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Complete group classification of systems of
two linear second-order ordinary differential
equations: the algebraic approach

T. G. Mkhizea,b, S. Moyoc and S. V. Meleshkod*†

Communicated by J. Banasiak

We give a complete group classification of the general case of linear systems of two second-order ordinary differential
equations. The algebraic approach is used to solve the group classification problem for this class of equations. This
completes the results in the literature on the group classification of two linear second-order ordinary differential
equations including recent results which give a complete group classification treatment of such systems. We show
that using the algebraic approach leads to the study of a variety of cases in addition to those already obtained in the
literature. We illustrate that this approach can be used as a useful tool in the group classification of this class of equations.
A discussion of the subsequent cases and results is given. Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

Systems of second-order ordinary differential equations appear in the modeling of many physical phenomena. A main feature of these
differential equations is their symmetry properties. The theory of group analysis has been well studied in the literature. The presence
of symmetries allows one to reduce the order of these equations or even find their general solution in quadratures.

Linear equations play a significant role among all ordinary differential equations: they are considered as a first approximation of the
model being studied. In applications, linear equations often occur in disguised forms. In the study of the symmetries, it is convenient to
rewrite the equations in their simplest equivalent form. We note that equations equivalent with respect to a change of the dependent
and independent variables possess similar symmetry properties. This leads to a classification problem.

Systems of two linear second-order ordinary differential equations were studied in [1] where a new canonical form,

y00 D a.x/yC b.x/z,

z00 D c.x/y � a.x/z

was obtained. For this canonical form, the number of arbitrary elements is reduced. The group classification problem is usually simpler
after reducing the number of arbitrary elements. In this paper, the authors also gave a representation of several admitted Lie groups.
In addition, it was also proved that a system of two linear second-order ordinary differential equations can have 5, 6, 7, 8 or 15 point
symmetries. However, the exhaustive list of all distinguished representatives of systems of two linear second-order ordinary differential
equations was not obtained there.

The main objective of this paper is to use the algebraic approach where the determining equations presented in [2] are solved up to
finding relations between constants defining admitted generators.

a Department of Mathematics, Durban University of Technology, P O Box 1334, Steve Biko Campus, Durban 4000, South Africa
b School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
c Department of Mathematics and Institute for Systems Science, Durban University of Technology, P O Box 1334, Steve Biko Campus, Durban 4000, South Africa
d School of Mathematics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
* Correspondence to: S. V. Meleshko, School of Mathematics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
† E-mail: sergey@math.sut.ac.th

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014



T. G. MKHIZE, S. MOYO AND S. V. MELESHKO

The algebraic approach takes into account algebraic properties of Lie groups admitted by a system of equations: the knowledge of
the algebraic structure of admitted Lie algebras allows for significant simplification of the group classification. In particular, the group
classification of a single second-order ordinary differential equation, done by the founder of the group analysis method, S. Lie [3, 4],
cannot be performed without using the algebraic structure of the admitted Lie groups. Recently, the algebraic properties were applied
for group classification, for example, in [5–12]. We also note that the use of the algebraic structure of admitted Lie groups completely
simplified the group classification of equations describing behavior of fluids with internal inertia in [13].

In the present paper, we obtain a complete group classification of the general case of linear systems of two second-order ordinary
differential equations

y00 D F.x, y, z/, z00 D G.x, y, z/,

by using an algebraic approach. The system considered in this case is a generalization of Lie’s study [4]. Excluded from our consideration
is the studied earlier systems of second-order ordinary differential equations with constant coefficients of the form

y00 D My, (1)

where M is a matrix with constant entries and y D

�
y
z

�
. These cases of systems have been studied in [14–18]. We also exclude from

the analysis the degenerate case given as follows:

y00 D F.x, y, z/, z00 D 0. (2)

It is worth mentioning here that the complete group classification of two linear second-order ordinary differential equations has
been done recently in [2]. The following four cases of linear systems of equations with none inconstant coefficients were obtained:

F D ˛11y C ex z, G D e�x˛21y C ˛22z, (3)

F D y.sin.x/C c2/C z.cos.x/ � c1/, G D y.cos.x/C c1/C z.� sin.x/C c2/, (4)

F D y.˛11 C x/C z.˛12 C .˛22 � ˛11/x � x2/, G D y C z.�x C ˛22/, (5)

