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SUMMARY: The removal of ink from recovered papers Declaration  on Pflper Rec?/cling 2006 - 2010.
by flotation deinking is considered to be the “heart> of ~ Monitoring Report” 2007; 2006 Recovered Paper
the paper recycling process. Attempts to model the Annual Statistics™ 2006).

deinking flotation process from first principles has In developed countries, growing mountains of waste
resulted in complex and not readily usable models. material, limited landﬁI} capacity, increasing costs of
Artificial neural networks are adept at modelling waste disposal and growing environmental awareness by
complex and poorly understood phenomena. the general public has driven the promulgation of waste

Based on data generated in a laboratory, artificial neural paper relat.ed envi?:oqmental legislation. This legislation
network models were developed for the flotation deinking ~ typically aims to limit the amount of waste produced by
process. Representative samples of recycled newsprint, ~ domestic households and industrial operations.
magazines and fine papers were pulped and deinked by South Africa ha.s lagged these legislative trends, but has
flotation in the laboratory, under a wide variety of nevertheless achwved-a recovery rate of 43% in 2008
practical conditions. The brightness, residual ink (PRAS.A 2_009)- Pending legISlation will target a 7{_)%
concentration and the yield were measured and used to re.ductlon in waste dumped in landfills by 2022, which
train  artificial neural networks. Regressions  of will thus boost the supply of waste paper in South Africa
approximately 0.95, 0.85 and 0.79 respectively were (PAMSA 2007). Thus, most of the future source of
obtained. recycled paper will be post-consumer waste originating

These models were validated using actual plant data from domestic househ.c?lds. Tk_1is waste is difficult to
from three different deinking plants manufacturing seven collect and nee@s extensive sorting into useable fractions.
different grades of recycled pulp. It was found that the Even after sorting, the resuital_:lt recycled paper in not
brightness and residual ik concentration could be  umiform and presents processing challenges to paper
predicted with correlations in excess of 0.9. Lower recycling plants. The steadily increasing quality problems
correlations of ca. 0.43 were obtained for the flotation experienced by paper recyclers in South Africa have been

yield. attributed to this deteriorating recycled paper supply
It ig intended to use the data to develop predictive situation I(A.ndrew 2007; Govender 2008; Steyn 2008).
models to facilitate the management and optimization of In preliminary work (Pauck ef ol 2012), the local
commercial flotation deinking processes with respect to deinking industry was surveyed to 1deT1t1§/ process
recycled paper inputs and process conditions. parameters commonly used to conirol deinking plants,
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In 2007, the g}o_bal paper industry recovered an preference to a mechanistic approach; due to ease of
estimated 208 million tons of paper, compared to an  gpplication and an ability to model multiple unit
estimated total pulp production of 188 million tons (RISI operations with completely unrelated physical process

2008a and b). These figures show that recycled fibre now parameters.
constitutes the largest proportion of the fibre used in
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Pracess technology of deinking plants
By considering the typical process technologies
commonly encountered in newsprint deinking plants, a
number of potential process modelling parameters
emerge:

Batch pulpimg: carried out under alkaline conditions
(pH 9 to 10.5), medium consistency (10-13%) and
temperatures ranging from 45 °C to 60 °C (Al et al
1994). Sodinm hydroxide, sodium silicate, hydrogen
peroxide, chelants and surfactant are usually added into
the pulper (Goettsching and Pakarinen 2000: 241-258).
The effect of the consistency in the pulper on the
deinking process has been studied by various researchers
(Bermington et al. 1998; Ackerman et af 1999).
Generally, pulpers do not have the flexibility to operate
out of their design consistency range, thus consistency is
not a good modelling variable, Pulping pH is merely a
function of chemical additions. However pulping
temperature, addition of hydrogen peroxide, sodium
silicate, sodium hydroxide and surfactant are all potential
modelling variables.

Centrifugal cleaning: removes contaminants of high or
low relative density. Cleaning does not coniribute
significantly to deinking.

Sereening: removes contaminants using size exclusion.
Screen apertures as low as (.1 mm are in common use in
the paper recycling industry. Screening can confribute to
deinking by removing large ink particles,

Froth flotation: is commonly used to remove ink, Fine
air bubbles are introduced inte a low consistency (0.8-
1.3%), alkaline (pH 8-9) fibre slurry under intense
agitation. The air bubbles attract hydrophobic ink
particles as they rise to the top of the fibre slurry. The
froth, bearing ink and other fine hydrophobic
contaminants is mechanically removed from the fibre
slurry, Surfactants called collectors are added to assist in
ink dispersion and attachment to air bubbles. Hence,
flotation. consistency, pH, temperature and surfactant
addition are all potential modelling variables. In addition,
agitation speed and air flow rates have been shown to
greatly affect the brightness and yield of the flotation
process (Hunold et af, 1997; Carrasco et af, 1999; Peters
et al. 2007). However, agitation conditions and air flow
rates are often not adjustable on commercial flotation
plants, but are rather a function of the original plant
design. None of the deinking mills in South Africa and
the several mills in the United States that the authors are
familiar with nse air flow or froth layer thickness as a
manipulated control variable.

