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ABSTRACT 

Detecting and minimising distortion in audio signals is an important aspect of 

sound engineering.  Distortion of a signal passing through an audio system 

may be caused by a number of factors and it is necessary to detect these 

effects for optimal sound. The problem is of interest to users and operators of 

high quality audio equipment and transmission facilities.  

 

The objective of this thesis was the development of techniques for the blind 

identification of distortion in a high quality audio signal using digital signal 

processing techniques. The techniques developed are based on digital signal 

processing techniques and statistical analysis of a recorded audio signal, 

which is treated as a random, non-stationary signal. 

 

It has been demonstrated that the following distortions and properties of high 

quality audio signals can be identified using blind techniques: 

a) mechanical defects in recording and playback apparatus leading to wow 

and flutter in the audio signal , 

b) frequency content and dynamic range attributes of the audio signal, and 

c) non-linear distortion of the audio signal. 
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GLOSSARY OF TERMS, ACRONYMS AND NOTATION 

TERMINOLOGY 

Audio signal  Electrical signal representing an audible sound 

Impairment   An audible distortion 

Distortion   A change to the audio signal envelope 

Codec Encoder-decoder: Equipment used to convert an 

analogue signal to a digital signal (and vice versa), 

while removing redundancy to limit the required 

transmission bandwidth.  

Wow Distortion caused by low frequency (<10 Hz) 

speed variations in the playback or recording 

apparutus. 

Flutter Distortion caused by high frequency (10 Hz to 100 

Hz) speed variations in playback or recording 

apparatus 

ACRONYMS 
CSAD    Cumulative spectral amplitude distribution 

DFT    Discrete Fourier transform 

FFT    Fast Fourier transform 

pdf    Probability density function 

 

NOTATION 
x(t)    Time domain input signal to a system 

X(f)    Frequency domain input signal to a system 

y(t)    Time domain output signal from a system 
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CHAPTER 1 

 

INTRODUCTION 

 

1.0 The aim of the research 

Within a broadcast studio facility, an audio transmission network or any similar system 

for the recording, transmission or production of audio signals, control of audio signal 

quality, i.e. maintaining the listener‘s perception that the signal is not impaired in any 

way, is usually done by ensuring that the sound production and transmission 

equipment operates within acceptable limits. This is achieved through a program of 

preventative maintenance. In a situation where the equipment is in use 24 hours a day 

preventative maintenance means having duplicate equipment available, adding to the 

cost of running a facility. 

 

This research aims to develop techniques whereby the presence of distortion in a high 

quality audio signal can be detected through the use of blind (or equivalently non-

intrusive) digital signal processing techniques. Such techniques will enable the 

operator of a broadcast facility to continuously, electronically monitor the quality of the 

audio signal produced in the facility and to take remedial steps should the quality be 

compromised. In other words the purpose of this research is to investigate the 

possibility of creating techniques, which could mimic the performance of a human 

listener in the evaluation of the quality of an audio signal. In a different context Scheirer 

[Scheirer, 1998] in his PhD proposal summarized the problem of machine perception 

as follows:‘ Consider a musically unskilled listener turning on a radio and hearing five 

seconds of sound from the middle of a previously unheard piece of music. I want to 

build a computer system that can make the same judgements about this piece of music 

as a human listener can.‘ Scheirer‘s emphasis was on the ‗discovery of musical-object-

formation heuristics, the analysis of musical-object similarity‘ and on ‗musical pattern 

recognition systems‘. The objective of this research is to identify distortion in an audio 

signal. 
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Impairments are those changes (distortions) to an audio signal, which create a 

subjectively observable change. In other words, an impairment is a signal distortion 

that can be perceived by a human listener. An impairment may affect the amplitude, 

phase or spectral content of the signal. Distortion, while it may be quantifiable through 

measurement, is not of concern to a human listener unless the listener can perceive 

the distortion as an impairment to the sound. In this text a distinction will be made 

between an impairment, a distortion which can be perceived by a human listener and a 

distortion which may change a signal in some way but which is not necessarily 

recognized as such by a human listener. 

 

A distortion can be measured using test and measurement techniques, an impairment 

cannot be measured, it is a subjective assessment made by a human listener. The 

objective distortion measurement and the subjective impairment are related through 

extensive listening tests to determine what level of distortion is acceptable in terms of 

the observed impairment. A lower limit of distortion is then established which will result 

in acceptable performance. 

 

A distortion, resulting from equipment malfunction, and the resulting impairment in an 

audio signal will be detected by a listener who will set in motion the procedures for 

correcting the malfunction. Preventative maintenance in a sound recording studio or 

broadcast production studio is aimed at preventing equipment malfunctioning and 

maintaining an impairment free signal.  

 

Blind signal processing, as used in this text, also referred to as non-intrusive 

assessment [Picovici and Mahdi, 2003], refers to situations where information about a 

system is derived from the signal at the output of the system without access to a 

reference signal, for example the reference may be the signal at the input to the 

system. In that sense this work reports on blind identification of distortion in analogue 

audio signals.  
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The problem of blind assessment of signal quality has been the subject of research in 

the speech communications community [Picovici and Mahdi, 2003].  

 

1.1 Delimitations 

The emphasis in this research is not on determining equipment malfunction, but on 

determining whether the signal has been distorted. Clearly equipment malfunction may 

lead to distortion, but inappropriate use of perfectly sound equipment may also lead to 

distortion, e.g. overdriving an amplifier. If the distortion can be detected then steps can 

be taken to trace the source of the distortion. 

 

Where possible the magnitude of the distortion that has been detected will be related 

to that which would be obtained using standard measurement procedures. This is not 

always possible. In some cases standard measurement procedures do not exist, e.g. 

for the dynamic range of a signal, or the standard procedures are limited in scope, e.g. 

the amount of non-linear distortion depends on the input signal level. Standard 

measurements of non-linear distortion are done under set conditions of input signal 

level.  

 

Relating the distortions that are detected to impairments, which can be heard by a 

human listener, requires that listening tests be carried out. This is outside the scope of 

this research. This research aims to develop techniques for the detection of distortion. 

Since the techniques are applicable to actual audio signals and not to deterministic 

signals it is not always possible to relate the detected distortion quantitatively to a 

measurement. The only measurement that can be carried out on an actual audio signal 

is a listening test where the listener will venture an opinion as to whether the distortion 

is an audible impairment to the signal. 

 

1.2 Application of the research 

 “In a competitive telecommunications market where price differentials have been  

minimized, quality of service has become very important”.  [Picovici and Mahdi, 

undated].  
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This comment is also applicable to radio broadcasting, audio recording and audio 

transmission systems. The quality of the audio signal has to be determined in a way 

that does not involve taking equipment out of service unnecessarily. This can be 

achieved through non-intrusive quality assessment, i.e. assessment of the quality of 

the signal directly from the signal itself.  

 

1.3 The  background to the research project 

Some distortion mechanisms give rise to impairments which are readily observable 

while others are less easily detected by a human observer. Conventional measurement 

techniques have been designed to control the amount of those distortions that are 

most troublesome and the distortions that do not give rise to readily observable 

impairments are not part of routine measurements. 

 

In Chapter 2 signal distortion is discussed in detail. The concept of linear and non-

linear distortion is explained, as is the difference between these two sources of 

distortion. Both types of distortion give rise to changes in the shape of the signal. 

Linear distortion leads to differential time delay and differential amplification of the 

spectral components that make up the signal. Non-linear distortion on the other hand 

results from differential changes in the amplitude of the signal dependent on the signal 

amplitude. 

 

Linear distortion leading to differential time delay, i.e. non-linear phase vs frequency 

response, does not necessarily give rise to an audible impairment in a real audio signal 

[Hartmann, 1998; Koya, undated.; Preiss, 1982].  

 

Linear distortion arising from differential amplification of frequency components, i.e. the 

amplitude vs frequency response of a system is not constant, results in changes to a 

signal that are readily audible to a listener. Such changes may be introduced to create 

a particular ‗sound‘, for example audio signals with different high frequency content are 

described in subjective terms such as: ―bright‖, ―flat‖, ―dull‖. 
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Distortion arising from mechanical imperfections in recording and playback apparatus, 

known as wow and flutter, may not be very relevant in a post analogue age. However 

many recordings made on analogue equipment exist and these are still in demand by 

the public. Detection of the presence of wow and flutter distortion is therefore still 

relevant. 

 

Dynamic range is one of the properties of an audio signal that is much used or abused 

but which is not measured. The relevance of dynamic range to sound quality is 

discussed. 

 

Chapter 3 addresses the topic of psychoacoustics and how it relates to the perception 

of audio signals. Loudness perception, pitch perception and spectro-temporal masking 

effects are described.  

 

Consonance and dissonance are important aspects of the human auditory system in 

terms of the perception of distortion as being something that sounds ‗unpleasant‘. An 

overview of these effects forms part of Chapter 3. 

 

Chapter 4 deals with the way audio signal distortion is conventionally measured, i.e. 

through stimulus response testing. The background to conventional audio quality 

measurements and their relationship to the subjective perception of audio quality is 

discussed. Conventional quality measurements are structured according to a 

preventative maintenance paradigm. Equipment is regularly taken out of service and 

after performance measurements on the equipment, using standardized test signals, 

the necessary adjustments are made and the equipment is put back in service. Due to 

the competitive nature of telecommunications services this approach may not be the 

most appropriate and hence blind assessment of quality has become the focus of 

research [Picovici and Mahdi: 2003; Jin and Kubichek: 1996; Gray et al: 2000] 
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Four approaches to quality determination of audio signals are mentioned and three are 

discussed in more detail: 

 

a) Conventional stimulus-response approaches to controlling the quality of audio 

signals [Hueber et al, 1976; King, 1979;  Kuni, 1997; Leinonen et al, 1977 ] 

 

Conventional testing makes use of well defined test signals which are applied to 

the system under test. The output of the system is then analysed to quantify the 

change that has occurred to the test signal. This change is related to a 

subjective impression of impairment through limits that have been set for the 

particular test. 

System Under

Test

Quantify Changes

in Test Signal

Comparison of

Objective Test to

Subjective

Perception

Input

Test

Signal

Output: Changed Test

Signal

 

Figure 1.1: Conventional stimulus-response testing 

 

b) Modeling of the human auditory system [Beerends, 1998; Beerends & 

Stemerdink, 1992; Hollier et al, 1995; Robinson and Hawksford, 1999; Yang et 

al: 1997; Yang et al: 1998 ]. 

 

In testing based on a model of the human auditory system the input test signal 

to the system is an audio signal that has been mapped to a perceptual 



  7 

dimension. The output signal is mapped to the same perceptual dimension and 

the differences are evaluated in terms of their audibility. 

 

Figure 1.2: Perceptual model based testing 

 

c) Coherence testing [Kates, 1992; Totzek & Preiss, 1987]. 

In coherence testing the input signal can be the actual audio signal. This means 

that the stimulus is authentic and the results relate to real service conditions. 

System Under

Test

Find

Crosscorrelation

Input

Test

Signal

Output: Changed Test

Signal

Find FFT and

Coherence

Extract Objective

Result

 

 

Figure 1.3: Coherence testing 

System

under test
Perceptual

model

Perceptual

model

“Distortion”

Input
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d) Automated testing 

This is not considered as a topic on its own since automated testing is based on one of 

the methodologies discussed above in (a), (b) and (c). Automated testing is done 

largely without the intervention of a human operator. 

 

1.4 Overview of the research 

The first of the techniques developed through this research relates to the detection of 

distortion resulting from imperfections in recording and playback apparatus, colloquially 

known as ‗wow and flutter‘. Chapter 5 is devoted to theoretical analysis of the distortion 

caused by mechanical imperfections in apparatus and results obtained in blind 

detection of this distortion. A technique for the detection of ‗wow and flutter‘ distortion, 

based on the autocorrelation of the distorted audio signal was developed and 

publicised. 

 

Frequency content and dynamic range and their influence in determining the perceived 

quality of a signal are discussed in Chapter 6. A method for determining the frequency 

content, and the dynamic range as a function of frequency, is described. This method 

is given the name CSAD (Cumulative Spectral Amplitude Distribution). 

 

In Chapter 7 the problem of the identification of non-linear distortion in an audio signal 

is addressed. Since the audio signal is frequently generated by non-linear systems, 

e.g. musical instruments, conventional means, like higher order spectral analysis 

[Hinich & Patterson, 1995; Brillinger & Irizarry, 1998], as applied to the identification of 

non-linearity in time series could not be used. A method based on pattern recognition 

using neural networks was developed and publicised. 

 

The techniques developed are in the engineering domain rather than in the 

psychoacoustic domain. As such they address things like ‗wow and flutter‘, dynamic 

range, frequency content and non-linear distortion rather than their perceptual 

equivalents.  
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CHAPTER 2 

 

AUDIO SIGNAL DISTORTION 

 

2.0  Background 

The term ‗distortion‘ as used here refers to a change in the shape (waveform envelope) 

of an audio signal as it passes through an audio processing system, i.e. a recording or 

sound production facility or a transmission system. (A transmission system can be 

anything from a single amplifier to a 1000 km fibre optic link.) 

 

The signal of concern here is an audio signal, i.e. sound that has been transformed 

into an electrical signal. The audio signal is intended for use by human listeners and 

they will perceive a distortion in the audio signal as an impairment to the sound that 

they are hearing. Not all distortions are the causes of audible impairments. 

 

Distortion may result from a system that is linear or one that is non-linear. 

 

Distortion measurements relate a subjective effect to an objective measurement. Most 

distortion measurements are done using deterministic test signals, this is problematic 

since an audio signal is not deterministic, it is complex, occupies a wide frequency 

range and a wide dynamic range and it is not a stationary signal. Ideally distortion 

measurements should be done using an audio signal, or a signal that is comparable to 

an audio signal, and impairments should then be identified through listening tests on 

the audio signal. 

 

2.1 Linear Distortion 

Linear distortion changes the amplitude and/or phase relationships between the 

frequency components of the signal, so that the shape (waveform envelope) of the 

signal is changed [Preiss, 1976, Preiss, 1982]. Linear distortion is not signal amplitude 

dependent. It is a function of the amplitude and phase relationship of the spectral 

components of the signal. If the phase and amplitude of the output signal components 
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have changed relative to the relationships that existed at the input to the system, then 

the signal has been distorted. The same components will be present at both the input 

and the output. Referring to Figure 2.1, for distortionless transmission it is required 

that: 

 

)Tt(kx)t(y  (2.1) 

 

Where: 

y(t) is the output signal from the system  

x(t) is the input signal to the system  

k is a constant amplification factor  

T is a constant time delay. 

This will ensure that the output waveform is a copy of the input waveform with a 

possible time delay and a possible change in amplitude. 

 

 

 

 

 

 

 

 Figure 2.1: Signal transmission 

 

In the frequency domain the relationship for distortionless transmission will be the 

Fourier transform of equation 2.1. 

 

fT2j

ft2j

e)f(kX

dte)t(y)f(Y
 (2.2) 

 

Where: 

Input,

x(t)
Transmission

System

Output,

y(t)

 



  11 

X(f) is the Fourier transform of x(t), the input signal. 

 

Since )f()f(X)f(X , the output spectrum will be: 

 

)fT2)f(()f(Xk)f(Y  (2.3) 

 

The signal will therefore be distorted if either or both of the following happen in passing 

through the system: 

a) The constant, k, in equation 2.3 is not a constant but is a function of frequency. 

b) The constant delay, T, in equation 2.3 is not a constant but is a function of 

frequency. 

 

Both of these conditions commonly occur in transmission equipment. To cite one 

example, all signals are band limited by the frequency response of the equipment used 

in a transmission system. This implies that the frequency transfer function does not 

have an amplification that is constant across all frequencies, but that it is constant up 

to a certain limit and for frequencies higher than that limit the amplification will 

decrease. 

 

The program managers of broadcast programs may also use specialised equipment to 

modify the audio signal to achieve a desired ‗sound‘ for their programme. The 

modification could involve compression [Katz, undated] to increase the apparent 

loudness, or the boosting of high frequencies to achieve a ‗bright‘ sound and so on. 

These modifications are distortions since the original waveform has been modified, 

however the listener may not necessarily classify the distortion as an impairment. 

 

2.1.1 Measuring linear distortion 

Linear distortion is measured through swept frequency or spot frequency 

measurements of the system amplitude versus frequency and phase versus frequency 

transfer characteristics. An input signal with amplitude within the known linear 

operating range of the system is applied. The input signal will be a single frequency 
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sinusoid. The input and output signals‘ amplitude and phase are measured and 

displayed as a graph of amplitude or phase versus frequency, over the range of 

frequencies of interest.  

 

The amplitude vs. frequency and phase vs. frequency transfer characteristics are then 

compared to the desired constant amplitude vs. frequency and linear phase vs, 

frequency characteristics of a distortionless system. The system is then rated as 

‗acceptable‘ or ‗unacceptable‘ based on comparison with a norm established through 

subjective evaluation of the perception of the signal as being impaired or not. 

 

2.2 Non-Linear Distortion 

Non-linear distortion is signal amplitude dependent. This means that the amplification 

factor in equation 2.1 is not constant for all signal amplitudes. The amplification is often 

lower for high level input signals than for low level input signals due to amplifier 

saturation. Non-linear distortion results in the generation of new signal frequency 

components that add to the existing components resulting in a change in the signal 

envelope. ―Non-linear distortion changes the frequency content of the input signal such 

that energy is transferred from one frequency at the input to more than one frequency 

at the output.‖ [Temme, undated] 

 

Harmonic distortion may or may not be experienced as an impairment to the audio 

signal due to the psychoacoustics of human hearing. Short duration distortion may not 

be audible, low frequency distortion is less objectionable than distortion at high 

frequencies, even harmonic distortion may under certain circumstances even be 

pleasing to a human listener [Temme, undated]. 

 

2.2.1 Measuring non-linear distortion 

Distortion is a relative measurement. It is expressed as a percentage of the power in 

the harmonic components compared to the power in the fundamental plus the 

harmonics. This is known a Total Harmonic Distortion (THD) [Temme, undated]. 
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 (2.4) 

 

Where:  

H1 is the amplitude of the fundamental. 

HN is the amplitude of the Nth harmonic. 

 

This is the method used in commercial distortion analysers. This method will give an 

accurate enough reading where the distortion is small, say, less than 10%, which 

would be the case in audio equipment. This method is a measurement of the ratio of 

distortion to signal plus distortion.  

 

The correct method of measuring harmonic distortion compares the distortion products 

to the input signal, it is thus described as follows [ITT, 1973]: 

 

100X
H

HHH
THD%

2

1

2

N

2

3

2

2 
 (2.5) 

 

In this method the input signal amplitude has to be accurately set otherwise the 

measurements will give erroneous results.  

 

2.3 Wow and Flutter 

2.3.1 Description  

Wow and flutter is the term used for frequency variations in recorded audio signals, 

caused by speed variations in the transport mechanism of the recording or playback 

medium. The frequency variations give rise to pitch (subjective perception of 

frequency) variations, which are readily observed by a human listener. These 

frequency variations can be compared to Doppler shift in a signal transmitted from a 

moving object. 
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In an audio tape recorder the magnetic tape is pulled past the recording or playback 

head through the combined action of the capstan and the pinch roller. The capstan is a 

small diameter steel shaft and the pinch roller is a larger diameter rubber wheel. The 

tape is pinched between these two and the rotation of the capstan moves the tape. Any 

variations in the speed of rotation of the capstan causes speed variations in the tape.  

 

The capstan speed of rotation can be affected by dirt, worn bearings, misalignment of 

the axis of the capstan and so on. 