F D ycC z, G D �y C zc (6)

where ˛ij and ci (i, j D 1, 2) are constant, c D c.x/ and ˛21c0 ¤ 0. These systems have the following nontrivial admitted generators:

System Admitted generator
(3) @x � z@z

(4) 2@x C z@y � y@z

(5) @x C z@y

(6) z@y � y@z

We note that the approach used in [2] is different from the approach used in the present paper. Because there is an opinion that the
algebraic approach is more efficient, the present paper can be a good example for comparing these two approaches. We show here
that for the problem of classification of systems of two linear second-order ordinary differential equations the algebraic approach leads
to the study of a variety of cases, although the analysis of these cases is not complicated.

The paper is organized as follows. The first part of the paper deals with the preliminary study of systems of two second-order linear
equations followed by the group classification method as applied to linear systems of equations. The subsequent subsections deal with
the equivalence transformations, determining equations and the optimal system of subalgebras. The later part lists the different cases
with their respective results. This is then followed by the results and conclusion.

2. Preliminary study of systems of linear equations

Linear second-order ordinary differential equations have the following form,

y00 D B.x/y0 C A.x/yC f .x/, (7)

where A.x/ and B.x/ are n � n matrices, and f .x/ is a vector. Using a particular solution yp.x/ and the change of variable,

y D QyC yp,

one can without loss of generality assume that f .x/ D 0. Applying the change

y D C.x/Ny,

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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where C D C.x/ is a nonsingular matrix, system (7) becomes

Ny00 D NBNy0 C NANy, (8)

where

NB D C�1.BC � 2C0/, NA D C�1.AC C BC0 � C00/.

If one chooses the matrix C.x/ such that

C0 D
1

2
BC,

then

NB D 0, NA D C�1

�
AC

1

4
B2 �

1

2
B0
�

C. (9)

The existence of the nonsingular matrix C.x/ is guaranteed by the existence of the solution of the Cauchy problem

C0 D
1

2
BC, C.0/ D E,

where E is the unit n � n matrix.
Notice that if the matrices A and B are constant, then the matrix NA in (9) is constant only for commuting matrices A and B. The

complete study of noncommutative constant matrices A and B was done recently in [19].
Without loss of generality up to equivalence transformations in the class of systems of the form (7), it suffices to study the systems of

the form

y00 D Ay. (10)

Applying the change of the dependent and independent variables [2]

Qx D '.x/, Qy D  .x/y (11)

satisfying the condition

'00

'0
D 2

 0

 
, (12)

system (10) becomes

Qy00 D QAQy, (13)

where

QA D '0�2

�
A �

�00

�
E

�
, � D

1

 
.

For reducing the number of entries of the matrix QA, one can choose the function  such that‡ tr QA D 0. This condition leads to
the equation

�00 �
tr A

n
� D 0. (14)

Notice that in particular, for matrices with tr A D 0 choosing � D c1x C c2, the matrix QA still satisfies the condition tr QA D 0. Here,

 D .c1x C c2/
�1, '0 D k0 

2 D k0.c1x C c2/
�2, (15)

where k0 is constant.

‡This change was used in [1] for the case of n D 2.
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3. Group classification

For the group classification of systems of two linear second-order ordinary differential equations, we consider a system of equations (10)
with a matrix

A D

�
a.x/ b.x/
c.x/ �a.x/

�
.

Any linear system of ordinary differential equations (10) admits the following trivial generators

y@y C z@z , (16)

h.x/@y C g.x/@z , (17)

where (16) is the homogeneity symmetry and .h.x/, g.x//t is any solution of system (10).
For the classification problem one needs to study equations which admit generators different from (16) and (17).

3.1. Equivalence transformations

Calculations show that the equivalence Lie group is defined by the generators:

Xe
1 D x.x@x C y@y C z@z � 4a@a � 4b@b � 4c@c/,

Xe
2 D 2x@x C y@y C z@z � 4a@a � 4b@b � 4c@c,

Xe
3 D @x , Xe

4 D y@z � b@a C 2a@c, Xe
5 D z@y C c@a � 2a@b,

Xe
6 D y@y � z@z � 2b@b C 2c@c, Xe

7 D y@y C z@z .

The transformations corresponding to the generator Xe
1 define transformations of the form (15). The transformation corresponding

to Xe
2 and Xe

3 define the dilation and shift of x, respectively. The transformations related with the generators Xe
4, Xe

5, Xe
6 and Xe

7 correspond
to the linear change of the dependent variables Qy D Py with a constant nonsingular matrix P.