Peters ef al, (2007) stated that the Specific Air Volume
(SAV, Litres air/kg solids), defined as the volume of air
applied to a flotation line per kilogram of solids in the
feed determines the flotation efficiency, Thus for a
laboratory batch cell:

r
SV, = L [1]

where V= cell volume, ¢ = consistency, g = air flow rate
and = flotation time.

Similarly, for a continuous flotation cell, where (s the
flow rate of the stock:

sav, =1
ot

ant = 5 e — 2]
But, the hydraulic retention time tgp = V/Q,
Substituting into Eg 2 and rearranging produces:

_ qlHR
SAVplcmt -

S (3]

Under industrial conditions the air flow, although not
measured would be maintained constant. Eg 7 and 3
show that the terms flotation time t; and hydraulic
retention time typ can be used to relate the performance
of batch and continuous flotation cells. Thus, tyz was
calcolated for the plant data, and related to t¢ for the
batch call.

Hence, air flow rates and agitation conditions were not
considered as modelling parameters, but rather the
hydraulic residence time in the flotation cell (flotation
time) was chosen as a modelling parameter.

The levels of addition of process chemicals are normally
not changed

Washing: removes particles that are too fine to remove
by flotation, Washing is usuaily performed on a
dewatering device such as a disc filter or wash press, The
theoretical efficiency of washing is determined by the
increase in consistency from inlet to outlet. The inlet and
cutlet consistencies are determined by the nature and
design of the equipment, and are not varied outside of the
design range. Hence, there are no independent control
parameters around the washing process.

Dispersion: is used to reduce the size of dirt particles to
below the limit of human visibility (about 50 microns).
Dispersion takes place in disc dispergers or kneaders at
temperatures between 40° and 95°C., This typically results
in a greying of the pulp.

Bleaching: Oxidative and/or reductive bleaching is
performed to overcome the greying induced by dispersion
and to remove any yellowing that was produced by the
alkaline pulping stage and/or colour that was liberated by
the printing inks.

Recycled office paper is deinked in a similar way,
except that it is usually carried out under neutral or near-
neutral conditions, which means that the sodium
hydroxide and/or sodivm silicate and hydrogen peroxide
are omitted.

The final outcome of the deinking process is typically
measured by the brightness of the pulp, Additional
measures of ink removal, such as residual ink
concentration (ERIC) or dirt count are sometimes used. In
addition, the yield is often monitored, as it impacts the
economics of the process.

In more advanced processing plants (double-loop
processes), secondary stages of flotation, washing,
dispersion and bleaching may be used.

Process control of deinking plants

Deinking lines generally offer few opportunities to make
adjustments to the process if the quality of the output
changes. The usual strategy is to vary the ratio of the
grades of recycled paper fed to the deinking plant. Grades
of waste with a high intrinsic brightness (for example old
magazines in newsprint deinking) are employed to
contro] the final brightness, Thus, the grade of recycled
paper is a maior control variable in the deinking process.
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-Often,towe. quality deinked. pulp.is.bled. back into.the.

process, as a wasteful way of controlling the final pulp
quality.

However, these approaches are becoming less viable
due to constrained availability of high quality feedstocks.
The deinking mills will have to make use of lower grade
and more variable waste.

Potential control parameters

A useful control variable is one that can influence the
outcome of the process without throwing the process out
of balance, reducing the capacity of the plant or requiring
considerable operating or capital expenditure. Variables
having a significant effect on the process but
simultaneously causing process disroptions are not
practical control variables. They would still need to be
optimized, and would be considered to be an optimisation
variable.

A number of possible confrol variables for deinking
plants were identified, and screened for their net effect on
the complete deinking process (Pauck etal 2012).
Arising out of this study, the following were considered
as practical confrol variables, which would be suitable for
modelling the deinking process, in addition to the grades
of recycled paper:

Chemical additions;: Level of addition of sodium
hydroxide, sodium silicate, hydrogen peroxide and
surfactant,

Process variables: pulping time, pulping temperature,
flotation residence time, flotation temperature, flotation
congistency and flotation pH.

