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Abstract Nitrification at a full-scale activated sludge plant
treating municipal wastewater was monitored over a period
of 237 days. A combination of fluorescent in situ hybridiza-
tion (FISH) and quantitative real-time polymerase chain reac-
tion (qPCR) were used for identifying and quantifying the
dominant nitrifiers in the plant. Adaptive neuro-fuzzy infer-
ence system (ANFIS), Pearson’s correlation coefficient, and
quadratic models were employed in evaluating the plant oper-
ational conditions that influence the nitrification performance.
The ammonia-oxidizing bacteria (AOB) abundance was with-
in the range of 1.55 × 108–1.65 × 1010 copies L−1, while
Nitrobacter spp. and Nitrospira spp. were 9.32 × 109–
1.40 × 1011 copies L−1 and 2.39 × 109–3.76 × 1010

copies L−1, respectively. Specific nitrification rate (qN) was
significantly affected by temperature (r 0.726, p 0.002), hy-
draulic retention time (HRT) (r −0.651, p 0.009), and ammo-
nia loading rate (ALR) (r 0.571, p 0.026). Additionally, AOB
was considerably influenced by HRT (r −0.741, p 0.002) and
temperature (r 0.517, p 0.048), while HRT negatively impact-
ed Nitrospira spp. (r −0.627, p 0.012). A quadratic combina-
tion of HRT and food-to-microorganism (F/M) ratio also im-
pacted qN (r2 0.50), AOB (r2 0.61), and Nitrospira spp. (r2

0.72), while Nitrobacter spp. was considerably influenced by
a polynomial function of F/M ratio and temperature (r2 0.49).
The study demonstrated that ANFIS could be used as a tool to

describe the factors influencing nitrification process at full-
scale wastewater treatment plants.
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Introduction

Ammonia toxicity is one of the several forms of nitrogen
pollution that exist in aquatic environments [1]. Ammonia
can be harmful to aquatic life and contributes to eutrophication
of water bodies [2]. Moreover, at sufficiently high levels, am-
monia can create a large oxygen demand in receiving waters,
where the total consumption of oxygen is 4.57 g O2g

−1 N-
NH4

+ oxidized [3]. In this context, ammonia removal from
wastewater is one of the primary tasks to protect water re-
sources from pollution discharges. Biological nitrification-
denitrification is the most commonly used process for remov-
ing nitrogen fromwastewater [4]. During nitrification process,
ammonia (NH3) is converted to nitrite (NO2

−) by ammonia-
oxidizing bacteria (AOB), while nitrite-oxidizing bacteria
(NOB) convert the NO2

− to nitrate (NO3
−) [5]. In denitrifica-

tion, NO3
− is reduced to nitrogen gas (N2) in a four-step pro-

cess, in which NO2
−, nitric oxide (NO), and nitrous oxide

(N2O) are electron acceptors in energy generating reactions
[6].

Nitrifying bacteria are highly sensitive to changes in envi-
ronmental parameters and plant operational conditions, such
as pH, temperature, dissolved oxygen (DO) level, organic
loading rate (OLR), ammonia loading rate (ALR), and hy-
draulic retention time (HRT) [7]. Neutral to slightly basic pH
range (7.5 to 8.5) has been reported as optimum for efficient
nitrification [8]. According to an earlier finding, at neutral pH,
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99 % of ammonia was removed. However, this dropped to
about 75 % at a basic pH of 9.7 while acidic pH (4.8) resulted
in an impaired removal efficiency of 56 % [7]. Although it
was reported that nitrification would proceed at a temperature
range of 20 to 37 °C [9], nonetheless niche differentiation
exists among the members of NOB group with Nitrobacter
having preference for relatively low temperatures (24–25 °C)
while Nitrospira thrives at higher temperatures of 29–30 °C
[10]. Kim et al. [1] demonstrated that raising temperature from
20 to 30 °C resulted in a 5.3-fold increase in ammonia oxida-
tion and a 2.6-fold increase in nitrite oxidation. Lower nitrifi-
cation performance has been observed at higher organic load-
ing due to the competition for DO between heterotrophic bac-
teria and autotrophic nitrifying organisms in wastewater treat-
ment system, [11]. Huang et al. [10] demonstrated that higher
DO concentrations were more suitable to Nitrobacter growth,
while Nitrospira were selectively enriched when DO concen-
trations were less than 1.0 mg/L. The available carbon sub-
strate for the unit mass of microorganism (known as F/M
ratio) can also impact nitrification. A study by Wu et al. [11]
suggested that high F/M ratio should be avoided to minimize
its negative impact on nitrification, and it indicated that F/M
ratio between 0.2 and 0.4 was the optimum range for nitrifi-
cation. The influence of HRT on nitrification efficiency was
also observed when HRT decreased from 30 to 5 h with a
resultant increase in specific ammonium-oxidizing and
nitrate-forming rates [12]. Additionally, the decrease in HRT
led to a reduction of AOB population density, whereas the
NOB, especially the fast growing Nitrobacter spp., increased
significantly [12].