3.2. Determining equations

According to the Lie algorithm [20], the generator

X D �.x, y, z/
@

@x
C �1.x, y, z/

@

@y
C �2.x, y, z/

@

@z

is admitted by system (10) if it satisfies the associated determining equations. One can show that the admitted generator has the
property that �2

y C �
2
z ¤ 0 if and only if system (10) is equivalent to the free particle equations [2]. Hence, one obtains � D �.x/. The

determining equations are

b.� 0zC zq4 C yq3/C a.� 0y C zq2 C yq1/C 2.a0yC b0z/� � � 000y C .3� 0 � q1/.ay C bz/ � q1.cy � az/ D 0,

and

�a.� 0zC zq4 C yq3/C c.� 0y C zq1 C yq2/C 2.c0y � a0z/� � � 000z � q3.ay C bz/C .3� 0 � q4/.cy � az/ D 0,

where an admitted generator has the form

X D 2�.x/@x C .y�
0.x/C q1y C q2z/@y C .�

0zC q3yC q4z/@z

and qi , .i D 1, .., 4) are constant. We exclude the trivial admitted generators (17).
Splitting the determining equations with respect to y and z leads to � 000 D 0 and the equations§

2a0� C 4a� 0 C bq3 � cq1 D 0, (18)

2b0� C 2aq1 C b.4� 0 C q4 � q2/ D 0, (19)

§These equations coincide with equations (32)–(34) of [1], where the constants from [1] are s0 D q1, r0 D q2, p0 D q3, q0 D q4 . The difference is that in our study,
there is no necessity at this stage of the assumption b ¤ 0 comparing with [1].
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2c0� � 2aq3 C c.4� 0 � q4 C q2/ D 0. (20)

Because �.3/ D 0 or � D a1x2 C a2x C a3, the admitted generators have the form

X D a1X1 C a2X2 C a3X3 C q3X4 C q1X5 C
q2 � q4

2
X6 C

q2 C q4

2
X7,

where

X1 D x.x@x C y@y C z@z/, X2 D 2x@x C y@y C z@z , X3 D @x ,

X4 D y@z , X5 D z@y , X6 D y@y � z@z , X7 D y@y C z@z .

In addition, because the generator X7 is the trivial admitted generator (16), one can assume that q4 D �q2. The constants
a1, a2, a3, q1, q2 and q3 depend on the functions a.x/, b.x/ and c.x/. These relations are defined by equations (18)–(20), and they present
the group classification of linear systems of two second-order ordinary differential equations.

One of the methods for analyzing relations between the constants consists of employing the algorithm developed for the gas dynam-
ics equations [20]. This algorithm allows one to study all possible admitted Lie algebras without omission. Unfortunately, it is difficult
to implement for system (10). Observe also that in this approach it is difficult to select out equivalent cases with respect to equivalence
transformations.

In [9, 11, 12]¶ a different approach was applied for the group classification. In most applications the algebraic algorithm essentially
reduces the study of group classification to a simpler problem. Here, we follow this approach.

For further analysis we study the Lie algebra L6 spanned by the generators X1, X2, : : : , X6.

3.3. Optimal system of subalgebras of L6

The Lie algebra L6 D L.1/3 ˚ L.2/3 , where L.1/3 D fX1, X2, X3g, L.2/3 D fX4, X5, X6g. The commutator table can be split into two tables:

X1 X2 X3

X1 0 �2X1 �X2

X2 2X1 0 �2X3

X3 X2 2X3 0

X4 X5 X6

X4 0 X6 �2X4

X5 �X6 0 2X5

X6 2X4 �2X5 0.

Denoting
X1 D e1, X2 D �2e2, X3 D e3,

one can show that the commutator table of the Lie algebra L.1/3 becomes

e1 e2 e3

e1 0 e1 2e2

e2 �2e2 0 e3

e3 �2e2 �e3 0

.

Hence, the Lie algebrajj L.1/3 is sl.2, R/. One also can check that L.2/3 is sl.2, R/ by denoting

X4 D �e1, X5 D e3, X6 D �2e2.