 

Irregularities in the capstan cause high frequency speed variations, known as flutter, 

and irregularities in the pinch roller cause low frequency speed variations, known as 

wow. The speed variations translate into frequency variations in the audio signal (See 

Chapter 5). 

 

Similar distortion effects are present in the mechanism which rotates a vinyl record 

past the playback head. 

 

The audibility of wow and flutter distortion will depend on the peak frequency deviation 

and the frequency of the deviation (Zwicker and Fastl, 1990). The greater the 

frequency deviation caused by the irregularity the more noticeable the distortion. 

Irregularities causing a deviation at a frequency around 4 Hz are most disturbing. 

 

Digital audio codecs based on perceptual coding techniques may introduce distortion 

similar to wow and flutter (Shlien and Soulodre, 1996). 

 

2.3.2 Measuring wow and flutter 

Wow and flutter in analogue recordings is measured using standard pre-recorded 

tapes or vinyl records. A sine wave of standard frequency is recorded on the tape or 

record and the frequency deviation is measured on playback. The deviation from the 

standard frequency is expressed as a percentage, and this is then the measure of wow 

and flutter [AES, 1982]. For example if the recorded signal is a 3 kHz sine wave and it 
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is found to vary between 2994 Hz and 3006 Hz then the wow and flutter distortion 

would be 0.2 %.  

 

 

 

2.3.3 Current relevance of wow and flutter distortion 

Wow and flutter is a distortion that has largely disappeared with digital recording 

techniques, however worldwide sales of vinyl long playing records (LPs) still matches 

sales of compact discs (Mock, 2004), and there are numerous analogue recordings 

which are being re-mastered into digital format. In the process of re-mastering wow 

and flutter is one of the distortions that need to be identified and corrected. 

 

 Research into this problem is ongoing as is clear from the program of the AES 117th 

Convention (Thursday, October 28 until Sunday, October 31, 2004. Moscone 

Convention Centre, San Francisco, CA, USA) where the following two papers will be 

presented: 

 

1 Wow and Flutter Compensation Employing Spectral Processing of Audio—

Andrzej Czyzewski, Przemyslaw Maziewski, Marek Dziubinski, Andrzej Kaczmarek, 

Bozena Kostek, Gdansk University of Technology, Gdansk, Poland. 

 

2 Correction of Wow and Flutter Effects in Analog Tape Transfers—Jamie 

Howarth, Plangent Processes, Nantucket, MA, USA; Patrick Wolfe, University of 

Cambridge, Cambridge, UK. 

 

Compensation/correction of wow and flutter in recordings is a time intensive process 

and it would be beneficial to have a simple technique for the identification of those 

recordings that require correction. 
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2.4 Dynamic Range 

2.4.1 Description 

Audio signal dynamic range is defined as: 

the difference in loudness between the loudest peak and the "noise floor" of your 

equipment [Graham, undated]. 

We could also define audio signal dynamic range without reference to the inherent 

capabilities of the equipment involved by referring to dynamic range as:  

The difference between the loudest and quietest sounds in a recording, or in a live 

performance, or the difference between the highest and lowest amplitude signals in a 

recording. 

The dynamic range of the human ear is approximately 120 dB if taken as the range 

between the threshold of hearing and the threshold of pain. Musical instruments have a 

dynamic range, which is much smaller as shown in the following table [Rossing et al, 

2002]. 

 

Instrument Maximum Dynamic 

Range (dB) 

Violin 40 

String Bass 30 

Recorder 10 

Flute 30 

Clarinet 45 

Bassoon 40 

Trombone 38 

 

Table 2.1: Maximum dynamic range of musical instruments 
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The dynamic range of individual instruments does not give an indication of the dynamic 

range of an orchestral performance or of a combination of instruments. One instrument 

may occupy the lower part of the useable dynamic range of the human listener while 

another may produce a sound almost at the threshold of pain. 

 

The dynamic range of classical music is generally much wider than that of popular 

music. The useable dynamic range will depend on the listening situation. Ambient 

noise in high-density city housing will reduce the useful dynamic range compared to a 

concert hall or a recording studio. Fletcher [Fletcher, 1942] estimated the required 

dynamic range to be 100 dB in a residential listening environment. Fletcher‘s work is 

unlikely to yield the same results today as the environmental noise levels in residential 

areas have increased substantially. 

 

Fielder [Fielder, undated] proposes a dynamic range of 109 dB under professional 

playback circumstances.  

  

The dynamic range of an audio signal cannot be divorced from the practice of 

compression. Compression is done in two ways: 

1) Reduction of audio dynamic range, so that the louder passages are made 

softer, or the softer passages are made louder, or both. Examples include the 

limiters used in broadcasting, or the compressor/limiters used in recording 

studios. (Katz, 2003) 

2) Digital Coding systems which employ data rate reduction, so that the bit rate 

(measured in kilobits per second) is less. Examples include the MPEG (MP3) or 

Dolby AC-3 (now called Dolby Digital) systems. (Katz, 2003) 

 

The reduction of audio dynamic range is of interest but data rate reduction is not of 

interest here.  
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Dynamic range reduction is a method employed by broadcast program managers to 

increase the apparent loudness of their programs and by the music industry to achieve 

the same ends [Graham, undated; Katz., 2003; Carroll, undated].  

 

Audio equipment displays sound levels through the use of VU (Volume Units) or PPM 

(Peak Program Meters) meters to allow control of sound levels. These meters do not 

measure loudness and are more useful in controlling the peak deviation of an FM 

transmitter. Audio signals with widely differing dynamic ranges may give the same 

readings on a PPM meter but to a listener there will be an appreciable difference in 

loudness. To overcome this broadcasters and the recording industry make use of 

dynamic range processors to reduce the range between the loudest and softest 

sounds. 

 

Current dynamic range control equipment make use of multi-band processing [Octiv, 

1999]. This avoids the problem of ‗breathing‘ where, for example, recording a drum and 

flute together results in changes in loudness for the flute every time the drum is played, 

or where background noise is increased in level whenever there is no other signal 

present. 

 

2.4.2 Measuring dynamic range 

Dynamic range measurements most often refer to the first definition in section 2.4 

above, using the noise floor as an indication of the lower amplitude that can be used in 

a signal and the onset of non-linear distortion as an indication of the higher limit. This 

definition restricts itself to the dynamic range of the equipment (system) and does not 

consider the dynamic range of the signal. 

 

Measuring the dynamic range of the equipment is readily accomplished once the limits 

have been defined for the onset of non-linear distortion as the upper limit, e.g. 1% 

THD. This form of dynamic range measurement gives an indication of what can be 

achieved but does not say anything about what has been achieved. The measurement 

indicates what the equipment is capable of but does not measure how the dynamic 
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range of the equipment has been utilised by the signal passing through. In audio signal 

processing the dynamic range of the signal is most important from the perspective of 

the human listener.  

 

When the dynamic range of an audio signal has been changed it could be said that the 

signal has been distorted. With current dynamic range compressors the distortion is 

unlikely to be such that it exceeds the allowable limits of, say, non-linear distortion. If a 

human listener were to listen to the signal before and after compression they may not 

be able to observe a difference between the two signals, an expert listener however 

would detect the difference.  

 

 

2.5 Summary 

Four types of distortion that affect audio signals have been discussed and the 

techniques used to measure these distortions have been explained. It is clear that not 

all measurable distortions give rise to observable impairments to the sound as 

perceived by a human listener. Some types of distortion may in fact be used by sound 

engineers to achieve a particular ‗sound‘. The most common process being the use of 

compression to increase the loudness of the signal. 

 

The measurement techniques mentioned here are standard techniques. Their use is in 

ensuring that the equipment used in sound recording, playback and transmission does 

not cause objectionable impairment to the signal. All of these techniques are based on 

the ‗stimulus-response‘ paradigm. 
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CHAPTER 3 

 

THE PSYCHOACOUSTICS OF HUMAN HEARING 

 

3.0  Introduction 

Psychoacoustics is the study of the relationship between the physical properties of a 

sound and the hearing sensations evoked in a human listener. Of interest are the 

relationships between what can be physically measured and the human perception of 

that physical quantity and how the human auditory system reacts to particular 

combinations of sounds. Aspects that will be discussed are: 

 

a) frequency in Hz and the sensation of frequency denoted by pitch,  

b) signal amplitude or sound intensity and the sensation of loudness,  

c) the spectro-temporal masking effects of spectrally or temporally proximate 

signals, and 

d) the concept of consonance and dissonance. 

 

The human auditory system can be described as follows [Gold & Morgan, 2000]: 

a) The outer ear terminates at the eardrum and affects the acoustics of sounds 

reaching the ear from the outside. 

b) The middle ear performs mechanical impedance transformation, from the malleus 

(driven by the eardrum) to the stapes (driving the inner ear fluids). 

c) The basilar membrane acts like a bank of mechanical tuned circuits, with 

resonances over the range of auditory signals. 

d) Motion of the basilar membrane is transmitted to the stereocilia of the hair cells and 

this leads to the firing of peripheral auditory neurons. 

e) Auditory nerves adapt to a stimulus. At first they will spike vigorously in response to 

a new stimulus then they will settle to a steady state as the stimulus is maintained. 

f) Each auditory nerve has a characteristic frequency, which is a function of its place on 

the basilar membrane. 
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g) Various non-linearity‘s exist in the auditory system leading to effects such as limited 

dynamic range of a nerve, masking effects and combination tones. 

 

The response of the human auditory system is not linearly related to the external 

stimulus. If the intensity of a pure tone is doubled the human listener does not perceive 

it to be twice as loud, if the frequency of a pure tone is doubled the human listener 

does not perceive that the pitch has doubled. The same applies to the perception of 

the duration of a tone. 

 

The subjective perception of a stimulus is affected by other parameters. For example, 

the perceived frequency (known as the pitch) will be affected by the intensity and the 

spectral content of the stimulus 

 

The auditory system behaves as though it is made up of a bank of filters. The centre 

frequencies of the filters being the characteristic frequencies of the auditory neurons. 

The filter bandwidth changes with frequency, filters with higher centre frequency have 

larger bandwidth. At frequencies above 1 kHz the filters appear like ¼ octave filters. 

 

The filter model of hearing gives rise to the concept of critical bandwidths. Within the 

critical bandwidth components interact leading to masking, loudness summation 

consonance and dissonance. 

 

3.1  Perception of sound intensity, loudness 

Loudness is defined as the subjective intensity of a sound [Verhey, 1999]. A subjective 

measure of loudness is the sone [Gold & Morgan, 2000]. The relationship between the 

sound pressure, p, and the loudness in sones, S, is given by: 

 

 6,0pS  

 

A sone value of one is set to be the loudness of a 1kHz tone at an intensity of 40 

dBSPL. Since intensity is proportional to the square of pressure: 
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 3,0IS  

 

Sounds at the same sound pressure level (dBSPL) but at different frequencies do not 

sound equally loud. Equal loudness contours (loudness in phons) show that sounds at 

4 kHz are loudest, i.e. the curves have their lowest point on an equal loudness contour 

at a frequency of 4 kHz. Equal loudness contours do not have the same shape, at 

higher sound pressure levels they tend to be flatter than at low sound pressure levels 

and the perceived loudness of tones at different frequencies shows less variation at 

high intensity than at low intensity. 

 

Loudness summation is an effect involving the critical bands. A signal will sound louder 

if its bandwidth extends over more than one critical band, this indicates that the output 

from the different critical bands is summed [Verhey, 1999]. 

 

3.2  Perception of sound frequency, pitch and timbre 

Pitch is the frequency perception of a pure tone, ―Pitch is the feature of a sound by 

which listeners can arrange sounds on a scale from ‗lowest‘ to highest‘.‖ [Scheirer, 

2000]. This is the common definition of pitch, but as Terhardt [Terhardt, 2000] says, ― 

… pitch is an auditory attribute not only of single, isolated tones, but also of tones that 

are accompanied by additional sound, and also of multiple simultaneous tones 

(sounds).‖ In our daily lives we do not encounter many situations where we hear a 

single tone, sounds are more complex, even in music. 

 

The pitch of a single tone can be explained by the ‗place‘ theory of pitch perception 

where the ear acts as a ‗spectrum analyser‘. The place theory runs into problems when 

more complex sounds are involved, the pitch sensation may even be evoked by tones 

that are not part of the complex signal, e.g. missing fundamental in a repetitive signal. 

 

Timbre is the perception of a complex signal, i.e. one that has more than a single 

spectral component. Timbre allows a listener to discriminate between sounds having 



  23 

the same pitch, duration and loudness, i.e. a listener can tell whether a sound comes 

from a violin or a flute, or a listener can identify a person by listening to them speaking. 

 

The exact mechanism of pitch perception is still under debate. The theoretical and 

experimental developments leading to the present state of knowledge are well 

summarized by Cartwright et al. [Cartwright el al, 1999] as follows: 

 

- Ohm [1843] proposed that pitch perception was due to the ability of the ear to 

perform Fourier analysis on acoustical signals. This required that a component 

at frequency ω0 must be present in the incoming stimulus in order for a 

corresponding pitch sensation to be experienced. 

- Seebeck [1843] showed that the fundamental could be removed from the 

spectrum of a periodic sound without affecting the perceived pitch. 

- Von Helmholtz [1863] reinforced Ohm‘s view asserting that the ear acts as a 

rough Fourier analyzer and hypothesized that this analysis is performed in the 

basilar membrane. Non-linearity‘s of the ear could account for the missing 

fundamental through the generation of difference combination tones. Difference 

combination tones are equal to the difference in frequency between successive 

harmonics (or partials). This would equal the fundamental tones. 

- Von Békésy [1960] demonstrated experimentally that Helmholtz‘s hypothesis is 

essentially correct, i.e. the basilar membrane effects a rough Fourier analysis of 

the incoming stimulus. 

- Schouten et al [1962] demonstrated experimentally that the missing 

fundamental is not a difference combination tone by shifting the spectrum of a 

complex signal by an amount Δf while keeping the difference between the 

spectral components equal to ω0, the supposed fundamental. The perception of 

a listener was that the pitch had shifted by the amount Δf. 

- Current models are the spectral model of Cohen et al [1995] and the temporal 

model of Meddis and Hewitt [1991]. 
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Perceptual pitch detection in complex sounds makes use of the correlogram [Slaney 

and Lyon, 1990; Scheirer, 1999; Granqvist and Hammarberg, undated]. The 

correlogram is a three dimensional representation of the autocorrelation of an audio 

signal. The three dimensions are: time, amplitude and frequency (calculated from the 

correlation lag). 

 

The correlogram is constructed from short time autocorrelations calculated for different 

frequency bands within the bandwidth of the audio signal. The results can be viewed in 

time sequence to identify components that are correlated over time. This allows the 

identification of different sound sources that contribute to the audio signal since 

changes in a one source over time will not be correlated to changes in any other 

source. 

 

While pitch, as such, does not give rise to distortion, a change in pitch, as occurs in 

wow and flutter distortion, can be construed to be distortion. Similarly if the playback 

rate is different from the rate at which the sound was recorded the pitch of the sound 

will be shifted and the result will be distortion. 

 

Timbre, the combination of individual sounds into a complex whole, is also worth 

studying in terms of identifying sounds which are distorted. Mostly we can assume that 

sounds produced for listening are pleasing to the listener, however certain sounds 

when combined seem to blend while others clash. Scheirer [2000] mentions that the 

sounds from a clarinet and a horn will blend while those from an oboe and a trumpet 

will clash. Sound processing, feedback, deliberate distortion of electric guitars, and so 

on may give rise to sound sensations that are not necessarily pleasant. 

 

 

3.3  Spectro-temporal masking 

The ability to hear a sound depends on the presence of other sounds within the same 

critical bandwidth, and also on the presence of sounds outside that critical bandwidth. 

When two tones are present simultaneously they may not both be heard. This effect is 
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more pronounced for tones that are close in frequency, i.e. in the same critical band. 

The louder a tone the larger the frequency range over which it will mask another tone. 

 

Masking may also occur even when the two tones are not present simultaneously. This 

is known as temporal masking. Such masking decreases with an increase in the time 

difference between the two tones. 

 

The listener uses cues in complex sounds to improve perception. If a tone and noise 

are combined in the same critical bandwidth and the noise is modulated in some way, 

e.g. the level fluctuates periodically, then the masking threshold can be measured. If 

noise with the same modulation is introduced in adjacent critical bands the masking 

threshold changes in such a way that a higher level of noise is required to achieve the 

same masking as before. This phenomenon is known a co-modulation release (CMR) 

[Scheirer, 2000]. 

 

Differential loudness, a just noticeable difference, between two tones is affected by the 

presence of other tones. If each of two tones are surrounded by identical 

supplementary tones then the just noticeable difference becomes smaller, it is easier to 

hear a difference when unchanged tones are present for contrast [Scheirer, 2000]. 

 

Some masking effects may be affected by the non-linearity of human hearing. For 

example while a strong tone may mask a weaker tone the non-linearity could give rise 

to an inter-modulation product, which may not be masked (Robinson and Hawksford, 

2000). 

 

It is clear that perception is affected by the complexity of a sound. 

 

3.4  Consonance and dissonance 

Central to the question of the measurement of distortion in audio signals is the 

perception of a signal as being distorted. If a human listener did not perceive a signal 

to be ‗distorted‘ then there is no need to measure the amount of distortion, what cannot 
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be heard is of no consequence. Dissonant sounds are not pleasing to the human 

listener, but a distinction should be drawn between musical dissonance and sensory 

dissonance [Terhardt, 1974] 

 

Musical consonance is a cultural concept, and psychoacoustic consonance or sensory 

consonance, a sensory concept [Terhardt, 1974]. Sensory consonance or its opposite 

sensory dissonance is the same for all people while musical consonance depends on 

the aculturalisation process. In music, what sounds pleasing may be culturally 

determined. Human speech on the other hand may provide a better basis for sounds 

that can be classified as distorted or undistorted. Could a human produce a distorted 

sound? Is the ability to discriminate between sounds, as pleasant or unpleasant, 

related to survival in primitive societies?  

 

Schwartz et al [2003] state that consonance judgments, ―… arise from the statistical 

structure of naturally occurring periodic sound stimuli. An analysis of speech sounds 

shows that the probability distribution of amplitude-frequency combinations in human 

utterances predicts both the structure of the chromatic scale and consonance 

ordering.‖ This indicates that dissonance may be associated with the unusual, or the 

unpleasant. ‗Roughness‘ is one way of describing the sensation of dissonance and this 

is one of the indicators used for describing pathological voice quality [Tsai, 2004]. 

 

In music, notes may be grouped together in combinations at different frequencies, 

known as chords, or grouped together in time, known as melodies, or a combination of 

both. Groupings are often made on the basis of creating a whole that sounds pleasant 

as opposed to unpleasant. Combinations that sound pleasant are consonant while 

unpleasant grouping are dissonant or rough. 

 

The consonance of two pure tones is related to their spectral separation and their 

absolute frequency. This is shown in the dissonance curve in Figure 3.1. 
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Figure 3.1: Dissonance in musical tones as a function of critical bandwidth 

 

The dissonance curve is derived as follows. When two tones with small frequency 

difference are presented simultaneously, one frequency with a beating (periodic) 

change in amplitude is heard. When the frequency difference is increased the rapid 

fluctuations in amplitude cannot be followed and the sound gets an unpleasant or 

rough character [Leman, 2000] as the dissonance between the two tones becomes 

apparent.  

 

Plomp [1965] found that the maximum dissonance occurred at about 25% of the critical 

bandwidth (25 Hz at frequencies below 500Hz and at about 4%-5% of the frequency in 

the range above 500 Hz). 