Modeling of a full-scale wastewater treatment plant
(WWTP), operated under an uncontrolled environment,
requires advanced nonlinear modeling tools to simulate
the complex relationships between inputs and outputs
[1]. According to Klemetti [13], due to simultaneous
dependence on different factors, competition between
microbial groups is usually nonlinear. Artificial intelli-
gence (AI) is an example of a nonlinear system that is
capable of depicting the interactive influence between
variables as well as their correlation with the simulation
output [14]. AI incorporates artificial neural network
(ANN), fuzzy inference system (FIS), and adaptive-
neuro fuzzy inference system (ANFIS). ANN has the
ability to model nonlinear systems efficiently owing to
their high accuracy, adequacy, and quite promising ap-
plications in engineering [15]. FIS allows a logical data-
driven modeling approach, which uses Bif–then^ rules
and logical operators to establish qualitative relation-
ships among the variables [16]. ANFIS is a neuro-
fuzzy system that has the potential to capture the bene-
fits of both ANN and FIS in a single framework [14].
Moreover, ANFIS can handle complex and highly non-
linear relationships between several parameters, without

the difficult task of dealing with deterministic nonlinear
mathematics [17]. Modeling based on ANFIS needs a
little knowledge about the process to track given
input/output data. In this context, it is expected that
the effect of system operation on nitrification process
could be studied using ANFIS. To the best of our
knowledge, this is the first study applying ANFIS tech-
nique to describe the nitrification performance at a real
WWTP subjected to dynamic operational parameters.

In this study, fluorescent in situ hybridization (FISH) and
quantitative real-time polymerase chain reaction (qPCR) were
used for detecting and quantifying the dominant nitrifiers at a
full-scale WWTP. The effect of operational parameters and
environmental conditions on nitrification was also investigat-
ed. An ANFIS was applied to select and rank the operational
conditions that mostly influence the nitrification process.
ANFIS results were further validated with cross-correlation
coefficients and quadratic models.

Materials and Methods

Plant Description

The full-scale WWTP under study is situated in the Midlands
of KwaZulu-Natal province, South Africa. The plant receives
a discharge of 82,880±20,832 m3 day−1 (average dry weather
flow), including 90 % domestic and 10 % industrial wastewa-
ters. The plant was designed based on the criteria of a
Johannesburg configuration, which allow for nitrification/
denitrification biological process [18]. As shown in Fig. 1,
the effluent from primary settling tank is distributed to the
pre-anoxic and anaerobic tanks. The pre-anoxic basin is fur-
ther enriched with return activated sludge from the bottom of a
final settler. The effluent from anaerobic tank is discharged
into the anoxic unit. An internal recycle is pumped from the
last part of aerobic units to the anoxic zone. The mixed liquor,
containing activated sludge, flows from the aerobic zone to a
secondary settler, where it is separated under a quiescent con-
dition into treated wastewater and return activated sludge.

Sampling Protocol

TheWWTPwas monitored for a period of 237 days, i.e., from
May to July 2012 and from November 2012 to March 2013.
The study period was divided into two phases. Phase 1 repre-
sents the winter period during the first 78th days; and phase 2,
the summer season from the 79th to the 237th day. Composite
sludge samples, from the aerobic chamber, in addition to in-
fluent and effluent wastewater samples were collected twice
per month. All samples were kept on ice while in transit to the
lab.
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Fluorescent In Situ Hybridization

FISH analysis was performed for initial identification of the
nitrifying community according to the Fuchs et al. [19] proto-
col with modification. Sample preparation, immobilization on
glass slides, dehydration, permeabilization, quality check of
probes, and hybridization were undertaken as described earlier
by Nielsen [20]. The samples were sonicated at 8 W for
10 min to disperse the flocs before performing the hybridiza-
tion. Oligonucleotide probes targeting betaproteobacterial
AOB and genus Nitrobacter spp. and Nitrospira spp., namely,
Nso1225 [21], NIT3 [22], and Ntspa662 [12], respectively,
were used (Table 1). The probes were labeled with CAL
Fluor Red 590 fluorescence dye (Inqaba Biotechnical
Industry (Pty), South Africa). The samples were visualized
using a Zeiss AxioCam HRm (Carl Zeiss, Germany)
epifluorescent microscope. Image analysis was carried out
using a Zeiss AxioVision Release 4.6 (12-2006) imaging
software.

DNA Extraction and Real-Time Quantitative PCR
Amplification

Genomic DNAwas extracted from sludge samples according
to the Purkhold et al. [23] procedure. Quality and quantity of
the extracted DNA were ascertained with a NanoDrop ND-
1000 spectrophotometer (NanoDrop Technologies, USA).
Individual standard curves were prepared for the different ni-
trifiers using purified 16S rRNA gene fragments (target DNA)
obtained from PCR-amplified AOB (amoA-1F and amoA-
2R), Nitrobacter spp. (FGPS872f and FGPS1269r), and
Nitrospira spp. (NSR1113F and NSR1264R) as described
by [24, 25] (Table 2). The concentrations were used in calcu-
lating their copy by considering their molecular weight and
Avogadro’s number. For qPCR standard curves, 10-fold serial

dilutions of the target DNA were prepared from 108 to 101

copy numbers. The real-time PCR quantification was carried
out according to modification of the method described by
Steinberg and Regan [26] using Bio-Rad C1000 Touch
Thermal Cycler-CFX96 Real-Time System (Bio-Rad, USA).
For the quantitative real-time PCR, the primers already de-
scribed in Table 2 were used. The optimized protocols used
for quantifying the nitrifiers are shown in Table 3. To confirm
amplification of the correct product, the amplicons from
qPCR were electrophoresed in 1.2 % (w/v) agarose gel for
the presence of the expected gene product sizes. The qPCR
standard curve parameters used for the analysis are listed in
Table 4.