Notice that an optimal system of subalgebras of the Lie algebra sl.2, R/ classification was performed in [21] and it consists of the
following list:

fe2g, fe3g, fe1 C e3g, fe2, e3g, fe1, e2, e3g. (21)

Then, the optimal systems of subalgebras of L.1/3 and L.2/3 are

fX2g, fX3g, fX1 C X3g, fX2, X3g, fX1, X2, X3g, (22)

and

fX5g, fX6g, fX4 � X5g, fX5, X6g, fX4, X5, X6g, (23)

respectively.

¶See also references therein.
jjThis Lie algebra is a Lie algebra of type VIII in the Bianchi classification.
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3.4. Relations between automorphisms and equivalence transformations

Let us consider an operator
X D x1X1 C x2X2 C x3X3 C x4X4 C x5X5 C x6X6.

Automorphisms of the Lie algebra L6 are

A1 : Nx1 D x1 C 2ax2 C a2x3, Nx2 D x2 C ax3;
A2 : Nx1 D x1ea, Nx3 D x3e�a;
A3 : Nx2 D x2 C ax1, Nx3 D x3 C 2ax2 C a2x1,
A4 : Nx4 D x4 � 2ax6 � a2x5, Nx6 D x6 C ax5;
A5 : Nx5 D x5 C 2ax6 � a2x4, Nx6 D x6 � ax4;
A6 : Nx4 D x4ea, Nx5 D x5e�a.

Here and further on, only changeable coordinates are presented.
One can show that actions of equivalence transformations are similar to actions of the automorphisms. These properties allow one

to use an optimal system of subalgebras of the Lie algebra L6 for group classification.
In fact, using the change of the dependent and independent variables corresponding to the equivalence transformation (11) with

' D
x

1 � �x
,  D .x C �/�1,

the operator

X D x1X1 C x2X2 C x3X3 C x4X4 C x5X5 C x6X6

becomes

X D Nx1 NX1 C Nx2 NX2 C Nx3 NX3 C Nx4 NX4 C Nx5 NX5 C Nx6 NX6,

where

NX1 D Nx.Nx@Nx C Ny@Ny C Nz@Nz/, NX2 D 2Nx@Nx C Ny@Ny C Nz@Nz , NX3 D @Nx ,
NX4 D Ny@Nz , NX5 D Nz@Ny , NX6 D Ny@Ny � Nz@Nz ,

and the changeable coefficients are

Nx1 D x1 C 2x2� C x3�
2, Nx2 D x2 C x1� .

Hence, the change of the dependent and independent variables corresponding to the equivalence transformation Xe
1 is similar to the

automorphism Aut1. This property we denote as Xe
1 � Aut1. Similarly, one can check that Xe

i � Auti , (i D 2, 3, : : : , 6).
Using the two-step algorithm of constructing an optimal system of subalgebras [22], and the optimal systems of subalgebras (22)

and (23), one obtains an optimal system of one-dimensional subalgebras of the Lie algebra L6 which consists of the following set of
subalgebras

1.1. X2 C �.X4 � X5/ 3.1. X1 C X3 C �.X4 � X5/

1.2. X2 C �X5 3.2. X1 C X3 C �X5

1.3. X2 C �X6 3.3. X1 C X3 C �X6

2.1. X3 C �.X4 � X5/ 4.1. X4 � X5

2.2. X3 C �X5 4.2. X5

2.3. X3 C �X6 4.3. X6

where � is an arbitrary constant.

4. Solutions of the determining equations

We obtained the condition that for the group classification, one needs to construct solutions of equations (18)–(20), where the
constants are

a1 D x1, a2 D x2, a3 D x3, q3 D x4, q1 D x5, q2 D x6, q4 D �x6.

Here, xi (i D 1, 2, : : : , 7) are coordinates of the generator

X D x1X1 C x2X2 C x3X3 C x4X4 C x5X5 C x6X6

chosen from the optimal system of subalgebras.
Notice that the subalgebra with the generator X3 corresponds to equations with constant coefficients. One can also check that

using equivalence transformation (11) with a corresponding function Nx D  .x/, the generators presented in the optimal system of
subalgebras for � D 0 are reduced to the generator NX3 D @Nx . Hence, we only need to consider the cases where � ¤ 0.

