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Abstract 

Many optimization problems in engineering involve the satisfaction of multiple objectives within the 
limits of certain constraints. Methods of evolutionary multi-objective algorithms (EMOAs) have been 
proposed and applied to solve such problems. Recently, a combined Pareto multi-objective differential 
evolution (CPMDE) algorithm was proposed. The algorithm combines Pareto selection procedures for 
multi-objective differential evolution to implement a novel selection scheme. The ability of CPMDE 
in solving unconstrained, constrained and real optimization problems was demonstrated and 
competitive results obtained from the application of CPMDE suggest that it is a good alternative for 
solving multi-objective optimization problems. In this work, CPMDE is further tested using tuneable 
multi-objective test problems and applied to solve a real world engineering design problem. Results 
obtained herein further corroborate the efficacy of CPMDE in multi-objective optimization. 
(Received in July 2013, accepted in February 2014. This paper was with the authors 1 month for 1 revision.) 
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1. INTRODUCTION 

In most practical decision-making problems, the presence of multiple objectives or multiple 
criteria is evident [1]. Due to the multi-criteria nature of most real-world problems, multi-
objective optimization problems (MOOPs) are very common particularly in engineering and 
scientific designs and applications. MOOPs involve multiple often conflicting objectives, 
which are to be optimized simultaneously. There is no single optimal solution to this class of 
problems; rather, the solution consists of a group of alternative trade-off solutions called 
Pareto-optimal or non-inferior solutions which must be considered equivalent in the absence 
of specialized information concerning the relative importance of the objectives [2, 3]. 
      Evolutionary algorithms (EAs) are population-based meta-heuristic optimization 
algorithms that use biology-inspired mechanisms like mutation, crossover, natural selection 
and survival of the fittest in order to refine a set of solution candidates iteratively. EAs have 
often performed well approximating solutions to all types of problems because they ideally do 
not make any assumption about the underlying fitness landscape [4, 5]. Since EAs deal with a 
group of candidate solutions, it seems natural to use them in MOOPs to find a group of 
optimal solutions. Indeed, the applications of evolutionary multi-objective algorithms 
(EMOAs) to the solution of real world MOOPs have been demonstrated and they have been 
found very efficient in solving these classes of problems [6-8]. The development of the theory 
of EMOA in recent years has spurred researches in the field of development of EMOAs for 
the solution of real-world problems. Over the past decades, several studies involving the 
extension of evolutionary algorithms to solve multi-objective numerical optimization 
problems have been reported [9-11]. 
      Differential evolution (DE) is currently one of the most popular heuristics being used for 
solving single-objective optimization problems in continuous search spaces. Due to its 
reported successes on a myriad of problems, its use has been extended to other types of 
problem domains, including multi-objective optimization [6, 12]. In recent times, several 
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researches extending the application of DE for finding solutions in the multi-objective 
problem domains have been reported in the literatures [13-16]. For instance Robic and Filipic 
[17] proposed three strategies of a Pareto-based differential evolution for multi-objective 
optimization (DEMO). The suggested strategies are DEMO/parent, DEMO/closest/dec and 
DEMO/closest/obj. In DEMO/parent, a child replaces the parent at the same index if it 
dominates that parent while in DEMO/closest/dec, the child replaces the closest parent to it in 
the decision space. DEMO/closest/obj replaces a parent with a child in the objective function 
space. The performances of the strategies of DEMO were compared with six other methods of 
EMOAs on five benchmark test beds. It was found that DEMO outperformed the other 
algorithms especially those based on other EAs such as genetic algorithm (GA) and evolution 
strategies (ES). It was thus concluded that DEMO may be adopted as an alternative for 
solving MOOPs. 
      In [18], a combined Pareto multi-objective differential evolution (CPMDE) algorithm is 
introduced. The algorithm combines Pareto selection procedures for multi-objective 
differential evolution to implement a novel selection scheme at each generation. The 
performance of CPMDE was evaluated using common difficult test problems obtained from 
multi-objective evolutionary computation literatures. The ability of the algorithm in solving 
unconstrained, constrained and real optimization problems was demonstrated and competitive 
results obtained from its application suggest that it is a good alternative for solving multi-
objective optimization problems. However, [1] has argued that most of these test problems are 
not tuneable and it is difficult to establish the feature of an algorithm that has been tested. 
Based on this argument, the author presented a systematic procedure of designing test 
problems for unconstrained and constrained multi-objective evolutionary optimization and 
constructed a set of six difficult test problems. These problems have further been studied by 
researcher in the field [9, 10, 14, 17]. Motivated by the preceding argument, we further test 
CPMDE using five (continuous) tuneable unconstrained multi-objective test problems and 
one constrained test problem. Furthermore, we apply CPMDE to solve a real world 
engineering design problem. Results obtained herein further corroborate the efficacy of 
CPMDE in solving multi-objective optimization problems. 
      The remainder of this paper is structured as follows. In section 2 we present a brief 
description of the CPMDE algorithm. A more thorough description of CPMDE can be found 
in [18]. Section 3 present methodologies adopted in benchmarking CPMDE using tuneable 
unconstrained multi-objective test beds, a constrained test problem and an application to the 
solution of an engineering design problem, while section 4 presents the results of the 
benchmark and evaluation of CPMDE. The paper is concluded in section 5. 

