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Abstract-Using the formal analogy between a certain class 
of Maxwell equations and the Schrdinger equation, we derive 
the effective Hamiltonian operator that governs the propagation 
of electromagnetic (EM) wave modes inside nonconducting lin­
ear media, which include a large range of nanophotonic and 
plasmonic waveguides. It turns out that this Hamiltonian is 
essentially non-Hermitian, and thus requires a special treatment. 
We formulate the density operator approach for dynamical 
systems with non-Hermitian Hamiltonians, and derive a master 
equation that describes the statistical ensembles of EM wave 
modes. The method provides a theoretical instrument which can 
be used when designing the next generation of quantum EM 
devices for sensitive and non-invasive measurements. 

Index Terms-electromagnetic wave propagation, non­
Hermitian Hamiltonians, density operator, open systems. 

I. INTRODUCTION 

Notwithstanding the long history of studies, the propagation 

of electromagnetic (EM) wave inside nonconducting media 

remains an important and rapidly developing topic. Apart from 

an obvious theoretical value, it finds numerous applications in 

the designs of the nanoscale photonic and plasmonic devices, 

structures and metamaterials, such as lasers, spasers, modu­

lators, waveguides, optical switches, laser-absorbers, coupled 

resonators and quantum wells. 

During the past decade there has been growing interest 

in studying those systems by means of the formal analogy 

between Maxwell equations in nonconducting media and 

Schrodinger-type equations, dubbed here as the Maxwell­

Schrodinger (MS) map. In this analogy, Maxwell equations 

are rewritten in the form of the matrix Schrodinger equation, 

except that the role of time is played by the coordinate along 

the direction of wave propagation (usually, z-coordinate), the 

Hamiltonian operator is non-Hermitian (NH), and the Planck 

constant is replaced by an effective one [l]. Therefore, a 

class of the physical systems that allow such mapping is 

broadly referred as non-Hermitian materials and waveguides. 

Moreover, inside this class one can select the subclass of 

physical systems and phenomena for which the corresponding 

Hamiltonian operator is pseudo-Hermitian and has parity-time 

(PT) symmetry [2]. This pseudo-Hermiticity manifests itself 

in various phenomena, such as non-reciprocal light propa­

gation and Bloch oscillations, invisibility and loss-induced 
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transparency, power oscillations, optical switching, coherent 

perfect absorptions, laser-absorbers, plasmonic waveguides, 

unidirectional tunneling, loss-free negative refraction, and so 

on. These processes can be studied using a general theory of 

pseudo-Hermitian and PT-symmetric Hamiltonians [3], [4]. 

However, the class of non-Hermitian materials and waveg­

uides is much larger than its pseudo-Hermitian subclass. 

Indeed, as a result of the interaction of EM waves with their 

environment (which can be very diverse and uncontrollable), 

the description of their propagation requires the usage of the 

NH Hamiltonians of different kinds, not necessarily pseudo­

Hermitian. In other words, this propagation must be described 

within the framework of a general theory of open quantum 

systems [5]. According to that theory, for such situations 

one needs to engage the full description of the (quantum) 

statistical ensemble of EM wave modes. In turn, it requires 

the usage of the density matrix, instead of a state vector, as 

a main object of theory. Therefore, MS map must be used to 

develop the corresponding generalization, which is going to 

be the main goal of this talk . Although the density-operator 

approach for quantum systems driven by NH Hamiltonians 

has been long since known (see, for instance, the monograph 

[6]), it has been further developed in the works [7]-[11]. In 

this report we adapt the formalism [7]-[11] for the purposes 

of describing the EM wave propagation inside nonconducting 

materials and waveguides in presence of dissipative effects 

induced by environment, as well as for extracting physical 

information and predicting new phenomena. 

