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Abstract. Most ecological systems comprise multiple species coex-
isting and the dynamics of these multiple species can be important for
understanding, management, and conservation. One method to study such
ecological system dynamics is the use of heterogeneous models. Here we for-
mulate and analyze a multiple species (n patches or groups) consumer re-
source model. Initial insights are gained by analyzing the special cases n = 1
and n = 2. A threshold consumption number C0 is used to investigate system
stability and hence the long-term dynamics of the system. It is shown how
this threshold consumption number can measure the effects and extent of
multiple species coexistence in the system.

Key Words: Differential equations, multiple species coexistence, sta-
bility analysis, heterogeneity.

1. Introduction. Most ecological systems are made up of multiple species of
resources and consumers living together in close proximity and understanding how
these species coexist is a major challenge in ecology (Chesson, [1991]; Taper, [1993];
Young et al., [1997]; Siepielski and McPeek, [2010]). For systems where species differ
in resource use, partitioning of resources is often thought to reflect the primary role
of competition in determining coexistence of species (Martin, [1988]). In reality, the
nature of interactions among these species vary, hence leading to heterogeneity in
the dynamics of the ecological system.

Many theoretical studies of ecological dynamics focus on homogeneous (single)
consumer and resource populations (Lotka, [1925]; Volterra, [1926]; Rosenzweig
and MacArthur, [1963]; Owen-Smith, [2004]; Duffy, [2010]) and do not take multi-
ple species coexistence (MSC) into account. Interactions among species can affect
the population dynamics of each (Kinzey, [2008]). Thus, considering the effects of
heterogeneities introduced by MSC, as in this paper, should be important to a
fuller understanding of the dynamics of most ecosystems. To investigate this idea
we develop a mathematical model incorporating MSC in the form of ordinary dif-
ferential equations. A threshold quantity, the consumption number C0 , defined by
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TABLE 1. Variables and parameters for model (1).

Variables/Parameters Meaning Unit

Xi Density of resources i g/m2

Yi Density of consumers i g/m2

ri Growth rate of Xi /year
Ki Carrying capacity of Xi g/m2

δij The effect Xj has on Xi Dimensionless
αi Xi removal by Yi /year
βi Xi when αi is half g/m2

ci Conversion of Xi biomass into Yi biomass Dimensionless
τi Reduction of Yi due to other factors /year

us to quantify resource consumption per equivalent of consumer biomass, is used
to highlight multiple species effects on population dynamics (Collins and Duffy,
[2016]).

1.1. Consumer resource model for a multiple species coexistence
ecosystem. To account for MSC in a consumer resource model, we assume that
consumers are made up of n patches or groups (Xi, i = 1, 2, . . . , n) while resources
are also partitioned in the same way (Yi, i = 1, 2, . . . , n). To simplify the analyses
we assume that each consumer uses a unique resource. However, similar results are
indicated when consumers use more than one resource (Collins and Duffy, [2016]).
We introduce competition terms δij that describe how the resources compete for
space. Based on the above assumptions, the consumer resource population model
that incorporates MSC is

dXi

dt
= Xiri

⎛
⎜⎜⎝1 −

Xi +
n∑

j=1
(δijXj )

Ki

⎞
⎟⎟⎠ − αiXiYi

βi + Xi
,(1)

dYi

dt
=

ciαiXiYi

βi + Xi
− τiYi,

with subscript i denoting variables or parameters for patch i. The meaning of
variables and parameters, with their units, are presented in Table 1.
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2. Consumer resource multiple species coexistence model (1) for n =
2. In this section, we consider the case where there are only two resources and
two consumers in the system. Analyses of this special case give insights into the
dynamics of the general n-groups MSC model (1). When n = 2, model (1) reduces
to

dX1

dt
= X1r1

(
1 − X1 + δ12X2

K1

)
− α1X1Y1

β1 + X1
,

dX2

dt
= X2r2

(
1 − X2 + δ21X1

K2

)
− α2X2Y2

β2 + X2
,(2)

dY1

dt
=

c1α1X1Y1

β1 + X1
− τ1Y1 ,

dY2

dt
=

c2α2X2Y2

β2 + X2
− τ2Y2 .