Analytical Analysis

Concentrations of inorganic nitrogen species and chemical
oxygen demand (COD) were estimated using standard
methods [27]. Temperature, DO, and pH measurements were
carried out using the YSI 556 MPS (Multiprobe System).

Calculations

Operational conditions such as HRT, OLR, ALR, and F/M
ratio were calculated as mentioned in Tchobanoglous et al.
[28] as follows (Eqs. 1, 2, 3, and 4):

HRT ¼ V

Q
ð1Þ

OLR ¼ Q� COD

V
ð2Þ

ALR ¼ Q� N−NH4
þ

V
ð3Þ

F=M ¼ Q� COD

MLSS � V
ð4Þ

Fig. 1 Schematic diagram of the
full-scale biological treatment
process under study

Table 1 rRNA—targeted
oligonucleotide probes and their
specificity

Probe name Target Sequence (5′–3′) FA (%) Reference

NSO 1225 Betaproteobacterial AOB CGCCATTGTATTACGTGTGA 35 [21]

NIT3 Genus Nitrobacter CCTGTGCTCCATGCTCCG 40 [22]

Ntspa 662 Genus Nitrospira GGAATTCCGCGCTCCTCT 35 [12]

FA formamide
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where HRT is the hydraulic retention time; V is the reactor
volume; Q is the flow rate; OLR is the organic loading rate;
COD is the chemical oxygen demand; ALR is the ammonia
loading rate;N-NH4

+ is the ammonia nitrogen; F/M ratio is the
food-to-microorganisms ratio; and MLSS is the mixed liquor
suspended solids.

Adaptive Neuro-Fuzzy Inference System

Architecture of ANFIS

To present the ANFIS architecture, two fuzzy if–then rules
based on a first-order Takagi–Sugeno fuzzy model were
considered:

Rule-1: If (x is A1) and (y is B1), then (f1 =p1x+q1y+ r1)
Rule-2: If (x is A2) and (y is B2), then (f2 =p2x+q2y+ r2)

where x and y are the inputs; A1 and B1 are the fuzzy sets; f1 is
the outputs within the fuzzy region specified by the fuzzy rule;
and p1, q1 and r1 are the design parameters determined during
the training process.

As shown in Fig. 2, the ANFIS architecture to implement
these two rules has a total of five layers, in which a circle
indicates a fixed node, whereas a square indicates an adaptive
node. The functioning of each layer can be described as fol-
lows [29]

Layer-1 (input node): Parameters in this layer are referred
to Bpremise parameters.^ Every single node generates a fuzzy

membership grade of linguistic label. The membership
functions (MFs) of Ai and Bi − 2 are given by Eqs. 5 and
6, respectively:

O1
i ¼ μAi

xð Þ i ¼ 1; 2 ð5Þ

O1
i ¼ μBi−2

yð Þ i ¼ 3; 4 ð6Þ

where x (or y) is the input to node i and Ai (or Bi − 2) is the
linguistic label (small, large, etc.) related to this node. If the
bell-shaped MF is generalized, μAi

xð Þ is given by Eq. 7:

μAi
xð Þ ¼ 1

1þ x−ci
ai

� �2� �bi
ð7Þ

where ai, bi, and ci are the MF parameters, governing the bell-
shaped functions accordingly.

Layer-2 (rule nodes): In the second layer, the nodes are
labeled withM, indicating that they perform as a simple mul-
tiplier. The AND/OR operator is used to get one output that
represents the antecedent of the fuzzy if–then rule. The out-
puts of this layer are defined as firing strengths of the rules.
Each node analyzes the firing strength by cross multiplying all
the incoming signals (Eq. 8):

O2
i ¼ wi ¼ μAi

xð ÞμBi
yð Þ i ¼ 1; 2 ð8Þ

Layer-3 (average nodes): In the third layer, the nodes are
labeled with N, demonstrating that they play a normalization

Table 2 List of primers used and
the optimized annealing
temperature

Target Primer Annealing (°C) References

AOB amoA amoA-1F/amoA-2R 55 [25]

