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Rossby waves in an azimuthal wind are analyzed using an eigen-function expansion. Solutions of
the wave equation for the stream-function ψ for Rossby waves are obtained in which ψ depends on
(r, φ, t) where r is the cylindrical radius, φ is the azimuthal angle measured in the β plane relative
to the Easterly direction, (the β-plane is locally horizontal to the Earth’s surface in which the x-axis
points East, and the y-axis points North). The radial eigenfunctions in the β-plane are Bessel functions
of order n and argument kr, where k is a characteristic wave number and have the form anJn(kr) in
which the an satisfy recurrence relations involving an+1, an , and an−1. The recurrence relations for
the an have solutions in terms of Bessel functions of order n −ω/Ω where ω is the frequency of the
wave and Ω is the angular velocity of the wind and argument a = β/(kΩ). By summing the Bessel
function series, the complete solution for ψ reduces to a single Bessel function of the first kind of
order ω/Ω . The argument of the Bessel function is a complicated expression depending on r, φ, a,
and kr. These solutions of the Rossby wave equation can be interpreted as being due to wave-wave
interactions in a locally rotating wind about the local vertical direction. The physical characteristics of
the rotating wind Rossby waves are investigated in the long and short wavelength limits; in the limit
as the azimuthal wind velocity Vw → 0; and in the zero frequency limit ω → 0 in which one obtains
a stationary spatial pattern for the waves. The vorticity structure of the waves are investigated. Time
dependent solutions with ω �= 0 are also investigated.

Keywords: Rossby waves; Azimuthal wind; Fourier–Floquet

1. Introduction

The properties of Rossby waves on a rotating planet have been extensively elucidated in
classical texts by Gill (1982), Pedlosky (1987) and Vallis (2006). The wave motion, which
is of planetary scale arises from the latitudinal variation of the vertical component of the
Coriolis force, known as the β-effect, and is closely related to the concept of the conservation
of potential vorticity (see, e.g., Vallis 2006, pp. 178–183). The characteristic dispersion and
anisotropic wave propagation features are probably best understood in terms of the wave
normal curve introduced by Longuet-Higgins (1964). In wave number space k = (kx , ky), at
a fixed frequency ω, this curve is a circle in k-space, with center displaced westward (kx < 0)
along the kx axis by an amount of β/(2ω), and with diameter β/ω. This implies that the phase
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22 J. F. McKenzie and G. M. Webb

propagation is entirely westward, However, in the case of a finite Rossby radius, it has recently
been shown that the group velocity diagram is an ellipse which exhibits both eastward as well
as westward energy propagation (Duba and McKenzie 2012). These features are also captured
in the Green’s function of the Rossby wave equation which can be expressed analytically as a
cylindrical Hankel function describing an isotropic outgoing wave, on which is superimposed
a westward phase propagating at the “Rossby” speed which corresponds to the center of the
Longuet-Higgins circle in k-space (Rhines 2003, McKenzie 2014).

The effects of winds has dramatic effects on the propagation properties through the Doppler
shifting of the frequency which gives rise to changes in the topology of the k or wave normal
diagram. One such important feature arising from the Doppler shift is the appearance of an
asymptote (or blocking line) where the Doppler shift brings the frequency to zero and in the case
of inhomogeneous media leads to the existence of a critical level (see, e.g., Dickinson 1968).An
important property of the k-diagram is that its normal gives the direction of energy propagation
(Lighthill 1978). Using this property, together with the method of stationary phase, the radia-
tion patterns of Rossby waves in both zonal and meridional winds have been constructed (Duba
et al. 2014).

In this paper we analyze the effects of an azimuthal wind rotating with angular velocity
Ω(r). The analysis is similar to that of Couette flow. The novel feature is that the Couette
flow analysis (Chandrasekhar 1961) is conducted on a β-plane. Therefore, the usual Couette
flow equation contains additional terms representing the asymmetric β effect. In cylindrical
coordinates the classical Rossby wave equation takes the form of classical cylindrical waves in
which the harmonics of the angular frequency, are coupled to neighboring harmonics through a
three wave interaction process. This is demonstrated in the next section in which we transform
the Rossby wave equation for the stream function ψ(x, y, t) from its usual Cartesian form
(x is east and y is north) to a cylindrical form (r, φ) in the presence of an azimuthal wind
U = rΩ(r)eφ where r is the radius and φ is the azimuthal angle in the x − y plane (see (5)).
For the simple case in whichΩ(r) is a constant, Fourier–Floquet analysis (section 3) shows that
the radial structure functions Rn(r) to this equation are Bessel functions of integer (harmonic)
order n and argument kr , where k is the radial wave number, in which the amplitudes an of each
Jn(kr) are related through a three term recurrence relation between an , an+1, and an−1. The key
coefficients in this scheme are the recurrence relation constants cn = (β/(2k))ω−1

n (see (10)
and (15)), in which ωn = ω− nΩ are the shifted frequencies. The dispersion relation between
ω and k derived in section 3.1, for which we develop a continued fraction approximation
scheme for the cn , shows how the β-effect shifts the various harmonic frequencies due to the
wind.

This solution is further developed in section 4, in which the Fourier analysis of the recursion
relation shows that the harmonic amplitude an can be expressed in terms of Bessel functions
Jn−ω(a), where a = β/(kΩ) and ω = ω/Ω . On substituting these an in the Fourier–Floquet
expansion it is found (remarkably) that the infinite series can be summed (Gradshteyn and
Ryzhik 2000) to give a solution involving Bessel functions of order ±ω̄ but with arguments D1
(D2) given by (43)–(48), which lends itself to a simple geometric interpretation. It is noteworthy
that this solution can be directly verified by transforming the Rossby wave equation from the
independent variables (r, φ, t) to new variables (D, p, t)which yields the wave equation (56),
the solutions of which are indeed of the form deduced from summing the original infinite
Fourier–Floquet series.