 

Computation of sensory dissonance is done according to two models [Leman, 2000]: 

* The curve-mapping model: All frequency intervals or frequency component pairs 

present in the spectrum of the sound are mapped to a psychoacoustical curve (see 

Figure 3.1). The dissonance of a complex sound is then defined to be equal to the sum 

of the individual dissonances. This model does not take into account temporal effects, 

the amplitudes of components and their phases, and noise like sounds. 

* Auditory modelling: This approach is intended to overcome the shortcomings in the 

curve-mapping model. Leman [2000] has extended this model in the so-called 
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synchronization index model. Tsai [2003, 2004] discusses the shortcomings of the 

curve fitting approach as applied to sub harmonics and their contribution to roughness. 

 

The auditory modelling approach is better suited to real world signals. 

 

3.5  Summary 

The psychoacoustics of the perception of sound is important in that the final 

determinant of the quality of an audio signal must be how it sounds to a human 

listener. The concepts of consonance and dissonance, first articulated by Helmholtz 

[Benson, 2004; Leman, 2000], provide a basis on which to approach the analysis of 

sounds in terms of their pleasing or not effect on a human listener. 

 

Through evolution the human auditory system has evolved to perceive some sounds 

as pleasing and others as not pleasant, possibly through association with danger or 

disease, e.g. an upper respiratory tract infection causes the voice to sound rough. 

Research into consonance starting with Pythagoras through Helmholtz has 

concentrated more on the consonance of combinations of single frequencies and on 

what is termed musical consonance. Recent work has focused more on real world 

signals other than music. 

 

The task of relating consonance in a broad sense, i.e. sensory consonance, involving 

real world sounds, to measurements of distortion in an engineering sense, is an area of 

research that has not received much, if any, attention.  
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CHAPTER 4 

 

APPROACHES TO THE MEASUREMENT OF AUDIO SIGNAL QUALITY 

PARAMETERS 

 

4.0  Introduction 

Objective measurements of audio system parameters like frequency response, non-

linear distortion, time base errors and signal to noise ratio are of great importance to 

audio system engineers. Objective measurements are used to determine the 

performance of the system and individual components of the system and as such are 

important in maintaining the quality of the audio signal. An audio signal will at some 

time be presented to a human listener as sound and objective measurements of audio 

signal quality must be related to subjective sound quality, the quality perceived by a 

human listener. 

 

Conventional measurement procedures require that the system (or individual 

components of the system) be taken out of service in order for the system parameters 

to be measured using specially designed test signals. Advances in measurement 

techniques, and changes in audio signal processing requirements, have necessitated 

the use of the transmitted audio signal as the test signal. For example the almost 

universal use of digital transmission systems for the distribution of sound signals has 

given rise to compression techniques to limit the required bandwidth. The compression 

only works on an audio signal, tests signals give false results, and so testing a sound 

transmission system using compression requires an audio signal as input. 

 

The conventional test procedures and the more recent procedures have one factor in 

common, the use of stimulus-response testing, see Figure 4.1. This means that both 

the input signal to the system and the output signal from the system must be available 

for the measurement to be carried out. The measurement then involves some kind of a 

comparison between the input and output signals, the input signal acting as an 

undistorted reference signal. Examples of this type of measurement procedure are 
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frequency response measurements, distortion measurements and gain or attenuation 

measurements. 

 

System Under

Test

Comparison

Input/Output

Test Result

OutputInput

 

Figure 4.1: Stimulus-response testing 

 

In this chapter various approaches to the use of measurements as a tool for 

maintaining audio signal quality are discussed.  

 

4.1  Background 

Stimulation of a transmission network with well-defined, deterministic, test signals, 

suited to the application of the network, and measurement of the change in these test 

signals at various points in the network, is the method most frequently used to maintain 

the desired quality of performance of the network [Weaver, 1971]. However, this 

method restricts the tests that may be carried out on the network to those for which test 

signals have been defined, and in the case of sound and vision signals intended for 
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perception by humans, to those for which measurements determining the level of 

subjectively observable impairment have been devised [Allnatt, 1983; Atkin, 1991; 

Weaver, 1971]. In this type of testing the tacit assumption is that the test signal is 

completely known, that changes in its parameters can be measured and quantified, 

and that these changes are related to subjectively observed impairments. "If we wish to 

'measure' what we 'hear' then we must deal with subjective perception and the illusion 

of sound" [Heyser, 1976A]. There are however problems in finding  the relationship 

between an objective measurement and subjective quality as perceived by a human 

listener [Beerends & Stemerdink, 1992A; Heyser, 1976A; Heyser, 1976B]. 

 

The closer the test signal approximates the signals that may be transmitted over the 

network during normal use, the closer the measurement comes to reproducing the 

actual operating conditions. The frequency response of an amplifier can be measured 

using a sinusoidal input signal at different frequencies and comparing the input and 

output signals at each frequency. This procedure does not tell us much about the 

response of the amplifier to a complex, dynamically changing signal such as a typical 

audio signal, nor to the response when the input signal amplitude is different from that 

at which the test is conducted. 

 

Deterministic test signals are inherently artificial and do not reflect the variety of signals 

that may be transmitted across a network. Attempts have been made to model the 

programme signals on a typical audio programme transmission circuit [Ehara, 1977, 

1982; CCIR]. Test signals reflecting the complexity of these models are reported in the 

literature [Hollier et al,1993]. 

 

Transmission networks are not time invariant. Operator accessible parameters may be 

varied, transmission conditions may change, and circuit parameters may deviate with 

time, temperature and other ambient conditions. As a result of these changes the 

network operator must determine suitable intervals for conducting tests on the network 

in order to maintain acceptable performance. When gradual deterioration in circuit 

performance takes place between scheduled maintenance tests, the network operator 
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may not be aware that the system is no longer performing adequately until users of the 

network complain about the performance.  

 

In a broadcast network the signal source may also be the source of distortion. A tape 

machine, record player, amplifier or other piece of equipment may not be aligned or 

may be malfunctioning. This piece of equipment may be used infrequently and may not 

be subject to regular maintenance. The cause of signal distortion would therefore not 

be traced if the transmission network is subjected to testing. However the end user, the 

listener, would be aware that the signal has been impaired. 

 

Some performance parameters in high quality audio networks are not amenable to 

determination through the use of deterministic test signals [Lipshitz & Vanderkooy, 

1981]. Such parameters are often determined by listening tests where an experienced 

listener(s) makes a subjective judgement on the quality of the signal under controlled 

conditions. Listening tests are also employed as a matter of course in the daily 

operation of a broadcast system since (amongst other factors) the equipment is in 

daily, continuous use and often is not taken out of service until a failure occurs. Quality 

determination using test signals is thus done only after repairs have been affected and 

not on a regular basis. 

 

4.2 Distortion: Linear and Non-Linear 

In passing through a transmission system a signal will be distorted if the spectral 

characteristics of the signal are changed. This change may result from linear or non-

linear distortion. 
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 Figure 4.2: Signal transmission 

 

Linear distortion changes the amplitude and/or phase relationships between the 

frequency components of the signal, so that the shape (envelope) of the signal is 

changed [Preiss, 1976]. Linear distortion is not signal level dependent. It is a function 

of the amplitude and phase relationship of the spectral components of the signal. If the 

phase and amplitude of the output signal components have changed relative to the 

relationships that existed at the input to the system, then the signal has been distorted. 

The same components will be present at both the input and the output. Referring to 

Figure 4.1, for distortionless transmission it is required that: 

 

)Tt(kx)t(y  (4.1) 

 

Where: 

y(t) is the output signal from the system  

x(t) is the input signal to the system  

k is a constant amplification factor  

T is a constant time delay. 

In terms of the frequency and phase transfer functions we have: 

 

fT2jft2j e)f(kXdte)t(y)f(Y  (4.2) 

 

Where: 

X(f) is the Fourier transform of x(t), the input signal. 

Input,

x(t)
Transmission

System

Output,

y(t)
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Since )f()f(X)f(X , the output spectrum will be: 

 

)fT2)f(()f(Xk)f(Y  (4.3) 

 

The signal will therefore be distorted if either or both of the following happen in passing 

through the system: 

a) The constant, k, in equation 4.3 is not a constant but is a function of frequency. 

b) The constant delay, T, in equation 4.3 is not a constant but is a function of 

frequency. 

 

Non-linear distortion may be signal level dependent. This means that the amplification 

factor in equation 4.1 is not constant for all signal amplitudes. The amplification is often 

less for high-level input signals than for low-level input signals due to amplifier 

saturation. Non-linear distortion results in the generation of new signal frequency 

components that add to the existing components resulting in a change in the signal 

envelope. ―Non-linear distortion changes the frequency content of the input signal such 

that energy is transferred from one frequency at the input to more than one frequency 

at the output.‖ [Temme, undated] 

 

4.3 Conventional test procedures 

The difference between input and output provides intelligence regarding the system 

under test. 

 

The above sentence sums up the conventional approach to performance testing of 

audio signal transmission and recording equipment. This approach is known as the 

stimulus-response approach to performance testing. In stimulus-response testing the 

system under test is stimulated with a known input signal. The output from the system 

is observed and changes affected by the passage of the stimulus signal through the 

system are noted and quantified. The input signal may be a single sinusoidal 

waveform, or it may be a complex combination of different signals, or it may even be 
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an example of a typical signal that the system has been designed to transmit. What 

matters is that the input signal is available for comparison with the output. 

 

When stimulus-response testing is used in performance evaluation of transmission 

systems used for communication to human beings, an attempt is made to relate the 

tests to aspects of human perception, so that the tests will identify changes in the 

signal that may be perceptible to humans. In other words, an objective measurement of 

a subjective experience is sought.  

 

Measurement results have to be repeatable and comparable; therefore the input (test) 

signal is standardised so that measurements on different equipment can be compared. 

Test signals have evolved over time. Early testing used static signals i.e. signals 

whose characteristics do not change over time. Single frequency sine waves are 

typical of these test signals [Heuber, et al.1976; King, 1979; Kuni, 1997]. Such signals 

are adequate for identifying changes in linear time invariant systems, e.g. amplifiers, 

assumed to be linear over their operating range; filters, and so on. However when the 

system‘s characteristics are intentionally designed to be non-linear and time varying 

(audio conditioning equipment such as automatic level controllers are examples), 

different test signals have to be devised [Leinonen et al. 1977]. These signals more 

closely resemble the actual audio signals, intended for transmission over the 

transmission system during its normal operation. The test signal must contain the 

salient features of the information signal to be transmitted and it must be analysed in 

terms of the perceptual significance of errors that may be introduced by the system 

under test [Hollier et al. 1993].  

 

Conventional test procedures characterise the device under test using deterministic 

test signals. Conventional test signals rely on a correlation between the distortion of 

the test signal by the device under test, and the human perception of distortion. 

Conventional test procedures are not good at characterising time varying or non-linear 

systems [see also Hollier et al. 1993] . 
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4.4 Modelling of the human auditory system 

In 1992 the following statement was made ―Perhaps the most surprising issue in audio 

coding is the lack of a reliable objective quality criterion‖ [Paillard et al. 1992]. It would 

appear that rapid progress was made since then, as Beerends [Beerends 1998] 

describes a perceptual approach to the determination of audio quality. This approach 

relies on a model of the human auditory system, which indicates the difference in 

perceived quality between a reference and the signal being evaluated, see Figure 4.3. 

 

Note that this approach is similar to that which has been referred to as conventional 

testing, in that the circuit or system is stimulated, and the output is compared to a 

reference. In this case the reference is the original undistorted audio signal (telephone 

speech or CD quality audio). Conclusions about the quality of the output signal are 

drawn from a comparison with the reference via a model of the human auditory system 

( Figure 4.3). 

 

Figure 4.3: Perceptual model quality assessment 

 

This method of determining the quality of an audio signal became necessary as digital 

audio codecs (encoder/decoder) based on knowledge of the human auditory 

perception system were developed for use in, for example, cellular telephone systems. 

These codecs made testing using conventional test signals problematic since the 

encoder would be designed to remove redundant information from the input signal, so 
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as to decrease the required transmission bandwidth. A conventional test signal would 

be distorted by the processing introduced by the encoder. 

 

The operation of the codec is signal dependent and testing needs to be performed 

using the actual signal that would be transmitted through the codec, e.g. audio signals 

[Hollier & Hawksford, 1995]. An audio encoder could, for example, respond differently 

to audio signals having different frequency content and different transient 

characteristics e.g. speech or music.  

 

The perceptual approach to audio quality determination does not attempt to 

characterise the device, or system, under test. It uses an ‗ideal‘ signal as reference 

(the input signal in Figure 4.3) and, using perceptual models, determines the audible 

differences between the reference and the output signal from the system. To 

characterise the performance of a system in terms of audio quality a large set of test 

signals covering the range of possible input signals is required. The subjective quality 

of the set of test signals must be known. 

 

An alternative approach uses a test signal simulating the typical information signal 

likely to be transmitted over the system. Again the test signal and the output signal are 

processed to provide perceptual surfaces, which are then compared. Audible 

difference surfaces are produced and these give an indication of the distortion 

introduced by the system [Hollier et al. 1993]. 

 

In determining the perceptual response of a human to an audio signal, use is made of 

knowledge of the human auditory system and the way in which sound is perceived. A 

summary of pertinent aspects is given in Zwicker & Zwicker (1991). Firstly it has to be 

recognised that perception is not a linear process. The human auditory response to a 

change in signal frequency or signal amplitude is non-linear. A doubling in signal 

amplitude does not result in a doubling in perceived loudness to a listener; changes in 

signal frequency are perceived similarly. To relate signal amplitude to perceived 

amplitude, i.e. loudness, a logarithmic scale is used and perceived amplitude is 
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expressed in units of sone. Perceived frequency, i.e. pitch, is similarly expressed in 

units of bark [Zwicker & Zwicker, 1991]. 

 

The second important factor in human perception relates to the masking effect. Signal 

components of higher level will mask lower level signal components in their proximity 

both in time and frequency [Pierce, 1983; Howard & Angus, 2001; Hartmann, 1998]. 

 

Perceptual model based testing cannot directly predict the perceived quality of a 

signal, but it can predict aspects of the auditory sensation such as pitch, loudness and 

masked threshold. The process of mapping a signal into a perceptual surface is 

described in [Beerends & Stemerdink, 1992B]. In summary the process is as follows: 

 

The signal is windowed in time and FFT transformed to find the power spectrum, P(t,f), 

as a function of time and frequency. The power spectrum is then transformed to a 

power spectrum in terms of time and pitch to change from measured frequency to 

perceived frequency. This function is convolved with a spreading function to find the 

excitation. The excitation is compressed to give a compressed loudness-time-pitch 

representation of the original signal. Two signals can then be compared on the basis of 

their differences in the loudness-time-pitch domains. This gives a better approximation 

to how a human auditory system will respond to a signal and quantifies differences 

between signals in terms of parameters relating to the actual functioning of the auditory 

system. Comparisons can only be made between a time segment of an audio signal 

and the same time segment of the audio signal that has been passed through some 

audio process, e.g. a coding-decoding process like coding from analogue to MP3 and 

back to analogue. This is therefore a stimulus-response test, the input is known and 

the output is compared to the input. 

 

4.5   Coherence testing 

„Coherence is a frequency domain measure of common (that is statistically linearly 

dependent) spectral components between the input and output of a system‟ [Totzek & 

Preiss, 1987]. 
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Coherence testing is a form of stimulus-response testing which uses the audio signal 

as the stimulus. Coherence testing of audio signals was proposed by Totzek and 

Preiss [Totzek & Price,1987] as an alternative to the conventional, objective, steady 

state measurement techniques, based on using sine waves as test signals. In their 

paper they show that many of the parameters measured using sine wave testing could 

also be measured using coherence testing. Kates applies coherence testing to the 

measurement of distortion in hearing aids [Kates, 1992]. 

 

Coherence testing is based on the following [Bendat  & Piersol, 1971]: 

The cross-spectral density function of two sets of random data is the Fourier transform 

of the cross-correlation of the two data sets. The cross-spectral density is a complex 

valued function since the cross-correlation is not an even function of time. The cross-

correlation is given by: 

 

T

0
Txy dt)t(y)t(x

T

1
lim)(R  (4.4) 

 

where x(t) and y(t) are the input and output signals respectively. 

Taking the Fourier transform of the cross-correlation we get the cross spectral density 

function: 
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The coherence function is given by [Bendat & Piersol, 1971]: 
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where Gx(f) and Gy(f) are the power spectral density functions of the input and output 

signals respectively. The coherence function, xy
2 (f) equals zero for any frequency 

where the two signals are uncorrelated and equals one where they are correlated. 

 

If the system frequency response function H(f) is known then the cross spectral density 

is given by: 

 

)f(G)f(H)f(G xxy  (4.7) 

 

From this expression the frequency response function can be found if the cross 

spectral density function is known. 

 

The cross spectrum function is a complex function. The frequency dependent angle of 

the cross spectrum function represents the phase shift through the system between 

input and output. This can be used to find the frequency dependent delay, i.e. the 

group delay of the system. 

 

4.6   Automated testing 

Automated testing of audio equipment and transmission systems has been made 

possible by the availability of inexpensive processing power. In the process of 

automated testing a test signal is inserted into the audio signal during transmission and 

this signal is detected at various points and analysed. 

 

The test signal consists of a combination of signals which may be used to measure 

frequency response, signal to noise ratio, intermodulation distortion and so on. The 

signal may be preceded by a trigger to alert the measuring apparatus to the arrival of a 

test sequence.  

 

The test sequence may be audible to listeners and as such not acceptable. To avoid 

listener complaints the test sequence could be hidden in a ‗signature tune‘, a time 

signal or something similar. Audio signals do not have the luxury of the vertical interval 
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found in the television video signal where test signals can be inserted without affecting 

the viewer in any way. 

 

Automated testing is another form of stimulus-response testing. 

 

4.7    Summary 

The background to determination of audio signal quality is discussed. Three existing 

methods of audio system testing are described. The three methods are: Testing using 

deterministic test signals; Modelling of the human auditory system; Coherence testing. 

 

Conventional testing using deterministic test signals does not directly determine audio 

signal quality but is used to maintain the performance of the transmission equipment 

so that the audio signal passing through will not be subjected to more distortion than is 

acceptable to a human listener. 

 

In audio signal quality determination through modelling of the human auditory system, 

an attempt is made to relate the measurement directly to the audio quality as perceived 

by a human listener. The measurement involves the audio signal and a model of the 

human auditory system. This is a change from the conventional test procedure where 

the test is validated through listening tests, which relate the objective test to the 

subjective experience of the distortion that has been measured. 

 

Coherence testing is an objective test procedure. The audio signal is used as test 

signal. No attempt is made to model the human auditory system and the results of the 

objective test has to be validated by listening tests to relate the outcome to a subjective 

listening experience. 
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CHAPTER 5 

 

DETECTION OF DISTORTION DUE TO MECHANICAL IMPERFECTIONS IN 

SOUND RECORDING AND PLAYBACK APPARATUS (Wow and flutter) 

 

5.0 Introduction 

This research is concerned with the detection of distortion in audio signals as opposed 

to measurement of distortion. Detection is carried out by analysing the audio signal, 

measurement is usually done to quantify the distortion introduced by audio equipment. 

Measurement techniques will be discussed to illustrate that most conventional 

techniques cannot be used to detect distortion in an audio signal. 

 

The conventional approach to measuring the magnitude of the distortion introduced by 

mechanical imperfections in sound recording and playback apparatus, is as follows: 

a) Make a distortion free recording of a single sine wave signal, 

b) play the recorded signal back on the equipment to be tested, and 

c) detect the frequency variations introduced by the mechanical imperfections. 

 

The deviation in frequency from the frequency of the test signal is expressed as a 

percentage of the test frequency. This is then the measured result. A similar process is 

followed where recording apparatus is to be tested [King, 1979; Kuni, 1997]. 