II. MAXWELL-SCHRODINGER ANALOGY

Let us consider EM wave propagating inside a nonconduct­

ing isotropic linear medium. For this situation, there are no free 

charges and currents, therefore, Maxwell equations acquire a 

simple form: 

10 \7 x E + fJ (JLH) = 0, 
c t 
10 \7 x H - fJ (cE) = 0, 
c t 

\7 . (cE) = \7 . (JLH) = 0, 

(1) 

(2) 

(3) 

where E = E(r, t) and H = H(r, t) are electric and mag­

netic fields, respectively, while the cross and dot denote the 
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vector and scalar products, respectively. Here c = 1/ Vcof..Lo, 
co and f..Lo being, respectively, the vacuum permittivity and 

permeability, whereas c and f..L are the relative permittivity 

and permeability (complex-valued functions of coordinates, 

in general); as per usual, one can also express them via the 

medium's electric and magnetic susceptibilities: c = 1 + Xe 
and f..L = 1 + Xm· 

Further, if we align z-axis with the direction of wave's prop­

agation then, assuming the harmonic time dependence of the 

electric and magnetic fields, E(r, t) = E(x, y, z) exp (-iwt), 
H(r, t) = H(x, y, z) exp (-iwt) , one can decompose them 

into the transverse and longitudinal (along z-axis) components: 

E = E.l + ezEz, H = H.l + ezHz, \7 = \7.1 + ez gz, 
where en is the basis vector along the nth axis. One can show 

that the vectors E.l and H.l are essentially two-dimensional: 

E.l . ez = H.l . ez = O. Correspondingly, Maxwell equations 

take the form (from now on we adopt the units where c = 1): 
8 A iez x 

8z 
E.l = 

LmH.l, (4) 

8 ' 
iez x 

8z 
H.l = -LeE.l, (5) 

Ez = (icw)-lez . (\7.1 x H.l) , (6) 

Hz = -(if..Lw)-lez . (\7.1 x E.l) , (7) 

where we denote the following differential operators: 

LA -1" 
-1" e = cW - W V.l X f..L v .1 X , 

LA -1" 
-1" m=f..LW-W V.lXc V.lX. 

(8) 

(9) 

Using the 2D property ez x ezx = -1, the equations (4) and 

(5) can be written in the matrix form 

(10) 

where we denote the operator 

(11) 

and 

(12) 

is the auxiliary operator. 

One can check that the operator (11) is non-Hermitian, 

even when both c and f..L are real-valued. The degree of non­

Hermiticity of the theory's Hamiltonian becomes even larger 

if we write (10) in the form that is fully analogous to the 

Schrodinger equation, for we must rewrite it in terms of 

normalized values. Using the Dirac's bra-ket notations for the 

inner product, defined as the integral over the waveguide's 

effective cross-section (Le., the region outside of which all 

the EM wave's fields vanish), and introducing the norm 

N2 
== (E.lIE.l) + (H.lIH.l) == J dxdy (IE.l1

2 + IH.l1
2) , 

(13) 

21-24 June 2016, Kharkiv, Ukraine 

we can define the following ket vector 

Iw) == � (:�), (14) 

which is automatically normalized to one, (wlw) = 1, and thus 

it can be regarded as a proper state vector in some appropriate 

Hilbert space. In terms of this state vector the equation (10) 

acquires the Schrodinger form 

(15) 

where we denote the operator 

(16) 

where I and j are, respectively, the identity operator and the 

2 x 2 identity matrix, and the coefficient 

8 
fN = 

8z 
InlNI (17) 

is in general a real-valued function of z (as well as a functional 

of the fields). Here by z we assume the value z/c, and the 

"Planck" constant nw is an effective scale constant of the 

dimensionality energy x time, which is introduced for a pur­

pose of preserving the correct dimensionality of the relevant 

terms in the emergent Schrodinger equation (the ambiguity 

of nw is yet another manifestation of the absence of the 

fundamental length scale in Maxwell equations). Further, it 

should be noticed the appearance of the additional term in the 

Hamiltonian (16), HN == -ifNI, which is essentially anti­

Hermitian and proportional to the identity operator. 

Thus, equations (14)-(16) represent the formal map between 

Maxwell equations for nonconducting linear media and the 

differential equation of the Schrodinger type, which opens 

up the possibility of using quantum mechanical notions (with 

certain reservations, of course) for the purposes of a theory 

of EM wave propagation inside different dielectric materials, 

including waveguides. 

III. STATISTICAL MECHANICS OF WAVE MODES 

What we have done in the previous section is merely a way 

of rewriting Maxwell equations for waves in nonconducting 

media in the Schrodinger form (15). In this section we will 

proceed with an important generalization: we go beyond 

those equations and introduce the quantum-type density matrix 

approach adapted for describing the propagation of EM waves 

inside nonconducting media. This will allow us to describe 

not only separate wave modes ("pure states", in quantum­

mechanical terminology) or their superpositions ("entangled 

pure states") but also their statistical ensembles ("mixed 

states"). The latter are crucial for introducing the dissipative 

effects since the purity of the states is not necessarily preserved 

in presence of dissipative environments [12]. 

