=logistic sigmoid;  *Best model selection is based on lowest MSEval, highest r and AUC; **This is the 
activation function for the neurons in the hidden layer; ***First number in the structure is the number of neurons in the input layer, second number is the 
number of neuron in the hidden layer, whilst  the third number is the number of neurons in the output layer. 
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Table 4:  Results for the ANN prediction models (n=116)  

 MSEval                                            
L.h

-1
 

R
2
 RMSE                                 

L.h
-1

 
MBE                               
L.h

-1
 

CVRMSE                             
% 

Best model for input combination* 

Model 
no. 

variables MLP RBF MLP RBF MLP RBF MLP RBF MLP RBF Network Activation 
function** 

Structure*** 

               
P1 ESI 0.01 0.01 0.44 0.42 0.35 0.36 -0.08 -0.09 66.25 69.00 MLP tansig 1 : 27 : 1 
P2 EI 0.02 0.03 0.62 0.56 0.30 0.32 -0.07 -0.07 55.42 59.93 MLP logsig 1 : 11 : 1 
P3 EI, ESI 0.01 0.02 0.77 0.74 0.25 0.26 -0.06 -0.08 46.20 50.28 MLP tansig 2 : 19 : 1 
P4 G 0.04 0.04 0.28 0.28 0.42 0.41 -0.12 -0.08 86.53 77.80 RBF Gaussian 1 : 60 : 1 
P5 ESI, G 0.01 0.02 0.53 0.47 0.34 0.35 -0.12 -0.11 68.38 70.66 MLP logsig 2 : 5 : 1 
P6 EI, G 0.02 0.03 0.69 0.11 0.31 0.56 -0.08 0.07 57.31 82.96 MLP logsig 2 : 5 : 1 
P7 EI, ESI, G 0.01 0.01 0.76 0.78 0.25 0.24 -0.11 -0.08 50.41 46.31 RBF Gaussian 3 : 13 : 1 
P8 BM 0.03 0.09 0.03 0.06 0.46 0.45 -0.07 -0.06 84.85 82.11 MLP tansig 1 : 22 : 1 
P9 ESI, BM 0.01 0.04 0.33 0.37 0.39 0.38 -0.11 -0.10 77.75 74.70 MLP tansig 2 : 29 : 1 
P10 EI, BM 0.02 0.03 0.53 0.55 0.33 0.33 -0.06 -0.07 58.96 60.56 MLP logsig 2 : 17 : 1 
P11 EI, ESI, BM 0.01 0.03 0.66 0.69 0.27 0.28 -0.01 -0.08 44.00 52.10 MLP logsig 3 : 25 : 1 
P12 G, BM 0.03 0.04 0.42 0.51 0.38 0.38 -0.05 -0.10 67.36 74.21 MLP tansig 2 : 5 : 1 
P13 ESI, G, BM 0.01 0.02 0.40 0.50 0.37 0.34 -0.10 -0.11 72.86 68.89 RBF Gaussian 3 : 60 : 1 
P14 EI, G, BM 0.02 0.03 0.61 0.59 0.31 0.31 -0.09 -0.07 58.31 58.43 MLP tansig 3 : 11 : 1 
P15 ESI, EI, G, BM 0.01 0.02 0.80 0.71 0.24 0.26 -0.09 -0.06 42.20 47.17 MLP tansig 4 : 10 : 1 

Note:  G=gender; BM=body mass; EI=exercise intensity; ESI=environmental stress index; MLP=multi-layer perceptron; RBF=radial basis function; 
MSEval=average of mean squared error for all models computed on validation dataset; R

2
=coefficient of determination; RMSE=root mean squared error; 

MBE=mean bias error; CVRMSE=coefficient of variation on RMSE; L=litres; h=hours;  * Best model selection is based on lowest MSEval, lowest  CVRMSE and 

highest R
2
;     ** This is the activation function for the neurons in the hidden layer; *** First number in the structure is the number of neurons in the input layer, 

the second number is the number of neuron in the hidden layer, whilst  the third number is the number of neurons in the output layer.   
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The results for the ANN classifiers of the 
post-exercise hydration status of subjects 
(n=237) as either euhydrated (0) or 
dehydrated (1), are presented in Table 3.   
In 87% of the classification models (n=13), 
MLP networks were superior to the RBF 
networks, producing lower values of 
MSEval, and higher correlations (r), 
sensitivities, specificities and AUC.  In 
these MLP models, use of the tansig 
activation function for the neurons in the 
hidden layer gave better performance than 
the logsig function in 62% of the models 
(n=8).  The best performing model was an 
MLP network with 5 neurons in the input 
layer, 19 tansig neurons in the hidden 
layer and 1 linear neuron in the output 
layer.   Taking as inputs FI, ESI, EI, G and 
BM, this model had the lowest MSEval 
(0.09) and it resulted in the highest AUC 
(0.89) and correlation (r=0.78) between 
actual hydration status of the athletes in 
the test data set and the estimated 
hydration status generated by this model. 
 