Nitrobacter 16S rDNA FGPS872/FGPS1269 50

Nitrospira 16S rDNA NSR1113F/NSR1264R 65

Table 3 Optimized real-time PCR protocols for quantifying nitrifiers

Real-time PCR step Primer

amoA-1F/amoA-2R FGPS872/FGPS1269 NSR1113F/NSR1264R

1. Initial activation 3:30 min at 95 °C 3:30 min at 95 °C 3:30 min at 95 °C

2. Denaturation 0:30 min at 95 °C 0:30 min at 95 °C 0:30 min at 95 °C

3. Annealing 0:30 min at 54 °C 0:30 min at 50 °C 0:30 min at 65 °C

4. Extension 0:30 min at 72 °C 0:30 min at 72 °C 0:30 min at 72 °C

5. Read fluorescence Read Read Read

6. Go to step 2 for 40 times 40 times 40 times

7. Melt curve 55 to 65 °C, increment
of 0.5 °C every 50 s

55 to 65 °C, increment
of 0.5 °C every 50 s

55 to 65 °C, increment
of 0.5 °C every 50 s

8. Read fluorescence Read Read Read
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role to the firing strengths from the previous layer. Thus, out-
puts of this layer are called Bnormalized firing strengths^. As
shown in Eq. 9, the ith node calculates the ratio of the ith rule’s
firing strength to the sum of all rules’ firing strengths:

O3
i ¼ wi ¼ wi

w1 þ w2
i ¼ 1; 2 ð9Þ

Layer-4 (consequent nodes): In this layer, every node i is an
adaptive node with a node function. The output of each node
is simply the product of the normalized firing strength and a
first-order polynomial (for a first-order Sugeno model).
Hence, the outputs of this layer are expressed by Eq. 10:

O4
i ¼ wi f i ¼ wi pixþ qiyþ rið Þ i ¼ 1; 2 ð10Þ

where wi is the output of layer-3 and {pi, qi, ri} are conse-
quent parameters, pertaining to the first-order polynomial.

Layer-5 (output node): In the fifth layer, there is only one
single fixed node labeled with ∑. The single node computes
the overall output as the summation of all incoming signals.
Thus, the overall output of the model is given by Eq. 11 as
follows:

O5
i ¼

X2
i¼1

wi f i ¼

X2
i¼1

wi f i

 !

w1 þ w2
ð11Þ

Application of ANFIS

The function exhsrch in Matlab was used to select the set of
inputs that considerably impact the nitrification activity.
Theoretically, exhsrch builds an ANFIS model for each com-
bination and trains it for one epoch, sequentially reporting the
performance achieved. ANFIS uses a hybrid learning algo-
rithm to tune the parameters of a Sugeno-type FIS [30]. The
algorithm uses a combination of the least-squares and back-
propagation gradient descent methods to model a training data
set [29]. The dataset is randomly classified into training
(70 %) and checking (30 %) arguments. The training process
stops if the designated epoch number is reached or the error
goal is achieved, whichever comes first. The checking data are
used for testing the generalization capability of the ANFIS and
for monitoring how well the model predicts the corresponding
dataset output values. Moreover, ANFIS validates models
using a checking data set to test for overfitting of the training
data. Recently, this technique has been successfully imple-
mented in the field of wastewater treatment technology [17,
31].

Results and Discussion

Environmental Conditions and System Performance

Influent and effluent wastewater characteristics of the full-
scale WWTP over the 237-day monitoring period are
displayed in Fig. 3. Operational conditions of the treatment
plant were classified into phase 1 and phase 2, corresponding
to winter and summer seasons, respectively (Table 5). The
temperature measurements during winter (16.5±2.1 °C) and
summer (22.4±2.7 °C) recorded were lower than the opti-
mum temperature range of 25–30 °C for most strains of nitri-
fiers [32]. The winter season (1st–78th day) experienced little
or no rainfall resulting in an average influent flow rate of 61,
990 ± 2172 m3 day−1, while it increased to 93,062 ± 18,

Table 4 Description of qPCR standard curve parameters

Parameter Target

AOB Nitrobacter spp. Nitrospira spp.

Efficiency (%) 102.5 ± 2.1 92.75 ± 1.63 107.3 ± 1.9

Slope −3.3 ± 0.05 −3.5 ± 0.05 −3.2 ± 0.04
r2 of slope 0.998 ± 0.001 0.99 ± 0.01 0.998 ± 0.04

Intercept 39.8 ± 2.2 35.0 ± 0.59 37.2 ± 0.14

1A

2A

M Nx
1w 1w

x y

1B

2B

M Ny
2w 2w

x y

11 fw

22 fw

f

Layer-1 Layer-2 Layer-3 Layer-4 Layer-5

∑

Fig. 2 Typical first-order Sugeno
ANFIS architecture
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106 m3 day−1 during the summer (79th–237th day). The in-
fluent COD during the summer was 1.3-fold lower than in the
winter due to the dilution effect of increased rainfall. The OLR
increased during summer with increasing flow rate, despite
the lower COD, and reached 4.5±1.8 kg COD m−3 day−1.
The deviations in OLRs could be attributed to the variation
in the type of influent as a result of commercial and industrial
activities occurring around the treatment plant. Under these
fluctuating conditions, a steady COD removal efficiency of
95±3 % was still maintained (Fig. 3). The F/M ratio was
0.6±0.1 day−1 in the winter and increased by 48 % during
the summer (Table 5). There is no ideal F/M ratio that can
work for all activated sludge treatment systems. Previous stud-
ies indicate that the recommended range for F/M ratio in

conventional, completely mixed, and high rate activated
sludge processes ranged between 0.2–0.4, 0.2–0.6, and 0.4–
1.5 day−1, respectively [33].