The main difference of the proposed approach from the 

standard non-Hermitian quantum-statistical one [7]-[11] is 

that the role of the time variable is played here by the third 

coordinate, z / c. In other words, instead of time evolution of 
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quantum states the method will describe the distribution of 

EM wave energy along the propagation axis. This, however, 

does not pose much difference from the technical viewpoint, 

and most of concepts can be borrowed and applied for the 

purposes of the EM theory. 

Finally, due to the fact that in this theory both the speed of 

light and effective Planck constant are scale constants, from 

now on we work in units where 'liw = 'Ii = c = 1. 
A. Master equation 

To begin with, if a Hamiltonian is a non-Hermitian operator, 

then it can be decomposed into its Hermitian and anti­

Hermitian parts, respectively: 

(18) 
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instance, Ref. [6]. Using Eq. (15), one can show that our 

NH system is fully described by the so-called non-normalized 

density operator 0, which is defined as a solution of the 

operator equation of the Liouvillian type, 

where square and curly brackets denote the commutator and 

anti-commutator, respectively. One can see that, as z varies, 

the trace of 0 is not conserved, 

where we denoted 

d A A -tdl = -2(r)fl' dz (24) 

(25) 

where we use the notations 

H± == � (H ± Ht) = ±Hl, 
therefore, 0 cannot be regarded as a proper density operator 

(19) in statistical sense. In order to define one, in Ref. [7] we 

introduced the operator 
and the Hermitian operator 

r == iH_ = rt 
is usually dubbed the decay operator. For 

Hamiltonian (16) one easily computes that 

A A 1 ( A A t ) 1-l+ = 1-l� = 2 ihD + D 0-2 , 

(20) 

instance, for the 

(21) 

r = r' + r NI = � (o-d) - i>t 0-2) + r NI, (22) 

where we imply the notations from the previous section. This 

decomposition means that within the total system, described 

by H, one can single out the Hermitian subsystem, described 

by H+, whereas the operator r can be regarded as describing 

the energy exchange of this subsystem with its environment. 

The quantum-statistical approach means here that the 

probability-conserving "evolution" (distribution along the 

propagation direction) of such a system is described by the 

(reduced) density operator, which contains information not 

only about superpositions of the EM wave modes but also 

about the statistical uncertainty of their distribution inside a 

medium. Such uncertainty can be caused, for instance, by the 

interaction of the wave with its environment, which usually 

happens inside realistic dielectric media. An example would 

be the thermal randomness that arises in the statistical mixture 

of large numbers of EM wave modes, each with a certain 

classical probability, switching from one to another due to 

thermal fluctuations. In such cases, unpolarized light ("mixed 

state") appears, which is in fact not the superposition of 

several polarized modes ("pure states"), but their statistical 

ensemble. Thus, the density matrix contains all the information 

necessary to calculate any measurable property of polarized or 

unpolarized radiation propagating inside realistic media with 

or without dissipation. Besides, one of its advantages is that 

for each mixed state there can be many statistical ensembles 

of pure states but only one density matrix. 

An equation for the density matrix can be directly derived 

from any equation that has the Schrodinger form, see, for 

(26) 

which is automatically normalized (the physical meaning of 

this procedure will be discussed later), therefore, it can be 

used for computing expectation values, correlation functions 

and other observables. 

In principle, in Eq. (23) one can change from 0 to p, and 

obtain the equation for the normalized density operator itself 

:zP=-i[H+,p] - {r,p} +2(r)p, (27) 

where the notation 

(A) = tr(pA) (28) 

will be used for denoting the expectation value of any given 

operator A with respect to the normalized density operator. 

It should be noted, however, that Eq. (27) contains slightly 

less information about the system (18) than (23) because the 

procedure (26) erases the information about the overall factor 

of 0 including its trace. This missing piece of information can 

be useful, e.g., when studying the initial conditions or entropic 

properties of the system. 