Process variables such as pulping consistency, flotation
air flow rate and froth height were not considered to be
good modeiling variables, as they were equiprhent
specific and often not adjustable in practice.

Neural networks

Artificial Neural Networks (ANN’s) are mathematical
constructs which were inspired by the vast interconnected
network structure of nerve cells found in the human
brain. ANN’s have developed to become useful tools in
scientific and engineering applications such as regression,

pattern recognition and classification. Traditional
computing applications rely on sequential or serial
processing, but a neural network is a highly

interconnected parallel processing structure which is able
to perform complex modelling funetions (Dayhoff 1990},
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Fig 1 - A two-layer perceptron structure. (Tarassenko 1998:15)

-.khe basic processing unit of an. ANN.is. called a peuron.
or pecepiron (Tarasenko, 1998). These processing units
are interconnected to other, similar units in the manner
shown in Fig I. The first layer consists of input umifs.
Data is inputted into the network in the form of an input
vector. With reference to Fig 2, for each neuron the
values of the input vector (x,) are multiplied by the
connection weights (wy,} and summed. The sum, v, is
operated on by the activation function fi (usually tan-
sigmoid) to produce an output Y. Neurons in the output
layer usually have a linear activation fimction. The output
is compared to a target value t and an error is computed.
In the process of network training, the values of the
connection weights are obtained by various mathematical
techniques so that the output of the network matches or
closely approximates the target answers, Typically, the
error function is minimized by gradient descent by
differentiating it with respect to every weight wy in the
network (Tarassenko 1998) in a process called error
back-propagation, Also, the ideal number of processing
units and layers needs to be selected.

Network training

The training process consists of finding the optimum
nuwmber of hidden wnits j, with the associated first-fayer
weights wy and second-layer weights wy (Fig ).
Network training normally occurs in three distinet steps,
each requiring its own data, (Tarassenko 1998:17)

Step 1: Training: present the network with input-cutput
data. The method of error back propagation is commonly
used to determine w;; and wi,

Step. 2 — Validation: the validation set is presented to the
aetwork not to further adjust wy or wy, but to determine
the error of the output. Training is stopped when the error
is at a minimum, and the weights are fixed. This is
referred to as early sfopping.

Step 3 — Testing: the generalisation of the network is
assessed by applying a test set.

The three-step process described above is termed
supervised learning.

The use of neural networks in flotation processes

The effects of various separation unit operations, process
chemicals and waste types have been extensively studied by
many researchers. in parficular, attempts have been
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Fig 2 - Nonlinear model of a single neuron. (Tarassenko 1898;
Haykin 1994)
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made (Beneventi et al. 2006; Bloom 2006; Heindel 1999 . .

Julian Saint Amand 1999; Bloom and Heindel 1997) to
model flotation deinking processes from first principles.

However, there remains a great deal of uncertainty
around what exactly happens in a flotation cell (Labidi et
al. 2007). These theoretical models are complex and
difficuli to apply in practice (Hodouin et al. 2001).

Thus, attempts have been made to use Artificial
Intelligence based systems to model and control modern
flotation plants in the field of mineral flotation, and to a
much lesser extent in deinking flotation. Flotation
deinking plants share many similarities to the problems
faced in mineral flotation plants viz. complex raw
material, measurement difficulties, complex physical
processes, a small number of outputs measuring the
process but a large number of inputs, and many
interactions. {Singh et al. 2003; Hodouin et al. 2001)

An ANN model of a coppet/lead flotation plant was
developed by Forouzi and Meech (1999), and used to
predict the assays of the concenirate sfreams. Cubillos
and Lima (1997) used a combination of a physical model
(mass, energy, momentum) and an ANN model to predict
certain process parameters. Gupta et al. (1999) developed
an ANN to predict flotation rate constants from operating
variables, and thereafter used these constants in a first
principles model to predict the performance of a
phosphate flotation cofumn.

Rughooputh and Rughooputh (2002) describe the
application of ANN’s to analyse the visual attributes of
the froth in a flotation cell to make deductions about the
state of flotation process. .

Labidi er al (2007) studied the effects of flotation
consistency, airflow rate and agitation speed, at various
flotation times, on the rate of ink removal. An ANN was
developed which effectively medelled the brightness and
ERIC out of the flotation cell.

In a practical plant study, Smith and Broeren (1996)
reported on the use of an ANN to analyse and optimise a
newsprint deinking facility, which recycled a mixture of
old newsprint and magazines. Time-stamped plant
operating data was acquired and fed inte an ANN. A
vector of 66 variables was inputted, and the influence of a
large number of process variables was analysed and
ranked in order of influence. As a result, cost savings
were achieved in terms of reduced pulper chemical
additions.