2. THE CPMDE ALGORITHM 

In CPMDE, the combined population of trial and target solutions at the end of every iteration 
is checked for non-dominated solutions. Solutions that will proceed to the next generation are 
selected using a combined Pareto ranking and Pareto dominance selection scheme [6]. 
Diversity among solutions in the obtained non-dominated set is promoted using a harmonic 
average crowding distance measure [19]. Furthermore, boundary constraints are handled 
using the bounce-back strategy [12] while equality and inequality constraints are handled 
using the constrained-domination technique suggested by [1]. The CPMDE algorithm is 
summarized as follows [18]: 
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1. Input the required DE parameters like number of individuals in the population Np, 
mutation scaling factor F, crossover probability Cr, maximum number of 
iterations/generations gMax, number of objective functions k, number of decision 
variables/parameters D, upper and lower bounds of each variable, etc. 

 

2. Initialize all solution vectors randomly within the limits of the variable bounds. 
 

3. Set the generation counter, g = 0. 
 

4. Generate a trial population of size Np using DE’s mutation and crossover 
operations [12]. 

 

5. Perform a domination check on the combined trial and target population and mark 
all non-dominated solutions as “non-dominated” while marking others as 
“dominated”. 

 

6. Play domination tournament at each population index. 
i. If the trial solution is marked “non-dominated” and the target is marked 

“dominated” then the trial vector replaces the target vector. 
ii. If the trial solution is marked “dominated” and the target is marked “non-

dominated” then the trial vector is discarded. 
iii. If both solutions are marked “dominated”, then replace the target vector if it 

is dominated by the trial vector or if they are non-dominated with respect to 
each other. 

iv. If both vectors are marked “non-dominated”, then note down the index and 
proceed to the next index. When all solutions marked “non-dominated” 
from steps i – iii above are installed in the next generation, then sort out all 
solutions noted in step iv one at a time using the harmonic average 
crowding distance measure [19]. The solution with a greater harmonic 
average distance is selected to proceed to the next generation. 

 

7. Increase the generation counter, g, by 1. i.e. g = g + 1. 
 

8. If g < gMax, then go to step 4 above else go to step 9. 
 

9. Remove the dominated solutions in the last generation. 
 

10. Output the non-dominated solutions. 
 
*Note domination checks are performed using the naive and slow method [1]. 

 Source: [18] 

3. EVALUATING AND BENCHMARKING CPMDE 

The performance of CPMDE is compared with 13 state-of-the-art EMOAs on five 
unconstrained benchmark test beds and one constrained test problem. Furthermore, the 
performance of CPMDE on an engineering two-bar truss design problem is demonstrated. 
Other algorithms used in benchmarking CPMDE in this study include NSGA-II (real coded), 
NSGA-II (binary coded), SPEA, PAES, PDEA, MODE, MODE-E (MODE with external 
archive and crowding distance measure), MOPSO, SDE, DEMO/parent, DEMO/closest/dec, 
DEMO/closest/obj and MDEA. 

3.1  Description of benchmark test problems 

Five Zitzler-Deb-Thiele (ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6) test problems, which are 
common tuneable difficult benchmark problems used in the literatures [9, 17, 20, 21] are 
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chosen for evaluating the performance of CPMDE on unconstrained optimization problems. 
These are bi-objective problems in which both objectives are to be minimized. Each problem 
poses a different type of difficulty to EMOAs. The definitions and descriptions of all test 
functions are taken from literatures [1, 8, 14, 17] and summarized in Table I. 

Table I: Summary of benchmark test problems. 

