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Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization
problems. Several extensions of differential evolution have been adopted in solving constrained and nonconstrained multiobjective
optimization problems, but in this study, the third version of generalized differential evolution (GDE) is used for solving
practical engineering problems. GDE3 metaheuristic modifies the selection process of the basic differential evolution and extends
DE/rand/1/bin strategy in solving practical applications. The performance of the metaheuristic is investigated through engineering
design optimization problems and the results are reported. The comparison of the numerical results with those of other metaheuris-

tic techniques demonstrates the promising performance of the algorithm as a robust optimization tool for practical purposes.

1. Introduction

In structural engineering, most design optimization prob-
lems are highly nonlinear consisting of different design
variables and complex constraints such as displacements,
geometrical configuration, stresses, and load carrying capa-
bility. The design variables are normally grouped into two cat-
egories, namely, continuous variables and discrete variables.
Optimization problems involving continuous and discrete
variables generally require problem-specific search tech-
niques [1]. Evolutionary multiobjective optimization tech-
niques are examples of problem-specific search techniques.
Several literatures have applied evolutionary multiobjective
optimization techniques to solving multiobjective optimiza-
tion problems to find a set of trade-off optimal solutions.
Since most engineering problems involve multiobjective
optimization, it is appropriate to apply an evolutionary
optimization algorithm to solve them.

In the last two decades, different types of techniques
aimed at effectively and efficiently exploring a search space by
combining several basic heuristic methods have emerged [2-
4]. These techniques currently referred to as “Metaheuristics”
are used to describe heuristic methods applied to solving dif-
ferent practical problems. Metaheuristics can be considered

as a global algorithmic framework used in solving several
optimization problems with little changes, thereby making
the algorithm adaptive to the specific problem [5].
Metaheuristic search techniques, such as simulated
annealing (SA) [6], genetic algorithm (GA) [7], evolution
strategies (ESs) [8], and particle swarm optimization (PSO)
[9], which are generally developed based on natural phe-
nomena have become the popular optimization techniques
of recent years due to their capability of finding promising
solutions for complicated optimization problems as well as
their independence to the derivatives of objective functions.
Furthermore, metaheuristics can handle both discrete
and real-valued variables and can be applied to a wide
range of optimization problems effectively. Basically, both
trajectory and population based metaheuristic approaches
aim to locate the global optimum in the solution space
through random moves. The key difference between the
metaheuristics is in the way they propose the next move in
the solution space. This motivates developers of optimization
algorithms to find more efficient methodologies for origi-
nating robust optimization algorithms. However, sometimes
this results in complicated approaches which are difficult to
understand and implement. Hence, this study is an attempt
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to test the simplicity and efficiency methodology of GDE3
metaheuristics in solving engineering optimization purposes.
Section 2 describes the GDE3 metaheuristics briefly. Test
cases are described and optimization results are discussed in
Section 3. Section 4 provides a clear conclusion of the study.

2. Generalized Differential
Evolution Metaheuristic

Several extensions of differential evolution [26] exist for
solving constrained and nonconstrained multiobjective opti-
mization problems [27, 28]. In comparison to the extension
of differential evolution (DE), GDE3 makes differential evo-
lution a suitable algorithm for multiobjective optimization
as well as constrained optimization with little changes to
the basic differential evolution algorithm. GDE3 extends
DE/rand/1/bin strategy which exhibit slow convergence rates
and strong exploration properties. GDE3 is a third version
of generalized differential evolution modifying the selection
process of the basic differential evolution algorithm [29]. The
selection process in GDE3 is guided by these three rules:

(i) In a scenario where both the old vector and trial
vector are infeasible, the old vector is selected if
it dominates the trial vector, but if the trial vector
weakly dominates the old vector, then the trial vector
is selected.

(ii) Feasible vector is selected in a situation where both
feasible and infeasible vectors are generated.

(iii) In a scenario where both the old vector and trial
vector are feasible, the old vector is selected if it
dominates the trial vector, but if the trial vector
weakly dominates the old vector, then the trial vector
is selected.