Although the influent ammonia during summer was 1.2-
fold lower than in winter, the respective ALR increased by
18.8 % resulting from the summer rainfall (Table 5). The
ammonia removal efficiency improved from 60±18 to 83
± 13 % although the ALR rose from 121 ± 22 to 144
±29 g N-NH4

+m−3 day−1 through winter to summer, respec-
tively. Nitrification rate followed the same trend of ammonia
removal, where it also increased by 60 % and recorded 119
± 30 g N-NH4

+m−3 day−1 during the summer season. The
increase in ammonia removal efficiency and nitrification rate
with ALR indicated that ammonia concentration was not the
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nitrification limiting factor in this plant. This suggested that
other operational conditions had higher influence on the nitri-
fication process rather than ALR. Results from our study were
lower than the 97–99.9% ammonia removal that was obtained
by Campos et al. [3] when the nitrifying activated sludge unit
was subjected to high nitrogen loading rates (up to 7500 g N-
NH4

+m−3 day−1). The higher nitrification performance of the
plant could be due to operation of the unit under a controlled
environment, where the nitrifying activated sludge was fed
with synthetic wastewater containing ammonia and other nu-
trient sources with regulated pH. The influent nitrate concen-
tration during the study period varied between 0.25 and
3.68 mg L−1 with an average value of 1.51± 0.77 mg L−1

(Fig. 3). Nitrate removal efficiencies exhibited 64.6 ± 27.6
and 88.0±26.3 % during winter and summer seasons, respec-
tively. The concentration of effluent nitrate during the winter
was 3.6-fold higher than summer. This might be an indication
of the increased NOB/AOB ratio during the winter that pro-
motes nitrate accumulation and thus a higher effluent nitrate
concentration in winter [6, 34]

The DO levels throughout the aeration tank varied between
0.24 and 1.27 mg L−1, with an average value of 0.63

±0.22 mg L−1. The DO concentration in our study was lower
than the optimum value of 1.7 mg L−1 for a complete nitrifi-
cation process [35]. The pH in the feed over the entire sam-
pling period was relatively stable with an average value of 7.2
±0.1, which is close to the optimum for nitrifiers (7.5–8.0)
[35]. Ruiz et al. [35] reported that at the range of pH 6.45–
8.95, as observed here, a complete nitrification to nitrate oc-
curs, while at pH lower than 6.45 and higher than 8.95 would
result in complete inhibition of nitrification.

Identification and Quantification of Dominant Nitrifiers

The betaproteobacterial AOB, Nitrobacter spp., and
Nitrospira spp. were detected in abundance throughout the
sampling period (Fig. 4). The AOB population abundance
was quantified using the primer set targeting the ammonia
monooxygenase (amoA) gene locus, whereas Nitrobacter
and Nitrospira 16S rDNAs were targeted for the NOB. The
specificity of the primers was confirmed by gel electrophore-
sis with the expected base pair length (AOB 490 bp;
Nitrobacter spp. 386 bp;Nitrospira spp. 151 bp). The efficien-
cies of the qPCR runs were between 90 and 110 %, and the
standard curves were linear over six orders of magnitude
(r2 >0.99).

The AOB abundance was within the range of 1.55×108–
1.65 × 1010 copies L−1 MLSS, whereas those of the
Nitrobacter spp. and Nitrospira spp. were found to be in the
range of 9.32 × 109–1.40 × 1011 copies L−1 MLSS and
2.39 × 109–3.76 × 1010 copies L−1 MLSS, respectively
(Fig. 5). The Nitrobacter spp. abundance was 29-fold higher
than that of AOB throughout the study period showing a clear
dominance of NOB in the selectedWWTP. The average AOB
to NOB ratio varied from 0.03:1 (winter) to 0.15:1 (summer),
which was lower than the theoretical ratio of 2:1 reported for
good nitrification [36]. Due to the prevailing limiting oxygen
levels (0.63±0.22 mg O2L

−1) in the reactor, there was a pos-
sibility of nitrite loop. This phenomenon usually occurs when
denitrifiers reduce nitrate to nitrite supplying additional nitrite
for NOB, leading to a higher NOB/AOB ratio than theoreti-
cally expected [36]. Additionally, Liu [37] noted that under
long-term low DO, the oxygen affinity of NOB increases

Table 5 Operational conditions and ANFIS model parameters of the
full-scale wastewater treatment plant under study

Parameters Phase 1 (winter) Phase 2 (summer)

Rainfall (mm) 26.0 ± 18.6 116.8 ± 32.0

Temperature (°C) 16.5 ± 2.1 22.4 ± 2.7

HRT (h) 6.3 ± 0.2 4.3 ± 1.0

OLR (kg COD m−3 day−1) 4.0 ± 1.1 4.5 ± 1.8

ALR (g N-NH4
+m−3 day−1) 121 ± 22 144 ± 29

F/M (g COD g−1 MLSS day−1) 0.6 ± 0.1 0.9 ± 0.3

qN (mg N-NH4
+ g−1 MLSS day−1) 12.3 ± 6.1 26.6 ± 10.7

AOB (copies × 109 L−1) 1.00 ± 0.86 7.35± 5.75

Nitrobacter spp.
(copies × 109 L−1)