 

In this chapter a mathematical analysis of the distortion introduced into an audio signal 

by mechanical imperfections in sound recording or playback apparatus is presented. 

Three alternative methods are presented for detecting and analysing this distortion 

Two of these methods have been reported in the literature [McKnight & Weiss, 1976; 

Godsill et al. 1998], and the third method has been developed by the author [Maré, 

2004]. 
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5.1 The Nature of the Distortion 

Mechanical imperfections in analogue audio recording and playback apparatus cause 

speed variations in the recording or playback medium. For example, the magnetic tape 

in a tape recorder is pulled past the magnetic head by the capstan. If the capstan does 

not turn smoothly, perhaps due to worn bearings, the tape will not move past the 

magnetic head at a constant speed. 

 

If the audio signal has been recorded on a machine exhibiting mechanical 

imperfections and assuming that a different machine will be used in the playback 

process, these speed variations will be translated into frequency variations in the 

resulting audio signal, (possibly) causing an audible impairment to the signal. The 

mechanical imperfections are not sinusoidal and depend on the characteristics of each 

individual make and model of machine, e.g. the different drive mechanisms in a 

turntable, or the different capstan diameters in a tape recorder. Machines of the same 

make and model would have common characteristics and impart distortions having the 

same characteristics to the signal. The distortion can be used as a signature imparted 

to the signal and can be used to identify the individual model of machine on which the 

recording was made [McKnight & Weiss, 1976].  

 

The effect of speed variations can be analysed as follows. Assume that the recording 

medium, assumed to be magnetic tape, undergoes speed variations during its passage 

past the playback head, where the normal (or design) speed, V0, changes periodically, 

and the peak deviation from normal is V. The resultant speed would be: 

 

s/mm)t(dV = (t) v 0  (5.1) 

 

where: V0 is the normal speed in mm/s 

 d(t) is the function describing the speed variation 

 ΔV is the peak deviation in speed = max(d(t)) 

Assuming further, for ease of analysis, that the speed variation is sinusoidal: 



  44 

 

s/mmt)( cos V + V = (t) v x0  (5.2) 

 

where: ωx is the deviation frequency 

 ΔV and V0 are as above 

 

The amplitude of the recorded signal on the recording medium is a function of (the one 

dimensional) position on the recording medium. Assuming that a sinusoidal signal has 

been recorded on the recording medium, the variation of signal amplitude with position 

on the medium will be given by: 

 

x) ( cos M = (x) m m
 (5.3) 

 

where: m(x) is the signal amplitude at point x on the recording medium 

 M is the peak signal amplitude 

 x is the position on the recording medium in mm from the start 

 ωm  is the spatial (signal) frequency in cycles/mm 

 

As the medium moves past the playback transducer, the spatial amplitude dependence 

is transformed into time dependence, and the signal becomes a function of time. If 

there are speed variations, either in playback or recording, these will be reflected in the 

resultant signal frequency. The signal representation on the recording medium, e.g. 

magnetic flux density, will be transformed into a voltage representation through the 

transducer reading the recorded signal. 

 

The position on the tape is given by the integral of the tape speed, i.e. 

 

dt)t(vx   (5.4) 
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Applying the transformation from position on the tape, to time varying signal, to the 

expression for m(x), Equation 5.3, transforms m(x) into M(t) and changes the signal 

amplitude representation on the tape into a time varying voltage: 

 

t))( sin  + t ( cos M = 

  

) dt t) ( cos V  + t V ( cos M = 

)dt (t) v ( cos M = M(t)

x

x

st

xm0mt

mt

  

 (5.5) 

 

where: M(t) is the recovered voltage signal as a function of time 

  ωs = ωmV0 is the recovered signal frequency in rad/s 

Δω = ωmΔV is the peak signal frequency deviation as a result of speed 

variations 

Mt is the peak signal amplitude after playback 

 

5.2  Spectrum of the Distortion 

The signal after distortion has the appearance of a frequency modulated signal (see 

equation 5.5) [Johns & Rowbotham, 1972], where the mechanical imperfections result 

in frequency modulation of the audio signal. Analysis of the effect of frequency 

variations due to tape speed variations is possible if it is assumed that the recorded 

audio signal is a single frequency sinusoid as has been done above. This analysis also 

applies to signals that are composed of the sum a number of individual sine waves. 

When the recorded signal is a normal audio signal e.g. music or speech, then the 

‗carrier‘ signal, in the analysis above, is a random signal, which sometimes, over short 

periods of time, can be considered to be composed of a sum of sine waves at different 

frequencies. 

 

In a frequency modulated signal the peak deviation, of the carrier frequency, is 

determined by the amplitude of the modulating signal. In the analysis above it is shown 

that the deviation of the signal frequency from normal, depends on the deviations of 
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the tape speed from the normal. The peak signal frequency deviation, , is 

determined by the peak deviation, V, in speed from the normal speed, multiplied by 

the (spatial) signal frequency. The higher the signal frequency, the greater the 

deviation, and, the larger the imperfection in the playback apparatus, the greater the 

deviation. Bearing this in mind, the standard analysis for frequency modulation can be 

applied to derive the spectrum of the reproduced audio signal. The expression in 

Equation 5.5 is expanded as a sum of Bessel functions resulting in an expression as 

follows [Haykin, 2001]: 

 

  

)(  )( tnt 
s

cosJ M = M(t) xfn

 = n

- = n

t

 (5.6) 

where: M(t) is the modulated signal 

  βf = Δω/ωx is the modulation index 

  Jn (βf) are the Bessel functions of the first kind of order n 

  ωs is the recorded signal frequency in rad/s 

  ωx is the frequency of the speed variation in the playback medium 

  Δω is the peak frequency deviation 

 

5.3  Methods of Blind Detection of Flutter Distortion 

5.3.1 Spectral Analysis [McKnight & Weiss, 1976] 

In the analysis of McKnight and Weiss (1976), the peak amplitude of the flutter, i.e. the 

deviation from normal frequency, is defined as: 

 

0f

f
F  (5.7) 

 

where: Δf is the peak signal frequency deviation 

  f0 is the signal frequency 
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The flutter is caused by mechanical imperfections causing speed variations in the 

recording medium, tape or disc. The frequencies at which the speed variations occur 

are called flutter modulating frequencies, and are denoted by fm . 

 

If a constant frequency sinewave component is present in the distorted audio signal, 

then spectral analysis techniques can be employed to find the frequency of the 

variations in speed of the recording or playback apparatus. Commercial flutter meters 

analyse the variations in a 3150 Hz test frequency using a frequency demodulator to 

directly measure the flutter modulating frequencies, fm, and the flutter amplitude F 

[King, 1979]. 

 

In the recordings analysed by McKnight and Weiss (1976) a sine wave frequency  

component, at the power supply frequency (60 Hz), was present in the recorded signal. 

The power frequency sine wave provides a single frequency sine wave, similar to the 

sine wave signal that is used in the normal test procedures. The power frequency 

signal may be seen as a ‗carrier‘ of the flutter modulation and isolated from the rest of 

the signal. The parameters of the wow or flutter distortion are found by applying 

spectral analysis techniques to this isolated signal. 

 

The technique of McKnight and Weiss (1976) does not identify the presence of flutter 

from the recorded audio signal, it uses the fortuitous presence of a power supply 

frequency. Normally we would not expect a power frequency component to be present 

in the recorded audio signal. 

 

5.3.2 Estimation of the pitch variation curve [Godsill et al. 1998; Godsill & 

Rayner, 1998] 

 

Godsill et al.  (1998) are concerned with the restoration of distorted recordings. Their 

method is based on determining the ‗pitch variation curve‘ (Note: pitch is the human 

sensation of frequency). The pitch variation curve describes the way in which the 

recovered signal has been ‗frequency distorted‘ by the speed variations in the playback 
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apparatus. This curve is estimated using short time discrete Fourier transforms 

(STDFTs), of the sampled version of the played back audio signal. Expressing this 

mathematically, the signal with wow or flutter is related to the original, undistorted 

signal by: 

 

M(t) = x(fm (t))  (5.8) 

 

where: M(t) is the distorted signal 

  x(t) is the undistorted signal 

fm (t) is a time warping function which accounts for the speed variations in 

the recording or playback mechanism. 

 

If the time warping function, fm (t) in equation 5.8, is known then its inverse can be 

found and the distortion corrected. 

 

5.3.3 Time domain autocorrelation 

This technique for the detection of the presence of frequency variations in a recorded 

audio signal was developed by the author. 

 

This investigation concerns the detection of imperfections in an audio signal and not 

necessarily the measurement (quantifying) of such a distortion. In detecting the 

presence of wow and flutter one should note that wow and flutter causes frequency 

modulation of the recorded signal and, secondly, that the imperfection is of a periodic 

nature. The period is related to the period of rotation of the capstan in a tape recorder 

or the period of rotation of a record player drive mechanism. This leads to the 

hypothesis that wow and flutter can be detected using the autocorrelation function. The 

autocorrelation of a frequency modulated signal can be found and the result applied to 

the detection of wow and flutter.  

 

To find the autocorrelation of a frequency modulated signal start with the definition of 

the autocorrelation of a signal, m(t), [Bendat & Piersol, 1971] and then substitute the 
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Bessel function representation of an FM signal [Haykin, 2001] for M(t). This results in 

an expression as follows: 
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Since M(t) is an infinite sum, do the multiplication term by term and consider each 

product in turn in order to generalise. Starting at  n = 0 gives: 
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Multiplying these terms: 
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After integration we have: 
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Applying the procedure to the more general terms, n 0: 
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Integrating this expression in order to find the autocorrelation function: 
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Use trigonometric identities to simplify the integrand: 
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From this it follows that if n ≠m the integral is zero, while if n = m the result is: 

 

)n( cos 
2

]M )(J[
xs

2
tfn

  (5.11) 

 

The final result for the autocorrelation of a frequency modulated wave, in this case the 

flutter signal, is found by adding Equation 5.10 and equation 5.11 as shown below: 
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From this it can be concluded that: 

* With no flutter present the autocorrelation is that of the originally recorded 

sinusoid. 

* With flutter on the recording medium the autocorrelation takes on the form of a 

sum of sinusoids, at frequencies in the neighbourhood of the frequency of the 

original (desired) signal. 

* If the amplitude of the flutter increases the number of sidebands increase. 

* If the frequency of the desired signal increases the number of sidebands 

increase. 

* The autocorrelation waveform is the sum of all these components. 

* Depending on the severity of the flutter and the frequency of the desired signal 

a situation could arise where there is no sideband component at the flutter 

frequency but only at multiples of the flutter frequency. This will arise for β 

around values of 3.832, 7.1, 10.1 and so on, since at these values of , J1( )=0. 

 

This analysis of the autocorrelation of the sinusoid affected by flutter seems to 

contradict what can be expected from reasoning about the nature of the 

autocorrelation. Firstly, the autocorrelation of a signal will highlight periodicities in the 

signal. A sine wave signal with flutter distortion is similar to a frequency modulated 

signal. The frequency of the sine wave signal is periodically deviated from its 

undistorted frequency. The periodicity of the deviation is at the frequency of the flutter 

and the autocorrelation should therefore indicate a periodicity at that frequency. The 

analysis, however, indicates that under certain conditions the autocorrelation function 

will have no component at the flutter frequency. This is because, for certain values of 

signal frequency and deviation frequency, the value of J1( ) will be zero. At these 

points the autocorrelation function will have no component at the fundamental flutter 

frequency. 
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When considering the time domain representation of a frequency modulated signal it 

may be expected that a periodicity equal to the frequency of the modulating signal 

would be present in the autocorrelation signal. As the deviation (or β) increases, the 

shape of the autocorrelation should change since the frequency of the signal is being 

changed during the same time interval by a greater amount, and the peaks and dips in 

the autocorrelation would be more pronounced.  

 

Reasoning about the appearance of the autocorrelation function does not necessarily 

lead to a better understanding about the appearance of the signal. Returning to the 

expression for the autocorrelation function (equation 5.12) and analysing this 

expression mathematically, very quickly leads to the correct answer. Taking another 

look at equation 5.12, repeated below: 
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This shows that there will be a component at the ‗carrier‘ frequency (ωs). This 

component will decrease in amplitude as the deviation increases, i.e. as the speed 

variations due to mechanical imperfections increase. Apart from that it is merely a 

sinusoid at a particular frequency. 

 

More interesting is the effect of the ‗sideband frequencies‘. These appear separated 

from the carrier at multiples of the distortion frequency (ωx). Closer examination of 

these components reveals that in general the expression for the angle of any of these 

components can be written as: 

 

xs nAngle  (5.13) 

 

Ignoring the carrier component and noting that: 

 

xx f2  
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Case 1: When  is an odd multiple of the distortion frequency period. The angle 

will be an even (integer) multiple of 2π for even multiples of the distortion 

frequency and will at the same time be an odd multiple of π for odd multiples of 

the distortion frequency. 

 

When this is the case ( xf/n , n odd) the autocorrelation function at these 

times will consist of the in phase sum of all sideband frequencies at even 

multiples of the distortion frequency and the (1800) out of phase sum of the 

sideband frequencies at odd multiples of the distortion frequency. Depending on 

the relative amplitude of the components, the autocorrelation may show a 

maximum at times equal to odd multiples of the distortion frequency period.  

 

Case 2 The angle will be an integer multiple of 2π whenever n  is an even 

multiple of the reciprocal of the distortion frequency fx.  

 

When this is the case the autocorrelation will be the in phase sum of all the 

sideband components. The autocorrelation function will thus have a clear 

maximum at this point in time. 

 

A clear visualisation of the effect of taking the autocorrelation of a frequency modulated 

signal can be obtained by simulation. This is the subject of the next section. 

 

5.4 Simulation of Flutter Distortion 

In order to demonstrate the feasibility of using autocorrelation to detect the presence of 

flutter in an audio signal, a MATLAB program was written. This program simulates the 

autocorrelation of a frequency modulated wave. The program uses the analysis above 

as its basis.  

 

The result of running the program and plotting the resultant autocorrelation function 

show that a very pronounced periodicity exists at the flutter frequency (corresponding 
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to a spacing of 521 samples between the peaks) for values of FM deviation ratio, , 

from 0.5 to 22. Higher deviation ratios were not investigated. 

 

Note: At a deviation ratio of 0.5 the measured flutter distortion would be 0.675 % and at 

a deviation ratio of 22 it would be 29.7%, assuming a test frequency of 1 kHz and a 

flutter frequency of 13.5 Hz. 
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 Figure 5.1: Simulated autocorrelation with deviation ratio of 0,5 

 

In Figure 5.1 the simulated autocorrelation of an FM signal is shown. The parameters 

for the simulation are: 

 Carrier frequency: 2000Hz 

 Modulating frequency: 13.5 Hz 

 Sampling frequency: 7034 Hz 

 Flutter distortion: 0,3375 % 
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(The parameters for the distortion were chosen to be similar to those of commercial 

tape recorders. The tape recorder used in this study to simulate flutter distortion was a 

Revox B77. It would generate a flutter frequency of 13.5 Hz if there was one speed 

variation per revolution of the capstan.) 

Peaks in the autocorrelation are evident at a spacing of approximately 521 samples. 

The period of these peaks correspond to the frequency of the deviation introduced in 

the simulation of flutter distortion.  
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Figure 5.2: Autocorrelation of FM with deviation ratio of 2 

 

When the frequency deviation ratio is increased to 2 (flutter distortion 1.35 %), see 

Figure 5.2, the result is similar to the previous (Figure 5.1) in that the peaks occur at a 

spacing of approximately 521 samples. The peaks are much more pronounced due to 

the larger deviation.  
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Figure 5.3: Autocorrelation of FM with deviation ratio of 22 

 

When the frequency deviation ratio is further increased, to 22 (flutter distortion 14,85 

%), the result of the autocorrelation again shows the peaks at a spacing of 521 

samples (Figure 5.3). 

 

These results show that it may be possible to detect frequency variations in a simple 

case where only one ‗carrier‘ component i.e. a single sine wave, representing the audio 

signal, is present. In a real world audio signal this is not likely to be the case as the 

audio signal is likely to have more than one frequency component. Simulation of more 

complex signals is undertaken in the next section. 

 

5.5 Simulation of Flutter Distortion: A more complex case 

The MATLAB program was extended to simulate the case where two ‗carriers‘, i.e. an 

audio signal made up of two components, were frequency modulated by the same 
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modulating signal. From the theoretical analysis it is known that the deviation ratio 

depends on the frequency of the signal being modulated. This aspect was incorporated 

in the simulation as shown below. The parameters of the simulated signal were: 

 

 Carrier frequency 1:  2000 Hz 

 Deviation ratio: 0.5 

 Carrier frequency 2:  4000 Hz 

 Deviation ratio: 1.0 

 Modulating frequency: 13.5 Hz 

 Flutter distortion: 0.3375 % 

 

Here the simulated audio signal is the sum of two harmonically related sinusoids. One 

is at a frequency of 2 kHz and one at 4 kHz. The deviation of the two sinusoids is 

appropriately set to 0.5 and 1.0 as the deviation ratio is proportional to the ‗carrier‘ 

frequency. 

 

The result is shown in Figure 5.4. The peak at 521 sample spacing remains clearly 

identifiable. 
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Figure 5.4: Autocorrelation of two FM ‗carriers‘ which are harmonically related 

 

The simulation is repeated with two carriers which are not harmonically related. The 

parameters for the simulation are: 

Carrier frequency 1:  2000 Hz 

 Deviation ratio: 2.0 

 Carrier frequency 2:  3250 Hz 

 Deviation ratio: 3.25 

 Modulating frequency: 13.5 Hz 

 Flutter distortion: 1.35 % 
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Figure 5.5: Autocorrelation of unrelated FM carriers 

 

The peak at 521 samples is still clearly identifiable. Notice how the autocorrelation has 

taken on a ‗hairy‘ appearance. In this simulation the carriers are no longer harmonically 

related. 

 

A third ‗carrier‘ was added to the simulated signal with the signal parameters now 

being: 

 Carrier frequency 1: 1310 Hz 

 Deviation ratio: 1.31 

 Carrier frequency 2: 2000 Hz 

 Deviation ratio: 2 

 Carrier frequency 3: 3250 Hz 

 Deviation ratio: 3.25 

 Flutter distortion: 1.35 % 
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The result of the autocorrelation for this signal is shown in Figure 5.6. The periodicity at 

521 samples is still evident. 
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Figure 5.6: Autocorrelation of FM with three unrelated carriers 

 

From the examples shown it is clear that the effectiveness of detecting the presence of 

a periodic frequency perturbation is decreased if the number of ‗carriers‘ is increased 

and if the carriers are not harmonically related to each other. 

 

Figure 5.7 shows the simulated signal with three ‗carriers‘ before the autocorrelation is 

carried out. While each of the individual carriers with their frequency modulation is of 

constant amplitude the sum of the three is not. In an attempt to improve the 

performance of the autocorrelation method for detection of frequency variations in 

complex signals the following steps were taken: 

 a) The complex signal was amplitude limited, and 

 b) the signal was bandpass filtered to isolate one of the carriers. 
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Figure 5.7: Three carrier FM signal 

 

The result of this operation is shown in Figure 5.8 and Figure 5.9. In Figure 5.8 the 

complex signal has been amplitude limited by setting all sample values greater than 

the limit value to the limit value before the autocorrelation was calculated. In Figure 5.9 

the limited signal was filtered using a bandpass filter to isolate the carrier at 2 kHz 
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Figure 5.8: Autocorrelation of three carrier FM signal after limiting 

 

Comparing Figure 5.6 to Figure 5.8 (signal with amplitude limiting) we see that limiting 

a complex signal does not improve the ability to detect the presence of frequency 

variations over that possible with a signal with no amplitude limiting. In both Figures the 

presence of periodicity at approximately 521 sample spacing is visible. 