From the mathematical point of view, Eq. (27) is both 

nonlocal and nonlinear with respect to the density operator 

p. Though, this does not pose a significant problem from the 

technical point of view, since one can always use Eq. (26) 

as an ansatz for getting a linear equation. Thus, Eqs. (23)­

(27), together with the definition for computing the expectation 

values (28), represent the map that allows us to describe 

the distribution of system (18) along z direction in terms of 

the matrix differential equation, which mathematical structure 

resembles the one of the conventional master equations of 

the Lindblad kind. According to this map, the Hermitian 

operator H+ = (H + Ht)/2 takes over a role of the system's 

Hamiltonian (cf. the commutator term in equations (23) or 

(27) above) whereas the decay operator r = i(H - Ht)/2 
induces additional terms in the evolution equation that are 

supposed to account for NH effects. In other words, a theory 

3 
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with the non-Hermitian Hamiltonian it is dual to a theory 

with the Hermitian Hamiltonian (it + itt)/2 but with the 

modified equation, which thus becomes the master equation of 

a special kind. This equivalence not only reveals new features 

of the dynamics driven by non-Hermitian Hamiltonians but 

also facilitates the application of such Hamiltonians for open 

quantum systems [8]. 

B. Entropy 

Apart from purity trj52 and linear entropy SL = 1 - trj52, 
there exists another characteristic value describing the amount 

of disorder and statistical uncertainty in a system - the 

quantum entropy of the Gibbs type. In Ref. [10] it was shown 

that for a system driven by NH Hamiltonian one can introduce 

two types of quantum entropy: the conventional Gibbs-von­

Neumann one 

and the NH-adapted Gibbs-von-Neumann one 

A 
A 

A tr(s'Hn n) 
SNH == -kB(lnrl) = -kBtr(plnrl) = -kB A ' 

tr rl 
(30) 

where kB is the Boltzmann constant. The two notions of 

entropy are related by the formula 

SNH = SvN - ks In (trn), (31) 

therefore, the difference between SNH and SvN is a measure 

of deviation of tr n from unity. One can see that the entropy 
SNH combines both the normalized and "primordial" (non­

normalized) density operators, and thus can signal the expected 

thermodynamic behavior of an open system. The entropy SNH 
also seems to be more suitable for describing the gain/loss 

processes that are related to the probability's non-conservation. 

IV. CONCLUSION 

Using the formal analogy between the Schrodinger equation 

and a certain class of Maxwell equations, we have generalized 

the theory of EM wave's propagation in nonconducting linear 

media - in order to be able to describe not only separate 

wave modes (or their linear superpositions) but also the 

statistical ensembles of modes, referred as mixed states in 

quantum mechanics. It turns out that the Hamiltonians, which 

govern the dynamics of such ensembles, are in general not 

just pseudo-Hermitian or parity-time-symmetric but essentially 

non-Hermitian and thus require a special systematic treatment. 

Using the density operator approach for general non-Hermitian 

Hamiltonians developed in our earlier works, we have demon­

strated that the non-Hermitian terms play an important role in 

the physics of wave propagation. 

The proposed approach applies to a large class of noncon­

ducting media and nanoscale photonic and plasmonic materials 

and waveguiding devices, where it provides a powerful tool to 

construct and study different models, as well as to derive the 

observables of different kinds: correlation functions, entropy, 

energy density and transmitted power, etc. This results in a 

consistent and thorough understanding of whether and how one 

21-24 June 2016, Kharkiv, Ukraine 

can control the dissipative effects in different nonconducting 

media, which lead to decoherence and energy and information 

loss during propagation of EM waves. The control over these 

effects is especially important for the development of the 

next generation of quantum electromagnetic devices, including 

those which use the quantum interference of multimode EM 

beams in order to improve the sensitivity and non-invasivity of 

measurements, quantum amplifiers and radars being just some 

examples here [13]. For instance, the uncontrolled spontaneous 

transition of pure modes into statistical ensembles during 

beam's propagation would inevitably result in an increase 

of statistical uncertainty and hence lead to higher degrees 

of dissipation and noise. Further studies of such quantum­

statistical effects is a fruitful direction of future research. 

Last but not least, one can use this approach both ways: 

it also provides a methodology of how one can use EM 

waves in nonconducting media for experimental testing of the 

heuristic concepts and ideas of the non-Hermitian formalism 

in general, such as non-normalized and normalized density 

operators, master equations with anti-commutators, nonlinear 

and non local terms, different notions of entropy, to mention 

just a few examples. 
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