Section 5, investigates the physical characteristics of Rossby waves in an azimuthally
rotating wind. We show that the solutions reduce to the planar westward, phase propagating
Rossby waves expected in the absence of the wind. We also consider the limit of steady Rossby
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Rossby waves in an azimuthal wind 23

waves in a rotating wind obtained as the wave frequency ω → 0, and investigate the vorticity
structure of the wave. The short wave limit of the Rossby wave solutions (43) and (46) in
an azimuthally rotating wind reveals a breather type solution at short wavelengths. At long
wavelengths, the solutions reduce to the usual planar, westward phase propagating Rossby
waves. We also study time dependent Rossby wave solutions with frequency ω �= 0.

Section 6 concludes with a summary and discussion.

2. Rossby wave equation in an azimuthal wind

The classic, linearized Rossby wave equation for the stream function ψ(x, y, t) on a β-plane
may be written as

D

Dt

(
∇2

hψ
)

+ β
∂ψ

∂x
= 0, (1)

where

D

Dt
= ∂

∂t
+ U · ∇, ∇2

h = ∂2

∂x2
+ ∂2

∂y2
, (2)

f = 2ΩE sin θ0 + βy , β = 2ΩE

R
cos θ0. (3)

Here theβ-plane is centered at latitude θ0 on a planet of radius R rotating with angular frequency
ΩE , and x and y are Cartesian coordinates pointing east and north, respectively.

The Rossby wave equation (1) is derived in Longuet-Higgins (1964), who also derives the
radial vorticity conservation equation for planetary waves on a rotating sphere. He shows that
the equation for the velocity potential Ψ = Ψ (Θ,Φ, t) for waves on the rotating sphere [his
equation (38)] has solutions in terms of spherical harmonics, where (R,Θ,Φ) are spherical
polar coordinates in which the polar axis is along the rotation axis of the sphere (the analysis
assumes R = constant and U = 0). This is a more exact formulation for Rossby waves,
which does not assume the β-plane approximation. Longuet Higgins shows that the β-plane
approximation gives a relatively good approximation to planetary waves on a rotating sphere
[governed by his equation (38)], for high wave numbers n for the spherical harmonics, provided
one is sufficiently far away from caustics. In the present paper, we use the approximate β-plane
approach to Rossby waves on a rotating planet, in which there is an azimuthal wind at latitude
θ = θ0, which may be regarded as an approximation to the spherical harmonic approach of
Longuet-Higgins (1964).

In this paper, we assume that the background wind velocity U is azimuthal and thus may be
expressed in the form

U = Uφeφ = rΩ(r)eφ, (4)

where eφ is the unit vector in the azimuthal direction. We use cylindrical coordinates in which

x = r cosφ , y = r sin φ. (5)

Equation (1) then takes the form(
∂

∂t
+Ω

∂

∂φ

)[
1

r

∂

∂r

(
r
∂ψ

∂r

)
+ 1

r2

∂2ψ

∂φ2

]
+ β

[
cosφ

∂ψ

∂r
− sin φ

r

∂ψ

∂φ

]
= 0. (6)

In the next section we seek separable Fourier type solutions of (6).
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24 J. F. McKenzie and G. M. Webb

3. Fourier–Floquet solutions

In the simplest case where the angular velocity of the azimuthal wind Ω is independent of r ,
we seek solutions of (6) of the form

ψ(r, φ, t) =
∞∑

n=−∞
Rn(r) exp

[
i(ωt − nφ)

]
. (7)

Substituting the ansatz (7) into (6) and equating equal powers of exp(−inφ)yields the following
set of differential equations for the radial structure functions Rn(r):

iωn

[
1

r

d

dr

(
r

dRn

dr

)
−n2

r2
Rn

]
+ β

2

[
dRn+1

dr
+ dRn−1

dr
+ 1

r

(
(n + 1)Rn+1 − (n − 1)Rn−1

)]
= 0, (8)

in which ωn = ω − nΩ are the Doppler shifted frequencies. These coupled equations for Rn

and Rn±1 suggest a solution for the Rn in the form of Bessel functions with

Rn = anJn(kr) , Rn±1 = an±1Jn±1(kr) , (9)

in which the constants an and an±1 are connected through the recursion relation

iωnan = β

2k
(an+1 − an−1) . (10)

Here k is the radial wavenumber. One can verify that (9) and (10) do indeed satisfy (8). This
follows by using the Bessel function recursion relations

J′
n±1(r̄) ± n ± 1

r̄
Jn±1(r̄) = ±Jn(r̄), (11)

where r̄ = kr in (11) (Abramowitz and Stegun 1965, formula (9.1.27), p. 361). The Jn(r̄)
satisfy Bessel’s equation

d2Jn(r̄)

dr̄2
+ 1

r̄

dJn(r̄)

dr̄
+

(
1 − n2

r̄2

)
Jn(r̄) = 0. (12)

The recursion relations (10) may be written in the matrix form:

Mμνaν = ic−N a−N−1δμ,−N − icN aN+1δμ,N , −N ≤ μ, ν ≤ N , (13)

where

Mμν = δμ,ν + icμ
(
δν,μ+1 − δν,μ−1

)
, (14)

is an (2N + 1)× (2N + 1) tri-diagonal matrix, and

cn = β

2kωn
= ΩE

Ω

cos θ0

k R

1

(ω − n)
, n = 0, ±1, ±2, . . . , ±N . (15)

As an approximation to close the system, we assume the source terms on the right-hand side
of (13) for large enough N are negligible, in which case we obtain the approximate matrix
equation

Ma = 0 , where a = (a−N , a1−N , . . . aN−1, aN )
T (16)

is a 2N + 1 dimensional state vector describing the a j .
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Rossby waves in an azimuthal wind 25

The dispersion equation for the system (16) is given by

det M = 0, (17)

which relates ω to k for each harmonic n. In the next subsection, we discuss the dispersion
equation in more detail. In the limit as N → ∞ the dispersion equation (17) becomes exact.