 

The plot of Figure 5.9 shows the result of performing the autocorrelation after the 

signal has been limited and two of the ‗carrier‘ signal components have been removed 

by filtering. The only component left is the 2 kHz sinusoid with deviation ratio of 2. 
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Figure 5.9: Autocorrelation of three carrier FM after limiting and filtering 

 

Figure 5.9 should be compared to Figure 5.2. Both show autocorrelation for a single 

carrier with deviation ratio of 2. The similarity between the two plots indicates that good 

results can be obtained by limiting and filtering to isolate a single carrier. 

 

The results obtained from the simulations discussed above indicate that the 

autocorrelation of an FM signal may be used as the basis for identifying the presence 

of frequency variations (wow and flutter) in a transmitted audio signal. The results are 

improved if the simulated audio signal is pre-processed by filtering to isolate strong 

sinusoidal components in the signal. The use of limiting and band pass filtering was 

investigated and improved results obtained using these techniques.  
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The limitations on the analysis and simulation are that both the audio signal and the 

variation are sinusoidal. This is not generally the case. The technique will fail if the 

audio signal is purely random e.g. an unvoiced sound.  

 

5.6 Results of Tests on Recorded Audio Signals 

The theoretical possibility discussed above was put to the test using a Revox B77 

audio tape recorder to introduce flutter distortion into a real audio signal. The tape 

transport mechanism in this machine is a capstan with diameter 0.176 inches (~4.5 

mm). At a tape speed of 7.5 inches per second (the standard speed for high quality 

audio recording/playback) the capstan rotates at 13.475 revolutions per second. Any 

flutter frequencies should therefore be at 13.475 Hz, assuming that the capstan has a 

simple mechanical imperfection which causes one perturbation per revolution. 

 

The capstan circumference was distorted by sticking a small piece of tape on the 

capstan. The piece of tape did not wrap around the capstan but covered only a portion 

of the circumference. This introduced a change in tape speed. A 1 kHz tone was 

recorded using the tape machine with the distortion present. The tape was then played 

back without the distorted capstan. The resultant audio signal was sampled at 44100 

samples/s and an autocorrelation performed on the data. The result of performing an 

autocorrelation on this signal is shown in Figure 5.10.  

 

From Figure 5.10 it can be seen that the autocorrelation peaks are separated by 

approximately 0.01667 x 105 sample points. At a sampling frequency of 44100 

samples/s this translates to a frequency of 26.46 Hz, approximately double the 

frequency that a simple irregularity would impart. The doubling in disturbance 

frequency is due to the effect of the tape edges on the capstan. Since there are two 

edges the actual imperfection occurred twice per revolution. 

 

This result shows that the simulated results can successfully be extended to a simple 

real case involving a single sinusoid.  



  65 

 

 Figure 5.10: Autocorrelation of a recorded sine wave 

 

The procedure for detection of flutter distortion was then extended to segments of 

typical sound programme material. Recordings from a local radio station were 

obtained, and played back on the modified tape machine. The modified machine would 

introduce flutter distortion in the reproduced audio signal. The results are shown in the 

following figures. An autocorrelation was calculated for 204 800 samples i.e. a 4.6 

second segment of recorded audio signal. The figures show only a portion of the 

complete autocorrelation so that the details can be clearly observed. 

 

In Figure 5.11 the periodicity of the mechanical imperfection can be seen in the 

envelope of the autocorrelation. There are higher frequency variations present as well. 

These are assumed to be due to periodicities, other than those due to the flutter 

distortion. 
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The data in Figure 5.11 were obtained from a filtered version of the original sampled 

audio signal. The sampled data was filtered using a bandpass filter centred on 4.2 kHz. 

The bandpass filter was chosen to isolate a strong frequency component centred on 

4.2 kHz. The signal was not limited to remove amplitude variations. The low frequency 

variations, spaced at slightly less than 2000 samples, represent the effect of the speed 

variations in the modified tape machine. This corresponds to the periodicity detected in 

a recorded sine wave (Figure 5.10). 

 

Figure 5.11: Autocorrelation of band pass filtered audio signal, modified tape machine 

 

A different segment of audio was used to obtain the results presented in Figures 5.12 

and 5.13. The segment without any pre-processing before performing the 

autocorrelation, is shown in Figure 5.12. The audio signal segment showed a strong 

frequency component at about 1 kHz. In Figure 5.13 the result of performing an 

autocorrelation on a filtered audio signal is shown. The filter was centred at 1 kHz. 
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 Figure 5.12: Autocorrelation of unfiltered audio signal, modified tape machine 
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Figure 5.13: Autocorrelation of filtered audio, modified tape machine  

 

The process of detection of flutter distortion using the autocorrelation function can be 

enhanced by extracting the envelope of the autocorrelation. This is done by squaring 

the result and low pass filtering. The result of this enhancement, applied to the 

segment shown in Figure 5.11, is shown in Figure 5.14. The component at 

approximately 2000 sample spacing is more prominent and easily distinguished from 

the background noise. 

 

A comparison of a segment of an audio signal with and without the addition of flutter 

distortion was done. The results are shown in Figures A1.1 and A1.2, in the Annexure 

1, the Appendix to this chapter, respectively. The flutter distortion can be seen in 

Figure A1.1 while in Figure A2.2 it is not present.  
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Figure 5.14: Envelope of autocorrelation shown in Figure 5.11 

 

5.7   Correlation with conventional measurements 

An attempt was made to find a correlation between the results obtained using the time 

domain autocorrelation technique and conventional measurements (see Annexure 1). 

The autocorrelation peaks do not increase in amplitude in a way that can be related to 

conventional measurements. This is probably due to the non-linear nature of frequency 

modulation and the resultant amplitudes of the sidebands. 

 

It is concluded that the autocorrelation technique can be used to detect the presence of 

wow and flutter distortion but that it cannot be used to quantify the distortion. 

 

The correlogram technique of pitch detection in audio signals [Slaney and Lyon, 1990] 

makes use of similar techniques. Pitch (and signal frequency) is a parameter that 

changes with time as the audio signal changes while wow and flutter distortion will 
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yield the same frequency no matter what the frequency of the audio signal is. It will 

therefore be possible to distinguish between periodicities due to signal structure and 

periodicities due to wow and flutter distortion. 

 

5.8   Summary 

Periodic deviations in frequency from the original frequency of recorded audio signals 

are caused by variations in the speed of the recording medium. Speed variations in the 

recording medium, either during playback or recording of a signal, are caused by 

mechanical imperfections in the apparatus. These frequency deviations are sources of 

audible distortion in the signal. The distortion is known as ‗wow and flutter‘. 

 

It has been shown that the presence of periodic frequency variations in a recorded 

audio signal can be identified using the autocorrelation technique. The technique can 

be enhanced by pre-processing the audio signal, to remove large amplitude variations, 

and to isolate any strong frequency components in the audio signal. Extracting the 

signal envelope after autocorrelation further enhances the effectiveness of this 

technique. 

 

The results cannot provide a quantification of the magnitude of the distortion but do 

identify the presence of the distortion and can be used to determine the frequency of 

the distortion. 

 

A method has been developed and publicised, and confirmed through mathematical 

analysis, simulation and application to audio signals, for the detection of the distortion 

caused by mechanical imperfections in recording and playback apparatus. 
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CHAPTER 6 

 

DETECTION OF IMPAIRMENTS IN FREQUENCY CONTENT AND DYNAMIC 

RANGE 

 

6.1  Introduction 

Traditional measurements of dynamic range and frequency response involve sine 

wave test signals [King, 1979]. These tests provide objective, quantitative data about 

the performance of audio equipment. They do not provide any information about the 

signals that are likely to be transmitted, or recorded, using the equipment. In this 

chapter techniques used to extract information regarding frequency content and 

dynamic range from the transmitted signal, are discussed. These techniques involve 

the statistical characterisation of the audio signal  [Maré, 1985; Maré, 1986]. 

 

The frequency content of a signal is determined by the collection of spectral 

components in the signal. Recording artists and broadcasters manipulate the 

frequency content of an audio signal to shape the sound of their product e.g. 

emphasizing high frequency content, results in a ‗bright‘ sound.  

 

The dynamic range of a signal is defined to be the amplitude difference between the 

smallest and largest signal amplitudes, the smallest amplitude generally being such 

that the signal components are not ‗lost‘ in the noise. The largest amplitude signal is 

that signal which can be passed without excessive distortion. 

 

Frequency content and dynamic range of a signal play an important role in the 

perceived quality of the signal. A signal with adequate high frequency components will 

sound more ‗bright‘ than the same signal with high frequency components removed. 

Not only the presence but also the amplitude of the components and their prevalence 

is of importance. While it may be possible to have high frequency content present in 

the signal, since the equipment has adequate bandwidth, this is not enough. For 
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adequate perceived sound quality, the signal must have the high frequency 

components present. 

 

Signal dynamic range can affect the perceived loudness of a signal and, together with 

the signal frequency content, is used by program controllers to shape the ‗image‘ of 

their programme. For example, compressing the signal dynamic range to increase the 

mean loudness of the signal is a practice that is commonly used by the creators of 

sound broadcast advertisements.  

 

6.2     The Cumulative Spectral Amplitude Distribution (CSAD) 

Due to its non-stationary nature, an audio signal cannot be characterised by examining 

short time duration segments in isolation. Statistics need to be gathered over a period 

of time long enough for accumulating a representative sample of the signal [Maré, 

1985]. 

 

The technique that has been developed for monitoring the spectral content and 

dynamic range of an audio signal is called the Cumulative Spectral Amplitude 

Distribution (CSAD). The CSAD is a graphical representation obtained by repeatedly 

calculating the discrete Fourier transform of successive, short, time segments of the 

audio signal. The amplitude of each spectral component is used to increment an entry 

in a matrix. The position of an entry in the matrix is determined by the spectral 

component‘s frequency and amplitude. The matrix row index corresponds to the signal 

frequencies and the column index corresponds to signal amplitudes. The number of 

rows has been set to 70 corresponding to a signal dynamic range of 70 dB and the 

number of columns is set to 256 corresponding to 256 frequency points between 0 Hz 

and 22.5 kHz, half the sampling frequency. The choice of 256 points is a compromise 

between the need for speed in the calculation of the CSAD and the need to 

accumulate enough samples to accurately characterise the signal properties. More 

samples will increase the frequency resolution, which is not of prime concern. 
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The lines in the CSAD, Figure 6.1, indicate the cumulative amplitude distribution of the 

audio signal at different frequencies. In the example shown in Figure 6.1 the 

uppermost line indicates the amplitude, at each frequency, exceeded 1% of the time, 

the second line amplitudes exceeded 10% of the time and from there the lines are 

spaced apart by 10 percentage points for 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 

90%. This means that the CSAD can be used to determine how signal amplitude is 

distributed over frequency. If the lines are close together then the signal has been 

compressed in amplitude and its dynamic range has been reduced. This will have the 

effect of changing the mean amplitude of the signal. If the bunched lines are at a 

relatively high amplitude then the mean amplitude has been increased, the signal will 

sound loud.  

 

When sufficient entries have been accumulated, say, over a ten minute segment of 

audio signal, the cumulative distribution for each column in the matrix is calculated. 

The result is plotted as lines of amplitude versus frequency. The amplitude lines 

represent the amplitudes that are exceeded a certain percentage of the time (see 

Figure 6.1).  

 

The cumulative spectral amplitude distribution of a signal can be used to observe the 

quality of the signal in terms of: 

 

a) The spectral content of the signal. This can be determined by examining the 

top most line in the CSAD. Normal broadcast audio would have a slope of 

approximately -6dB/decade. Deviations from this slope would indicate that 

the signal has been processed in some way. 

b) The amplitude distribution vs frequency. Readings taken along a vertical line 

drawn on the CSAD at any frequency provide a measure of the signal 

cumulative amplitude distribution at that frequency.  

c) Relative loudness. If the amplitude vs frequency lines on the CSAD are 

bunched together vertically, then the signal has been compressed and this 

will affect the relative loudness of the signal. 
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d) The presence of any interfering tones. Interfering tones show up as strong 

spectral components with very small spacing between the lowest and 

highest amplitude lines on the CSAD. 

e) The extent of amplitude compression of the signal vs frequency. See (c) 

above. 

f) Consistent loudness and spectral content of items that are presented within 

the same programme segment.  

An example of a CSAD is shown in Figure 6.1. 
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Figure 6.1: Example of CSAD for an audio signal 

 

Advertisement inserts into a programme may have been processed to have a high 

mean amplitude to increase the impact of the advert. Classical music will tend to have 

lines that are evenly spaced over the whole amplitude range. This improves the 

dynamic range of the signal. 
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6.2.1  The spectral content of the signal. 

The CSAD is an estimate of the statistical distribution of the amplitude of the audio 

signal at different frequency points. It shows the spectral content of the signal and from 

this deductions can be made as to the quality of the transmitted signal. 

 

The frequency range of the signal is shown in the CSAD display. The frequency range 

is the span from the lowest frequency to the highest frequency between which the 

CSAD has identified the presence of significant spectral content. The frequency range 

can be used to identify problems in the frequency response of equipment e.g. high 

frequency roll off. The term frequency range is used rather than frequency response 

since the frequency response refers to the effect a system would have on a signal 

passing through it while the frequency range refers to the spectral content of the signal 

itself.  

 

The concept of frequency range is illustrated with reference to Figures 6.1 and 6.2. In 

Figure 6.1 the frequency range extends to 22.5 kHz while in Figure 6.2 the range has 

been restricted by low pass filtering to just over 15 kHz. This means that in Figure 6.2 

the signal has no frequency components at frequencies higher than about 15 kHz. 

Lack of frequency range could indicate frequency response problems in equipment or it 

could alert the sound engineer to the fact that the original signal has a defect. 
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 Figure 6.2: Low pass filtered audio signal 

 

6.2.2  The amplitude distribution vs frequency. 

A spectrogram [Rabiner & Schafer, 1978] is a display of the time varying spectral 

characteristics of an audio signal (see Figure 6.4). In a spectrogram the vertical axis 

corresponds to frequency and the horizontal axis to time. The intensity of the patterns 

produced on the spectrogram is proportional to the signal energy. The spectrogram 

cannot show the amplitude of individual spectral components and the dynamic range 

cannot be determined from a spectrogram. The dynamic range of a signal is of interest 

to a sound engineer as it is related to the perceived quality of an audio signal. 

 

A comparison of a spectrogram and a CSAD for the same 10 second audio segment is 

shown in Figures 6.2 and 6.3 below. 
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Figure 6.3: CSAD for comparison to Spectrogram  
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Figure 6.4: Spectrogram for comparison to CSAD  

 

Note how the two representations have both identified the presence of a prolonged 

spectral component, known as a ‗tone‘, at about 6.4 kHz with (possibly) a harmonic at 

12.8 kHz. On the spectrogram this is shown as a horizontal line, at a frequency of 6.4 

kHz, starting at about 2.7 seconds and lasting until just past four seconds. The 

harmonic can be seen as a less intense, parallel line higher in frequency. The 

spectrogram indicates that the tone and harmonic start at the same time and it can 

therefore be assumed that they originated from the same source. 

 

The same spectral component is seen on the CSAD display as a vertical line at 6.4 

kHz (Figure 6.3). Identifying the time of occurrence of a signal component is not 

possible with the CSAD. On the other hand, the CSAD indicates that the 6.4 kHz tone 

is at an amplitude that would make it audible, its peak extends to 10 dB below the 

highest signal component. 
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6.2.3  Signal dynamic range 

The CSAD can be used to visualise the dynamic range over the frequency range of the 

signal [Maré, 1985] while this is not possible with the spectrogram. The dynamic range 

of two audio signals can be compared by plotting the amplitude difference between the 

1% line and the 90% line versus frequency for the two signals. This technique has 

been used in determining the cause of a difference in the ‗sound‘ of two broadcast 

signals [Maré, 1985]. A significant difference in dynamic range over a range of 

frequencies will indicate that the two signals will sound different to a listener. 
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Figure 6.4: CSAD for compressed audio  

Radio broadcast managers will shape the sound of their programmes to suit the image 

that they wish to convey e.g. ‗pop‘, classical and so on. The CSAD, as a display of 
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amplitude distribution versus frequency, can be used in the setting up of equipment like 

dynamic sound level controllers, to achieve the desired ‗sound‘. 

 

Figure 6.4 can be compared to Figure 6.1. The difference in amplitude distribution 

between the two signals can be seen most clearly at low frequencies. The difference is 

due to the amount of compression applied to the two signals. The signal analysed in 

Figure 6.4 will sound louder than that displayed in Figure 6.1. (when played back at the 

same maximum level). 

 

6.2.4  Relative Loudness. 

Audio processors are routinely used in sound studios. These machines are primarily 

intended to limit the peak amplitude of the audio signal before it reaches the broadcast 

transmitter. An audio processor will treat different frequency segments of the signal in 

different ways and the processing power of such a machine is often used by sound 

engineers to create a particular ‗sound‘. For example a classical music programme 

requires large dynamic range and virtually no amplitude compression, while a ‗pop‘ 

programme may be processed to increase the mean loudness of the signal.  

 

The CSAD can be used to compare two audio signals. The amount of amplitude 

compression can be compared. A segment where the lines are closer together has 

been compressed to increase the perceived loudness of the signal. If this compression 

is frequency dependent the ‗sound‘ of the audio signal can be shaped. 

 

Figures A2.12 and A2.13 (Annexure 2) give an example of an audio signal that has 

been compressed [Dutilleux and Zölzer, 2002] compared to a signal that has not been 

processed. The dynamic range (1% to 95%) in Figure A2.12 (unprocessed) is larger 

across all frequencies than the dynamic range of the signal in Figure A2.13 

(compressed) 

 

 

. 
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6.2.5  The Presence of any Interfering Tones. 

Continuous tones are readily identified in the CSAD as shown in Figure 6.3 above. The 

tone can be seen at a frequency of just more than 6 kHz. 

 

6.3     Summary 

The concept of the CSAD has been developed and publicized by the author. The 

CSAD is a graphical display of signal spectral content, signal dynamic range, signal 

loudness, signal amplitude versus frequency distribution, the extent of amplitude 

compression and the presence of prolonged spectral components. All of these 

parameters are indicators of audio signal quality.  

 

The CSAD can be used by a trained observer to detect a change in the audio signal 

parameters mentioned above. While this may not indicate that the signal has been 

distorted, it could indicate that the signal has been changed in a way that would 

change the ‗image‘ of the signal. This is of importance to the controllers of audio 

production facilities who may wish to project a particular image. 

 

The CSAD is derived from the audio signal itself. It is therefore a ‗blind‘ technique for 

monitoring quality related parameters of an audio signal. 

 

Annexure 2 provides a comparison of a number of excerpts from the same and 

different audio sources. These short time CSAD plots show the variation in dynamic 

range, taken to be the difference between the 1 % and the 95 % lines on a CSAD plot. 

It is interesting to note, for example, the difference between Figures A2.5 and A2.6. 

Clearly the audio in Figure A2.5 has been compressed.  

 

In Figures A2.3, female voice, compression has been used to increase the perceived 

loudness, but in Figure A2.4, male voice, compression is not evident. 
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CHAPTER 7 
 

DETECTION OF NON-LINEAR DISTORTION 
 

7.0 Introduction 

An audio transmission system that is non-linear will introduce distortion into a signal 

passing through it. A characteristic of non-linear distortion is that new frequency 

components, that were not present in the input signal, are created in the output signal.  