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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4.1. Subalgebra 1.1 with the generator X2 C �.X4 � X5/

In this case, equations (18)–(20) become
2xa0 C 4aC �.bC c/ D 0,

xb0 C 2b � �a D 0,

xc0 C 2c � �a D 0.

(24)

Applying the change

a D x�2 Na, b D x�2 Nb, c D x�2 Nc,

equation (24) is reduced to the equations

2x Na0 C �.NbC Nc/ D 0,

x Nb0 � � Na D 0,

xNc0 � � Na D 0.

(25)

From the last two equations of (25), one finds that Nb D NcC k, where k is a constant. Denoting Nc D Qc � k=2, the remaining equations
of (25) become

x Na0 C � Qc D 0,
xQc0 � � Na D 0.

(26)

Then, from the second equation of (26), one finds

Na D ��1xQc0.

The first equation of (26) becomes

x2 Na00 C x Na0 � �2 Na D 0.

This is the Euler type equation with general solution

Na D k1 sin.� ln x/C k2 cos.� ln x/.

Finally, we obtain

a D
k1 sin.� ln x/C k2 cos.� ln x/

x2
, b D

k � 2k1 cos.� ln x/C 2k2 sin.� ln x/

2x2
,

c D
�k � 2k1 cos.� ln x/C 2k2 sin.� ln x/

2x2
.

We note that this case of equations (10) can be reduced by a point transformation to the equations with arbitrary elements of the
form (4).

4.2. Subalgebra 1.2 with the generator X2 C �X5

Equations (18)–(20) in this case are reduced to

2xa0 C 4a � �c D 0

xb0 C 4bC �a D 0

xc0 C 2c D 0.

(27)

Applying the change

a D x�2 Na, b D x�2 Nb, c D x�2 Nc,

equations (27) become

2x Na0 � �k D 0

x Nb0 C � Na D 0,
(28)

where Nc D k, k is a constant.

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014



T. G. MKHIZE, S. MOYO AND S. V. MELESHKO

From the first equation of (28), we have

Na0 D
�k

2x
.

From the second equation of (28), one obtains

x2 Nb00 C x Nb0 C
�2k

2
D 0 (29)

of which the general solution is

Nb D �
�2k

4
.ln x/2 C k2 ln x C k3.

Finally,

a D
k1 C �k ln x

2x2
, b D

k3 C 4k2 ln x � �2k.ln x/2

4x2
, c D

k

x2
.

We note that this case of equations (10) can be reduced by a point transformation to the equations with arbitrary elements of the
form (5).

4.3. Subalgebra 1.3 with the generator X2 C �X6

Equations (18)–(20) can be expressed in this form

xa0 C 2a D 0

xb0 C .2 � �/b D 0

xc0 C .� C 2/c D 0.

(30)

Solving (30), one obtains

a D
k1

x2
, b D

k2

x2��
, c D

k3

x2C�
.

We note that this case of equations (10) can be reduced by a point transformation to the equations with arbitrary elements of the
form (3).

4.4. Subalgebra 2.1 with the generator X3 C �.X4 � X5/

In this case, we have

2a0 C �.bC c/ D 0

b0 � �a D 0

c0 � �a D 0.

(31)

From equations (31), we get

a00 C �2a D 0. (32)

Then, the solution is

a D k1 sin.�x/C k2 cos.�x/, b D k1�x sin.�x/C k2�x cos.�x/C k,

c D k1�x sin.�x/C k2�x cos.�x/ � k,

where k1 and k2 are constant.
We note that this case of equations (10) can be reduced by a point transformation to the equations with arbitrary elements of the

form (4).

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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4.5. Subalgebra 2.2 with the generator X3 C �X5

We can write equations (18)–(20) as

2a0 � �c D 0

b0 � �a D 0

c0 D 0.

(33)

From (33), we have

b00 D
�2k

2
,

where c D k, k is the constant.

Therefore,

a D
�k

2
x C k1, b D

�2k

4
x2 C k1x C k2,

where k1 and k2 are constant.
We note that this case of equations (10) can be reduced by a point transformation to the equations with arbitrary elements of the

form (5).

4.6. Subalgebra 2.3 with the generator X3 C �X6

From equations (18)–(20), one obtains

a0 D 0

b0 � �b D 0

c0 C �c D 0.

(34)

Therefore, the solutions to (34) are

a D k, b D be�x , c D ke��x .