Problem n Variable 
bounds 

Objective functions and 
constraints 
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solutions Comments 

ZDT1 30 [0, 1] 

11 )( xxf   

 )(/)(1)()( 12 xgxfxgxf   

)1()(91)(
2

 


nxxg
n

i
i  

]1,0[1 x  
0ix  

 i = 2, 3, ..., n  
 

Convex 

ZDT2 30 [0, 1] 

11 )( xxf   

  2
12 )(/)(1)()( xgxfxgxf   

)1()(91)(
2

 


nxxg
n

i
i  

]1,0[1 x  
0ix  

 i = 2, 3, ..., n  
Non-convex 

ZDT3 30 [0, 1] 

11 )( xxf   



























 )10sin(

)()(
1)()( 1

11
2 x

xg
x

xg
xxgxf   

)1()(91)(
2

 


nxxg
n

i
i  

]1,0[1 x  
0ix  

 i = 2, 3, ..., n 

Convex,  
Discontinuous 
 
Not all points in 
0≤x1≤1 lie on the 
Pareto-optimal front 

ZDT4 10 
]1,0[1 x  

]5,5[ix  
 i = 2, 3, ..., n 

11 )( xxf   

























)(
1)()( 1

2 xg
x

xgxf

 




n

i
ii xxnxg

2

2 )4cos(10)1(101)(   

]1,0[1 x  
0ix  

 i = 2, 3, ..., n 

Convex, 
 
Deceptive, 
Multiple local, 
Optimal fronts 

ZDT6 10 [0, 1] 

)6(sin1)( 1
64

1
1 xexf x 

  



























2
1

2 )(
)(

1)()(
xg
xf

xgxf  







n

i
ix

n
xg

21
91)(  

]1,0[1 x  
0ix  

 i = 2, 3, ..., n 

Nonconvex, 
Nonuniformly spaced 
solutions on Pareto 
front, 
Low density of 
solutions near Pareto 
front 

CONSTR 10 
]1,1.0[1 x  

]5,0[2 x  

11 )( xxf   

1

2
2

1
)(

x
x

xf




 
Subject to: 

69)( 121  xxxg

 19)( 122  xxxg  

12

1
96:

67.039.0
xx

x



       

and 

0:
00.167.0

2

1




x
x

 

Convex,  
Constrained, 
Segmented  Pareto 
front 

      ZDT1 is a 30-variable problem having a convex Pareto-optimal front. The difficulty an 
EMOA may face on this problem is in tackling the large number of decision variables. ZDT2 
is also a 30-variable problem but has a non-convex Pareto-optimal front. The non-convexity 
of the front is the major difficulty posed here. ZDT3 is a 30-variable problem having a 
number of disconnected Pareto-optimal fronts. Finding uniform spread of solutions on all 
discontinuous regions is the challenge in this problem. ZDT4 is a 10-variable problem with 
219 local optimal fronts. Escaping all local non-dominated fronts to converge to the global 
optimal front is a real challenge in this problem. ZDT6 is a 10-variable problem having a non-
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convex Pareto-optimal front with non-uniform distribution of solutions on the front. Finding a 
uniform spread of solution on this non-convex front poses a challenge to EMOAs. 
      To evaluate the performance of CPMDE on constrained optimization problems, the 
problem CONSTR is used [1, 8]. This is a bi-objective problem with two constraints. Both of 
the objectives are to be minimized. CONSTR has a convex Pareto-optimal front with two 
distinct segments. Finding uniform spread of solutions on both segments while satisfying both 
constraints is a challenge in this problem. 

3.2  Performance measures 

Performance measures that exist for EMOA evaluation are multifarious [3, 22]. However, in 
order to provide a uniform basis for comparison of EMOAs used in this study, the three 
performance measures reported in the published studies were adopted [9, 14, 17]. The 
generational distance and convergence metric are used to evaluate convergence to the global 
Pareto-optimal front while the diversity metric is employed to measure the spread of solutions 
on the obtained non-dominated front. 

Generational distance 
This is the average distance of the non-dominated set of solutions in a set Q from a set of 
chosen Pareto-optimal solutions. It is computed using eq. (1): 
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      For p = 2, di is the Euclidean distance (in the objective space) between the solutions of Q 
and the nearest member in the true Pareto-front. An algorithm having a small value of GD is 
better [1]. 