The whole GDE3 is presented in Algorithm 1. Parts that
are new compared to previous GDE versions are framed in
Algorithm 1. Without these parts, the algorithm is identical
to GDEIL. GDE3 can be seen as a combination of GDE2 and
Pareto Differential Evolution Approach (PDEA). GDE3 is
similar to differential evolution for multiobjective optimiza-
tion (DEMO) except that DEMO does not contain constraint
handling nor recede to basic DE in the case of a single
objective because DEMO modifies the basic DE and does not
consider weak dominance in the selection. Moreover, GDE3
has an improved diversity maintenance compared to DEMO.
There are no constraints to be evaluated when K = 0 and
M =1, and the selection is simply

Xyt = {ui,G’ if f () < f (%) )

X;5 otherwise.

This is the same as for the basic DE algorithm. The size
of the population does not increase since this requires that
x;c and u; 5 do not dominate each other even weakly, but
in the case of a single objective, the reverse is the case.
GDE3 performs the sorting of the vector by calculating
the crowding distance of the vector. The selection process
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based on crowding distance gives GDE3 an advantage over
NSGAIL In the case of comparing feasible, incomparable, and
nondominating solutions, both offspring and parent vectors
are saved for the population of the next generation [4]. There
is no need to remove elements, since the population size
does not increase. Hence, GDES3 is identical to basic DE in
this case. GDE3 improves the ability to handle multiobjective
optimization problems by giving a better distributed set of
solutions and are less sensitive to the selection of control
parameter values compared to the earlier GDE versions. As a
result, this procedure reduces the computational costs of the
metaheuristic and improves its efficiency. Readers interested
in GDE3 should refer to the texts by [30, 31].

3. Implementation of Engineering
Optimization Problems

The metaheuristic optimization was implemented in NET-
BEAN v7.3; optimization runs were executed on an HP PC
with a 2.30 GHz Intel Dual Core processor and 4 GB of RAM
memory. Different examples taken from several optimization
literatures were used to show the performance of GDE3
metaheuristic. These examples have been previously solved
using a variety of other techniques, which is useful to show
the validity and effectiveness of the GDE3 metaheuristic. The
optimal results were compared with data recently published
in literatures. An experiment has been performed to deter-
mine the best values of F and CR for better performance in
GDE3 metaheuristic. For this purpose, both CR and F are
varied from 0.1 to 1 with an increment of 0.1. The simulations
were conducted for each value of F with respect to all values
of CR. Hence, 100 such simulations were conducted. From
the results, it was found that better Pareto optimal front is
obtained by GDE3 with F = 0.5, CR = 0.9 and the termination
condition is set to the 10,000 objective function evaluations.

Example 1 (welded beam design optimization problem). The
welded beam problem is designed to minimize the fabrication
cost by subjecting it to some constraints such as bending
stress (0), shear stress (7), end deflection (§), and buckling
load (P,). The design variables of the optimization problem
are the thickness of the beam (b), the thickness of the weld (h),
the welded joint length (), and the beam width (). Figure 1
shows the welded beam design structure.

The values of I and h must be integer multiples of
0.0065 in. Assuming x, = h, x, =1, x; =t, and x, = b as design
variables, the optimization problem can be mathematically
expressed as follows:

Minimize f (%) = (1+C;) x,’x,
+ Cyxyx, (14.0 + x,),

<0,

Subjectto g, (X) = T(X) — Ty <
Go(X) =0(X) =0k <0,

g3 (%) =x,—-x4<0,
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Input: D, G

Vi< NPAVj<D:x;,= x?") +rand;[0,1] - (xﬁhi) -
i=11,2,...,NP},j={1,2,...,D},G = O,randj[O,l]
While G < G
Vi < NP
Mutation and recombine:
71,1513 € {1,2,..., NP}, randomly selected,
except mutually different and different from i
Frana € 11,2,..., D}, randomly selected from each i

Xirs6 +F - (X 6= %j,.6)

Initialize:

max

Vji<Duj;c= if rand;[0,1] < CRV j == j, g
Xir,G
Select:
_ {”i,c if f(ug) < flxig)
XiGr1 = .
x;; otherwise
Settn=n+1
Vj:gj(u,-,G) <0
N
Xnpangr = Uig if XiG+1 == XiG
N
Xig f Ui
whilen > 0

Select x € p = {x,G,1>X3Ge1>+ - > XNPingeL B

x belongs to the last non-dominated set of p
A

x is the most crowded in the last non-dominated set
Remove x from p
n=n-1
G=G+1

NP > 4,F € (0,1+], CR € [0, 1], and initial bounds: x"?, x®?