We note that this case of equations (10) can be reduced by a point transformation to the equations with arbitrary elements of the
form (3).

4.7. Subalgebra 3.1 with the generator X1 C X3 C �.X4 � X5/

In this case, equations (18)–(20) become

2a0.x2 C 1/C 8ax C �.bC c/ D 0

b0.x2 C 1/ � �aC 4bx D 0

c0.x2 C 1/ � �aC 4cx D 0

(35)

where ˛ D ˙1. We solve (35) by applying the change

a D .x2 C 1/�2 Na, b D .x2 C 1/�2 Nb, c D .x2 C 1/�2 Nc,

and thus, we obtain

.x2 C 1/Na0 C
�

2
.NbC Nc/ D 0

.x2 C 1/Nb0 � � Na D 0

.x2 C 1/Nc0 � � Na D 0.

(36)

From equations (36)

Nc D NbC k,

where k is a constant and

.x2 C 1/Na0 C
�

2
.2NbC k/ D 0.

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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Therefore,

Nb0 D
� Na

x2 C 1
.

Hence,

.x2 C 1/2 Na00 C 2x.x2 C 1/Na0 C �2 Na D 0 (37)

and equation (37) is reduced to

d2 Na

dNx2
C �2 Na D 0

with solution

Na D k1 cos.� arctan x/C k2 sin.� arctan x/.

Therefore,

a D .x2 C 1/�2 .k1 cos.� arctan x/C k2 sin.� arctan x// ,

b D .x2 C 1/�2 .2k1 sin.� arctan x/ � 2k2 cos.� arctan x/C k/ ,

c D .x2 C 1/�2 .2k1 sin.� arctan x/ � 2k2 cos.� arctan x/ � k/ .

We note that this case of equations (10) can be reduced by a point transformation to the equations with arbitrary elements of the
form (4).

4.8. Subalgebra 3.2 with the generator X1 C X3 C �X5

In this case, equations (18)–(20) become

2a0.x2 C 1/C 8ax � �c D 0,

b0.x2 C 1/C 4bx C �a D 0,

c0.x2 C 1/C 4cx D 0.

(38)

Applying the change

a D .x2 C 1/�2 Na, b D .x2 C 1/�2 Nb, c D .x2 C 1/�2 Nc,

equations (38) are reduced to the equations

.x2 C 1/Na0 �
�

2
k D 0,

.x2 C 1/Nb0 C � Na D 0,
(39)

where Nc D k, k is a constant. From the first equation of (39)

Na0 D
�k

2.x2 C 1/

or

a D
�k arctan x C k1

.x2 C 1/2
,

and the second equation of (39) becomes

Nb0 D ��

�
k1 C

�k

2
Nx

�
, (40)

where Nx D arctan x. The solution of this equation is

Nb D �
�2k

4
.arctan x/2 � �k1 arctan x C k2.
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Finally,

a D
�k arctan x C k1

2.x2 C 1/2
, b D �

�2k.arctan x/2 C 4�k1 arctan x C k2

4.x2 C 1/2
, c D

k

.x2 C 1/2
.

We note that this case of equations (10) can be reduced by a point transformation to the equations with arbitrary elements of the
form (5).

4.9. Subalgebra 3.3 with the generator X1 C X3 C �X6

In this case, equations (18)–(20) become

a0.x2 C 1/C 4ax D 0,

b0.x2 C 1/C b.4x � �/ D 0,

c0.x2 C 1/C c.4x C �/ D 0.

The general solution of equations (41) is

a D
k1

.x2 C 1/2
, b D

k2

.x2 C 1/2
e� arctan x , c D

k3

.x2 C 1/2
e�� arctan x .

We note that this case of equations (10) can be reduced by a point transformation to the equations with arbitrary elements of the
form (3).

4.10. Subalgebra 4.1 with the generator X4 � X5

In this case, we solve equations (18)–(20) to obtain

a D 0, b D �c.

This case of equations of (10) with c0 ¤ 0 belongs to the class of equations of the form (6).

4.11. Subalgebra 4.2 with the generator X5

In this case, we solve equations (18)–(20) to obtain

a D 0, c D 0.

In this case, the second equation of (10) is reduced to the free particle equation. This case is excluded from our consideration.

4.12. Subalgebra 4.3 with the generator X5

In this case, we solve equations (18)–(20) to obtain

b D 0, c D 0.