For example, this could represent the most common resources in a savanna: trees
(X1) and grasses (X2) together with their respective consumers browsers (Y1) and
grazers (Y2).

2.1. Basic analyses of model (2). The system (2) has the following equilib-
rium points:

E1 =
(
X1

1 ,X1
2 , Y 1

1 , Y 1
2

)
= (0, 0, 0, 0),

E2 =
(
X2

1 ,X2
2 , Y 2

1 , Y 2
2

)
= (K1 , 0, 0, 0),

E3 =
(
X3

1 ,X3
2 , Y 3

1 , Y 3
2

)
= (0,K2 , 0, 0),

E4 =
(
X4

1 ,X4
2 , Y 4

1 , Y 4
2

)
=

(
K1 − δ12K2

1 − δ12δ21
,
K2 − δ21K1

1 − δ12δ21
, 0, 0

)
,

E5 =
(
X5

1 ,X5
2 , Y 5

1 , Y 5
2

)
=

(
τ1β1

c1α1 − τ1
, 0,

r1

α1

(
1 − X5

1

K1

)(
β1 + X5

1
)
, 0

)
,

E6 =
(
X6

1 ,X6
2 , Y 6

1 , Y 6
2

)
=

(
0,

τ2β2

c2α2 − τ2
, 0,

r2

α2

(
1 − X6

2

K2

)(
β2 + X6

2
))

,

E7 =
(
X7

1 ,X7
2 , Y 7

1 , Y 7
2

)
=

(
K1 − δ12X

7
2 ,

τ2β2

c2α2 − τ2
, 0,

r2

α2

(
1 − X7

2 + δ21X
7
1

K2

) (
β2 + X7

2
))

,

E8 =
(
X8

1 ,X8
2 , Y 8

1 , Y 8
2

)
=

(
τ1β1

c1α1 − τ1
,K2 − δ21X

8
1 ,

rx

α1

(
1 − X8

1 + δ12X
8
2

K1

)(
β1 + X8

1
)
, 0

)
,
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E9 =
(
X9

1 ,X9
2 , Y 9

1 , Y 9
2

)
=

(
τ1β1

c1α1 − τ1
,

τ2β2

c2α2 − τ2
, Y 9

1 , Y 9
2

)
,

where Y 9
1 = r1

α1
(1 − X 9

1 +δ12 X 9
2

K1
)(β1 + X9

1 ) and Y 9
2 = r2

α2
(1 − X 9

2 +δ21 X 9
1

K2
)(β2 + X9

2 ).
Note that for each of the equilibrium points Ei (for i = 1, 2, 3, . . . , 9) to exist,
they must each satisfy the inequalities: 0 ≤ X0

i ≤ K1 , 0 ≤ Y 0
i ≤ K2 . Based on

this, we can easily see that for E4 to exist, the following inequalities must hold:
K1 − δ12K2 ≥ 0, K2 − δ21K1 ≥ 0, 1 − δ12δ21 > 0. It then follows that the com-
petition terms δ12 and δ21 must satisfy the inequalities 0 ≤ δ12 , δ21 ≤ 1. If both
competitors are such that δ12 = δ21 = 0, neither resource is dominating. Mathe-
matically, we can show that it is not possible to have δ12 = δ21 = 1. This makes
sense since no two competitors can be in total domination of each other at the
same time. There is always one superior competitor at each point in time. Also,
c1α1 − τ1 > 0 and c2α2 − τ2 > 0 for E5 , E6 , E7 , E8 , E9 to exist.

We use a threshold quantity (consumption number denoted by C0) that gives a
condition under which the equilibrium points of the system are stable. This quantity
is similar to the basic reproduction number R0 (van den Driessche and Watmough,
[2002]) in epidemiological models and C0 is calculated in the same way using the
next generation matrix approach (Collins and Duffy, [2016]):

C0 = max{C1 , C2},(3)

where C1 = c1 α1 X 4
1

τ1 (β1 +X 4
1 )

, C2 = c2 α2 X 4
2

τ2 (β2 +X 4
2 )

. Note that in the absence of competition

between grass and trees (i.e., δ12 = δ21 = 0), then C1 = c1 α1 K1
τ1 (β1 +K1 ) , C2 = c2 α2 K2

τ2 (β2 +K2 )
since X4

1 = K1 and X4
2 = K2 .