3.1. The dispersion relation

The solutions given by (9) for the radial structure functions Rn(kr), together with the re-
cursion relations (10) for their amplitudes an satisfy the system (16) and the dispersion
equation (17). For given values ofΩE cos θ0/Ω the dispersion relation (17) betweenω and the
radial dimensionless wavenumber kr describes the interaction between the various harmonics
ω = nΩ through the three wave interactions expressed through the recursion relations for
the system expressed by the tri-diagonal system (16). Below we look in more detail at the
recursion relations (10) or equivalently, the matrix system (16).

The recursion relations (10) can be written in the form
an

an−1
= icn − icn

an+1

an−1
, (18)

an

an+1
= − icn + icn

an−1

an+1
. (19)

For n = 0 we obtain

1 = − ic0

(
a1

a0
− a−1

a0

)
. (20)

We use (18) to compute an/an−1 for n a positive integer and (19) to compute an/an+1 for n
a negative integer. Thus, a1/a0 and a−1/a0 can be written in the form of continued fractions.
To calculate a1/a0 and a−1/a0 as continued fractions, set

zn = an

an−1
, yn = an

an+1
, (21)

then (18) and (19) can be written as

zn (−i/cn + zn+1) = 1, yn (i/cn + yn−1) = 1. (22)

Using (22) we obtain

a1

a0
= z1 = 1

− i

c1
+ z2

= · · · = 1

− i

c1
+ 1

− i

c2
+ 1

− i

c3
+ · · ·

. (23)

Similarly,

a−1

a0
= y−1 = 1

i

c−1
+ y−2

= · · · = 1

i

c−1
+ 1

i

c−2
+ 1

i

c−3
+ · · ·

. (24)

D
ow

nl
oa

de
d 

by
 [

D
U

T
 L

ib
ra

ry
] 

at
 0

2:
25

 0
3 

Fe
br

ua
ry

 2
01

5 



26 J. F. McKenzie and G. M. Webb

Note that for large n, |c±n| ∝ 1/|(ω ∓ n)| → 0 as n → ∞. The basic theory for continued
fractions is well documented (see, e.g., Jones 1980). The above continued fractions can be
truncated to provide good approximations to a1/a0 and a−1/a0 which on substitution in (20)
provides a relatively accurate approximation to the dispersion equation. Since each cn ∝ 1/k R,
we expect relatively good convergence for k R � 1.

Consider, for example, the truncated three wave expansion for n = 0,±1. From (23) and
(24) we obtain

a1

a0
≈ 1

−i/c1
,

a−1

a0
≈ 1

i/c−1
, (25)

which, when substituted into (20), gives the approximate dispersion relation

1 = c0(c1 + c−1) = 2α2

(ω2 − 1)
, where α = ΩE cos θ0

Ωk R
, (26)

and in turn gives

ω2 = 1 + 2α2 ≡ 1 + 2

(
ΩE cos θ0

Ωk R

)2

. (27)

This latter dispersion relation demonstrates how the β effect shifts the ω = ±1 fundamental
due to the wind in the limit k R � 1. The group and phase velocities of the wave are given by

ω ≈ Ω
(

1 + α2
)
, Vp = ω

k
= Ω

k

(
1 + α2

)
, Vg = ∂ω

∂k
= − 2α2Ω

k
. (28)

This demonstrates that the group and phase velocities Vg and Vp are in opposite directions.
Below we look at the case, where the matrix M is a 5 × 5 matrix. We use the equivalent

matrix system (10) to carry out the analysis, i.e. we consider the matrix system

Pa = 0, (29)

where P is the (2N + 1)× (2N + 1) system analogous to (16) in which we set aN+1 = 0 and
a−N−1 = 0. In the 5 × 5 case we have

P =

⎛⎜⎜⎜⎜⎝
−iω−2 b 0 0 0

−b −iω−1 b 0 0
0 −b −iω0 b 0
0 0 −b −iω1 b
0 0 0 −b −iω2

⎞⎟⎟⎟⎟⎠ , (30)

where

b = β

2k
. (31)

Setting det P = 0, we obtain the dispersion equation

det P = − iω
[(
ω2 − 4Ω2

) (
ω2 −Ω2

)
− 4b2

(
ω2 −Ω2

)
+ 3b4],

≡ − iΩ5ω
[
(ω2 − 1)(ω2 − 4)− 4α2(ω2 − 1)+ 3α4] = 0. (32)

The dispersion relation (32) has solutions ω = 0 and four other solutions for ω. The two
non-zero solutions for ω2 can be obtained by using the quadratic formula to solve (32) for ω2.
Alternatively, using perturbation theory we obtain the solutions

ω = ±Ω
(

1 + 1

2
α4 · · ·

)
, ω = ±2Ω

(
1 + 1

2
α2 − 5

32
α4

)
, (33)
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Rossby waves in an azimuthal wind 27

valid for α2 � 1 (i.e. for large k R). These solutions show the dependence of the fundamental
and the second harmonic solutions on the parameter α.

Clearly, further examples of solutions of the truncated dispersion equation can be obtained
for larger N by the same procedure. In the next section we show further aspects of the solution
and find closed form solutions for the an coefficients in terms of Bessel functions. Then using
a Neumann expansion for the products of Bessel functions leads to a closed form solution of
(7) in terms of a single Bessel function, with a complicated argument which incorporates both
the usual Rossby wave solutions, modified by the effects of the locally rotating wind.