 

In this chapter it is shown that non-linear distortion changes the probability density 

function (pdf) of the signal so that the probability density of the output signal is not the 

same as that for the input signal. This is illustrated with an example. 

 

Conventional methods for the measurement of non-linear distortion are discussed. 

These, stimulus-response methods, are compared to methods that make use of signal 

processing techniques. Some of the signal processing based methods can be 

classified as being blind identification methods. 

 

The method for detection of non-linear distortion, in an audio signal, developed by the 

author, uses the difference between the pdf of the signal, at the output of a non-linear 

system, compared to the pdf of the signal, at the input to the system. The classification 

of a signal as being distorted or undistorted is done using a probabilistic neural network 

(PNN).  Once the PNN has been trained it no longer requires access to the input signal 

in order for it to classify a signal as being distorted or undistorted. 
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7.1 Linear Systems 

A system, H, is linear [Bendat, 1990:1] if for any inputs  x1(t)and x2(t), and for any 

constants c1 and c2, the following holds: 

 

)]t(x[Hc)]t(x[Hc)]t(xc)t(xc[H 22112211     (7.1) 

Where: 

H is the system transfer function: 

 x1(t) and x2(t) are time domain input signals  

 H[x(t)] is the output from the system for input x(t) 

 c1 and c2 are constants 

  

From this the two fundamental properties of linear systems follow: 

a) The additive property: 

)]t(x[H)]t(x[H)]t(x)t(x[H 2121       (7.2) 

b) The homogeneity property: 

)]t(x[cH)]t(cx[H          (7.3) 

If any of these two properties does not hold for a system then the system is non-linear. 

The properties of linear systems lead to the convolution integral relationship between 

the input and output of a linear system and its frequency domain equivalent, the 

frequency response: 
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domain.frequencythein)f(X)f(H)f(Y

(7.4)

:anddomain,timetheind)t(x)(h)t(y

 

Where: 

 x(t) is the time domain input signal 

 y(t) is the time domain output signal 

 h(t) is the system impulse response 

 X(f) is the Fourier transform of x(t) 

 Y(f) is the Fourier transform of y(t) 

 H(f) is the system frequency response function 

 

From the frequency domain expression in Equation 7.4, we see that if a particular 

frequency domain component is zero in the input, X(f), then it will also be zero in the 

output, Y(f), i.e. there are no frequency components in the output that were not present 

in the input. This is not the case for a non-linear system. 

 

A linear system will not change the character of the probability density function (pdf) of 

the signal. If the input pdf, pi(x), is Gaussian, then the output pdf, p0(y), will also be 

Gaussian [Bendat,1990]. If the input/output relationship is non-linear then a Gaussian 

input pdf will result in a non-Gaussian output pdf. This relationship can be used for the 

detection of non-linearity‘s within the system. The bispectrum of a Gaussian 

distribution will be zero [Brillinger & Irizarry, 1998], hence if it is known that the input 

process is Gaussian and if the output bispectrum is not zero then the system between 
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input and output must be non-linear. This relationship only applies to signals having 

Gaussian pdfs.  

 

7.2 Non-Linear Systems 

A non-linear system will have an input, x(t), to output, y(t), relationship given by: 

 

))t(x(g)t(y          (7.5) 

Where: 

g( ) is a single valued non-linear function of the input 

x(t) is the time domain input signal 

y(t) is the system time domain output signal 

 

For a non-linear system the output pdf is related to the input pdf by [Bendat, 1990; 

Peebles, 1980]: 

 

|)x('g|

)x(p

|dx/dy|

)x(p
)y(p ii

o        (7.6) 

Where:  

 p0(y) is the output probability density function, pdf of y(t) 

 pi(x) is the input probability density function, pdf of x(t) 

 g(.) is the non-linear system function relating output to input 
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The way in which a non-linear system function changes the probability distribution 

function of a signal is shown in the following example. 

Application example [Bendat, 1990] 

Let x(t) be the input signal and y(t) be the output signal, assume that the system is 

non-linear and that it has a square law response, i.e.  

y(t) = g(x(t) = x2(t).  

Then: 

x2)x('g
dx

dy
 

The inverse function y)x(g 1   is bi-valued. From Equation 7.6 the output 

probability density function will be: 

0yfor
y

)y(p

|x2|

)x(p2

dx

dy

)x(p
)y(p ii

o  

For a Gaussian input pdf: 

0yfor
2

y
exp

2

1
)y(p)x(p

2

xx

i  

It follows that, for the Gaussian input pdf, the output pdf will be : 

0yfor
2

y
exp

y2

1
)y(p

2

xx

o  

This shows that the pdf of the output signal from the system is not the same as the pdf 

of the signal at the input to the system 

. 
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7.3   Methods of Measuring Non-Linear Distortion  

7.3.1 Conventional methods 

Conventional methods rely on the testing of the audio equipment to ensure that the 

equipment does not introduce any distortion into the signal passing through. Standard 

tests are described in [King, 1979]. These tests are all based on the stimulus-response 

paradigm and provide information about the effect of the system on the signal. The 

results of these tests have been related to the audibility of the distortion through 

listening tests.  

 

Early tests for non-linear distortion in audio equipment were ‗static‘ tests. Static 

distortion depends only on the amplitude of the signal.  

 

More sophisticated tests measure the dynamic response of the system. Dynamic 

distortion is dependent on both the amplitude and the frequency of the signal [Cordell, 

1981]. A variety of test signals have been designed to measure various types of 

dynamic distortion, and to extract information about the form of the distortion [Hirata et 

al. 1981; Hueber et al. 1976; Leinonen et al. 1977]. These test have been related to the 

audibility of the distortion [Petri-Larmi et al. 1980]. 

 

7.3.2 Methods based on signal processing 

These have been discussed in Chapter 4 section 4.5. The methods that have been 

reported in the literature involve stimulus-response testing and are not appropriate for 

blind detection of distortion in an audio signal. 
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7.3.3 Methods based on modelling 

There are two approaches to modelling the non-linear system. The first method relies 

on a physical system being available for measurements to be done. The second 

method applies when only a distorted signal is available. In the case where a physical 

system is not available, time series identification techniques can be applied to identify 

model parameters. 

 

The first method is illustrated in the paper by Jang and Kim (1994). A method of 

identifying non-linearities in loudspeakers using a NARMAX (non-linear autoregressive 

moving average with exogeneous input) model is described. The NARMAX model 

takes the form [Jang & Kim, 1994]: 

 

)t(e)rt(e,),1t(e),qdt(x),dt(x),pt(y,),1t(yF)t(y n   

(7.7)  

Where: 

 x(t) is the input  

 y(t) is the output 

 e(t) is the prediction error 

 d is the system time delay 

 p, q, and r are the orders of input, output and error respectively 

 Fn( ) is a non-linear function of order n 
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The model relies on knowledge of both the input and the output signals i.e. a physical 

system must be available for measurement. This method is therefore not appropriate 

for distortion identification when only the output signal is available. 

 

The second approach to modelling of the non-linearity, used when a physical system is 

not available, is described in [Godsill et al. 1998]. Their approach relies on creating a 

non-linear model flexible enough to simulate the various forms of non-linear distortion 

likely to be present at various times in an audio signal [Godsill et al. 1998: 183]  

 

To avoid the complexities and computational burden of the Volterra series or NARMA 

(non-linear autoregressive moving average) modelling approaches, Godsill et al. 

(1998: 184) proposed the following model, Figure 7.1. The audio signal is modelled as 

an autoregressive (AR) process. This process is followed by a non-linear system 

model. Two non-linear models are discussed in Godsill et al. (1998: pp186 -8). The first 

is the Autoregressive-Memoryless Non-linearity (AR-MNL) and the second is a non-

linearity with memory, referred to as an Autoregressive Non-linear Autoregressive (AR-

NAR) model. 

AR

Model

Non-linear

System

 e(n)  s(n)  x(n)

 

 Figure 7.1: Model of distortion process [Godsill et al. 1998]. 
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This technique is still in development and it may turn out that a single model for the 

distortion is not adequate to simulate all possible distortion mechanisms that are likely 

to affect a real audio signal. 

 

7.4  Detection of the Presence of Non-Linear Distortion Based on the 

Probability Density Function (pdf) of Distorted Audio Signals 

 

The expression for the relationship between the pdf of the signal at the input and the 

pdf of the signal at the output of a non-linear system, equation 7.6 [Bendat, 1990], 

shows that a difference will be apparent between the two pdfs. 

 
|)x('g|

)x(p

|dx/dy|

)x(p
)y(p ii

o        (7.6) 

The difference will depend on the nature of the non-linearity. There will be no 

difference between input and output pdf if the system is linear. 

 

The relationship of Equation 7.6 was used to develop a new method to identify the 

presence of non-linear distortion in an audio signal. The new method is based on the 

Probabilistic Neural Network (PNN) as described in the next section. 

 

A neural network approach to the problem was chosen because a neural network can 

be trained using undistorted audio (the input signal) and distorted signals (the output 

from the ‗distortion generator‘, the non-linear system) with the distorted signal being 

the ‗target‘. Once the network has been trained the input signal is no longer required. 



  91 

Effectively the relationship between the undistorted audio signal and the distorted 

audio is memorized in the neural network weights.  

 

7.4.1 Procedure for identification of the presence of non-linear distortion 

The procedure must use the signal itself to detect the presence of non-linear distortion. 

The procedure developed here uses a property of the distorted and undistorted 

signals, the pdf, to distinguish between the two. In order to do this it has to be 

established that the difference between input and output pdf for a signal passed 

through a non-linear system is large enough for the difference to be detected reliably. 

The process is illustrated in Figure 7.2. 

 

System

Introducing

Non-linear

Distortion

 Input signal,

 x(t), with pdf

 pi(x)

 Output signal,

 y(t), with pdf

 po(y)

Compare input and output

pdfs

 

 

 Figure 7.2: Process model 

 

The non-linear distortion introduced by the system model was generated by a non-

linear transfer function chosen from the limiter family [Jeruchim et al. 1992]. A limiter 
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type of non-linearity is chosen since this is most likely to be the source of non-linearity 

in an audio transmission chain. The non-linearity is described by: 

k

1
k

|)n(x|/u1

))n(xsgn(M
)n(y        (7.8) 

Where: 

 y( ) is the instantaneous output, generated by an input, x( ).  

n is the sample number. 

M is the asymptotic output level as |x| tends to infinity  

u is the output limit level   

k is the knee sharpness parameter.  

 

The severity of the distortion is controlled by the knee sharpness parameter, k, which 

controls the sharpness of the break from linearity. Input/output transfer curves for 

different values of the distortion parameters are shown in Figures A3.1 and A3.2 in 

Annexure 3; Appendix to Chapter 7. 

 

From Equation 7.6 we see that in order to estimate the effect of the non-linearity on the 

probability distribution function, we need to find the derivative of the function describing 

the non-linearity, Equation 7.8. This is given by: 

1k

1
kk ux

)xsgn(M

dx

dy
        (7.9) 

 

The input and output pdfs can be compared if a method of describing them has been 

established. If a suitable describing pattern, or vector, is established an artificial neural 
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network can be used to classify the pattern as belonging to either an undistorted audio 

signal or to a distorted audio signal  

 

The approach chosen was to approximate the audio signal pdfs using histograms. The 

approximate distribution functions were determined from 65536 samples of the audio 

signal, sampled at 44.1 kHz. This is a rather arbitrary choice and any other number of 

samples large enough to give a good approximation to the pdf could be used. The 

approximate pdfs were plotted and a fifth order polynomial was fitted to the resulting 

curve. A fifth order polynomial was chosen since it was the lowest order polynomial 

giving a good fit to the estimated pdf. 

 

The coefficients of the polynomial for the various data files are listed in Table 2.1 in  

Annexure 2: The appendix to Chapter 7. The coefficients were used as the describing 

vector for the pdfs and was input to a Probabilistic Neural Network (PNN) [Demuth and 

Beale, 1998; Katagiri, 2000; Fausett, 1994 ]. The PNN was used to classify the 

coefficient vectors as belonging to either undistorted or distorted audio.  

 

A PNN is a neural network for pattern classification, using ideas from classical 

probability theory. It will classify input vectors into classes in a Bayesian optimal 

manner. The Bayesian decision rule states that a vector should be classified as 

belonging to class A if [Fausett, 1994], 

 

)x(pCP)x(pCP BBBAAA        ( 7.10) 
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Where: 

 PA  is the a priori probability of occurrence of patterns in class A 

 CA  is a cost function associated with incorrectly classifying vectors 

 pA (x) is the probability density function for class A 

PB  is the a priori probability of occurrence of patterns in class B 

 CB  is a cost function associated with incorrectly classifying vectors 

 pB (x) is the probability density function for class B 

 

The MATLAB Neural Network Toolbox [Demuth and Beale, 1998] was used to create a 

PNN. The network was trained using coefficient vectors where the difference between 

input (undistorted) and output (distorted) was readily apparent. The PNN was then 

used to classify a number of data sets. Those data sets that had been incorrectly 

classified as either undistorted, when they were distorted. or vice versa, were then 

used as additional training inputs in training the PNN. This refinement of the training 

set resulted in the PNN‘s classification of data sets improving.  

 

The PNN was further tested with data from the same audio samples but with more 

severe distortion present.  

 

As a measure of the amount of distortion generated by the simulation, the Total 

Harmonic Distortion (THD) content of an equal amplitude sine wave signal was 

calculated using a formula similar to the formula specified by King (1979): 
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Where: 

 Vn is the amplitude of the component at the frequency of harmonic n  

 

This formula actually calculates the ratio of distortion products power to the power of 

input plus distortion products, it is more correctly called the ‗distortion to signal-plus-

distortion‘ ratio. The formula used was the same as Equation 7.11, except for using the 

distortion power and also not including the distortion components, i.e. the harmonics 

generated by the distortion, in the calculation below the line. This is shown in Equation 

7.12. [ITT, 1973]: 
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      (7.12) 

 

7.5 Results 

Two distortion curves were used in preparing the data. They were similar except in the 

knee sharpness factor, k, see Equation 7.8. Two different values of k were used, k=0.5 

resulting in a 1.9 % distortion, and k=0.9, resulting in 0.5% distortion, as calculated 

using equation 7.12. Note that the distortion calculation is only valid for an input sine 

wave signal at one set amplitude. If the sine wave amplitude is changed the % THD 

will either increase or decrease. 
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The PNN was trained using 24 examples of undistorted data and 24 examples of 

distorted data. After training new data was presented to the PNN and the results were 

as follows: 

 

Data 
Source 

Distortion 
factor, k 

Number of 
data 
segments 

Data 
segment 
length 
(samples) 

Number 
correctly 
classified 
as 
distorted 

Number 
correctly 
classified 
as 
undistorted 

A.  
Audio tape 

0.9 64 65536 21 (66%) 24 (75%) 

B.  
Audio tape 

0.9 64 131072 25 (78%) 24 (75%) 

C.  
Audio tape 

0.5 38 65536 31 (81.5%) N/A 

D.  
Audio tape 

0.5 38 131072 35 (92%) N/A 

D.  
Audio tape 

0.5 38 196608 36 (94.7%) N/A 

E.  
Video tape 

- 8 196608 6 (75%) N/A 

 

Table 7.1: Results obtained in classification of distorted audio signals. 

Details of the data reproduced in Table 7.1 are given below. 

Data distorted with k=0.9 

A. Data segments representing approximately 1.5 seconds of audio signal 

(65536 samples) 

Of the 64 examples presented to the PNN half were from undistorted data and half 

were from distorted data, k=0.9. Of the data samples 8 were wrongly classified as 

distorted and 11 were incorrectly classified as undistorted. 
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B. Data segments representing approximately 3.0 seconds of audio signal 

(131072 samples) 

The data samples that had been incorrectly classified as undistorted were extended in 

length to 131072 samples and presented to the PNN. This resulted in an additional 4 

segments being correctly classified as distorted. 

 

Data distorted with k=0.5 

C. Data segments representing approximately 1.5 seconds of audio signal 

(65536 samples) 

Of the 38 examples presented to the PNN all were from distorted data, k=0.5. Of the 

data 7 were incorrectly classified as undistorted. 

 

D. Data segments representing approximately 3.0 and 4.5 seconds of audio 

signal (131072 and 196608 samples) 

The data samples that had been incorrectly classified as undistorted were extended in 

length to firstly 131072 samples and presented to the PNN. This resulted in an 

additional 4 segments being correctly classified as distorted. When the data segment 

was further extended to 196608 samples an additional segment was correctly 

classified as distorted. 
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E. Data segment from a VHS video tape with distorted audio track 

Eight data segments, 196608 samples long, were taken from the videotape. When 

presented to the PNN, 6 were correctly classified as distorted and two were incorrectly 

classified. 

 

7.6   Discussion of Results 

The probability density of signal amplitude (pdf) and the signal cumulative spectral 

amplitude distribution (CSAD) will vary depending on which time segment of the audio 

signal is being analysed, an audio signal is not stationary. Both the pdf and CSAD will 

also vary depending on the source of the audio signal, e.g. speech or music. The 

shape of these density curves will indicate whether the signal can be classified as 

having undergone some form of non-linear distortion or not. The figures below show 

typical histogram (approximation to the pdf) curves for two signal examples. 
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Figure 7.3: Signal amplitude histogram curve for signal with adequate 

amplitude spread. 

 

In Figure 7.3 the histogram (approximation to the pdf) of a segment, 65536 samples 

long, of an input signal, i.e. a signal that has not been distorted, is shown. After 

passing this signal through the simulated limiter (Section 7.4.1 Equation 7.8), the 

Probabilistic Neural Network (PNN) correctly classified the output signal as having 

been distorted. 

 

The histogram for a second segment of input signal is shown in Figure 7.4. After 

passing this signal through the limiter the PNN could not correctly classify the signal as 

having been distorted. 
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Figure 7.4: Amplitude histogram curve for signal with inadequate amplitude 

spread.  

 

Comparing the histogram of Figure 7.3 to that of Figure 7.4 it is clear that the audio 

signal in Figure 7.4 is less likely to have relatively large amplitude components. The 

amount of distortion present in this signal after passing through the distorter will 

therefore be less than that fro the signal shown in Figure 7.3 and hence detection of 

distortion may fail simply because there is no distortion to be detected. 

 

The histogram shown in Figure 7.4 indicates that the signal segment did not have 

adequate high amplitude components for the distortion to be detectable. The model of 

a limiter (Equation 7.8 and Figures A3.1 and A3.2 in Annexure 3, page 139 - 140) 

shows that low amplitude components are passed without distortion while high 
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amplitude components are distorted. The input/output transfer curves of figures A3.1 

and A3.2 in Annexure 3 indicate that there is a deviation from the linear curve which 

increases progressively as the input amplitude increases. 

 

This is further explained by reference to the following figures, Figure 7.9, Figure 7.10, 

Figure 7.11 and Figure 7.12. 
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Figure 7.9: Histograms of undistorted audio. 
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Figure 7.10: Histograms of distorted audio. 
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Figure 7.11: Histograms of distorted audio correctly classified as distorted. 
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Figure 7.12: Histograms of audio incorrectly classified as distorted. 

 

Comparing Figures 7.9 to 7.12 it becomes clear that the histogram for signal 

amplitudes (normalized) between about 0.3 and 0.7 is crucial to the classification 

process. A bulge in this area leads to a classification of the signal as being distorted. 

Audio signals have an approximately exponential distribution, the histogram would 

therefore tend to be concave. Redistribution of signal amplitudes due to distortion 

changes this shape.  

 

It must be accepted that the shape of the histogram can only change if the undistorted 

signal is rich in signal components with amplitudes across the range of possible 

amplitudes. Amplitude distortion rarely affects signals with small amplitudes and hence 
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such signals will pass through a non-linear device without exhibiting any signs of 

distortion. 