An ideal is to have an algorithm or strategy to find new
optimum process conditions, rather than an “onguided
hunt™ for the new conditions (Singh ef af 2003). In line
with this thinking, the objective of the current work was
to develop an artificial neural network model of a general
deinking system, based on mixtures of four commonly
recycled grades of printing and writing papers (detailed
later), and a selection of practical, non-equipment-
specific process parameters, and to evaluate the validity
of this model against a number of commercial deinking
processes. The networks were trained using deinking data
generated in a laboratory, as only in a laboratory was it
possible to evaluate the process parameters within a wide
enough range.

Materizle and Mathods .

The objective of this research was to model the combined
processes of pulping, deinking and washing with respect
to raw material changes and process parameters. [t was
decided to use neural networks to accomplish this
modelling due to their relative ease of use and the fact
that commercial software is readily available. Neural
networks are better able to mode] a combination of unit
operations, whereas mechanistic models are resiricted to
particular unit operations. For example, it would be
difficult to model the combined effect of pulping and
flotation with a unified mechanistic model. The output
parameters that were modelled were brightness, residual
ink concentration and flotation yield. The methodology
was as follows:

1) The general deinking conditions in the South African
tissue and npewsprint deinking industry were
established. The practical ranges are detailed in
Table 1.

2) The industrial processes were modelled in the
faboratory. Experimental work was performed with a
wide range of different recycled paper raw material
blends and selected contrel parameters to generate the
data.

3) The neural networks were trained using the laboratory
data.

4) A selection of the best neural network models were
validated using plant data to determine how well the
model generalizes and predicts outpuis on a plant
scale.

5) Based on the validation resulis, a useable predictive
model/s to control deinking plants was selected.

Raw materials

The four main grades of recycled paper pertinent to
deinking in South Africa were represented by the
following standard mixtures:

0Old_newsprint (ONP): A random selection of South
African newspapers less than 6 months old with all
inserts removed.

Qld_magazines (OMG): A blend of ca 33% heavy
weight coated glossy magazines, ca. 33% lightweight
coated and ca. 33% uncoated magazine prades, all less
than 6 months old.

White office papers (HIL1): A blend of 80%
Xerographic printed paper (laser printer and photocopier)
and 20% inkjet printed paper.

Pastel coloured office papers (HL2): Mixed office
papers comprising 44% white or grey papers and the
balance a blend of yellow, green, blue and red pastel
shades of paper.

The recycled paper used in the experiments was torn
into strips, mixed well and stored under standard
conditions of 22 °C and 50% relative humidity.

A data base of nearly 500 laboratory deinking runs was
constructed as described below. The recycled paper
grades and process parameters were varied within the
ranges listed in Table /. This data base served as the
training data for the neural networks.
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Water at 200 ppm calcmm hardness 0.2% Chelant,
pulping chemicals according to the range of addition
levels in Table I and recycled paper were charged to a
laboratory pulper (Laboratory Hydra Pulper model UEC
2020, Universal Engineering Corporation, India) and
allowed to soak for 10 minutes. Hydrogen peroxide
(Table Iy was added and the mix was then pulped at a
constant 8-10% consistency at the specified temperature
and time (Table 1). A sample was taken and 200gm™ pulp
pads were formed on a Rapid-Koethen sheet former with
reduced dilution (21 instead of 71), based on the method
Tappi 218 om-91: Forming handsheets for the reflectance
testing of pulp. The pulp pads were measured for
brightness (GE brightness, UV included, D65, 10°) and
Effective Residual Tnk Concentration (ERIC, C, 2®Y on a
Technidyne ColorTouch PC Spetrophotometer. In all
cases each quadrant of the pad was measured on both
sides and the average taken to represent the brightness of
the pad.

The pulped mass was allowed to stand for 1 hour, and
ther: a sample was withdrawn, transferred to the 15 litre
flotation cell (Flotation Cell model UEC 2026, Universal
Engineering Corporation, India), made up to the required
consistency with 200 ppm calcium hardness water and
floated at 1550 to 1600 rpm at the conditions specified in
Table I. At the end of the float, the contents of the cell
were coilected quantitatively, filtered and weighed to
determine the yield (dry mass of fibre out/dry mass of
fibre in). A sample of the floated pulp was formed info
200gm™ pads and measured for brightness and ERIC, as
above.