(lo)
X,

€ [0,1]

ArGoriTHM l: The GDE3 algorithm [29].

where

n_ MR
T = —
J

>

@ = (@) ) 22 (@),

FIGURE 1: Schematic of the welded beam design problem [1].

94 (%) =C, (xlz)

+Cyx3x4 (14.0 + x,) — 5.0 < 0,

gs (%) = 0.125 - x, <0,
G () = 8(R) = 8,0, < 0,
g,(®)=P-P. <0,

M=P<L+ﬁ),
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Ro = (B,
4 2
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+
7 =24V2x,x, &+<M> ,
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o(XxX)= N
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TABLE 1: Values of parameters involved in the formulation of the
welded beam problem [1].

iCt;:rrrllstant Description Values

C, The welded material 0.10471 ($/in3)
C, The bar stock 0.04811 ($/in3)
Toax Shear stress of the welded material 13600 (psi)

O ax Normal stress of the bar material 30000 (psi)

O max Bar end deflection 0.25 (inch)
E Young’s modulus of bar stock 30 x 10° (psi)
G Shear modulus of bar stock 12 x 10° (psi)
P Loading condition 6000 (Ib)

L Beam’s projection length 14 (inch)

The simple bounds of the problem are x,, x, € [0.1,2.0] and
X,, x5 € [0.1,10.0]. The values of parameters involved in the
formulation of the welded beam problem are also shown in
Table 1.

The optimum design of the welded beam is executed
using GDE3 metaheuristic, and the best solution is
found as x* = {x;, x,, x3, x,} = {0.20572840999876,
3.47072911158159, 9.03661683005891, 0.20572540074781}
which yields an objective function value of f(X) = 1.7248496
as seen in Table 2.

The results obtained by GDE3 are presented in Table 2.
GDE3 found the global optimum requiring 400 iterations
(i.e., 10,000 evaluations) per optimization run. Table 3 pro-
vides a comparison of this solution with the results of other
optimization algorithms. It is apparent from the table that
GDE3 metaheuristic finds a competitive solution using only
10,000 evaluations which is considerably lesser than those
of other approaches. Further, a statistical evaluation of 100
independent runs of the GDE3 metaheuristic is tabulated in
Table 4 considering the best, worst, average, and the standard
deviation (std. dev.) of the obtained solutions. The ratio
between the optimized costs corresponding to best and worst
designs is 1.00042. Remarkably, GDE3 produced the overall
best design result with a value of 1.724849. For continuous
optimization problem, [20, 22] found a better design result
with a value of 1.7248 at a higher function evaluation.

Example 2 (pressure vessel optimization problem). The pres-
sure vessel problem is designed to minimize total cost which
is comprised of the welding cost and forming material cost.
The compressed air tank with a working pressure of 3000 psi
and a minimum volume of 750 ft must be designed accord-
ing to the ASME code on boilers and pressure vessels. The
design variables of the optimization problem are the length of
the cylindrical segment of the vessel (L), the thickness of the
cylindrical skin (T}), the inner radius (R), and the thickness
of the spherical head (T},).

The variables T, and Tj, are discrete values which are inte-
ger multiples of 0.0625 inches. Figure 2 shows the cylindrical
pressure vessel capped at both ends by hemispherical heads.
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FIGURE 2: Schematic of the pressure vessel design problem [1].

Assuming x, =T, x, =T}, x; = R,and x, = L as the design
variables, the optimization problem can be mathematically
expressed as follows:

Minimize f (X) = 0.6224x, x5, + 1.7781x,x;"
+3.1611x,°x, + 19.8621x, x3,
Subjectto g, (%) = 0.0193x; — x; <0,
g, (%) = 0.00954x; — x, <0,

g3 (%) =x,—-240 <0,

gy (X) = 750 x 1728 — mx;°x,

4
- —nx33 <0.
3
(4)

The simple bounds of the problem are x;, x, € [l X
0.0625,99 x 0.0625] and x5, x, € [10.0,240.0]. Unlike
the usual limit of 200 in considered in literatures, the upper
bound of design variable L was increased to 240 in to expand
the search space.