 

Tables 7.2 and 7.3 below support this argument. In these tables the classification of 

the audio sample is indicated in the column headed Class 6. A 1 in this column 

indicates an incorrect classification. Audio data files which were incorrectly classified 

as undistorted when subjected to lower distortion (k=0.9, Table 7.2) would either not 

change (Dat05; Dat06; Dat07>; Dat15; Dat15>; Dat17 ) or would be correctly classified 

(Dat04; Dat05; Dat06>; Dat17>; Dat18; Dat19; Dat19>) when subjected to higher 

levels of distortion (k=0.5, Table 7.3). 

 

The column headed Class 1 in Tables 7.2 & 7.3 show the results of using the PNN to 

classify each coefficient of the polynomial individually and then use majority logic to 

arrive at an overall classification. A 0 indicates an equal vote for distorted and 

undistorted, a 1 indicates an incorrect classification and a 2 indicates a correct 

classification. Examination of the tables shows that this method does not improve on 

the previous method for low distortion and provides a marginal improvement for higher 

distortion. 

 

It can therefore be concluded that the proposed method for detection of non-linear 

distortion is capable of detecting non-linear distortion in an audio signal within the 

limitations discussed above. After training the PNN the method can operate as a blind 

technique for detecting non-linear distortion. 
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Table 7.2: Audio data files and associated parameters, k=0.9 

 
 Distortion parameters: m=1; u=1.5; k=0.9 

Data File         

 5th  4th 3
rd

 2nd 1st Oth Class Class 

       6 1 

Dat01 0.0401 -0.1328 0.1939 -0.1281 0.0104 0.0167 2 2 

Dat01 > 0.0356 -0.0772 0.0878 -0.0586 -0.0044 0.0171 2 2 

Dat02 -0.1199 0.2821 -0.1802 0.0057 -0.007 0.0174 2 2 

Dat02 > 0.0773 -0.2375 0.2949 -0.1695 0.0193 0.0155 2 2 

Dat03 -0.1756 0.4671 -0.4252 0.1673 -0.555 0.0219 2 2 

Dat03 > -1.184 3.3789 -3.5551 1.6861 -0.367 0.0395 2 2 

Dat04 0.2091 -0.5806 0.5832 -0.2468 0.019 0.0161 1 1 

Dat04 > 0.1293 -0.3538 0.3244 -0.0826 -0.0415 0.0241 2 0 

Dat05 -1.4195 4.0756 -4.3805 2.181 -0.5123 0.0534 1 1 

Dat05 > -3.0158 8.4416 -8.7626 4.1295 -0.8682 0.0702 1 1 

Dat06 -2.4225 6.8154 -7.1087 3.3676 -0.7178 0.0619 1 1 

Dat06 > -2.0679 5.8763 -6.228 3.0329 -0.6793 0.0627 1 1 

Dat07 -1.3462 3.7985 -3.9683 1.8849 -0.4144 0.0434 2 2 

Dat07 > -4.4812 12.4953 -12.891 6.0228 -1.2471 0.0943 1 1 

Dat08 -0.0771 0.1926 -0.1332 0.0092 -0.0077 0.0162 2 2 

Dat08 > 0.0025 -0.0663 0.1709 -0.133 0.0075 0.0185 2 2 

Dat09 -0.0348 0.0781 -0.014 -0.0493 0.0043 0.0158 2 2 

Dat09 > -0.1143 0.2871 -0.2045 0.0196 -0.0038 0.0159 2 2 

Dat10 -0.0163 0.0491 -0.0124 -0.0357 -0.005 0.016 2 2 

Dat10 > -0.0554 0.1686 -0.1437 0.019 -0.0026 0.0143 2 2 

Dat11 -0.0702 0.1724 -0.1067 -0.0071 -0.0047 0.0165 2 2 

Dat11 > -0.1235 0.3357 -0.2841 0.0688 -0.0126 0.0156 2 2 

Dat12 -0.1063 0.18 -0.011 -0.0843 0.002 0.0194 2 2 

Dat12 > -0.0231 0.1052 -0.1413 0.0846 -0.046 0.0207 2 2 

Dat13  0.0021 -0.0277 0.0912 -0.0878 0.0056 0.0167 2 2 

Dat13 > -0.011 0.0901 -0.1193 0.0436 -0.0197 0.0168 2 2 

Dat14  -0.4096 1.1315 -1.1709 0.5692 -0.1522 0.0284 2 2 

Dat14 > -1.3727 3.9424 -4.2057 2.0499 -0.4638 0.048 2 0 

Dat15 0.4439 -1.0901 0.9032 -0.2548 -0.0247 0.0233 1 1 

Dat15 > 0.1505 -0.2641 0.0639 0.0916 -0.0611 0.0196 1 1 

Dat16 -0.8032 2.3239 -2.4904 1.2122 -0.2782 0.0345 2 2 

Dat16 > 0.0318 -0.0525 -0.0216 0.084 -0.0653 0.023 2 2 

Dat17   -2.4339 6.8717 -7.2108 3.4518 -0.748 0.065 1 1 

Dat17 > -1.8064 5.2328 -5.6877 2.8642 0.67 0.0643 1 1 

Dat18 -2.0511 5.7471 -5.9323 2.7503 -0.5675 0.0502 1 1 

Dat18 > -1.3037 3.7227 -3.9343 1.8892 -0.4199 0.0442 2 2 

Dat19 -2.3015 604728 -6.7433 3.1949 -0.6881 0.0616 1 1 

Dat19 > -2.042 5.7437 -5.9643 2.7959 -0.5896 0.0532 1 1 
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Table 7.3: Audio data files and associated parameters 

 

Distortion parameters: m=1; u=1.5; k=0.5 
Data File         

 5th  4th 3rd 2nd 1st oth Class Class 

       6 1 

Dat01 0.1099 -0.2415 0.1889 -0.0817 0.0132 0.112 2 2 

Dat01 > 0.1716 -0.3837 0.2889 -0.0991 0.0108 0.0114 2 2 

Dat02 0.0996 -0.1684 0.0717 -0.0148 0.0003 0.0117 2 2 

Dat02 > 0.0386 -0.0847 0.0746 -0.0523 0.0129 0.0107 2 2 

Dat03 0.046 -0.0243 -0.0746 0.0631 -0.0249 0.0151 2 2 

Dat03 > -0.4299 1.3956 -1.6941 0.9288 -0.2302 0.0293 2 2 

Dat04 -0.0275 0.0017 0.0659 -0.0634 0.0113 0.011 2 2 

Dat04 > 0.0204 -0.0944 0.1278 -0.062 -0.0092 0.0164 2 2 

Dat05 -0.8516 2.4612 -2.6923 1.3803 -0.3394 0.0401 2 2 

Dat05 > -2.2686 6.3565 -6.6341 3.162 -0.6773 0.0576 1 1 

Dat06 -1.6313 4.6465 -4.9456 2.4107 -0.5324 0.0493 1 1 

Dat06 > -1.2564 3.6268 -3.939 1.9869 -0.4688 0.0486 2 2 

Dat07 -0.7644 2.2436 -2.468 1.2419 -0.2874 0.0322 2 2 

Dat07 > -3.466 9.7044 -10.0772 4.7523 -0.9983 0.0787 1 1 

Dat08 0.0769 -0.1385 0.0633 -0.0133 0.0006 0.011 2 2 

Dat08 > -0.0789 -0.1512 0.1046 -0.0517 0.0017 0.0125 2 2 

Dat09 0.0914 -0.1683 0.0906 -0.0308 0.0062 0.0107 2 2 

Dat09 > 0.1377 -0.2676 0.1545 -0.0401 0.005 0.0107 2 2 

Dat10 0.1666 -0.3615 0.259 -0.0861 0.0114 0.0106 2 2 

Dat10 > 0.1315 -0.2714 0.1666 -0.043 0.066 0.0096 2 2 

Dat11 0.0941 -0.1723 0.0878 -0.0233 0.0025 0.0111 2 2 

Dat11 > 0.1379 -0.2628 0.1399 -0.0275 0.0022 0.0105 2 2 

Dat12 -0.0003 0.0723 -0.1149 0.0364 -0.0065 0.0133 2 2 

Dat12 > 0.1901 -0.4359 0.3277 -0.0926 -0.0028 0.0137 2 2 

Dat13  0.0802 -0.1554 0.096 -0.0381 0.0059 0.0113 2 2 

Dat13 > 0.2875 -0.653 0.4916 -0.151 0.0143 0.0108 1 0 

Dat14  -0.2827 0.8024 -0.8517 0.412 -0.1014 0.0207 2 2 

Dat14 > -0.5284 1.6742 -2.0037 1.107 -0.2851 0.0355 2 2 

Dat15 0.3775 -1.0344 0.991 -0.3831 0.0337 0.0148 1 1 

Dat15 > 0.2433 -0.6513 0.5611 -0.166 -0.0003 0.0127 1 0 

Dat16 -0.461 1.3622 -1.5305 0.792 -0.1899 0.0257 2 2 

Dat16 > -0.1622 0.37 -0.3224 0.1403 -0.0432 0.0163 2 2 

Dat17   -1.7496 4.9437 -5.2212 2.5326 -0.5606 0.052 1 1 

Dat17 > -0.9405 2.773 -3.1193 1.6617 -0.4248 0.0482 2 2 

Dat18 -1.2439 3.6168 -3.9204 1.9254 -0.4197 0.0398 2 2 

Dat18 > -0.6481 1.9674 -2.2435 1.1709 -0.2811 0.0334 2 2 

Dat19 -1.3457 3.9238 -4.2751 2.1337 -0.4865 0.048 2 0 

Dat19 > -1.2116 3.5392 -3.859 1.9151 -0.4271 0.0418 2 2 
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CHAPTER 8 

 

CONCLUSION 

 

8.0 Introduction 

The conventional approach to quality maintenance in high quality audio signal 

transmission and production equipment is to use stimulus response testing. The 

performance of the equipment, through which the audio signal passes, is measured 

using standard test signals and if the performance does not meet laid down criteria the 

equipment is taken out of service and adjusted or repaired. 

 

The objective of this research project has been to consider the possibility of blind 

identification of distortions in high quality audio signals. This would enable a network 

operator to monitor the audio signals passing through the network and to determine 

whether a signal has been distorted.  

 

Distortion could be caused by the source, e.g. a broadcast studio, or the transmission 

network. The operator of a broadcast service would monitor the signal at the output of 

the studio complex. This would enable the operator to identify signal distortions and to 

initiate corrective measures. 

 

It has been shown that using the techniques developed during this research project the 

following distortions can be identified: 

 

 Distortions resulting from mechanical imperfections in analogue recording and 

playback apparatus (wow and flutter). 

 

 Distortions due to restricted dynamic range, frequency content and frequency 

range of an audio signal. 

 

 The presence of non-linear distortion in an audio signal. 
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8.1    Distortion Due to Mechanical Imperfections 

The mechanical imperfections that are of interest are those giving rise to variations in 

rotational speed in analogue playback and recording equipment. These variations 

result in frequency modulation of the recorded or reproduced audio signal. 

 

It has been shown that the frequency modulation of the audio signal (known as wow 

and flutter) can be detected. The procedure for detection of wow and flutter is based on 

the autocorrelation of the signal with refinements to enhance the visibility of the 

detected impairment. 

 

Detection of the presence of wow and flutter distortion is not possible for all time 

segments of an audio signal. When the audio signal does not contain a strong 

component at a particular frequency the distortion cannot be detected as frequency 

modulation of a random signal does not lead to clearly defined periodicities, which 

could be detected using the autocorrelation. 

 

8.2   Dynamic Range, Frequency Content and Frequency Range 

Dynamic range, frequency content and frequency range refer to parameters of the 

audio signal which influence the sound and the impression this creates in the human 

auditory system. The operators of broadcast facilities manipulate these parameters to 

shape the sound image that they wish to project for their particular broadcast 

programme. This also applies to recording artists. For example classical music is 

usually broadcast or recorded with a high dynamic range and little or no processing of 

the audio signal in terms of manipulation of the dynamic range, frequency content or 

frequency range. In contrast, sound advertisements are heavily processed to increase 

the perceived loudness and to create the desired sound image. 

 

By monitoring the dynamic range, frequency content and frequency range of a sound 

programme, the broadcast programme manager can be assured that the programme 

projects the desired sound image. 
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The CSAD (cumulative spectral amplitude distribution) has been developed, by the 

author, as a tool to aid in monitoring audio signal dynamic range, frequency content 

and frequency range. The CSAD is generated by creating a plot of the cumulative 

amplitude distribution of the audio signal at different frequencies. It is similar to the 

spectrogram in that the statistics of a number of consecutive, short time FFTs are 

accumulated. However it has the advantage over the spectrogram in that the CSAD 

shows the amplitude distribution of the audio signal, and hence the dynamic range of 

the signal at all frequencies can be deduced from the CSAD diagram. 

 

8.3   Distortion Due to Non-Linear Effects 

Audio signals are often generated by sources which are rich in harmonics and which 

do not have a Gaussian probability distribution. This means that tests for non-linearity 

will indicate that there is non-linearity present in the signal, not because the signal has 

been distorted but because the apparent non-linearity is inherent in the signal. 

 

The approach to detecting non-linear distortion developed in this research project has 

relied on the change in probability distribution of a signal between the input and output 

when the signal is passed through a non-linear system. If this difference is large 

enough an artificial neural network can be trained to detect this difference and classify 

the signal as either undistorted or distorted. 

 

The parameters describing the probability distribution of the signal that have been 

chosen as inputs to the neural network are the coefficients of a fifth order polynomial fit 

to the probability distribution curve. It has been shown that using the five coefficients 

as an input vector it, is possible to train a probabilistic neural network to classify a 

signal according to whether it has been distorted or not. When the input signal does 

not have high amplitude components the neural network will classify the signal as 

undistorted. This technique classifies the signal and makes no statement about the 

possible cause of the distortion. 

 



  110 

8.4    Future Work 

The purpose of audio measurements is to enable a system operator/designer to detect 

distortions, which would detract from the listening experience of a user of the system. 

Only a small segment of possible distortions which may give rise to impairment of the 

audio signal have been considered in this research.  

 

The work reported on here, has been limited to the detection of distortion in an 

analogue audio signal. In a digital transmission system the distortion is limited to the 

effects of bit errors. However changes in the way a signal sounds to a human listener 

may result from the signal processing applied to the digitized analogue signal. Such 

processing may have the aim of reducing redundancy thereby limiting the occupied 

bandwidth. When signal processors are used in series, e.g. one processing technique 

may be used over a satellite link and another over a terrestrial microwave link, the 

combined effect may result in unwanted signal distortion. 

 

Future research should consider advances in psychoacoustics to refine and extend the 

work that has been reported on here to digital transmission systems. 
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ANNEXURE 1:  

Appendix to Chapter 5 

A1.1  Comparison of distorted and undistorted signals 
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Figure A1.1: Envelope of autocorrelation of audio signal with flutter distortion. 
 
The flutter frequency in Figure A1.1 can be calculated to be approximately 26.5 Hz 

which corresponds to the  flutter frequency observed in the audio segment shown in 

Figure 5.14. 
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Figure A1.2: Audio segment without flutter distortion 
 
The audio segment in Figures A1.1 and A1.2 are the same except for the introduction 

of flutter distortion in Figure A1.1. 

 

A1.2 Calibration of the measurement of Wow and Flutter using the time domain 

autocorrelation technique. 

 

The starting point for the calibration is the three figures below, Figure A1.3, A1.4 and 

A1.5. These figures show the results of the time domain autocorrelation technique for 

the specified values of wow & flutter distortion. 

 

The results shown are the output of a simulation of the proposed technique. It is 

assumed that a single tone has been recorded. In these figures the frequency of the 

distortion is set to 13.5 Hz, the frequency of the recorded tone is set to 3150 Hz.   
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The results have been enhanced by squaring the autocorrelation. On examinantion of 

these figures no correlation between any feature of the squared autocorrelation and 

the results that would be obtained from a measurement of wow and flutter distortion 

can be found. 

 

It must therefore be concluded that the proposed technique is able to identify the 

presence of wow and flutter distortion but that it cannot be used to quantify the 

magnitude of the distortion. 
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Figure A1.3: Output with 0.5% Wow and Flutter 
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Figure A1.4: Output with 1% Wow and Flutter 
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Figure A1.5: Output with 2% Wow and Flutter 
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Figure A1.6: Output with 3.25% Wow and Flutter 
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ANNEXURE 2 
 
Appendix to Chapter 6 
 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

-60

-50

-40

-30

-20

-10

0

10
Dynamic range estimate: Male voice singing popular music

Frequency, Hz

R
e
la

ti
ve

 S
ig

n
a
l 
L
e
ve

l 
(d

B
)

 
 
Figure A2.1: Data file dat01 

 
 

 
 
Figure A2.2: data file dat03 
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Figure A2.3: Data file dat04 
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Figure A2.4: data file dat06 
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Figure A2.5: Data file dat09 
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Figure A2.6: Data file dat18 
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Figure A2.7: Data file data100 
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Figure A2.8: Data file data106 
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Figure A2.9: Data file Data109 
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Figure A2.10: Data file data117 
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Figure A2.11: Data file data118 
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Figure A2.12: Data file dat01, unprocessed 
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Figure A2.13: Data file dat01, after compression 
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ANNEXURE 3 
 
Appendix to Chapter 7 
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 Figure A3.1: Distortion curve: M=1.0, u=1.5, k=0.9 
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Figure A3.2: Distortion curve: M=1.0, u =1.5, k=0.5 
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ANNEXURE 4:  

Description of Data files used in Chapters 5, 6 and 7 

The data files are identified by a alpha numeric code followed by a bracketed 

expression indicating the portion of the (250 kilo sample to 500 kilo sample) original file 

that was used e.g. (>65k) signifies that the first 65 kilo samples were ignored and the 

next 65 kilo samples were used. 

 
TABLE A4.1: Initial, unclassified data. 