34.8 ± 19.0 50.8 ± 46.1

Nitrospira spp. (copies × 109 L−1) 3.32 ± 0.60 11.9 ± 11.2

HRT hydraulic retention time, OLR organic loading rate, ALR ammonia
loading rate, F/M food to microorganisms ratio, qN specific nitrification
rate, AOB ammonia-oxidizing bacteria

Fig. 4 Micrograph of samples
hybridized with Cal 590 labeled.
a NSO 1225 (AOB); b NIT3
(Nitrobacter spp.); c Ntspa 662
(Nitrospira spp.) oligonucleotide
probes
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significantly, which makes NOB a better competitor for oxy-
gen compared to AOB. This high NOB/AOB ratio resulted in
sub-optimal ammonia transformation in this study. Whereas
earlier studies have recorded about 99 % ammonia removal
[7], in this study the highest NH3 removal that was recorded
was 83±13 %.

A higher Nitrobacter/Nitrospira ratio of 7.4: 1.0 was
also recorded. This could possibly be explained based
on the earlier observations of Wagner et al. [38] and
Nogueira and Melo [39]. They noted an irreversible
prevalence of Nitrobacter spp. over Nitrospira spp. in
WWTP after a history of spike in nitrite concentration,
even after subsequent reduction in nitrite concentration.
Nitrobacter usually exhibit inhibitory effect on the
growth of Nitrospira once it dominates. Furthermore,
Fukushima et al. [40] reported that Nitrobacter spp.
can be selected over Nitrospira spp. in plants with
low inorganic carbon in addition to low nitrite concen-
tration. However, there have been no studies on the
distribution of Nitrospira and Nitrobacter in DO-
limiting condition over an extended period of time at
a full-scale WWTP. Despite several other reports that
Nitrospira spp. often are the dominant NOB in activated
sludge systems [41], the result from this study indicates
that the knowledge about nitrifying bacteria populations
at full-scale level still needs further investigations.

Effect of Operational Conditions on Specific Nitrification
Rate

In this investigation, it was observed that the efficiency and
effectiveness of a nitrifying activated sludge system depended
on several factors. The specific nitrification rate (qN) showed a
strong positive correlation to temperature (r 0.726, p 0.002).
The figures associated with all the regression analysis is given
in Supplementary Material Figure S1, S2, S3, S4, S5, S6, and
S7. The qN noticeably increased by 2.2-fold and exhibited
26.6±10.7 mg N-NH4

+g−1 MLSS day−1 during the summer
season when the temperature was elevated to 22.4±2.7 °C.
The ANFIS model indicated that temperature exhibited the
least error, demonstrating its relevance with respect to qN
(Fig. 6a). The considerable impact of temperature on qN could
be attributed to the high seasonal variation observed during
the monitored period. This observation was in agreement with
previous studies, which stated that increasing temperature
could enhance the rate of nitrification and nitrifier growth
[42]. Xu et al. [43] reported that growth rate of nitrifiers in-
creased exponentially at a temperature range of 10–25 °C,
reaching a constant and optimal growth rate between 25 and
35 °C; however, at 40 °C the growth rate diminished
drastically.

According to the ANFIS results in Fig. 6a, HRT has the
second rank after temperature regarding the operational
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conditions affecting qN. The current study witnessed a signif-
icant increase in qN with a decrease in HRT (r −0.651, p
0.009). This result was in agreement with a study by Li et al.
[12], where qN increased from 320 to 450 mg N-NH4

+ g−1

MLSS day−1 (elevated by 41 %) when the HRT decreased
from 10 to 5 h, showing that the decline in HRT led to an
enhancement in ammonia oxidation activity. On the contrary,
other studies have reported that lower HRT results in increas-
ing loading rates, which negatively affects the nitrifiers due to
their competition with heterotrophic bacteria for substrates
(oxygen and ammonia) [44]. In our study, the negative trend
between qN and HRT can be linked to the seasonal change,
which was the key factor in the development of nitrification,
since qN increased to 26.6±10.7mgN-NH4

+g−1MLSS day−1

in summer season when temperature increased to 22.4
±2.7 °C, while HRT declined to 4.3±1.0 h.

In the current study, qN showed a significant positive cor-
relation with ALR (r 0.571, p 0.026) (Supplementary Table
S1, S2, S3, S4, S5, S6 and S7). However, it was found that
high concentration of ammonia in the influent can negatively
affect nitrification due to substrate inhibition by free ammonia
[45]. This discrepancy could be attributed to the fact that the
ALR of 120–140 g N-NH4

+m−3 day−1observed in our study
was still lower than the inhibitory limits reported in
previous studies [3, 45]. For example, Campos et al.
[3] investigated the possibilities of obtaining a full am-
monia oxidation at increasing ALR from 500 to
7500 g N-NH4

+m−3 day−1. Additionally, Kim et al.