Table 4 provides the results for the ANN 
predictors used to estimate the drinking 

rate of the euhydrated subjects (n=116).  
The MLP models performed better than 
the RBF networks in 80% of the cases 
(n=12), by producing lower MSEval, CVRMSE 
and larger R

2
.  All the MLP prediction 

models underestimated the drinking rates 
of the athletes as can be seen from the 
negative values for MBE.  Use of the 
tansig instead of logsig activation function 
for the hidden layer neurons gave better 
performance in these MLP models in 58% 
(n=7) of the cases.  The input variables to 
the best performing model were ESI, EI, G 
and BM.  This was an MLP network with 4 
input neurons, 10 tansig neurons in the 
hidden layer and 1 linear neuron in the 
output layer. When comparing the fluid 
estimates generated by this model with the 
fluid intake of athletes in the test data set, 
in comparison to the other models, this 
had the highest R

2
 (0.80), lowest RMSE 

(0.24 L.h
-1

) and CVRMSE (42.20%).  
Furthermore, the superior performance of 
the MLP network in comparison to RBF is 
evident in the performance graphs (Figure 
4). 
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Figure 3: Flowchart of methodology 

http://www.ismj.com/


Fluid intake needs of endurance athletes  International SportMed Journal, Vol.15 No.4, 

December 2014, pp. 425-444. Available at URL: http://www.ismj.com 
 

438 Official Journal of FIMS (International Federation of Sports Medicine) 

 

 
Figure 4A 
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Figure 4B 
Figure 4A and 4B: Results of the Multilayer Perceptron and Radial Basis Function prediction 
models  
 

Discussion 

When athletes drink ad libitum, they have 
been shown to replace no more than 75% 
of their total water losses

17,45,46
.  As the 

currently existing hydration models 
designed for athletes are based on 
complete replacement of the sweat output 
and total water losses are primarily made 
up of sweat when exercising in the heat, 
these existing models therefore provide an 
exaggerated estimate of fluid intake of 
athletes.  Instead of estimating sweat rate 
alone, we used the complete set of 
physical, performance, training and 
environmental variables, to both classify 

the hydration status of athletes and predict 
their fluid intake using the ANN.     
 
Although it may appear that there are 
several techniques other than ANNs which 
could be used in this application, including, 
but not limited to standard statistics such 
as regression analyses and expert 
systems, standard statistics would only 
have been viable had there been a model 
that already existed and to which a best fit 
had to be made. On the other hand, expert 
systems require the pre-existence of a 
clear set of criteria for the classification of 
hydration status and prediction of fluid 
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requirements in athletes, which also do not 
yet exist. In view of the availability of 
sufficient training examples and no clearly 
defined relationship between the input 
variables and output, the ANN, with its 
ability to take into account the total 
interaction between the input variables, 
was therefore the preferred method for this 
particular application. As far as the authors 
are aware, this is the first report of the use 
of ANN modelling in the classification and 
prediction of the fluid intake requirements 
of endurance athletes.    
 
The most important finding of this series of 
classification ANN models was that the 
optimal set of input variables which display 
high accuracy, include BM, EI, ESI, G and 
FI, while the optimal set of inputs variables 
with high predictive precision of FI are BM, 
EI, ESI and G. This was confirmed in the 
classification model, C15, which displayed 
an accuracy of 89% in being able to 
correctly identify the post exercise 
hydration status of the athletes that 
consumed fluids ad libitum, and the 
prediction model, P15, which produced a 
90% correlation between the actual and 
predicted drinking rates of the athletes. 
 
This first extensive comparative analysis of 
the 13 established variables that are 
known to affect fluid replacement needs 
supports 3 of the factors regarded as 
primary factors governing fluid loss during 
exercise identified by previous studies viz. 
body mass, exercise intensity and ambient 
temperature, 

47,48
.  However, the filtering 

algorithm applied to the input data set as 
well as the results of the ANN modelling 
technique identified gender as a fourth 
primary determinant of fluid intake needs 
in endurance athletes. Physiologically this 
could be attributed to the fact that women 
typically have lower sweating rates and 
electrolyte losses than men due to their 
smaller stature and lower metabolic rates 
when performing the same task as 
men

49,50
. As these findings were restricted 

to the number of data obtained from 
females, further work is required to verify 
these data.  
 