Data File 5th Order 4th Order 3rd Order 2nd 
Order 

1st Order Constant 

21u (>65k) 0.2422 -0.7774 0.8989 -0.4003 0.0181 0.0245 

Distorted -0.0625 0.1530 -0.0831 -0.0257 0.0029 0.0155 

22u 0.3070 -0.9351 1.0103 -0.4079 -0.0023 0.0281 

Distorted -0/0735 0.1544 -0.0573 -0.0374 -0.0043 0.018 

23u 0.2077 -0.6504 0.7225 -0.2939 -0.0129 0.0270 

Distorted -0.0538 0.1349 -0.0810 -0.0100 -0.0068 0.0168 

24u 0.2656 -0.8363 0.9465 -0.4167 0.0159 0.0251 

Distorted -0.1107 0.2696 -0.1822 0.0102 -0.0028 0.0159 

41u 0.2226 -0.6803 0.7368 -0.2907 -0.0153 0.0271 

Distorted -0.0368 0.0859 -0.0330 -0.0285 -0.0041 0.0166 

40u 
(>165k) 

0.0597 -0.2546 0.3751 -0.2045 0.0021 0.0221 

Distorted 0.0066 0.0361 -0.0596 0.0049 -0.0012 0.0134 

47u 
(>165k) 

0.3591 -1.0443 1.0765 -0.4132 -0.0062 0.0285 

Distorted -0.0112 -0.0119 0.0967 -0.0945 0.0032 0.0178 

1u (>100k) 0.1661 -0.4937 0.5422 -0.2344 -0.0027 0.0228 

Distorted 0.1448 -0.3775 0.3680 -0.1621 0.0113 0.0156 

2u 0.0667 -0.2813 0.3975 -0.1959 -0.0119 0.0248 

Distorted 0.0090 0.0038 0.0004 -0.0218 -0.0078 0.0166 

5u  0.2228 -0.7360 0.8610 -0.3789 0.0044 0.0267 

Distorted -0.1635 0.4220 -0.4442 0.0698 -0.0117 0.0165 

25u 0.3197 -0.9959 1.1145 -0.4882 0.0244 0.0256 

Distorted -0.1120 0.2579 -0.1485 -0.0154 0.0016 0.0163 

5u (>65k) 0.4075 -1.2010 1.2472 -0.4789 -0.0047 0.0302 

Distorted -0.1023 0.2051 -0.0715 -0.0476 -0.0025 0.0188 

5u (>150k) 0.1766 -0.6229 0.7679 -0.3528 0.0050 0.0261 

Distorted -0.2248 0.5941 -0.5048 0.1380 -0.0184 0.0159 

25u (>65k) 0.1314 -0.4808 0.6188 -0.2985 0.0044 0.0246 

Distorted -0.0404 0.1322 -0.1047 -0.002 -0.0019 0.0153 

25u 0.0859 -0.3440 0.4776 -0.2465 0.0038 0.0231 
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(>150k) 

Distorted -0.0526 0.1781 -0.1705 0.0367 -0.0057 0.0142 

33u 
(>150k) 

0.1390 -0.4959 0.6327 -0.3111 0.0120 0.0233 

Distorted -0.0871 0.2913 -0.2867 0.0688 0.0023 0.0117 

 
Distortion parameters: M=1.0; u=1.5; k=0.9 (See figure 4. For plot) 
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Table A4.2: Data classified as per Table 4.4 
Data File 5

th
 order 4

th
 order 3

rd
 order 2

nd
 order  1

st
 order  Constant 

Dat01 0.3392 -0.976 0.9947 -0.3743 -0.0115 0.0282 

Distorted 0.0401 -0.1328 0.1939 -0.1281 0.0104 0.0167 

Dat01 (>65) 0.1683 -0.5123 0.5465 -0.1946 -0.0363 0.0286 

Distorted 0.0356 -0.0772 0.0878 -0.0586 -0.0.044 0.0171 

Dat02 0.2906 -0.9021 0.9972 -0.4179 0.0052 0.0272 

Distorted -0.1199 0.2821 -0.1802 0.0075 -0.007 0.0174 

Dat02 (>65) 0.3762 -1.0421 1.0161 -0.3606 -0.0172 0.0283 

Distorted 0.0773 -0.2375 0.2949 -0.1695 0.0193 0.0155 

Dat03 0.0188 -0.0752 0.0441 0.0912 -0.1146 0.0355 

Distorted -0.1756 0.4671 -0.4252 0.1673 -0.0555 0.0219 

Dat03 (>65) -1.7920 4.9328 -5.0256 2.3522 -0.5258 0.055 

Distorted -1.1840 3.3789 -3.5551 1.6861 -0.367 0.0395 

Dat04 0.3269 -0.818 0.6823 -0.1602 -0.06 0.0297 

Distorted 0.2091 -0.5806 0.5832 -0.2468 0.019 0.0161 

Dat04 (>65) 0.0299 0.0676 -0.3403 0.4108 -0.2102 0.0424 

Distorted 0.1293 -0.3538 0.3244 -0.0826 -0.0415 0.0241 

Dat05 -2.3545 6.6708 -7.0538 3.444 -0.783 0.0728 

Distorted -1.4195 4.0756 -4.3805 2.181 -0.5123 0.0534 

Dat05 (>65) -4.2838 11.9318 -12.2933 5.7349 -1.1881 0.0909 

Distorted -3.0158 8.4416 -8.7626 4.1295 -0.8682 0.0702 

Dat06 -3.4651 9.6518 -9.9528 4.665 -0.9856 0.0808 

Distorted -2.4225 6.8154 -7.1087 3.3676 -0.7178 0.0619 

Dat06 (>65) -3.4755 9.755 -10.1739 4.8494 -1.0474 0.0865 

Distorted -2.0679 5.8763 -6.228 3.0329 -0.6793 0.0627 

Dat07 -1.9590 5.4628 -5.6643 2.708 -0.6118 0.0609 

Distorted -1.3462 3.7985 -3.9683 1.8849 -0.4144 0.0434 

Dat07 (>65) -5.7642 16.0276 -16.4774 7.6620 -1.5725 0.1142 

Distorted -4.4812 12.4953 -12.8919 6.0228 -1.2471 0.0943 

Dat08 0.2121 -0.6582 0.7271 -0.2975 -0.0097 0.0263 

Distorted -0.0771 0.1926 -0.1332 0.0092 -0.0077 0.0162 

Dat08 (>65) 0.4242 -1.2225 1.2436 -0.4696 -0.005 0.0297 

Distorted 0.0025 -0.0663 0.1709 -0.133 0.0075 0.0185 

Dat09 0.2835 -0.8562 0.9256 -0.3808 0.0017 0.0265 

Distorted -0.0348 0.0781 -0.014 -0.0493 0.0043 0.0158 

Dat09 (>65) 0.2205 -0.7325 0.8719 -0.4033 0.0188 0.0246 

Distorted -0.1143 0.2871 -0.2045 0.0196 -0.0038 0.0159 

Dat10 0.1906 -0.6097 0.696 -0.2957 -0.0071 0.0261 

Distorted -0.0163 0.0491 -0.0124 -0.0357 -0.005 0.016 

Dat10 (>65) 0.1313 -0.4649 0.5891 -0.2867 0.0079 0.0232 

Distorted -0.0554 0.1686 -0.1437 0.019 -0.0026 0.0143 

Dat11 0.2362 -0.7324 0.8084 -0.3327 -0.0062 0.0268 

Distorted -0.0702 0.1724 -0.1067 -0.0071 -0.0047 0.0165 

       

Data file 5th order 4th order 3rd order 2nd order 1st order Constant 

Dat11 (>65) 0.1413 -0.4995 0.6209 -0.2865 -0.0014 0.0251 

Distorted -0.1235 0.3357 -0.2841 0.0688 -0.0126 0.0156 

Dat12 0.5084 -1.4798 1.5268 -0.6007 0.0163 0.0294 

Distorted -0.1063 0.18 -0.011 -0.0843 0.002 0.0194 

Dat12 (>65) -0.0754 0.2024 -0.2391 0.1989 -0.1206 0.0336 

Distorted -0.0231 0.1052 -0.1413 0.0846 -0.046 0.0207 
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Dat13 0.311 -0.9166 0.9632 -0.3804 -0.0042 0.0274 

Distorted 0.0021 -0.0277 0.0912 -0.0878 0.0056 0.0167 

Dat13 (>65) -0.0483 0.0199 0.0785 -0.0387 -0.047 0.0272 

Distorted -0.011 0.0901 -0.1193 0.0436 -0.0197 0.0168 

Dat14 -0.5318 1.5537 -1.7494 0.9775 -0.2961 0.0452 

Distorted -0.4069 1.1315 -1.1709 0.5692 -0.1522 0.0284 

Dat14 (>65) -2.2772 6.3439 -6.5631 3.1201 -0.6936 0.0659 

Distorted -1.3727 3.9424 -4.2057 2.0499 -0.4638 0.048 

Dat15 -0.2064 0.7503 -1.0443 0.7124 -0.2548 0.043 

Distorted 0.4439 -1.0901 0.9032 -0.2548 -0.0247 0.0233 

Dat15 (>65) -0.4639 1.3501 -1.4604 0.7395 -0.1987 0.033 

Distorted 0.1505 -0.2641 0.0639 0.0916 -0.0611 0.0196 

Dat16 -1.2831 3.5708 -3.6879 1.7629 -0.2782 0.0345 

Distorted -0.8052 2.3239 -2.4904 1.2122 -0.2782 0.0345 

Dat16 (>65) -0.1192 0.4716 -0.7058 0.5178 -0.2026 0.0384 

Distorted 0.0318 -0.0525 -0.0216 0.0840 -0.0653 0.023 

Dat17 -3.6065 10.0841 -10.4519 4.9305 -1.0474 0.085 

Distorted -2.4339 6.8717 -7.2108 3.4518 -0.748 0.065 

Dat17 (>65) -3.3569 9.493 -9.9898 4.8127 -1.052 0.0876 

Distorted -1.8064 5.2328 -5.6877 2.8642 0.67 0.0643 

Dat18 -2.6947 7.4177 -7.5355 3.4765 -0.7345 0.0655 

Distorted -2.0511 5.7471 -5.9323 2.7503 -0.5675 0.0502 

Dat18 (>65) -2.0287 5.6273 -5.7908 2.7407 -0.6128 0.0609 

Distorted -1.3037 3.7227 -3.9343 1.8892 -0.4199 0.0442 

Dat19 -3.251 9.0449 -9.3335 4.4005 -0.9474 0.0807 

Distorted -2.3015 6.4728 -6.7433 3.1949 -0.6881 0.0616 

Dat19 (>65) -2.7961 7.7240 -7.889 3.6697 -0.783 0.0693 

Distorted -2.042 5.7437 -5.9643 2.7959 -0.5896 0.0532 

 
Distortion parameters: M=1.0; u= 1.5; k=0.9. (See Figure A3.1: Annexure 3.   For a 
plot) 
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Table A4.3:  Data file as for Table 4.2 but using different distortion parameters 
 

Data file 5th order 4th order 3rd order 2nd order 1st order Constant 

Dat01 0.1099 -0.2415 0.1889 -0.0817 0.0132 0.0112 

Dat01 (>65) 0.1716 -0.3837 0.2889 -0.0991 0.0108 0.0114 

Dat02 0.0996 -0.1684 0.0717 -0.0148 0.003 0.0117 

Dat02 (>65) 0.0386 -0.0847 0.0746 -0.0523 0.0129 0.0107 

Dat03 0.0460 -0.0243 -0.0746 0.0631 -0.0249 0.0151 

Dat03 (>65) -0.4299 1.3956 -1.6941 0.9288 -0.2302 0.0293 

Dat04 -0.0275 0.0017 0.0659 -0.0634 0.0113 0.011 

Dat04 (>65) 0.0204 -0.0944 0.1287 -0.062 -0.0092 0.0164 

Dat05 -0.8516 2.4612 -2.6923 1.3803 -0.3394 0.0401 

Dat15 (>65) -2.2686 6.3565 -6.6341 3.1620 -0.6773 0.0576 

Dat06 -1.6313 4.6465 -4.9456 2.4107 -0.5324 0.0493 

Dat06 (>65) -1.2564 3.6268 -3.939 1.9869 -0.4688 0.0486 

Dat07 -0.7644 2.2436 -2.468 1.2419 -0.2874 0.0332 

Dat07 (>65) -3.466 9.7044 -10.0772 4.7523 -0.9983 0.0787 

Dat08 0.0769 -0.1385 0.0633 -0.0133 0.0006 0.011 

Dat08 (>65) -0.0789 -0.1512 0.1046 -0.0517 0.0071 0.0125 

Dat09 0.0914 -0.1683 0.0906 -0.0308 0.0062 0.0107 

Dat09 (>65) 0.1377 -0.2676 0.1545 -0.0401 0.005 0.0107 

Dat10 0.1666 -0.3615 0.2590 -0.0861 0.0114 0.0106 

Dat10 (>65) 0.1315 -0.2714 0.1666 -0.043 0.0066 0.0096 

Dat11 0.0941 -0.1723 0.0878 -0.0233 0.0025 0.0111 

Dat11 (>65) 0.1379 -0.2628 0.1399 -0.0275 0.0022 0.0105 

Dat12 -0.0003 0.0723 -0.1149 0.0364 -0.0065 0.0133 

Dat12 (>65) 0.1901 -0.4359 0.3277 -0.0926 -0.0028 0.0137 

Dat13 0.0802 -0.1554 0.096 -0.0381 0.0059 0.0113 

Dat13 (>65) 0.2875 -0.653 0.4916 -0.151 0.0143 0.0108 

Dat14 -0.2827 0.8024 -0.8517 0.412 -0.1014 0.0207 

Dat14 (>65) -0.5284 1.6742 -2.0037 1.107 -0.2851 0.0355 

Dat15 0.3775 -1.0344 0.991 -0.3831 0.0337 0.0148 

Dat15 (>65) 0.2433 -0.6513 0.5611 -0.166 -0.0003 0.0127 

Dat16 -0.461 1.3622 -1.5305 0.7920 -0.1899 0.0257 

Dat16 (>65) -0.1622 0.37 -0.3224 0.1403 -0.0432 0.0163 

Dat17 -1.7496 4.9437 -5.2212 2.5326 -0.5606 0.052 

Dat17 (>65) -0.9405 2.773 -3.1193 1.6617 -0.4248 0.0482 

Dat18 -1.2439 3.6168 -3.9204 1.9254 -0.4197 0.0398 

Dat18 (>65) 0.6481 1.9674 -2.2435 1.1709 -0.2811 0.0334 

Dat19 -1.3457 3.9238 -4.2751 2.1337 -0.4865 0.048 

Dat19 (>65) -1.2116 3.5392 -3.8590 1.9151 -0.4271 0.0418 

 
Distortion parameters: M=1.0; u= 1.5; k=0.5 (See Figure A3.2.Annexure 3  For a plot) 
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Table A4.4: Description of data files 
 

Data File Description 

Dat01 Male voice singing: ‗The one that you love‘ Air Supply 

Dat02 Male voice singing: ‗The one that you love‘ Air Supply 

Dat03 Male voice speaking: Announcer 

Dat04 Advert: Female voice: ‗Your family magazine‘ 

Dat05 Advert: Male voice ‗Dale Carnegie‘ 

Dat06 Advert: Male voice ‗Dale Carnegie‘ 

Dat07 Male voice: Announcer 

Dat08 Music: Intro ‗I Do‘ Fleetwood Mac 

Dat09 Music Singing: ‗I Do‘ Fleetwood Mac 

Dat10 Music Singing: ‗I Do‘ Fleetwood Mac 

Dat11 Music, instruments only: ‗I Do‘ Fleetwood Mac 

Dat12 Music, male voice: ‗Satellite‘ 

Dat13 Music, male voice: ‗Satellite‘ 

Dat14 Male voice: Announcer 

Dat15 Female voice, advert: ‗garden & Home‘ 

Dat16 Male voice, advert: ―M-Net‘ 

Dat17 Male voice, advert: ‗Goodwill Foundation‘ 

Dat18 Male voice: news 

Dat19 Male voice: news 

Data100 Segment form VHS video: Striptease 

Data101 Segment form VHS video: Striptease 

Data102 Segment form VHS video: Striptease 

Data103 Segment form VHS video: Striptease 

Data104 Segment form VHS video: Striptease: Pussy cat sequenc 

Data105 Segment form VHS video: Striptease: Talking to kids 

Data106 Segment form VHS video: Striptease: Starting: ―Gotta run…‖ 

Data107 Segment form VHS video: Striptease: Music 

Data108 Segment form VHS video: Striptease: Music 

Data109 Segment form VHS video: Striptease: Music: ―Come to me…‖ 

Data110 Segment form VHS video: Striptease: Music ― Come to me…‖ 

Data111 Segment form VHS video: Striptease: Music: ―Come to me…‖ 

Data112 East Coast Radio: Female singing: ―The sweetest days‖ Vanessa 
Williams 

Data113 East Coast Radio: Female singing: ―The sweetest days‖ Vanessa 
Williams 

Data114 East Coast Radio: Female singing: ―The sweetest days‖ Vanessa 
Williams 

Data115 East Coast Radio: Female singing: ―The sweetest days‖ Vanessa 
Williams 

Data116 East Coast Radio: Intro to: ―Jesus to a child‖, George Michael 

Data117 East Coast Radio: Male voice: ―Jesus to a child‖, George Michael 
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Data118 East Coast Radio: Instrumental: ―Jesus to a child‖, George Michael 

Data119 East Coast Radio: Instrumental: ―Jesus to a child‖, George Michael 

Data120 East Coast Radio: Intro: ―The sweetest days‖ With flutter 

Data121 East Coast Radio: Intro to ― The sweetest days‖ No flutter 
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Table A4.5: data files with 131072 samples 

Data file 5th order 4th order 3rd order 2nd order 1st order Constan
t 

Dat04 0.1802 -0.4934 0.4754 -0.1711 -0.0114 0.0203 

Dat05 -2.5002 7.0497 -7.384 3.5285 -0.7649 0.0667 

Dat06 -2.3776 6.7125 -7.042 3.3714 -0.733 0.0645 

Dat07 -3.0906 8,623 -8.9026 4.1713 -0.8796 0.0731 

Dat12 -0.1109 0.2489 -0.1651 0.0436 -0.0397 0.0231 

Dat13 -0.0199 0.0666 -0.0407 -0.0139 -0.009 0.0171 

Dat14 -0.8999 2.5768 -2.7479 1.3551 -0.326 0.406 

Dat15 0.2801 -0.6182 0.4105 -0.0403 -0.054 0.0226 

Dat16 -0.3573 1.089 -1.246 0.6667 -0.1835 0.0306 

Dat17 -2.169 6.1885 -6.5889 3.2223 -0.722 0.0655 

Dat18 -1.7514 4.9276 -5.1141 2.3953 -0.5085 0.0484 

Dat19 -2.1852 6.1433 -6.3867 3.0092 -0.6415 0.0576 

(Distortion parameters: M=1.0, u=1.5, k=0.9) 
 

Table A4.6: Data files with 131072 samples 

Data file 5th order 4th order 3rd order 2nd order 1st order Constan
t 

Dat04 0.0068 -0.0721 0.1202 -0.0709 0.0017 0.0138 

Dat05 -1.7962 5.074 -5.5322 2.5903 -0.5723 0.0531 

Dat06 -1.5444 4.4188 -4.7341 2.3346 -0.5283 0.0508 

Dat07 -2.3019 6.4855 -6.7816 3.2228 -0.6884 0.0595 

Dat08 0.0652 -0.1138 0.0624 -0.0284 0.0022 0.0125 

Dat13 0.18 -0.391 0.2799 -0.0889 0.0088 0.0113 

Dat15 0.3406 -0.9083 0.8214 -0.2827 0.0144 0.0144 

Dat17 -1.3741 3.9433 -4.2617 2.1415 -0.5023 0.0508 

Data files with 196608 samples 

Dat05 -1.5145 4.3026 -4.5759 2.2422 -0.507 0.0496 

Dat06 -1.3085 3.8301 -4.1936 2.1108 -0.4907 0.0499 

Dat07 -1.5871 4.4576 -4.6482 2.2061 -0.4777 0.0462 

Dat17 -1.8194 5.1635 -5.4854 2.6857 -0.6043 0.0564 

Data files from VHS video with distorted sound track 

Data100 0.0996 -0.2621 0.2213 -0.0775 0.0074 0.0105 

Data101 -0.0208 -0.0084 0.0151 0.0089 -0.0051 0.0088 

Data102 0.145 -0.3342 0.2571 -0.0822 0.0009 0.0132 

Data103 0.0240 -0.189 0.2373 -0.0953 0.0135 0.0073 

Data104 -0.0125 0.0267 -0.696 0.0856 -0.0492 0.018 

Data105 -0.1659 0.4884 -0.4609 0.1457 -0.0228 0.0159 
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Data106 0.2035 -0.5927 0.6045 -0.2185 -0.0218 0.025 

Data107 0.0339 -0.3676 0.7020 -0.4437 0.0530 0.0216 

(Distortion parameter: M=1.0, u=1.5, k=0.5) 
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ANNEXURE 5 
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of Technology, Pretoria, 28- 29 September 2004. 
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