Ecologically, C0 can be understood as the parameter combination ensuring the
resource consumption required for survival. So, C0 = 1 signifies that the consumer
utilizes resource biomass at a rate almost equivalent to their own biomass loss. For
C0 < 1 less resource is consumed per unit of consumer biomass loss. For C0 > 1
more resource is consumed per unit of consumer biomass loss.

2.2. Stability analyses of model (2). Stability analysis of models such as
this can help describe the short-term and long-term dynamics of the system. Before
investigating the stability of model (2) we first present the relationship between the
equilibrium points at C0 = 1.

(i) E2 = E5 if C0 = C1 = 1 (i.e., C1 when δ12 = δ21 = 0).
(ii) E3 = E6 if C0 = C2 = 1 (i.e., C2 when δ12 = δ21 = 0).
(iii) E4 = E7 if C0 = C2 = 1.
(iv) E4 = E8 if C0 = C1 = 1.
(v) E4 = E9 if C0 = C1 = C2 = 1.
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Note that E5 , E6 , E7 , E8 , E9 do not exist when C0 < 1. Therefore, their stability
will only be investigated for C1 ≥ 1 and C2 ≥ 1.

Theorem 1. The equilibrium points E1 , E2 , E3 are unstable irrespective of the
value of C0 .

Proof. We show that for each of these equilibrium points at least one of the
eigenvalues of the Jacobian of model (2), evaluated at the equilibrium point, has
a positive real part. The eigenvalues of (2) at the trivial equilibrium point E1 are
λ1 = r1 , λ2 = r2 , λ3 = −τ1 , λ4 = −τ2 . Thus, E1 is unstable irrespective of the value
of C0 . The eigenvalues of (2) evaluated at the equilibrium point E2 are λ1 = r1 , λ2 =
r2
K2

(K2 − δ21K1), λ3 = αc1K1/(K1 + β1) − τ1 , λ4 = −τ2 . Clearly λ2 > 0. Thus, E2
is unstable irrespective of the value of C0 . Similarly, we can also show that E3 is
unstable irrespective of the value of C0 . �

Theorem 2. The equilibrium point E4 is stable if C0 ≤ 1 and unstable otherwise.

Proof. The eigenvalues of (2) evaluated at E4 are

λ1 = τ1

(
c1α1X

4
1

τ1(β1 + X4
1 )

− 1
)
,

λ2 = τ2

(
c2α2X

4
2

τ2(β2 + X4
2 )

− 1
)
,

λ3 = −1
2

⎛
⎝(

r1X
4
1

K1
+

r2X
4
2

K2

)
+

√(
r1X4

1

K1
+

r2X4
2

K2

)2

− 4r1r2X4
1 X4

2

K1K2
(1 − δ12δ21)

⎞
⎠,

λ4 = −1
2

⎛
⎝(

r1X
4
1

K1
+

r2X
4
2

K2

)
−

√(
r1X4

1

K1
+

r2X4
2

K2

)2

− 4r1r2X4
1 X4

2

K1K2
(1 − δ12δ21)

⎞
⎠.

Clearly λ3 and λ4 are negative real numbers irrespective of the value of C0 . We
can also see that if C0 < 1 then λ1 and λ2 become negative. This shows that E4
is stable when C0 < 1. Next, if C0 = 1, then λ1 ≤ 0 or λ2 ≤ 0. This shows that
E4 is also stable when C0 = 1. However, if C0 > 1 we have λ1 > 0 or λ2 > 0. This
confirms that E4 is unstable when C0 > 1. Thus, for C0 ≤ 1 all the eigenvalues of
the Jacobian of model (2) evaluated at E4 have negative real part and the proof is
complete. �

Theorem 3. The equilibrium points E5 and E6 are unstable if C1 ≥ 1 and C2 ≥ 1.