The floated pulp was used to form 60 gm™ handsheets
on the Rapid Koethen former, according to a method
based on Tappi 205 sp-95: Formation of handsheets for
physical testing of pulp. The process of dilution and
filtering allowed considerable quantities of fine material,
including ink particles, to be washed through the screen.
The brightness and ERIC of both sides of the pads or
sheets were measured and the average was taken, The
washing out effect that occurs in the preparation of the
handsheets was used in this study to simulate the washing
process in a deinking plant. These final samples were
thus designated as washed pulp.

Training methodoiogy

A commercial software package, MATLAB Version
R2009a Neural Network toolbox was used to implement
the neural network model of the laboratory deinking data.
The number of input units corresponds to the number of
variables in the input vector, and the number of output
units corresponds to the number of outputs. In this work,
a single output (either brightness, ERIC or yield) was
chosen so as to minimise the amount of data required to
train the networks. The number of neurons required in
the hidden layer was determined by iteration. The greater
the number of layers or neurons, the more complex is the
function which can be approximated. On the other hand,
more layers or neurons require more data and can also
lead to over-fitting of a function (Demuth et al. 2009:1-
8). The neural networks were restricted to one hidden
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Variable Range of

parameter
SONP 0-100
%OMG 0-100
%HL1 0-100
%HL2 0-100
%NaOH 0-15
% Sodium silicate 0-3
% H202 0-2
%Surfactant in putper 0.25-10
Pulping time, mins 5-15
Pulping temperature, °C 35, 43 and 50
Flotation temperature, °C 30, 38 and 45
Flotation consistency, % 08-1.5
Flotation pH 7-10
% Surfactant in flotation cell 0-025
Flotation time, mins 2-20

layer and one output layer, ag this is considered adequate

to model any function (Tarassenko 1998: 89).

The following settings were used for training networks
for function fitting:

o The input vectors were divided randomly uvpon
initialisation into three sets as follows: 70% of the
data for training; 15% of the data for validation and
15% for independent testing.

¢ The network was initialized with random values close
to zero and the data was presented as a batch (viz.
batch training).

s The performance of the network was determined by
camputing the mean-square-error (MSE) of all the
sets.

# The technique of early stopping was used to avoid
over-fitting so as to ensure good generalisation
(Demuth et al,, 2009).

@ Once the training was complete, the regressions of the
training, validation and test sets were calculated and

ranked.

Plant validation

The collection of plant data was fraught with difficulties.
Not all input parameters were monitored or recorded at
all times. Considerable variation around set points
existed, and the output data showed a large scatter. This
has also been the experience of other researchers (Moe
and R@ring 2001).

Plant data corresponding to the variables listed in
Table I were collected from a single-loop newsprint
deinking mill, a double-loop office paper deinking mill
and a single-loop office paper deinking mill, making in
total eight different grades of recycled pulp. The
processes can be summarised as follows;

Newsprint single-loop: [alkaline pulping — cleaning —
screening — flotation — cleaning - screening — washing]-—
dispersion — storage and reductive bleaching.

Double-loop office paper: [neutral pulping — cleaning —
screening — flotation 1 —cleaning — screening — washing

525




RECYCLING
Nordic Pulp & Paper Research Joumal Vol 29 no (3) 2014

~dispersion.. {reductive...bleaching}. .~ . flotation. .2 —. ...

washing] — storage.

Single-loop office paper: [neutral pulping — cleaning —
screening — flotation — cleaning — screening — washing]
— thickening (reductive bleaching) - storage.

The process steps in bold above denote those modelled
in the laboratory, The process steps enclosed in square
brackets were compared to the laboratory models.
Generally, the process conditions and oufputs were
recorded variably on an 8 hour to 24 hour basis.
Depending on the process intervals, the process inputs
were averaged to produce one process record per
brightness test. In some cases, process conditions were
either not recorded or recorded sporadically. In these
cases average values were inserted for the missing data,
or the data was estimated wusing correlations or
interpolations.

The yield data for the plants was available on the basis
of total yield, across all the unit operations. On the other
hand, the laboratory yield data corresponded to the
flotation yield only. Thus, the flotation vield had to be
deduced from the total plant vield, by estimating the
losses due to heavy media separation (staples, metals,
grit), cleaning losses and ink sludge removed from the
plants. These estimates were obtained from the masses of
wagste material sent by the recycling plants to the landfill
sites. However, the different plants measured yieid in
different ways (either from paper prodoced or by
infegrating flows), and eliminated contaminants in
different ways (viz. either as a shory or as a solid
efftuent), which made it difficult to get reliable and
consistent estimates of fiotation yield.