This case is also excluded from our consideration.

5. Discussion on solving the determining equations

We note that the linear combination, where equation (18) is multiplied by q2 � q4, equation (19) is multiplied by q3, and equation (20)
is multiplied by q1 gives the integral

.h�2/0 D 0,

where h D .q2 � q4/aC q3bC q1c. In particular, for � ¤ 0, this gives

.q2 � q4/aC q3bC q1c D k��2,

where k is constant. Moreover, in this case, the change

Nx D '.x/, Na��2, b D Nb��2, c D Nc��2,
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where 2'0� D 1 reduces equations (18)–(20) to the simpler form

d Na

dNx
C Nbq3 � Ncq1 D 0,

d Nb

dNx
C 2.Naq1 � Nbq2/ D 0,

dNc

dNx
� 2.Naq3 � q2 Nc/ D 0.

The latter system can be rewritten in the matrix form

d

dNx
NAC NAH � H NA D 0,

where

NA D

�
Na Nb
Nc �Na

�
, H D

�
q2 q1

q3 �q2

�
.

The general solution of the matrix equation is [23]

NA D eNxHA0e�NxH,

where the matrix

A0 D

�
a0 b0

c0 �a0

�

is a matrix with arbitrary constant entries a0, b0 and c0. The following three particular cases of the matrix H are used earlier:

H1 D

�
0 �1
1 0

�
, H2 D

�
0 1
0 0

�
, H3 D

�
1 0
0 �1

�
.

For these matrices, their corresponding exponential matrices esHi are

esH1 D E C sH1 �
s2

2Š
E �

s3

3Š
H1 C � � � D cos.s/E C sin.s/H1,

esH2 D E C sH2, esH3 D

�
es 0
0 e�s

�
.

Notice also that for � D 0 the matrix H D 0, which means that the matrix NA is constant.

6. Algebras of dimensions n � 2

Assuming that in the admitted n � 2 dimensional Lie algebra there exists one generator such that � D 0, one finds that this generator
has to be X4�X5 and the system is with a D 0 and c D �b ¤ 0. Substituting these values into (18)–(20), one finds that other generators
can be written in the form

x1X1 C x2X2 C x3X3,
�

x2
1 C x2

2 C x2
3 ¤ 0

�
.

As shown earlier, systems (10) admitting such generators are equivalent to a system with constant coefficients.
Assuming that in the admitted Lie algebra there are two linearly independent generators with � ¤ 0, one can conclude that a set of

basis generators contains the generators

X2 C x4X4 C x5X5 C x6X6, X3 C k.y4X4 C y5X5 C y6X6/,

where k is some constant chosen for simplicity as will be explained further. Notice also that because for k D 0 the matrix A is constant,
one has to assume that k ¤ 0.
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Substituting the coefficients of the second generator into system (18)–(20), where the coefficients y4, y5 and y6 are chosen from the
optimal system (23), one finds the derivatives a0, b0 and c0. After the next substitution of the coefficients of the first generator into
system (18)–(20), from equation (18) we obtain

a D f1bC f2c,

where fi.x/ are some functions. The remaining equations (18)–(20) compose a system of two algebraic linear homogeneous equations
with respect to b and c. If the determinant of this system �.x/ is not equal to zero, then b D 0, c D 0 and a D 0. Hence, one needs to
study the case where �.x/ D 0. Because �.x/ is a polynomial with respect to x, one can split it. The splitting leads to the case where
k D 0.

Thus, there are no systems of equations (10), admitting more than one nontrivial generator, which are not equivalent to a
constant-coefficient system (1).

7. Conclusion

We have given a complete group classification of the general case of linear systems of two second-order ordinary differential equations
excluding the systems which are equivalent to systems of the type (1) and the degenerate case (2) using the algebraic approach. We
were able to apply the algebraic approach because the study is reduced to the analysis of relations between constants. The cause of
this possibility is the property tr A D 0. This condition led us to the equation �.3/ D 0. A complete group classification of the general
case is obtained. The delineated list obtained further shows that the problem of classification of systems of two linear second-order
ordinary differential equations using the algebraic approach leads to the study of a variety of cases, and this approach can be used
as an effective tool to study the group classification of the type of systems studied here. This adds to the body of knowledge in the
literature on this subject including the recent results in [2].
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