4. Recurrence relations (10) and ψ

Proposition 4.1 The recurrence relations (10) have solutions for an of the form

an = b1a1
n + b2a2

n, (34)

where b1 and b2 are arbitrary constants and a j
n ( j = 1, 2) are given by

a1
n = exp

[
−i
π

2
(n − ω)

]
Jn−ω(a), a2

n = exp
[
−i
π

2
(ω − n)

]
Jω−n(a) (35)

with
ω = ω

Ω
and a = β

kΩ
. (36)

Proof Below we verify that a1
n satisfies the recurrence relations (10). One can also verify the

solution for a2
n by the same methods. A detailed derivation of the formulae (35) for a1

n and a2
n

using Fourier transforms is given in appendix A.
Using the Bessel function recurrence relations

Jν−1(a)+ Jν+1(a)− 2ν

a
Jν(a) = 0 (37)

(Abramowitz and Stegun 1965, the first formula in (9.1.27), p. 361) with ν = n −ω, we obtain
a

2

(
a1

n+1 − a1
n−1

)
− i (ω − n) a1

n

= a

2

{
exp

[
−i
π

2
(n + 1 − ω)

]
Jn+1−ω(a)− exp

[
−i
π

2
(n − 1 − ω)

]
Jn−1−ω(a)

− 2i(ω − n)

a
exp

[
−i
π

2
(n − ω)

]
Jn−ω(a)

}
≡ a

2
exp

[
−i
π

2
(n + 1 − ω)

] {
Jn+1−ω(a)+ Jn−1−ω(a)− 2(n − ω)

a
Jn−ω(a)

}
= 0,

(38)

where in the last step we used the Bessel recurrence relation (37). Equation (38) is equivalent
to the re-currence relations (10) for the coefficients an . The derivation of (35) for the a1

n and
a2

n using Fourier transforms is outlined in appendix A. �
From (34)–(37) the stream function ψ(r, φ, t) for Rossby waves in an azimuthal wind has

solutions of the form

ψ(r, φ, t) =
∞∑

n=−∞
anJn(kr) exp

[
i(ωt − nφ)

]
, (39)
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28 J. F. McKenzie and G. M. Webb

where the coefficients an have the general form (34). Using (34) for the an we obtain

ψ(r, φ, t) = b1ψ1 + b2ψ2, (40)

where b1 and b2 are arbitrary constants and

ψ1 =
∞∑

n=−∞
exp

[
−i
π

2
(n − ω)

]
Jn−ω(a)Jn(kr) exp

[
i(ωt − nφ)

]
, (41)

ψ2 =
∞∑

n=−∞
exp

[
−i
π

2
(ω − n)

]
Jω−n(a)Jn(kr) exp

[
i(ωt − nφ)

]
, (42)

where ω = ω/Ω .

Proposition 4.2 The series (41) for ψ1 can be summed to obtain the solution form

ψ1 = exp
[
iω

(
t + π

2Ω

)]
exp(−iωp1)J−ω(D1), (43)

where

exp(2ip1) = a − kr exp [i(π/2 + φ)]

a − kr exp [−i(π/2 + φ)]
, (44)

D2
1 = k2r2 + a2 + 2kra sin φ. (45)

Here J−ω(D1) is a Bessel function of the first kind of order ν = −ω and argument D1.
Similarly, the solution (42) for ψ2(r, φ, t) can be reduced to the form

ψ2 = exp
[
iω

(
t − π

2Ω

)]
exp(iωp2)Jω(D2), (46)

where

exp(2ip2) = a − kr exp[i(φ − π/2)]
a − kr exp[−i(φ − π/2)] , (47)

D2
2 = k2r2 + a2 − 2kra sin φ, (48)

and Jω(D2) is a Bessel function of the first kind of order ν = ω.

Proof The formulae (43)–(48) follow from formulas (8.5.30), p. 930 of Gradshteyn and
Ryzhik (2000), who give a summation formula for Bessel functions with a geometric interpre-
tation. They consider a triangleABC. They use the notation r = AC , ρ = AB, D = BC where
it is assumed that ρ < r . They also use the notation ϕ = A and ψ = C to denote the angles
of the triangle at the vertices A and C , and assume that 0 < ψ < π/2 (i.e. 0 < C < π/2). By
the cosine rule, D = √

r2 + ρ2 − 2rρ cosϕ. They also give the formula

exp(2iψ) = r − ρ exp(−iϕ)

r − ρ exp(iϕ)
, (49)

The angleψ can also be obtained by using the sine rule or the cosine rule for the triangle ABC,
i.e.

sinψ

ρ
= sin ϕ

D
and cosψ = D2 + r2 − ρ2

2Dr
. (50)

When the above conditions are satisfied one obtains the summation formula

exp(iνψ)Zν(m D) =
∞∑

k=−∞
Jk(mρ)Zν+k(mr) exp(ikϕ), (51)
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Rossby waves in an azimuthal wind 29

where m is an arbitrary complex number and Zν(z) is one of the solutions of Bessel’s equation
(e.g. Zν = Jν , Zν = Yν , Zν = H1

ν or Zν = H2
ν , where Jν is a Bessel function of the first kind,

Yν is a Bessel function of the second kind, and Hp
ν (p = 1, 2) are Hankel functions. In the

case Zν = Jν the restriction ρ < r is superfluous.
Use of formulae (49)–(51) with appropriate values of the parameters, gives the solutions

(43) and (46) for ψ1 and ψ2. We use the notation p j = ψ j ( j = 1, 2) to denote the angle ψ in
our applications. In the derivation of (43) we set ϕ = −π/2 − φ and ν = −ω and Zν = Jν .
To derive (46) we set ϕ = π/2 − φ and ν = ω. �

The verification of the solutions (43) and (46) can be obtained by transforming (6) for the
Rossby wave stream function ψ from the independent variables (r, φ, t) to the independent
variables (D, p, t) (i.e. p = p1 and D = D1 for the solution (43) and ϕ = −π/2 − φ). We
find

∇2⊥ψ = 1

r

∂

∂r

(
r
∂ψ

∂r

)
+ 1

r2

∂2ψ

∂φ2
= k2

(
∂2ψ

∂D2
+ 1

D

∂ψ

∂D
+ 1

D2

∂2ψ

∂p2

)
≡ k2∇̃2⊥ψ,

(52)
for the 2D Laplacian. Thus the 2D Laplacian preserves its basic structure under the transfor-
mations, except for a scaling factor of k2. Similarly, we obtain