Ouly the newsprint recycling plant routinely measured
the ERIC. As was the case with brightness, averages were
inserted for missing data. For the plants which did not
routinely measure the ERIC, the average of a limited
nomber of samples was taken, and applied to all of the
process data.

Alignment of plant and laboratory flotation processes
Laboratory cells can and have been used to successfully
simulate plant processes (Beneventi er al. 2007; Dionne
1994) and are usefol for comparisons and trends
{Borchardt 1993). Laboratory tests do not produce
absolute values, as they do not take into account factors
such as recirculation of contaminants in back-water
systems (Ferguson 1993). Because the neural networks
were trained on laboratory data, it was to be expected that
there would be a “gap” between laboratory and plant
scale processes.

Solids loss has often been used as a basis for comparing
laboratory flotation results to plant flotation performance
{Goettsching and Pakarinen 2000:167). The ultimate
efficiency of a deinking process can be determined by a
process called "infinite flotation” (McCool 1993).
However in this study solids or yield loss was not used as
the basis for comparison, as it was not possible to
accurately determine the solids losses across the
commercial flotation cells.
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Fig 3 - Comparison of brightness (B), ERIC (E) and yield (Y) for
iaboratery fo single-locp newsprint deinking plant flotation.

A more convenient basis for comparison was the
flotation time in a laboratory batch cell compared to the
hydraulic residence time in a continuous plant flotation
cell, as explained in the section uwander Froth Flotation.
However, the plant hydraulic residence time was not
directly equated to the laboratory flotation time, because
the flotation dynamics and efficiency in a large
cotmercial flotation cell are very different to a
laboratory celi. Accordingly, a flotation efficiency
comparison was carried out. A pulper sample from the
plant was floated in the laboratory under average
conditions and the outputs (brightness, ERIC and yield)
were compared to the average plant results. An example
for a single-loop newsprint deinking plant is shown in
Fig 3.

The changes in brightness (B), ERIC (E) and vield (Y}
were expressed as ratios (eg. B/Bo) relative to the pulper
properties. The pulper properties (Bo, Eo, Yo) were taken
ag flotation time zero. The ratios are shown graphically
for newsprint flotation in Fig 3 for brightness, ERIC and
yield respectively.

Thus, with reference to Fig 3, for brightness a plant
hydraulic residence time of 3.1 minutes was equivalent to
a laboratory flotation time of ¢a. 3.7 minutes, viz. a
scaling factor of ca. 1.2. For ERIC, a plant hydraulic
residence time of 3.1 minutes was equivalent to a
laboratory flotation time of ¢a.6.3 minntes, viz. a scaling
factor of ea. 2.0. For the yield, a plant hydraulic residence
time of 3.1 minutes was equivalent to a laboratory
flotation time of ca 3 minutes, thus a scaling factor of
ca. 1.

This alignment process was repeated for all the plants
and grades, by modifying the plant hydraulic residence
times for the specific outputs as described above, before
inputting into the neural networks. In all cases, the ERIC
results required the greatest adjustment in residence
times.

526




RECYCLING
Nordic Pulp & Paper Research Joumat Vol 29 no (3) 2014

. . e .
e = 400
= " & e
Um‘.\SO § -‘ g - %‘% "
4k £ m
b= o
"@?{J aE : i
3 Ao 5
KL} ; &
£60 *‘ =
& @
= foa™y
= e
50 =
40
40 40 400
40 &0 80 Actuat plant ERIC (ppmy)

Actual pfant brightress (%)
#Best LEMedian 4 Worst

Fig 4 - Brightness prediction performance of best, median and
worst ranked neural networks,
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Fig 6 - Brightness prediction performance of best ranked
network for different recycled paper grades and processing
plants.

Selection of neural networks

The neural networks were trained using the laboratory
data set, as outlined in the Training Methodology section
above. A total of eighty networks (number of neurons 1 —
20, four networks each) were generated. The performance
of the trained networks was determined by feeding the
modified plant inputs into the networks and comparing
the predicted values to the actual plant output data. The
correlations and mean square errors of predicted versus
actual plant values were determined. The top ten
networks were retained as possible final models.

Results and discussion

The best, median and worst networks (selected according
to correlation coefficient R and mean square error MSE)
and their prediction performances for brightness, ERIC
and flotation yield are tabulated in Appendix 1, and
summarised in Table 2.

The neural networks effectively modelled the laboratory
data (Table 2, column 2), with R values ranging from
0.790 up to 0.954. The predictions of aggregate plant
brightness (R = 0.940) and ERIC (R = 0.934)} were high,
but the prediction of plant flotation yield was poor (R. =
0.425).