The importance of gender as a variable is 
verified in Figure 4. For example, subject 
15 in model P15, a male athlete of mass 
67.2kg, running at 8.2 min.km

-1
 in 

environmental conditions resulting in an 
ESI of 13.44 (average ambient 

temperature 15.0 °C, average relative 
humidity 64.1%, average solar radiation 
360.9 W.m

-2
)  had an average drinking 

rate of 0.48 L.h
-1

 and completed the race 
with a Posm of 293 mmol.kg

-1
. Model P15 

predicted that his required fluid 
consumption to maintain euhydration was, 
however, only 0.38 L.h

-1
.  On the other 

hand, subject 31 in model P15, a female of 
mass 63.0kg, running at 9.9 min.km

-1
 in 

environmental conditions resulting in an 
ESI of 16.89 (average ambient 
temperature 17,9 °C, average relative 
humidity 76.7%, average solar radiation 
233.5 W.m

-2
) had an average drinking rate 

of 0.33 L.h
-1

 and completed the race with a 
Posm of 294 mmol.kg

-1
.  According to model 

P15, although running in a higher ESI, her 
necessary fluid consumption to avoid a 
state of clinical dehydration, was only 0.25 
L.h

-1
.   

 
The data sets also confirm that the 
differences in weather conditions, shape, 
size and performance of these athletes, 
result in a wide variability in their sweat 
rates and fluid intake. The clinically 
euhydrated subset of participants 
replenished on average 66 (±44)% of their 
fluid lost to sweating, confirming previous 
findings on  ad libitum drinkers 

17,45,46
.  

Although the sweat rate and fluid loss is 
related to the metabolic rate 

51
, the rate of 

fluid ingestion is regulated by the 
osmotically driven thirst centre in the 
hypothalamus 

52
.  The large variability in 

the degree to which participants allowed 
ad libitum fluid intake replaced their sweat 
losses during exercise, however points to 
marked differences in physiologic 
response to changes in Sosm between 
individuals 

15,53
 which may not only be 

limited to age 
54

, pregnancy 
55

 or presence 
of diabetes 

56
. 

 
Of additional interest was the non-
significant effect of pre-hydration status 
and exercise duration in determining post-
exercise hydration status.  While this may 
conflict with former conventional theories 
1,6,10

, it does support the hypothesis of 
Noakes 

15
 in which he predicts that ad 

libitum ingestion of fluid will compensate 
for low pre-exercise fluid status and be 
adjusted according to the duration of 
exercise. 

http://www.ismj.com/


Fluid intake needs of endurance athletes  International SportMed Journal, Vol.15 No.4, 

December 2014, pp. 425-444. Available at URL: http://www.ismj.com 
 

441 Official Journal of FIMS (International Federation of Sports Medicine) 

 

Conclusion 
Although sample size could be regarded 
as a possible limitation of this study, the 
generally accepted criteria regarding input 
data for each input variable to the network, 
is exceeded within each data set 21.  The 
limited range of the input variables which 
did not include extreme environmental 
conditions or wide range of clothing 
ensembles, must however be 
acknowledged as a limitation of this first 
work exploring the uses of ANNs in the 
determination of the fluid intake needs of 
endurance athletes.  
 
As the possibility always exists that ad 
libitum fluid replacement can be biased 
according to prior beliefs and 
misconceptions which athletes may have 
obtained, the findings of this initial study 
indicate that the static artificial neural 
network modelling technique may be 
valuable in providing accurate estimates of 
fluid intake which will maintain plasma 
osmolality within the 275-295 mmol.kg-1 
range. These may serve as a pre-event 
guideline to athletes not wanting to rely 
solely on their dynamic thirst–induced 
biological neural network and can play an 
important role in countering the possibility 
of overhydration during endurance 
events.. It can therefore be concluded that 
artificial neural network modelling which 
can be used in conjunction with ad libitum 
fluid replacement has merit and can be 
refined further using different model 
architectures as well as data sets in which 
the input variables span a wider range.    
 

Application 

Using MATLAB (R2011b, The Mathworks, 
Natick, Massachusetts), model P15 was 
applied to 2 hypothetical cases not part of 
the test data set.   
 
A 50kg female running at a speed of 8 
km.h-1 in temperate environmental 
conditions (an ambient temperature of 
25°C, relative humidity of 70% and zero 
solar radiation), the model predicted that 
the fluid intake to maintain euhydration 
was 0.45 L.h-1.  
 
A 65kg male running at 12 km.h-1 in the 
same environmental conditions, the model 
predicted that the fluid intake to maintain 
euhydration was 0.76 L.h-1.    

Key points 

The advantages of the artificial neural 
network modelling technique over 
standard statistics and expert systems lies 
in its ability to formulate a model that takes 
into account the total interaction between 
the most important input variables. 
 
Body mass, gender, exercise intensity and 
environmental stress index were identified 
as the primary variables for the prediction 
of fluid intake in endurance athletes.   
 
Additional inclusion of fluid intake allowed 
for the accurate classification of post-
exercise hydration status of endurance 
athletes. 
 
The artificial neural network modelling 
technique provides a more accurate 
method of predicting the fluid intakes of 
endurance athletes as well as classifying 
their hydration status, than existing 
models. It has merit in this field and 
warrants further investigation.   
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