Proof. At C0 = C1 = 1, E2 = E5 . So E5 is unstable at C0 = 1 since E2 is unstable
(see Theorem 1). When C1 > 1 and C2 > 1 one of the eigenvalues of the Jacobian
of model (2) evaluated at E5 is r2

K2
(K2 − δ21X

0
5 ). Clearly, K2 − δ21X

0
5 > 0 since,
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K2 − δ21K1 > 0. Thus E5 is unstable. By a similar argument we can also show that
E6 is unstable when C1 ≥ 1 and C2 ≥ 1.

Theorem 4. The equilibrium points E7 and E8 are stable if C0 = 1 and unstable
if C1 > 1 and C2 > 1.

Proof. Having shown that E4 = E7 when C0 = C1 = 1, then E7 is automatically
stable at C0 = C1 = 1 since E4 is stable when C0 = 1 (see Theorem 2). On the other
hand, when C1 > 1 and C2 > 1, one of the eigenvalues of the Jacobian of model
(2) evaluated at E7 is 1

τ1
( α1 c1 X 7

1
τ1 (X 7

1 +β1 )
− 1). This eigenvalue is positive since X7

1 > X4
1

when C1 > 1 and C2 > 1. Thus E7 is unstable if C1 > 1 and C2 > 1. Similarly, E8
is stable when C0 = 1 and unstable if C1 > 1 and C2 > 1. �

Theorem 5. The equilibrium point E9 is stable when C1 ≥ 1 and C2 ≥ 1.

The overall proof of this theorem is analytically complex and so here we illustrate
the proof by making the simplification that δ12 = 0 and δ21 = 0. The more general
case is then investigated numerically below.

Proof. For C1 = C2 = 1, E9 = E4 , so the stability of E7 follows from the stability
of E4 . Next, when C1 > 1 and C2 > 1, the eigenvalues of the Jacobian of model (2)
evaluated at E9 for δ12 = δ21 = 0 are given by

λ1 =
1
2

(
a11 −

√
a2

11 + 4a13a31

)
, λ2 =

1
2

(
a11 +

√
a2

11 + 4a13a31

)

λ3 =
1
2

(
a22 −

√
a2

22 + 4a24a42

)
, λ4 =

1
2

(
a22 +

√
a2

22 + 4a24a42

)

where a11 = − α1 Y 9
1

X 9
1 +β1

(1 − X 9
1

X 9
1 +β1

) − r1(
2X 9

1
K1

− 1), a13 = − α1 X 9
1

X 9
1 +β1

, a31 = −α1 c1 Y 9
1

X 9
1 +β1

(1 − X 9
1

X 9
1 +β1

), a22 = − α2 Y 9
2

X 9
2 +β2

(1 − X 9
2

X 9
2 +β2

) − r2(
2X 9

2
K2

− 1), a24 = − α2 X 9
2

X 9
2 +β2

, a42 =

− c2 α2 Y 9
2

X 9
2 +β2

(1 − X 9
2

X 9
2 +β2

). Obviously, a13 < 0, a31 > 0, a24 < 0, a42 > 0. Also, a11 < 0

and a22 < 0 provided that K1 ≤ 2τ1 β1
α1 c1−τ1

and K2 ≤ 2τ2 β2
α2 c2−τ2

. Based on this, the
eigenvalues λ1 , λ2 , λ3 , λ4 have negative real parts. �

The more general case, δ12 �= 0 and δ21 �= 0, is investigated numerically using the
parameter values in Table 2 such that C1 > 1 and C2 > 1. Stable cyclic dynamics
are obtained for the system as shown in Figure 1(c). Thus, for the more general
case, these result suggest that E9 will be stable when C1 > 1 and C2 > 1.

From these results, of all nine points, E4 and E9 are the only stable equilib-
rium points when C0 �= 1 and their stability is governed by C0 . Also, our stability
analyses have shown that the consumption number partitions the dynamics of the
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FIGURE 1. Plots illustrating the long-term dynamics of the MSC model (2) for various
values of consumption number: (a) C1 < 1, C2 < 1, (b) C1 = C2 = 1, (c) C1 > 1, C2 > 1
(see text for details).
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TABLE 2. Parameters values used for model simulations with their reference source.