Optimization results are presented in Table 5. GDE3
produced a design result with a value of 6083.773 within 400
iterations (i.e., 10,000 evaluations). Table 6 compares the opti-
mal design results produced by GDE3 with those reported in
(1, 17, 20, 21, 24, 32]. Further, a statistical evaluation of 100
independent runs of the GDE3 metaheuristic is tabulated in
Table 7 considering the best, worst, average, and the standard
deviation (std. dev.) of the obtained solutions. The ratio
between the optimized costs corresponding to worst and best
designs is 1.00229. The best design result was produced by
the Firefly algorithm. GDE3 metaheuristic produced the least
performance compared to the other algorithms.

Example 3 (speed reducer design optimization problem).
The speed reducer design problem [25] is designed to min-
imize the weight of the speed reducer subjecting it to some
constraints such as shaft stresses, surface stress, gear teeth
bending stress, and shafts crosswise deflections. The width
of the gear face x,, teeth module x,, number of pinion teeth
X5, first shaft length between bearings x,, second shaft length
between bearings x;, the diameter of the first shaft x,, and
diameter of the second shaft are the design variables of the
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TABLE 2: GDE3 solution vector for welded beam.

X1 X3 X3 Xy
0.20572840999876 3.47072911158159 9.03661683005891 0.20572540074781
Best solution 9:(%) 9,(%) 95(%) g4(X)
—-0.66062798472194 0.665171394633944 3.00925094998E — 06 —3.43299575416113
95(%) 96(%) 97(%) f®)
—0.08072840999876 —0.235539990649711 0.373971078704926 1.72484969509211

TABLE 3: Welded beam problem: comparison of GDE3 results with other optimization methods.

Researcher Metaheuristic X, X, X5 X, f(x) NE
[10] Genetic algorithm 0.2489 6.1730 8.1789 0.2533 2.4331 320,080
[11] Genetic algorithm 0.2489 6.1097 8.2484 0.2485 2.4000 6,273
[12] Social behavioral model 0.2407 6.4851 8.2399 0.2497 2.4426 19,259
[13] Society and civilization algorithm 0.2444  6.2380  8.2886  0.2446 2.3854 33,095
[14] Genetic algorithm 0.2443 6.2117 8.3015 0.2443 2.3816 320,000
[15] Particle swarm optimization 0.2444 6.2175 8.2915 0.2444 2.3810 30,000
[16] Harmonic search 0.2442 6.2231 8.2915 0.2443 2.3810 110,000
[17] Simulated annealing—direct search 0.2444 62158 82939  0.2444 2.3811 56,243
[18] Simulated annealing—genetic algorithm 0.2231 15815  12.8468  0.2245 2.2500 26,466
[19] Artificial Immune System—genetic algorithm 0.2444  6.2183 8.2912  0.2444 2.3812 320,000
[20] Harmonic search 0.2057 3.4705 9.0366 0.2057 1.7248 200,000
[21] Simple constrained particle swarm optimizer 0.2057  3.4705  9.0366  0.2057 1.7249 24,000
[22] Harmonic search—sequential quadratic programming  0.2057  3.4706  9.0368  0.2057 1.7248 90,000
[23] Differential evolution 0.2444 6.2175 8.2915 0.2444 2.3810 24,000
[8] Evolutionary algorithm 0.2443 6.2201 8.2940 0.2444 2.3816 28,897
[1] Firefly algorithm 0.2015 3.5620 9.0414 0.2057 1.7312 50,000
[24] Simple optimization 0.2057  3.4705  9.0366  0.2057 1.7246 10,000
Present study ~Generalized differential evolution 3 0.2057 3.4707 9.0366  0.2057 1724849 10,000

TABLE 4: Statistical results of the GDE3 optimization.

Best Average Worst Std. dev. Number of iterations

1.724849 1.725023 1.725569 0.0001018 400

TaBLE 5: GDE3 Solution vector for pressure vessel.

X1 X, X3 Xy
0.74395291436715 0.36774755668330 38.5288195380221 239.37719314082
Best Solution 9:1(%) 9:(%) 9(%) 94(%)
—0.00034669728332 —0.00018261829057 —0.62280685917400 —42.436889517499
f®
6083.77328355025

TABLE 6: Pressure vessel problem: comparison of GDE3 results with optimization methods.