% Best LiMedian & Worst

Fig 5 - Residual ink prediction performance of bast, median and
worst ranked neural networks,

500

P i

NN predicted ERIC
,
L

50 500

Fig 7 - ERIC prediction performance of best ranked netwark for
different recycled paper grades and processing planis.

Table 2 - Summary of neurat network performance (Appendix 1)

Property Correlations | Predictions | Prediction
modelled with lab of plant of plant
data (R) data (R) data (MSE)
Brightness % 0.954 0.540 26.0
ERIC ppm 0.853 0.834 1021
Flotation yield % 0.790 0.425 101.2
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Ink removal
The performance (predicted vs. actual) of the best,
median and worst ranked networks for brightness and
ERIC are shown in Fig 4 and 5 respectively. The Y = X
line denoting perfect prediction is also shown in the
figures. It can be noted visually that the prediction
performance varies considerably between the best and
worst ranked network. Visually, prediction in the low
brightness/high ERIC region (corresponding to newsprint
and fow brightness office paper deinking) is better than
the predictions in the high brightness/low ERIC region
(viz. high brightness office paper deinking).

Fig 6 and 7 show the brightness and ERIC predication
performance of the best network across all the grades and
recycling plants evakuated. The actual plant brightness

BRI
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8
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Fig 9 - Best network ERIC response surface for a mixture of all
recycled paper grades as a function of the most influendial
controf variables. (Grade mix ONP 25%, OMG 25%, HL1 25%,
HL2 25%)

exceeded the model predicted brightness by about 2
points for newsprint deinking and about 5 points for
office paper deinking (Fig 6). It is to be expected that
plant brightness would exceed the laboratory model-
based predicted brightness because of the greater
complexity of the full scale plants and hence their higher
deinking efficiencies. There was one anomaly at the very
highest brightness level. This corresponded to the
manufacture of a small-volume high quality grade on a
single-loop office paper deinking plant. The optimum
potential of this grade was probably not achieved on the
plant due to contaminated water re-circulation loops
decreasing the brightness.

In Fig 7, the plant ERIC values are higher than the
predicted ERIC values, particularly for the high
brightness tissue deinking papers. This suggests an
inferior ink removal, contradicting the trends shown in
Fig 6. However, very little plant ERIC data was available
for the office paper recyeling plants, and more data might
show otherwise.

The network response surfaces for brightness and ERIC
are shown in Fig & and 9 respectively. The response
surfaces are shown as a function of the most influential
process  parameters  (viz.  hydrogen  peroxide
concentration, alkalinity comprising sodium hydroxide
and sodium silicate, flotation time, consistency and
flotation pH), as identified in Pauck ef al. (2012). It can
be noted that the responses are linear or slightly curved in
nature.

With reference to Fig 8, the slopes of the response
surfaces agree with known behaviour, viz. brightness
increases with increasing alkalinity, hydrogen peroxide,
and flotation time and decreases with flotation
consistency. The flotation pH was adjusted independently
of the pulping alkalinity in the training data. The models
suggest that increasing flotation pH negatively affects
brightness and ink removal. Lower flotation pH leads to
greater ink agglomeration and thus better removal by
flotation.
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Fig 11 - Plant flotation yield prediction petformance of best,
median and worst ranked neural networks.

With reference to Fig 9, the models confirm that ink
removal improves (viz. lower ERIC) with flotation time
and alkalinity from sodium hydroxide, and is adversely
affected by flotation consistency and flotation pH.

The models suggest that hydrogen peroxide negatively
affects ink removal (Fig 9). This is anomalous, but it can
be gpeculated that hydrogen peroxide somehow initiates
cross-linking between ink binders and the underlying
fibre, which results in less ink removal {viz. higher
ERIC), but overall net higher brightness due to the
dominant bleaching effect on the fibres (Fig §).

Yield

The neural networks modelled the laboratory flotation
yield data fairly well, achieving correlations of 0,790 for
flotation yield (Appendix I and Table 2). The models
predict that increasing sodium silicate, fiotation pH and
flotation consistency all decrease yield losses, whereas
increasing flotation time increases vield losses (Fig 10).

However, the predictions of plant flotation yield were
much poorer (Table 2 and Fig 11). It appears that the
estimates of flotation yield made from the plant {otal
yield data were too approximate, with the resultant poor
predictions. These data collection difficulties were
discussed in the section on plant validation, above.

In can be seen in Fig 12 that all of the plants (newsprint,
single-loop office paper and double-loop office paper)
produced good and bad correlations, which suggests
generally poor plant flotation yield data.