Parameters Value Unit Source

r1 0.20 /week Owen-Smith, [2004]
r2 0.25 /week Owen-Smith, [2004]
K1 200 g/m2 Owen-Smith, [2004]
K2 500 g/m2 Owen-Smith, [2004]; Duffy, [2010]
δ12 0.1–0.3 Dimensionless estimate
δ21 0.64 Dimensionless estimate
α1 0.175 /week Owen-Smith, [2004]
α2 0.025 ∗ 7 /week Duffy, [2010]
β1 50 g/m2 Owen-Smith, [2004]
β2 20 g/m2 Owen-Smith, [2004]
c1 0.73 Dimensionless Owen-Smith, [2004]
c2 0.75 Dimensionless Owen-Smith, [2004]; Duffy, [2010]
τ1 0.012–0.01485 /day estimate
τ2 0.014–0.02 /day estimate

system into three parts: C0 < 1, C0 = 1 and C0 > 1. To support these analytical
results, we investigate the long-term dynamics of the model by performing numer-
ical simulations using the parameter values given in Table 2 and varying τ1 and τ2
(Figures 1a–c). τ1 and τ2 are varied because they are more sensitive in terms of af-
fecting the consumption number. For Figure 1(a), τ1 = 0.0148, τ2 = 0.0200 results in
C1 = 0.8564, C2 = 0.8955 (C1 < 1, C2 < 1). For Figure 1(b), τ1 = c1 α 1 X 4

1
β1 +X 4

1
,τ2 =

c2 α 2 X 4
2

β2 +X 4
2

results in C1 = C2 = 1. For Figure 1(c), τ1 = 0.0120, τ2 = 0.014 results in C1 =
1.0562, C2 = 1.2793 (C1 > 1, C2 > 1). From Figures 1(a) and 1(b) the trajectories
for both resources and consumers converge to the equilibrium point E4 supporting
Theorem 2. So at infinite time, the dynamics for resources and consumers can be
estimated from the equilibrium point. On the other hand, when consumption num-
bers are greater than one, the trajectories for both resources and consumers become
periodic or cyclic (Figure 1c). For all these cases, grass and grazer biomasses mostly
dominate tree and browser biomasses.

3. Homogeneous version of model (1). To determine the influence of MSC,
the homogeneous version of model (1) is used as reference. With one group of
resources and one group of consumers the model (1) is reduced to the homogeneous
version

dX

dt
= Xr

(
1 − X

K

)
− αXY

β + X
,(4)
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dY

dt
=

cαXY

β + X
− τY,

where

r =
n∑

i=1

ri/n, K =
n∑

i=1

Ki/n, α =
n∑

i=1

αi/n, β =
n∑

i=1

βi/n, c =
n∑

i=1

ci/n, τ =
n∑

i=1

τi/n.(5)

The consumption number for model (4) is given by

C∗
0 =

αcK

τ (β + K)
.(6)

The system (4) has the following equilibrium points:

P1 = (X1
0 , Y 1

0 ) = (0, 0),

P2 = (X2
0 , Y 2

0 ) = (K, 0),

P3 = (X3
0 , Y 3

0 ) =
(

τβ

αc − τ
,

r

α

(
1 − X3

0

K

)
(β + X3

0 )
)

.

Note that P2 = P3 when C∗
0 = 1.

3.1. Stability analyses of model (4). Using similar reasoning to that used
for model (2) one can easily establish the following:

(i) P1 is unstable.
(ii) P2 is stable (locally and globally) when C∗

0 ≤ 1.
(iii) P3 is stable when C∗

0 ≥ 1.

These results also show that only two equilibrium points P2 and P3 of the homo-
geneous model (4) are stable and their stability is also governed by the consumption
number C∗

0 . The MSC model analogs to P2 and P3 are E4 and E9 , respectively.