Researcher Metaheuristic X, X, X5 X, f(x)
[17] Simulated annealing—direct search 0.7683 0.3797 39.8096 207.2250 5868.76
[32] Particle swarm optimization—genetic algorithm 0.7500 0.3750 38.8601 221.3654 5850.383
[20] Harmonic search 0.7500 0.3750 38.8600 221.3600 5849.7
[21] Simple constrained particle swarm optimizer 0.8125 0.4375 42.0980 176.6360 6.059.714
[1] Firefly algorithm 0.7500 0.3750 38.8600 221.3600 5850.3
[24] Simple optimization 1.1250 0.6250 58.2901 43.6927 7199.35

Present study Generalized differential evolution 3 0.74391 0.36774 38.5288 239.377 6083.773
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TABLE 7: Statistical results of the GDE3 optimization.
Best Average Worst Std. dev. Number of iterations
6083.773 6092.318 6097.725 40.32205 400
TaBLE 8: GDE3 Solution vector for speed reducer.
X1 X2 X3 X4
3.5000000004788 0.7000000000000 17.0000000000000 7.3000000000000
X5 X6 X7 9:(X)
7.8000000000000 3.3502146664526 5.2866832298256 —-0.07391528052456
Best Solution 9:(%) 95(%) 9:(%) 95(%)
—-0.197998527251663 —0.499172248315386 —-0.9014716976203 —-3.1892233298E - 10
95(%) 9,(%) g5(%) 95(%)
—3.8408276559E — 11 -0.7025 -1.3680001575E — 10 —-0.5833333332763
G10(X) g (%) f(®)
—-0.0513257534686439 —0.0108523650245949 2996.34816529042

TABLE 9: Speed reducer problem: comparison of generalized differ-
ential evolution 3 results with simple constrained particle swarm
optimization.

Simple constrained particle ~ Generalized differential

Solution swarm optimization [21] evolution (Present study)
X, 3.5000 3.5000

X, 0.7000 0.7000

X3 17.0000 17.0000

Xy 7.3000 7.3000

Xs 7.8000 7.8000

X 3.350214 3.3502146

X7 5.286683 5.2866832

f(&) 2996.348165 2996.3481653

FIGURE 3: Schematic of the speed reducer design problem [25].

optimization problem. Figure 3 shows the schematic of the
speed reducer.

The mathematical expression for the speed reducer prob-
lem is as follows:

Minimize f (¥) = 0.7854x,x,”
+(3.3333x,% + 14.9334x,
~43.0934)
— 1.508x, (x4” + x,7)
+7.4777 (x5 + x;”)
+0.7854 (x4x62 + x5x72) ,

27

—2 - 1 SO)
X1X2"X3

Subjectto g, (%) =

9 RX)=—

1.93x,°

93 (X) = 2
XyX3Xg

1.93x5°

X, %3,
1.0

110x>

Al

-1<0,

Al

-1<0,

g4 (X) =

gs (%) =

745.0x,

2
) +16.9 x 10°
XyX3

745.0x5

2
) +157.5 x 10°
Xy X3
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TABLE 10: Statistical results of the GDE3 optimization.

Best Average Worst Std. dev. Number of iterations
2996.3481653 2996.3483815 2996.3491534 0.0000021 400
TasLE 11: GDE3 Solution vector for tension/compression spring.
X1 X2 X3 9:(X)
. 0.0517955276224998 0.359283196922392 11.1405163630287 —3.0601282864E — 05
Best Solution R . R "
9,(X) 95(X) 94(X) f()
~0.133636716257444 ~4.05865278285946 ~0.725947516970072 0.01266583600858
TAaBLE 12: Tension/compression spring problem: comparison of
GDES3 results with simple constrained particle swarm optimization.
P
Solution Simple constrained particle ~ Generalized differential P > |P
swarm optimization [21] evolution 3
X, 0.051583 0.0517955
X, 0.354190 0.3592831 ’ ’ed—
X3 11.438675 11.140516
f(#) 0.012665 0.012665836 FIGURE 4: Schematic of the tension/compression spring design
problem.
X,X
g, (%) =22 _-1<0,
40 The ratio between the optimized costs corresponding to best
L 5x, and worst designs is 1.0000003. Remarkably, GDE3 produced
gs (X) = ~ 1<0, the overall best design result with a value of 2996.3481653.
1
) = I _1<o Example 4 (tension/compression spring design optimiza-
9o X) = 12x, - tion problem). The tension/compression spring problem is
designed to minimize the weight of the spring subjecting it to
Gro (%) = L.5xs +1.9 1<0 some constraints such as shear stress, minimum deflection,
4 outside diameter limits, and surge frequency. The design
variables are the number of active coils P, the diameter of the
- Llx; +19 . - . .
gy ()= —"—=-1<0. mean coil D, and the diameter of the wire d. Figure 4 shows
X5