Fig. 6 Effect of operating
conditions on qN (the left-most
input variable is the most relevant
with respect to qN). a Every input
variable’s influence on qN; b all
two-input variable combinations
and their influence on qN
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[45] found that nitrification efficiency increased to
100 % with N-NH4

+ loading of 700 g m−3 day−1 at
18 °C, and leachate was completely nitrified up to a
load of 1500 g N-NH4

+m−3 day−1 at 28 °C.
Other operational conditions such as DO showed no sig-

nificant effect on qN (r−0.141, p 0.617). This observation was
in agreement with a study by Kim et al. [45], who noted that
DOwas not a limiting factor for nitrification. Additionally, the
role of pH in our study was not considerable when compared
to other environmental conditions (p 0.332) due to its narrow
range of variation. The pH range observed in this study (6.97–
7.47) was within the optimal range for the metabolism and
growth of autotrophic nitrifiers [6].

Referring to the ANFIS model (Fig. 6a), the training
and checking errors were comparable, which implies
that no overfitting occurred. This means that selection
of more than one input can be explored to rebuild the
ANFIS model. The plot in Fig. 6b showed all two-input
variable combinations and their influence on qN. It was
found that HRT and F/M ratio (the left-most input var-
iable) formed the optimal combination of two input at-
tributes. Additionally, it was observed that the minimal
training and checking errors reduced significantly from
that of the best one-input model, indicating that the
combination of HRT and F/M ratio improved the pre-
diction performance. A quadratic model was developed
to confirm the ANFIS results by estimating qN over
independent variables (HRT and F/M ratio). The poly-
nomial equation (Eq. 12), including constant, linear, in-
teraction, and squared terms, provided a determination
of coefficient (r2 value) with the experimental data of
0.50:

qN ¼ Aþ B HRTð Þ þ C F=Mð Þ þ D HRT� F=Mð Þ
þ E HRTð Þ2 þ F F=Mð Þ2 ð12Þ

A=−76.2257; B=24.3626; C=149.0787; D=−17.1593;
E=−1.8146; F=−41.3636

where qN is expressed inmilligrams of N-NH4
+ per gram of

MLSS per day; HRT in hours; and F/M ratio in per day

Effect of Operational Conditions on AOB

The AOB was found to be HRT-dependent with an r value of
−0.741 (p 0.002). The high correlation between HRT and
AOB was in accordance with the ANFIS results, where HRT
exhibited the least training error among other operational con-
ditions (Fig. 7a). It was found that AOB exhibited a negative
correlation with the current range of HRT (4.3–6.3 h). Similar
results were reported by Li et al. [12] where an enhancement
in AOB community was observed when HRT declined from 7
to 5 h. They also noted that AOB had a positive correlation

when HRT became higher than 10 h [12]. Our results depicted
that the AOB was considerably correlated with temperature (r
0.517 and p 0.048), indicating that temperature had a positive
impact on the AOB community. The positive correlation be-
tween temperature and AOB was previously illustrated by
Park et al. [46], who found that low temperature could not
only decrease the attached biomass and activity of AOB but
could also produce a change in the composition of the AOB
species. According to ANFIS results, the two variables, HRT
and temperature, were the most relevant parameters with re-
spect to AOB (Fig. 7a). Our results suggested that an increase
in AOB during the summer season resulted from an increase
in temperature in line with a decrease in HRT.

As noticed from the ANFIS model (Fig. 7b), interac-
tion of HRT with other environmental factors provided a
reliable assessment of the plant performance. This might
be due to the fact that the current study was based on
full-scale observations where several environmental pa-
rameters were interacting together in a dynamic manner.
The influence of two environmental parameters indicat-
ed that the combination of HRT and temperature exhib-
ited lower training error than either HRT or temperature
by 64 and 70 %, respectively. These results further con-
firm our hypothesis that the AOB increased in summer
season due to the impact of both HRT and temperature.

Comparable to the qN results, the ANFIS model indicated
that the combination of HRT and F/M ratio could be the most
relevant input to the AOB (output) (Fig. 7b). Subsequently,
HRTand F/M ratio was employed in a polynomial function of
degree 2 to determine their quadratic regression (Eq. 13). The
estimated coefficient of determination showed an r2 value of
0.614.

AOB ¼ ðAþ B HRTð Þ þ C F=Mð Þ þ D HRT � F=Mð Þ
þE HRTð Þ2 þ F F

.
M

� �2
Þ � 1011

ð13Þ

A = 1.0114; B = −0.2456; C = −0.6173; D = 0.0567;
E=0.0161; F=0.1696

where, AOB is expressed in copies per liter; HRT in hours;
and F/M ratio in per day

Effect of Operational Conditions on NOB (Nitrobacter
and Nitrospira)

The presence of NOB is necessary for WWTPs to achieve
complete nitrification. In this investigation, Nitrobacter spp.
indicated no significant correlation with the operational con-
ditions (p > 0.1). This suggested that the abundance of
Nitrobacter could tolerate seasonal and environmental varia-
tions. The ANFIS model indicated that the F/M ratio had the
highest impact on Nitrobacter abundance (Fig. 8a). The
strength of the relationship between the F/M ratio and
Nitrobacter spp. was further estimated by Pearson correlation
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coefficient which showed an r value of 0.359 (p>0.1). The
prominence of F/M ratio was previously reported, where some
organic compounds in the wastewater positively affected the
activity of NOB [45]. The ANFIS model was also used to
identify relationships between Nitrobacter spp. abundance

and the combination of two operational parameters (Fig. 8b).
The model indicated that F/M ratio and temperature form the
optimal combination of two input attributes. The polynomial
equation of their quadratic interaction is presented in Eq. 14
(r2 value 0.49):

Nitrobacter ¼ Aþ B F=Mð Þ þ C Tð Þ þ D F=M� Tð Þ þ E F=Mð Þ2 þ F Tð Þ2
� �

� 1011 ð14Þ

A = −0.7143; B = −3.4550; C = 0.2579; D = −0.0050;
E=1.9650; F=−0.0062

whereNitrobacter is expressed in copies per liter; F/M ratio
in per day; and T in degree Celsius.