Convergence metric 
This is a special case of the generational distance where p = 1. Convergence metric is 
computed using eq. (2) [17]: 
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Diversity metric 
This metric measures the extent and spread of solutions in the obtained non-dominated front. 
It is computed using eq. (3): 
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where di is the Euclidean distance (in the objective space) between consecutive solutions in 
the obtained non-dominated front Q, and d  is the average of these distances. The parameter 

e
md is the Euclidean distances between the extreme solutions of the Pareto front and the 

boundary solution of the obtained non-dominated front Q with respect to each objective m. 
An algorithm with a smaller value of diversity metric  is better [1]. 
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3.3  Experimental setup 
 
In this study, DE/rand/1/bin variant of DE was used as the base for CPMDE. Cr and F were 
set at 0.3. Population size Np was set to 100 and the algorithm was run for a maximum 
number of generations, gMax = 250. A set of 500 uniformly spaced solutions were taken from 
the Pareto-optimal set for computation of all metrics. Averages and variances of metric values 
over 10 runs are reported in this study. For comparison of the performance of CPMDE with 
NSGA-II on the problem CONSTR, the following parameters are used: Cr = F = 0.3, Np = 40 
and gMax = 200. Harmonic average crowding distances are computed using the two nearest 
neighbours on either sides of a solution. 

3.4  Two-bar truss design problem 
 
To demonstrate the applicability of CPMDE in solving real-world optimization problems, the 
algorithm was applied to design a two-bar truss system. A problem originally studied by [23] 
using the ϵ-constraint method and further studied by [24] using NSGA-II is adopted here. A 
schematic representation of the two-bar truss is depicted in Fig. 1. 
 

 
Figure 1: A schematic diagram of a two-bar truss [24]. 
 
      The truss is designed to carry a certain load without elastic failure. Thus, in addition to the 
objective of designing the truss for minimum volume (which is equivalent to designing for 
minimum cost of fabrication); there are additional objectives of minimizing stresses in each of 
the two members AC and BC. The two-objective constrained optimization problem for three 
decision variables y (vertical distance between B and C in m), x1 (cross-sectional area of AC 
in m2) and x2 (cross-sectional area of BC in m2) is formulated as follows [24]: 
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2
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      σAC and σBC are the stresses in members AC and BC respectively. On this problem, the 
following settings are used for CPMDE: Cr = 0.9, F = 0.5, Np = 100 and gMax = 100. 

4. RESULTS AND DISCUSSION 
 
The mean and variance of the convergence metric on the unconstrained test beds, over 10 runs 
of CPMDE are reported in Table II while those of the diversity metric are presented in Table 
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III. The convergence metric for PDEA was not available; therefore for comparative study on 
this algorithm, the available generational distance metric is extracted from literatures and 
presented along with those of DEMO and CPMDE in Table IV. Diversity metrics for MODE 
on all test functions are not available because they were not calculated in the original study. 
Also, the performance metric for MOPSO on the test problem ZDT4 is not available. The 
authors reported that this algorithm failed on this test bed. 

Table II: Convergence metrics on unconstrained test beds. 

Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 
NSGA-II  
(real coded) 0.033482±0.004750 0.072391±0.031689 0.114500±0.004940 0.513053±0.118460 0.296564±0.013135 

NSGA-II  
(binary coded) 0.000894±0.000000 0.000824±0.000000 0.043411±0.000042 3.227636±7.307630 7.806798±0.001667 

SPEA 0.001799±0.000001 0.001339±0.000000 0.047517±0.000047 7.340299±6.572516 0.221138±0.000449 

PAES 0.082085±0.008679 0.126276±0.036877 0.023872±0.000010 0.854816±0.527238 0.085469±0.006664 

PDEA N/A N/A N/A N/A N/A 

MODE 0.005800±0.000000 0.005500±0.000000 0.021560±0.000000 0.638950±0.500200 0.026230±0.000861 

MODE-E 0.001999±0.000000 0.001554±0.000000 0.002642±0.000000 0.030689±0.004867 0.005998±0.000005 

MOPSO 0.019659±0.000012 0.017093±0.000133 0.030469±0.000067 N/A 0.751692±0.151000 

SDE 0.002741±0.000385 0.002203±0.000297 0.002741±0.000120 0.100100±0.446200 0.000624±0.000060 

DEMO/parent 0.001083±0.000113 0.000755±0.000045 0.001178±0.000059 0.001037±0.000134 0.000629±0.000044 

DEMO 
/closest/dec 0.001113±0.000134 0.000820±0.000042 0.001197±0.000091 0.001016±0.000091 0.000630±0.000021 

DEMO 
/closest/obj 0.001132±0.000136 0.000780±0.000035 0.001236±0.000091 0.041012±0.063920 0.000642±0.000029 

MDEA 0.000921±0.000005 0.000640±0.000000 0.001139±0.000024 0.048962±0.536358 0.000436±0.000055 

CPMDE 0.000755±0.000000 0.000775±0.000000 0.000916±0.000000 0.000731±0.000000 0.000584±0.000000 
 

Table III: Diversity metrics on unconstrained test beds. 

Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 
NSGA-II  
(real coded) 0.390307±0.001876 0.430776±0.004721 0.738540±0.019706 0.702612±0.064648 0.668025±0.009923 

NSGA-II  
(binary coded) 0.463292±0.041622 0.435112±0.024607 0.575606±0.005078 0.479475±0.009841 0.644477±0.035042 

SPEA 0.784525±0.004440 0.755184±0.004521 0.672938±0.003587 0.798463±0.014616 0.849389±0.002713 

PAES 1.229794±0.000742 1.165942±0.007682 0.789920±0.001653 0.870458±0.101399 1.153052±0.003916 

PDEA 0.298567±0.000742 0.317958±0.001389 0.623812±0.000225 0.840852±0.035741 0.473074±0.021721 

MODE N/A N/A N/A N/A N/A 

MODE-E 0.306235±0.001130 0.298449±0.000580 0.504275±0.000200 0.338330±0.003676 0.335594±0.019000 

MOPSO 0.586728±0.001480 0.689580±0.038200 0.594200±0.001150 N/A 0.935686±0.018500 

SDE 0.382890±0.001435 0.345780±0.003900 0.525770±0.043030 0.436300±0.110000 0.361100±0.036100 

DEMO/parent 0.325237±0.030249 0.329151±0.032408 0.309436±0.018603 0.359905±0.037672 0.442308±0.039255 

DEMO 
/closest/dec 0.319230±0.031350 0.335178±0.016985 0.324934±0.029648 0.359600±0.026977 0.461174±0.035289 

DEMO 
/closest/obj 0.306770±0.025465 0.326821±0.021083 0.328873±0.019142 0.407225±0.094851 0.458641±0.031362 

MDEA 0.283708±0.002938 0.450482±0.004211 0.299354±0.023309 0.406382±0.062308 0.305245±0.019407 

CPMDE 0.241173±0.000077 0.266395±0.000379 0.353734±0.000522 0.203378±0.000400 0.217533±0.000234 
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Table IV: Generational distance metrics on unconstrained test beds. 
Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

PDEA 0.000615±0.000000 0.000652±0.000000 0.000563±0.000000 0.618258±0.826881 0.023886±0.003294 

DEMO/parent 0.000230±0.000048 0.000091±0.000004 0.000156±0.000007 0.000202±0.000053 0.000074±0.000004 

DEMO 
/closest/dec 0.000242±0.000028 0.000097±0.000004 0.000162±0.000013 0.000179±0.000048 0.000075±0.000002 

DEMO 
/closest/obj 0.000243±0.000050 0.000092±0.000004 0.000169±0.000017 0.004262±0.006545 0.000076±0.000003 