β

(
cosφ

∂ψ

∂r
− sin φ

r

∂ψ

∂φ

)
= βk

D2

[
(kr cosϕ − a)

∂ψ

∂p
− kr D

∂ψ

∂D

]
= − βk

(
sin p

∂ψ

∂D
+ cos p

D

∂ψ

∂p

)
, (53)

and (
∂

∂t
+Ω

∂

∂φ

)
≡ ∂

∂t
+Ω

[
−a sin p

∂

∂D
+

(
1 − a

D
cos p

) ∂

∂p

]
, (54)

where a = β/(kΩ). Using (52)–(54) the Rossby wave equation (6) reduces to

k2
(
∂

∂t
+Ω

[
−a sin p

∂

∂D
+

(
1 − a

D
cos p

) ∂

∂p

])(
∂2ψ

∂D2
+ 1

D

∂ψ

∂D
+ 1

D2

∂2ψ

∂p2

)
− βk

(
sin p

∂ψ

∂D
+ cos p

D

∂ψ

∂p

)
= 0. (55)

Equation (55) can also be written as

k2
(
∂

∂t
+Ω

∂

∂p

)
∇̃2⊥ψ − βk

(
sin p

∂

∂D
+ cos p

D

∂

∂p

) (
∇̃2⊥ψ + ψ

)
= 0 . (56)

Equation (56) admits solutions of the form (43), i.e. of the form ψ = exp[i(ωt − ωp)]J (D),
where J (D) satisfies Bessel’s equation of order ω. Note if ω is an integer, i.e. ω = mΩ then
the solution of Bessel’s equation is of the form J = AJm(D) + BYm(D), where A and B
are arbitrary constants and Ym(D) is a Bessel function of the second kind (for m an integer,
Ym(D) possesses a logarithmic term in its expansion (Abramowitz and Stegun 1965, Chap.
9, p. 359). A similar analysis applies to the solution (46). The present analysis, based on the
solutions of (56), suggest that the solutions for the rotating wind Rossby wave equation can
also contain a second independent solution of Bessel’s equation, which is not obvious from
the analysis based on the recurrence formulae solutions (35) for the an .
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30 J. F. McKenzie and G. M. Webb

5. Solution characteristics and applications

In this section, we investigate the physical characteristics of the solutions (43) and (46) for
ψ1 and ψ2 in Proposition 4.2. For the rotating wind case, the wind velocity is of the form:
u = rΩeφ , where Ω is the angular velocity of the wind (see (4)).

5.1. Zero rotation limit and steady-state limit

Proposition 5.1 In the limit Ω → 0, the solution (43) for the rotating wind Rossby wave
reduces to the plane wave solution

a1ψ1 = a1 A1 exp
[
i(ωt − kx x)

]
, (57)

where

A1 ∼ exp

(
i
ω̄π

2

)
J−ω

(
β

kΩ

)
, (58)

in the limit as ω → ∞ and β/(kΩ) → ∞ (i.e. as Ω → 0). Note that the Bessel function
argument β/(kΩ) → ∞ and the Bessel function order −ω → ∞ in this limit (note for Rossby
waves ω = −βkx/k2 < 0). Using the asymptotic formulas for Bessel functions of large order
and large argument (e.g., Abramowitz and Stegun 1965, formula 9.3.3, p. 366), we obtain

A1 ∼ exp
(

i
ωπ

2

)√
2

π |ω| tan χ
cos

[
|ω| (tan χ − χ)− π

4

]
, (59)

where |ω| = |ω/Ω| � 1 and

cosχ = kx

k
. (60)

We can choose a1 such that a1 A1 = 1, in which case (57) reduces to a unit amplitude plane
Rossby wave travelling to the west. The Rossby wave dispersion equation in the present case
has the form

ω = − βkx

k2
. (61)

In the limit Ω → 0 and ω = ω/Ω → ∞, (46) reduces to the approximate solution

a2ψ2 ∼ a2 exp
(
−i
ωπ

2

)
Jω

(
α|ω|) exp

[
i(ωt − kx x)

]
, (62)

where

α = k

kx
> 1. (63)

The amplitude a2 in (62) can be chosen so that (62) reduces to a planar Rossby wave of unit
amplitude travelling westward, where the dispersion equation (61) describes the wave. Note
that ω = −|ω| → −∞ as Ω → 0 in (62).

Proposition 5.2 In the limit as ω → 0, the solutions (43) and (46) reduce to the steady
state Rossby wave solutions in an azimuthal wind of the form:

ψ1 = J0(D1) and ψ2 = J0(D2), (64)

where D1 and D2 are given by (45) and (48) respectively.
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Rossby waves in an azimuthal wind 31

5.2. Short and long wavelength limits

In the short wavelength limit, (kr � 1), the solution for ψ1 reduces to the formula

ψ1 ∼ exp[iω(t − φ/Ω)]J−ω(kr). (65)

By using the asymptotic formula

J−ω(kr) ∼
√

2

πkr
cos

(
kr + ωπ

2
− π

4

)
(66)

(Abramowitz and Stegun 1965, formula 9.2.1, p. 364), the approximate real solution for ψ1
from (65) and (66) is

ψ1 ∼
√

2

πkr
cos

[
ω

(
t − φ

�

)]
cos

(
kr + ωπ

2
− π

4

)
. (67)

The solution (67) is a standing wave, with a fixed spatial envelope, which oscillates in time (i.e.
(67) is a breather solution). The solution (67) can be decomposed into the sum of an inward
and outward propagating wave, by using the trignometric formula

cos A cos B = 1
2

[
cos(A + B)+ cos(A − B)

]
, (68)

i.e.