Cross-correlation coefficients indicated that increase in
Nitrospira spp. was significantly affected by a decline in

HRT (r −0.627 and p 0.012). Similarly, the ANFIS model
showed that the input HRT exhibited the least training error
(Fig. 9a), which was in accordance with the p values.
Additionally, HRT showed inverse correlation with
Nitrobacter spp. (r −0.364 and p>0.1). Similarly, Li et al.
[12] reported that a short HRT favored the relative growth of

Fig. 7 Effect of operating
conditions on AOB (the left-most
input variable is the most relevant
with respect to AOB). a Every
input variable’s influence on
AOB; b all two-input variable
combinations and their influence
on AOB
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NOBs, particularly the fast-growing Nitrobacter spp., in the
conventional activated sludge system. As observed from the
ANFIS results (Fig. 9b), the combination of HRT and F/M
ratio exhibited a 4-fold lowering of the training error when

compared to HRT individually. Therefore, the quadratic poly-
nomial formula indicating the combinatory effect of HRT and
F/M ratio on Nitrospira can be presented by Eq. 15 (r2 value
0.716):

Nitrospira ¼ Aþ B HRTð Þ þ C F=Mð Þ þ D HRT� F
.
M

� �
þ E HRTð Þ2 þ F F

.
M

� �2� �
� 1011 ð15Þ

A = 1.9980; B = −0.7133; C = 0.1599; D = −0.0062;
E=0.0636; F=−0.1640

where Nitrospira is expressed in copies per liter; HRT in
hours; and F/M ratio in per day

In a similar study, Huang, Gedalanga, and Olson [10] in-
vestigated the impact of environmental variables on
Nitrobacter and Nitrospira. They observed that Nitrobacter
populations were negatively correlated to temperature (r

Fig. 8 Effect of operating
conditions on Nitrobacter (the
left-most input variable is the
most relevant with respect to
Nitrobacter). a Every input
variable’s influence on
Nitrobacter; b all two-input
variable combinations and their
influence on Nitrobacter

O.O. Awolusi et al.



−0.49 and p<0.001), while the Nitrospira abundance showed
a strong positive correlation to temperature (r 0.59 and
p<0.0001). Additionally, Nitrobacter populations were sig-
nificantly and positively correlated to DO (r 0.38 and
p<0.01). However, Nitrospira abundance showed a signifi-
cantly negative correlation to DO (r −0.46 and p< 0.01).
Moreover, HRT showed a significant impact on Nitrobacter
spp. (r 0.334 and p<0.05). When comparing our study with
the latter investigation [10], both studies used the cross-
correlation coefficients to determine the significant impact of
operational parameters on Nitrobacter and Nitrospira.
However, our study further applied artificial modeling tech-
nique in confirming the r results and in determining the opti-
mum combination of two input variables.

Conclusions

The AI approach succeeded in describing the effect of operat-
ing condition on nitrification process. Results from the ANFIS
model were in accordance with Spearman’s correlation coef-
ficients, and it was concluded that:

& The Nitrobacter spp. abundance was 29-fold higher than
that of AOB throughout the study period, showing a clear
dominance of NOB.

& The qN was noticeably increased by 2.2-fold and exhibited
26.6±10.7 mg N-NH4

+g−1 MLSS day−1 when the tem-
perature elevated from 16.5±2.1 to 22.4±2.7 °C (r 0.726,
p 0.002).

Fig. 9 Effect of operating
conditions on Nitrospira (the left-
most input variable is the most
relevant with respect to
Nitrospira). a Every input
variable’s influence on
Nitrospira; b all two-input
variable combinations and their
influence on Nitrospira
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& The qN was also significantly affected by HRT (r −0.651,
p 0.009) and ALR (r 0.571, p 0.026).

& HRT and F/M ratio formed the optimal combination of
two inputs affecting the qN, and their quadratic equation
showed an r2 value of 0.50.

& AOB increased in the summer season, when temperature
was 1.4-fold higher than during winter (r 0.517, p 0.048),
and HRT decreased by 31 % as a result of rainfall (r
−0.741, p 0.002).

& No single input has a significant effect on Nitrobacter
spp., indicating that the abundance of Nitrobacter could
tolerate seasonal and environmental variations.

& Nitrospira spp. increased by 3.6 times whenHRT declined
during the summer season (r −0.627, p 0.012).

& A polynomial function of 2nd degree for HRT, F/M ratio,
and AOB; F/M ratio, temperature, and Nitrobacter; and
HRT, F/M ratio, and Nitrospira showed r2 values of 0.61,
0.49, and 0.72, respectively.
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