 
CPMDE 0.000086±0.000000 0.000087±0.000000 0.000107±0.000000 0.000085±0.000000 0.000068±0.000000 

      Reported values of generational distances, convergence and diversity metrics for other 
algorithms used in benchmarking CPMDE are taken from correlative literatures [9, 14, 17, 20, 
21] and presented in the respective tables. Best mean results are shown in boldface. Fig. 2 
depicts the convergence of the obtained non-dominated front to the true Pareto-optimal front 
in problems ZDT1, ZDT2, ZDT3, ZDT4, ZDT6 and CONSTR respectively. The values of the 
test metrics are indicated on the respective plots. Fig. 3 shows the performance of NSGA-II 
and CPMDE, respectively, for 200 generations on the CONSTR problem. Fig. 4 shows the 
results obtained by NSGA-II and CPMDE on the two-bar truss design problem. 
      From the results in Tables II – IV, it is found that CPMDE outperformed all other 
algorithms on ZDT1 test bed as it produced the minimum values of all test metrics in all cases 
(Υ = 0.000755, GD = 0.000086, Δ = 0.241173). Binary coded NSGA-II performed second with 
respect to convergence (Υ = 0.000894) while MDEA was the second best with respect to 
diversity (Δ = 0.283708). MDEA and DEMO/parent showed slightly better convergence 
property on ZDT2, however, CPMDE performed best with respect to diversity preservation 
this test best reporting a value of Δ = 0.266395. Therefore the performance of CPMDE on this 
problem is comparable to MDEA and DEMO but better than those of other algorithms. Table 
II shows that CPMDE performed best in converging to the Pareto-optimal front of ZDT3 with 
a convergence metric, Υ = 0.000916. However, the reported diversity metric for MDEA and 
all versions of DEMO were better. Hence, the performance of CPMDE is comparable with 
MDEA and DEMO on this test bed. The advantage of CPMDE in converging to the global 
Pareto-optimal front in deceptive multi-modal functions is amply demonstrated on test 
problem ZDT4. Here, CPMDE outperformed all other algorithms in convergence and 
diversity (Υ = 0.000731, GD = 0.000085, Δ = 0.203378). The runner-ups in this case are 
DEMO/closest/dec (Υ = 0.001016) on convergence and MODE-E on diversity (Δ = 0.338330). 
The convergence metric on this problem is clearly smaller than those of other algorithms. On 
ZDT6, CPMDE performed second best with a convergence metric (Υ = 0.000584) which is 
slightly smaller than 0.000584 reported for MDEA. However, CPMDE produced the best 
diversity (Δ = 0.217533) on this problem. On all unconstrained problems, CPMDE produces 
variance values of zero for convergence metrics and generational distances (Tables II and IV). 
This suggests that CPMDE is reliable and stable in converging to the true Pareto front on 
these test beds.  
      By inspection, Fig. 3 shows that while NSGA-II was able to produce solutions covering 
roughly 80 % of the Pareto-optimal front for 200 iterations on the CONSTR test problem, 
CPMDE spanned the entire front with better convergence property. Therefore, CPMDE 
outperforms NSGA-II which is one of the state-of-the-art algorithms on this problem. 
      On the two-bar truss design problem, ϵ-constraint found only five solutions with spread 
(0.004445 m3, 89983 kPa) - (0.004833 m3, 83268 kPa) while NSGA-II found many solutions 
in the range (0.00407 m3, 99755 kPa) - (0.05304 m3, 8439 kPa). CPMDE was also able to find 
many solutions spanning the range (0.00408 m3, 98787 kPa) - (0.07384 m3, 8433 kPa). If 
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minimization of stress is important, NSGA-II finds a solution with stress as low as 8439 kPa, 
whereas the ϵ-constraint method found a solution with minimum stress of 83268 kPa, an order 
of magnitude higher than that found in NSGA-II [9]. CPMDE found a solution with minimum 
stress of 8433 kPa which is slightly less than that found by NSGA-II, thus, the performance of 
CPMDE is comparable with NSGA-II on this problem. CPMDE produces many quality non-
dominated solutions on the Pareto-optimal front of this problem in a single run (Fig. 4). This 
shows that CPMDE can perform well on real-world engineering problems. 

  

  

  

 
Figure 2: Convergence of CPMDE non-dominated front to the true Pareto-optimal front. 
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        Source: Adapted from [1] 
 

 

Figure 3: Performance of NSGA-II and CPMDE on test problem CONSTR, 200 iterations. 

 
 
 

          Source: Adapted from [1] 
 

Figure 4: Performance of NSGA-II and CPMDE on a two-bar truss design problem. 

 
5. CONCLUSION 

A benchmark of Combined Pareto multi-objective differential evolution (CPMDE) on 
tuneable multi-objective test problems is presented in this study. The ability of CPMDE in 
solving constrained and real multi-objective optimization problems was also illustrated. The 
ability of CPMDE to converge to the global Pareto-optimal front in deceptive multi-modal 
functions is amply demonstrated on test problem ZDT4 which has 21 billion local optimal 
fronts. Among the 14 algorithms compared in this study, CPMDE produced the best 
convergence in 3 out of the 5, and best diversity in 4 out of 5 unconstrained test beds. Also, 
the variances of the metrics suggest that the algorithm is stable on the test beds. Furthermore, 
CPMDE was applied to solve a real-world problem where it’s efficacy on such problems was 
confirmed. Competitive results obtained from the application of CPMDE suggest that it is a 
good alternative for solving multi-objective optimization problems. Therefore, this study 
further corroborates that CPMDE is adoptable as a method of EMOA for solving real-world 
MOOPs. 
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