)

The simple bounds of the problem are x; € [2.6,3.6], x, €
[0.7,0.8], x5 € [17,28], x, € [7.3,8.3], x5 € [7.8,8.3], x, €
[2.9,3.0], and x;, € [5.0,5.5].

The optimum design of the speed reducer is executed
using GDE3 metaheuristic, and the best solution is found
as x* = {xy, xp, X3, Xy, X5, Xg, X7} = {3.50000000047883,
0.7, 170, 73, 78, 3.35021466645262, 5.2866832298256}
which yields an objective function value of f(X) =
2996.34816529042 as seen in Table 8.

The results obtained by GDE3 are presented in Table 8.
GDES3 found the global optimum requiring 400 iterations
per optimization run. Table9 provides a comparison of
this solution with the results of simple constrained particle
swarm optimization. It is apparent from the table that GDE3
metaheuristic finds a competitive solution using only 10,000
objective function evaluations, which is considerably lesser
than those of other approaches. Further, a statistical evalu-
ation of 100 independent runs of the GDE3 metaheuristic is
tabulated in Table 10 considering the best, worst, average, and
the standard deviation (std. dev.) of the obtained solutions.

the tension/compression spring design.

Assuming x; = d, x, = D, and x5 = P, as the design
variables, the tension/compression spring design problem
can be expressed as follows:

Minimize f (%) = (x; +2) x,%,7,

3
Xy X3

Subject to X)=1-——"—<
) 91 %) 71,785x,*

>

4x22 - XX,
12,566 (x,%,> — x;4)

g, (%) =

) (6)

+——-1<
5,108x,>

140.45x,

_ < 0

X)=1- <0,
gS() x22x3

+ X

o X
X)=—"—-1<0.
94 (X) G

The simple bounds of the problem are x; € [0.05,2.0], x, €
[0.25,1.3], and x5 € [2.0,15.0].
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TABLE 13: Statistical results of the GDE3 optimization.

Best Average Worst Std. dev. Number of iterations

0.012665836 0.012666648 0.012667194 3.97815E - 07 400

The optimum design of the tension/compression spring is
carried out using GDE3 metaheuristic, and the best solution
is found as x* = {x,x,,x;} = {0.0517955276224998,
0.359283196922392, 11.1405163630287} which yields an objec-
tive function value of f(X) = 0.0126658360085857 as seen in
Table 11.

The results obtained by GDE3 are presented in Table 11.
GDES3 found the global optimum requiring 400 iterations
per optimization run. Table12 provides a comparison of
this solution with the results of simple constrained particle
swarm optimization. It is apparent from the table that GDE3
metaheuristic finds a competitive solution using only 10,000
objective function evaluations, which is considerably lesser
than those of other approaches. Further, a statistical evalu-
ation of 100 independent runs of the GDE3 metaheuristic is
tabulated in Table 13 considering the best, worst, average, and
the standard deviation (std. dev.) of the obtained solutions.
The ratio between the optimized costs corresponding to worst
and best designs is 1.000107.

4. Conclusion

In the present study, the GDE3 algorithm is used as a
simple and efficient optimization technique for handling
engineering optimization problems. The GDE3 algorithm
also uses a very simple mechanism to deal with constrained
functions and results generated by the algorithm indicate that
such mechanism, despite its simplicity, is effective in prac-
tice. From this study, performance evaluation of the GDE3
algorithm through benchmark design optimization examples
reveals the efficiency of this technique in solving practical
optimization problems. Although in the present study the
algorithm is utilized only for solving engineering design opti-
mization problems, GDE3 algorithm can easily be employed
for solving other types of optimization problems as well.
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