4. Effects of multiple species coexistence. From our formulation, the pa-
rameters in the homogeneous model (4) are defined as averages of the associated
parameters of the MSC model (1). Intuitively, the homogeneous model (4) might
be expected to feature the average characteristic dynamics of the MSC model (1).
If this were true, the homogeneous model results would average the corresponding
MSC model results. However, this is not true. In particular, the average consump-
tion numbers for the MSC model are not equal to the consumption numbers of
the homogeneous model (which can be confirmed analytically by simple algebraic
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FIGURE 2. Plot illustrating the difference between C and C ∗
0 for various values of α1 and α2 .

manipulation). Thus, differences in the dynamics for various resource and consumer
MSC models arise not only from parameters but also from the model structure.

4.1. The extent of multiple species coexistence effects on population
dynamics. Here we investigate the extent of MSC effects on the consumer re-
source model dynamics by considering these effects on the consumption number
and then on the actual dynamics.

4.1.1. Extent of multiple species coexistence effects on the consumption number.
The null hypothesis assumed here is that the homogeneous model (2) will average
the MSC model (1). To test this hypothesis we consider the difference between the
consumption number C∗

0 and the average of the consumption numbers for the cor-
responding MSC model, denoted by C =

∑n
j=1 Cj/n. Differences between C (n=2)

and C∗
0 for various values of α1 and α2 are given in Figure 2. α1 and α2 are varied

because they are also more sensitive in terms of affecting the consumption number.
From the figure, C∗

0 > C for all values of α1 and α2 , so in this case if the MSC
model is more representative of the real system using C∗

0 would lead to overesti-
mation of the consumption number. Note that C∗

0 will not always be necessarily
greater than C. Our example is dependent on the parameters we obtained from
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research on particular African savannas but other situations might give different
results.

4.1.2. Extent of multiple species coexistence effects on long-term dynamics. To
assess the effect of MSC, we compare this model to a homogeneous version where
the resource and consumer biomasses are averaged (

∑n
j=1 Xj/n and

∑n
j=1 Yj/n).

Since the consumption number was already found to partition the dynamics into
three parts: C0 , C

∗
0 < 1, C0 = C∗

0 = 1, and C0 , C
∗
0 > 1, we compare the models

(with n=2) for these cases. For Figure 3(a), C1 = 0.8535, C2 = 0.8955, C∗
0 = 0.9639

(C1 < 1, C2 < 1, C∗
0 < 1). For Figure 3(b), C1 = C2 = C∗

0 = 1. For Figure 3(c),
C1 = 1.0562, C2 = 1.2793, C∗

0 = 1.2919 (C1 > 1, C2 > 1, C∗
0 > 1). Thus, when con-

sumption numbers are less than or equal to one, the biomass dynamics of both
models are still stable equilibria and in this example the homogeneous dynamics
are larger for both resources and consumers (Figures 3a and b). When consumption
numbers are greater than one, the cyclical dynamics of biomasses over time have
larger amplitudes but smaller periods for the homogeneous model as compared to
the dynamics for the MSC model (Figure 3c).

5. Analyses of the general MSC model (1). In this section, we extend
several results obtained for the MSC model (2) n = 2 to the more general n MSC
model (1). For the case n = 2, of the nine equilibrium points, only two equilibrium
points are important for stability analyses (E4 , the equilibrium in the absence of
consumers, and E9 , the positive equilibrium of consumers and resources). For the
homogeneous model, there are also two important equilibrium points: P2 and P3 .
Thus, to simplify our analyses for the general case we consider the analogs for these
equilibrium pairs.

The first of these points is the equilibrium in the absence of consumers given by

Ep = (Xp
1 ,Xp

2 , . . . , Xp
n , Y p

1 , Y p
2 , . . . , Y p

n ),(7)

where Xp
i = Kp − ∑n

j=1 δpjX
p
i and Y p

i = 0 for i = 1, 2, . . . , n. In the absence of
competition, the terms δpj = 0 and then Xp

i = Kp , the carrying capacity.