ψ1 ∼ 1√
2πkr

{
cos

[
ω

(
t − φ

Ω

)
+ kr + πω

2Ω
− π

4

]
+ cos

[
ω

(
t − φ

Ω

)
− kr − πω

2Ω
+ π

4

]}
.

(69)

The balance between the outward and ingoing waves gives the breather solution (67).
Similarly, the solution (46) for kr � 1 gives the approximate real solution for ψ2 as

ψ2 ∼
√

2

πkr
cos

[
ω

(
t + φ

Ω

)
− πω

Ω

]
cos

(
kr − ωπ

2
− π

4

)
, (70)

which is a standing breather type wave, but with a different dependence on φ than the solution
(67).

The solution (43) for a1ψ1 in the long wavelength limit (k → 0), reduces to the planar,
westward propagating Rossby wave (57)–(59). Similarly, the solution (46) for a2ψ2 in the
long wavelength limit (k → 0) reduces to the planar, westward propagating Rossby wave
(62).

5.3. Typical parameter values

Typical values of the parameters in the model for Rossby waves on Earth are:ΩE ∼ 2π/(24×
3600) ∼ 7.27 × 10−5 sec−1 for the angular speed of rotation of the Earth. The Rossby
number Ro =inertial acceleration/Coriolis acceleration ∼ (U 2/L)/(2ΩU ) ∼ U/(2ΩL). For
a typical pressure field in the troposphere, with L ∼ 1000 km and U ∼ 20 m s−1, the Rossby
number Ro ∼ 0.1375 (e.g., Pedlosky 1987, p. 3). The β for Rossby waves from (9) is defined
as β = 2ΩE cos θ0/RE . Taking a mean radius for the Earth of R̄E ∼ 6371 km we obtain
β ∼ 4.3 × 10−12 m−1 s−1 at the equator and β ∼ 2.13 × 10−12 m−1 s−1 at θ0 = 60◦ latitude.
For L ∼ 1000 km structure, the wave number is kL ≈ 6.28 × 10−6 m−1. For L ∼ 1000 km,
and a wind speed VW = 80 km s−1, at r = L , we obtainΩ = Vw/L = 0.08 for the parameter
Ω (note that Ω � ΩE by about a factor of 1000 in this case).
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32 J. F. McKenzie and G. M. Webb

Figure 1. The stream functionψ1 = J0(D1) vs. D1 for the steady wind solution (64) The z-vorticityω = k2ψ1(D1)
is proportional to ψ1. Note the vorticity changes sign at the zeros of the Bessel function J0(D1) (Color online).

Consider the steady state Rossby wave solution in an azimuthal wind in (64). This solution
depends on the spatial variable D1 given in (45), which can be expressed in the form

D1 = k

[(
y + β

k2Ω

)2 + x2
]1/2

. (71)

The streamlines for the solution are given by ψ1 = J0(D1) = constant, which implies D1 =
constant on the streamlines. Thus, the streamlines consist of circles of radius D1 centered on
the point (x, y) = (0,−β/(k2Ω)). The flow velocity u for the wave is given by

u = ∇ψ × ẑ = (
ψ,y, −ψ,x , 0

) = −k2J1(D1)

D1

(
y + β

k2Ω
, −x, 0

)
, (72)

which is tangent to the contours ψ = ψ1 = constant.
The local fluid vorticity in this model is given by

ω = ∇ × u = − ∇2⊥ψ ẑ, (73)

and the Rossby wave equation (1) is equivalent to the linearized vorticity equation

∂ω′

∂t
− ∇ × (

u × ω′) + βu′
y ẑ ≡

(
∂

∂t
+ u · ∇

)
ω′ + βu′

y ẑ = 0. (74)

Here we use the superscript ′ to denote linearized wave quantities. Using the result (52) for
∇2⊥ψ and noting ψ1 = J0(D1) and ∂ψ1/∂p = 0, (73) gives

ω = k2ψ1(D1)ẑ = k2J0(D1)ẑ (75)

for the linearized wave vorticity. From (75) the fluid vorticity changes sign at the zeros of the
J0 Bessel function, i.e. at the points where D1 = j0n , where j0n denotes the nth Bessel function
zero where J0( j0n) = 0. From (71) this occurs when (x, y) lies on the circles

j2
0n = k2

[(
y + β

k2Ω

)2 + x2
]
, n = 1, 2, . . . . (76)

Figure 1 shows a plot of the stream function ψ1(D1) = J0(D1) vs. D1. This is essentially a
rescaled version of the fluid vorticity (75). The fluid vorticity changes sign when D1 is a zero
of the J0 Bessel function.
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Rossby waves in an azimuthal wind 33

Figure 2. Stream-function ψ1 vs. (kx, ky) for the steady-state Rossby wave solution (64). (a) shows a 3D plot of
ψ1 vs. (kx, ky), and (b) shows the contour plots of ψ1 in the kx − ky plane. The vorticity is positive in the light
orange-shaded regions and negative in the blue dark-shaded regions (Color online).

Figure 2(a) shows the vorticity distribution (75) as a 3D plot ofψ1 vs. (kx, ky). For the sake
of illustration, we consider the case

ψ1 = J0(D1), D1 =
[
(kx)2 + (ky + a)2

]1/2
, a = β

kΩ
, (77)

where we set a = 1. Figure 2(b) shows the same stream function ψ1 as a contour plot. The
light shaded contours correspond to regions of positive vorticity, and the dark shaded regions to
negative vorticity. Notice that the contours are circles centered on the point (kx, ky) = (0,−1)
in the kx − ky plane. For a = β/(kΩ) = 1 we obtain Ω = β/k. Taking β = 2.13 ×
10−12 m−1s−1 for θ0 = 60◦, and for k = 6.28 × 10−6 m−1, we obtainΩ = 3.392 × 10−7s−1,
which corresponds to an extremely small wind velocity Vw = ΩL ∼ 0.33ms−1. Thus, the
negative displacement of the center of the contours down the ky-axis in figure 2(b) is only
substantial for very small wind velocities. As Ω → 0, a → ∞ and the center of the circles
recedes to (x, y) = (0,−∞), and the curvature of the circles goes to zero (i.e. we obtain a
plane Rossby wave in this limit).