The second equilibrium point is the positive equilibrium point and is given by

Eq = (Xq
1 ,Xq

2 , . . . , Xq
n , Y q

1 , Y q
2 , . . . , Y q

n ),(8)
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FIGURE 3. Plots comparing the long-term dynamics from the MSC model (averaged) and
the homogeneous model for various values of consumption number: (a) C1 < 1, C2 < 1, C ∗

0 <
1, (b) C1 = C2 = C ∗

0 = 1, (c) C1 > 1, C2 > 1, C ∗
0 > 1 (see text for details).

where Xq
i = τq βq

αq cq −τq
and Y q

i = rq

αq
(1 − X

q
i +

∑n
j=1 δq j X

q
j

Kq
)(βq + Xq

i ) for q = 1, 2, . . . , n.
In the absence of competition terms (δqj = 0), the Xq

i remain the same while Y q
i =

rq

αq
(1 − X

q
i

Kq
)(βq + Xq

i ).

The consumption number for this general case is

C0 = max{C1 , C2 , . . . , Cn},(9)
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where Cp = cp αp X
p
i

τp (βp +X
p
i ) , for p = 1, 2, . . . , n. Also, in the absence of competition terms

Cp = cp αp Kp

τp (βp +Kp ) . Note that when C0 = 1, the equilibrium points Ep = Eq . In the
absence of competition the following results hold:

(i) Ep is stable (locally and globally) when C0 ≤ 1.
(ii) Eq is stable when C0 ≥ 1.

The above results can be established using reasoning similar to that used for model
(2). These results also suggest that the long-term dynamics of this general MSC
model (1) are also governed by the consumption number C0 . Thus, the effects of
multiple species on the consumption numbers, and thus on resource and consumer
dynamics, should be important for the general case as reasoned for n = 2.

6. Discussion. Most ecological systems are made up of multiple species co-
existing in their natural habitat. Understanding the dynamics of such ecosystems
is important for their management and preservation. To study these dynamics we
formulated an n-patch consumer resource mathematical model for multiple species
coexisting.

Initial insights for MSC dynamics were gained by analyzing the special case when
n = 2. For the purpose of illustration, resources X1 and X2 could be trees and grass,
respectively, while their associated consumers would be browsers and grazers de-
noted by Y1 and Y2 , respectively. A threshold consumption number C0 , which sum-
marizes most of the parameters, is computed and used to identify system stability.
The homogeneous version of the model is similar to consumer resource models found
in the literature (Rosenzweig and MacArthur, [1963]; Turchin, [2003]; Owen-Smith,
[2004]; Duffy, [2010]). Interestingly, while the MSC model is preferable because it
should provide more information, we show that the long-term dynamics of this
extended model is also governed by a similarly defined consumption number C0 .
This allows us to investigate the effects of MSC using C0 . We find that increasing
the number of species can change the stability dynamics. For example, parameter
combinations that would eventually result in stable foci or cyclical dynamics can
change. We show in Section 5 how these results should extend to more complex
multiple consumer and resource models.

A criticism could be that our simplifying assumptions are restrictive and that real
ecosystems are never close to equilibrium. However, theoretical studies using simple
models are designed to highlight fundamental effects. If multiple species complexity
can have an effect on understanding these simple stable dynamics a similar effect
on the actual dynamics of more complex formulations is likely. Also, these effects
can be tested by further theoretical and practical research.
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Another important perspective here is that, as might be expected, the structure of
the model apart from the parameter values has an effect on population dynamics as
one increases species complexity. Increasing the complexity of the model results in
averages of resource and consumer biomasses different to a system where parameters
are averaged. We present an example where with increasing complexity biomasses
are reduced when the dynamics are stable foci or become tighter in amplitude
when the dynamics are cyclical. In as much as the model structure corresponds
to real systems these results show how the extent of multiplicity could have a
population dynamic consequence in and of itself and how this could be measured. In
our example, the tighter amplitudes shown indicate a possible benefit for long-term
survival as external impacts (biotic or abiotic) could have less chance of crashing
the dynamics. Thus, it appears that when dynamics are cyclical there is a trade-off
between biomass levels in the system and stability. This possibility would agree
with other ecosystem simulations where increased heterogeneity changed dynamics
to tighter, perhaps less vulnerable, solutions (Duffy, [2010]). Regardless of whether
these speculations are true, the importance of taking multiple species dynamics into
account is emphasized by those results and our results here.
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