In the more general, time dependent cases in (43) and (46), the vorticity of the fluid is also
given by

ω = − ∇2⊥ψ ẑ = k2ψ ẑ. (78)

Thus, for example, for the solution (43) we obtain

ω = k2ψ1 ẑ , where ψ1 = cos

[
ω

(
t − p1

Ω

)
+ πω

2

]
J−ω(D1),

(79)
and we have taken the real part of the solution (43) to describe the wave. Thus, in the general
time dependent case, a snapshot of the vorticity of the wave at a fixed time t = t1 say, is
more complicated because of the dependence of the solution on p1. However, the steady state
vorticity pattern is obtained on the manifold t − p1/Ω = constant.
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34 J. F. McKenzie and G. M. Webb

Figure 3. Stream-functionψ1 vs. (kx, ky) for the Rossby wave solution (83), at timeΩt = 0. The parameter a = 1.
(a) shows a 3D plot of ψ1 vs. (kx, ky), and (b) shows the contour plots of ψ1 in the kx − ky plane. The vorticity is
positive in the light orange shaded regions and negative in the dark blue-shaded regions (Color online).

To evaluate ψ1 in (79), we note from (44) that

exp(2ip1) = T

T ∗ = T 2

|T |2 , (80)

where

T = a − kr exp(−iϕ), ϕ = −π
2

− φ. (81)

Taking the positive square root of (80), i.e. exp(ip1) = T/|T |, we obtain

cos p1 = a + ky

D1
, sin p1 = − kx

D1
, (82)

where D1 is given by (77). Using (82) allows us to determine p1 as a function of x and y. In
particular for the case ω = −Ω , ψ1 in (79) reduces to

ψ1 = − [
(ky + a) sin(Ωt)+ kx cos(Ωt)

] J1(D1)

D1
. (83)

Figure 3(a) shows the vorticity distribution for the time dependent solution (83) for ψ1 at
time Ωt = 0. The parameter a = β/(kΩ) = 1. The corresponding contour plot of ψ1 is
shown in figure 3(b). Unlike the steady solution in figures 2(a),(b), the stream function ψ1 and
vorticity (∝ ψ1) are now asymmetric with respect to the kx and ky axis. Figures 4(a),(b) show
the same solution, but at the later time Ωt = π/4. The vorticity pattern has clearly rotated by
a phase angle of π/4. Clearly other complex vorticity patterns can be obtained from the more
general solution (79).
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Rossby waves in an azimuthal wind 35

Figure 4. Stream-function ψ1 vs. (kx, ky) for the Rossby wave solution (83), at time Ωt = π/4. The parameter
a = 1. (a) shows a 3D plot of ψ1 vs. (kx, ky), and (b) shows the contour plots of ψ1 in the kx − ky plane. The
vorticity is positive in the light orange shaded regions and negative in the blue dark-shaded regions (Color online).

6. Conclusions

In this paper, we investigated a model for Rossby waves on a rotating planet, in which the waves
are also subject to a rotating wind in the local β-plane. As in the usual linear Rossby wave
model, the fluid vorticity can be split up into a local vorticity component, which interacts with
the planetary or global vorticity, i.e. the rotation parameter is split up into a global vorticity
component, dependent on the rotation rate of the planet, plus a local vorticity component
in the β-plane. The β-plane consists of the tangent plane to the surface of the planet with
normal perpendicular to the surface. The β-plane at latitude θ = θ0 is locally described
by the tangent plane in which the x-axis points east, the y-axis points north, and the local
z-axis is perpendicular to the surface. In the present paper, the effect of an azimuthal wind in the
β-plane, rotating from east to north is also included in the Rossby wave equation for the stream
function. By searching for solutions for the stream functionψ = ψ(r, φ, t)where x = r cosφ
and y = r sin φ that are separable in r and φ leads to solutions as a sum of Bessel functions for
the nth harmonic of the form ψ = ∑∞

n=−∞ Rn(r) exp[i(ωt − nφ)]. It turns out that solutions
for the Rossby wave in a locally rotating wind exist where the radial eigen-functions have the
form Rn(r) = anJn(kr) and the coefficients an satisfy coupled three term recurrence relations.
We discuss how the coupling of the waves of different orders in n are related by tri-diagonal,
truncated matrix systems of order N . A continued fraction solution method for the an was
developed. However, it was also noticed, that the recurrence relations for the an could also
be solved by a Fourier transform technique, yielding solutions for the an in terms of Bessel
functions. By using a summation formula for the Bessel series for the complete solution given
in (Gradshteyn and Ryzhik 2000, p. 930, formula (8.5.30)), one obtains closed form solutions
involving a linear combination of Bessel functions of order ±ωwhereω = ω/Ω whereΩ is the
rotation frequency of the rotating wind. A direct verification of the solution was demonstrated
by converting the Rossby wave operator and the 2-D Laplacian ∇2⊥ψ by transformations from
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36 J. F. McKenzie and G. M. Webb

the cylindrical polar coordinates in the (r, φ) in the β plane to new coordinates D = D(φ, r)
and p = p(φ, r), in which the Laplacian is rescaled by a factor of k2 in the new variables. This
suggests that the new solution in the (D, p, t) coordinates is related to the symmetry group
of the stream function equation for ψ . The exact nature of these symmetry transformations, is
unclear, and remains to be investigated as an interesting problem in its own right.

The physical characteristics of the azimuthal rotating wind, Rossby wave solutions (43) and
(46) were investigated in section 5. In the limit as the wind velocity Vw → 0 (i.e.Ω → 0), the
solutions reduce to planar Rossby waves with westward travelling phase velocity. The group
velocity of Rossby waves is distinct from the phase velocity and has been described recently in
the works by Duba et al. (2014) and McKenzie (2014). The dispersion equation for the waves
in this limit is the usual Rossby wave dispersion equation (61). Both rotating wind Rossby
wave solutions (43) and (46) reduce to westward propagating Rossby waves in the limit as
Vw → 0 and Ω → 0.

In the limit as ω → 0, the rotating wind Rossby waves (43) and (46) reduce to the
steady Rossby wave solutions (64). These solutions show the combined effect of the rotating
wind via the angular velocity Ω of the wind, and the Rossby wave parameter, β, where
β = 2ΩE cos θ0/RE describes the effect of the Coriolis force on waves with wavenumber
k. The solutions show characteristic, annular circular bands in the x − y plane of alternating
positive and negative vorticity ω = −∇2⊥ψ ẑ = k2ψ ẑ depending on the value of D1. For
the solution (43) the circular annuli are centered on the point (x, y) = (0,−β/(k2Ω)) in the
β-plane, with radii rn = j0n/k (for the solution (46) the annuli are centered on (0, β/(k2Ω)).

In the short wavelength limit, (k � 1), the solutions (43) and (46) reduce to breather type
solutions, which can be thought of as the superposition of ingoing and outgoing waves that
oscillate in both space and time. In the long wavelength limit, the solutions (43) and (46)
reduce to the standard, planar westward propagating Rossby waves described in (57) et seq.

Figures 3 and 4 show the vorticity pattern for the time dependent Rossby wave solution (83)
at times Ωt = 0 and Ωt = π/4. These vorticity patterns clearly rotate with increasing time
Ωt and have an asymmetric vorticity pattern in the kx − ky plane.
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Appendix A

In this appendix we derive the solutions (35) of the recurrence relations (10) for the a1
n using

Fourier transforms. The solutions for a2
n follow in a similar fashion by using a similar transform

method in which the Fourier transform variable λ is replaced by −λ.
To derive (35) for a1

n , we first re-write (10) in the form

an = an−2 + [ζ + μ(n − 1)]an−1, (A.1)

where

μ = − iΩ

β̄
, ζ = iω

β̄
, β̄ = β

2k
. (A.2)

To obtain solutions of (A.1), we think of n as a continuous variable t , and re-write (A.1) in the
form

a(t) = a(t − 2)+ [ζ + μ(t − 1)]a(t − 1). (A.3)

We introduce the Fourier transform

ā(λ) =
∫ ∞

−∞
exp(−iλt)a(t) dt ≡ Fλ[a(t)]. (A.4)

By noting that

Fλ[a(t − 2)] = exp(−2iλ)ā(λ), Fλ[a(t − 1)] = exp(−iλ)ā(λ),

Fλ[(t − 1)a(t − 1)] = exp(−iλ)Fλ[ta(t)] = i exp(−iλ)
dā(λ)

dλ
, (A.5)

the difference equation for a(t) in transform space becomes

ā(λ) = exp(−2iλ)ā(λ)+ ζ exp(−iλ)ā(λ)+ iμ exp(−iλ)
dā(λ)

dλ
. (A.6)

Equation (A.6) may be written in the form

dā

dλ
+ ā

μ
(−iζ − 2 sin λ) = 0 . (A.7)

The integrating factor I for (A.7) is

I = exp

(∫
(−iζ − 2 sin λ)

μ
dλ

)
≡ exp

(−iζλ+ 2 cos λ

μ

)
. (A.8)

Thus, the solution for ā(λ) has the form

ā(λ) = c1 exp

(
iζλ− 2 cos λ

μ

)
, (A.9)

where c1 is an integration constant.
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The inverse Fourier transform of (A.9) with respect to t is

a(t) = c1

2π

∫ ∞

−∞
exp

[
iλ

(
t + ζ

μ

)
− 2 cos λ

μ

]
dλ . (A.10)

Setting λ̃ = λ+ π/2 in (A.10), noting ζ/μ = −ω = −ω/Ω , 1/μ = iβ/(2kΩ) we obtain

a(t) = c1

2π
exp

[
−i
π

2

(
t + ζ

μ

)] ∫ ∞

−∞
exp

[
iλ̃

(
t + ζ

μ

)
− 2 sin λ̃

μ

]
dλ̃

≡ c1

2π
exp

[
−i
π

2
(t − ω)

] ∫ ∞

−∞
exp

[
iλ̃(t − ω)− iβ

k�
sin λ̃

]
dλ̃. (A.11)

Setting λ̂ = −λ̃, (A.11) reduces to

a(t) = c1

2π
exp

[
−i
π

2
(t − ω)

] ∫ ∞

−∞
exp

[
−iλ̂(t − ω)

]
exp

(
iβ

kΩ
sin λ̂

)
dλ̃. (A.12)

Using the Bessel function identity

exp(ia sin θ) =
∞∑

m=−∞
exp(imθ)Jm(a) (A.13)

(Abramowitz and Stegun 1965, formula 9.1.41, p. 361) in (A.12) and using the δ-function
distribution representation

δ(x ′ − x) = 1

2π

∫ ∞

−∞
exp

[
ik(x ′ − x)

]
dk, (A.14)

the solution (A.12) for a(t) reduces to

a(t) = c1 exp
[
−i
π

2
(t − ω)

] ∞∑
m=−∞

δ(ω − t + m)Jm(a), (A.15)

where
a = β

kΩ
and ω = ω

Ω
. (A.16)

Setting t = n in (A.15) we obtain

an = c1 exp
[
−i
π

2
(n − ω)

]
Jn−ω(a), (A.17)

which is the solution for a1
n in (35) for the case c1 = 1.

The solution for a2
n in (35) can be derived by replacing λ by −λ in the definition of the

Fourier transform (A.4).
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