Conciusions

The neural networks were able to model the brightness,
ERIC and yield of the laboratory processes with high
correlations (Table 2). The predictions of aggregate plant
brightness (R = 0.94) and ERIC (R = 0.93) were high, but
the prediction of plant flotation yield was poor (R = 0.42)
due to the fact that the flotation yield had to be estimated
from the unreliable plant vield data.

The predicted brightness values ranged from 4.7 poinis
lower to 11 points-above the actual plant values (Fig 6),
and the predicted ERIC values were between 10 poins
higher and 40 points lower than the actval plant values

Estimated piant flotation yieid %

s NEWSDIRE A
Edo Newsprint B
sagge oUhle-locp, medium grade
Double-loop, high grade
=g Single-loop. Very high grade
e Sirgle-loop, medivm grads
s i) l@-100D, fOW grads
== Gingle-loop, high grade
Fig 12 - Fiotaticn vield prediction performance of best ranked
network for different recycled paper grades and processing
plants.

(Fig 7), depending on the plant and paper grades. This
was ascribed to the generally greater deinking efficiencies
of the production plants. It would be possible to close this
“gap” by introducing a mathematical correction to the
otherwise linear relationship between predicted and plant
brightness.

Further work and applications

Unresolved questions

The main unresolved question in this research was the
“gap” between the laboratory based model predictions
and the plant brightness values. This was indicated by the
deviations of the neural network predictions from the ¥ =
X lines. A partially successful attempt was made to
bridge this gap by relating the laboratory-based data to
the plant data through the flotation performance curve of
brightness verses flotation residence time (Fig 3).

Most of the “gaps” occurred with the predictions for the
office paper deinking plants, where the plant brightness
was higher than the predicted brightness by up to 4.7
brightness points (Fig 6), and the ink removal was lower
by up to 10 points (Fig 7). It is known that toner inks
produce large, difficult to float particles. The office paper
recycling plants had extra equipment (screens, cleaners
and dispersers) to eliminate the large ink particles. This
equipment was not simulated in the laboratory, and hence
not modelled. This could account for the consistent
under-estimation of the final brightness by the models.
This limitation needs to be taken into account when
applying the models. It would be possible to apply a
mathematical correction or bias to the output of the
models to bring the predictions in line with the actual
values.
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plant ERIC data, particularly for the office paper
recycling plants, to obtain a good test of the models
against plant data. This was due to the fact that the ERIC
was not measured by these plants, and practical obstacles
prevented a large amount of data being collected.

The last unresolved question was the quality of the yield
data from the plants. The plant yield data incorporated the
general and combined yield losses of the plants, and not
just the flotation yield. Data corresponding to flotation
yield had to be teased out of the data using indirect means
and estimates, which negatively affected the quality of
the data. Tt would be instructive for further work to obtain
high quality data from the plants for ERIC and yield, and
to re-test the models, to try to find a better fitting neural
network.

Applications

The models developed in this research could be used for
deinking plant process optimisation and troubleshooting
exercises. The models represent “standard” or average
conditions, and deviations from predicted values can be
indicative of some malfunctioning equipment or other
process deviation. As an example, the very high grade
tissue pulp manufactured on the single-loop process
showed an anomalously low plant brightness for the high
quality raw material used (Fig 6), compared to the neural
network predicted brightness. It is possible that this could
have been due to the low volumes manufactured and the
effect of recirculating contaminated back water. Another
example was the yield deviations of some of the
processes, as shown in Fig 12. This suggests that there
are perhaps undetected yield leakages from the system.

The models could also be used to pre-empt the results of
trials. An actual mill trial carried out in the newsprint mill
with a different ratio of magazine to newsprint yielded
only a marginal increase in brightness, despite the change
in furnish composition. This marginal change was also
predicted by the neural networks. The use of the models
pre-trial would have avoided the unnecessary costs and
disruptions of {rials on production plants.

Recycling plants are sometimes confronted with sudden
raw material changes. A particular grade of recycled
paper could suddenly become unavailable, and the plant
is confronted with the need to change the ratio or even the
grade mix of recycled paper raw material. These changes
could be fed into the models to predict the outcome. In
addition, the corresponding changes to the alkalinify or
bleaching regime required to maintain the output quality
could be determined in a short period of time. This would
enable plant management to make a rapid decision on the
processing conditions for changed incoming raw
materials.

Practical implementation

In order to develop a desk-top model which would enable
plant personnel to proactively anticipate quality and
process adjustments in response to changing recycled
paper raw material conditions, a process of development
would be required, which would involve the following
steps: (Tarassenko, 1998: 46-48):

dsnother umresclved. issue was the lack of sufficient

e Implement.the prototype.on mill hardware and software....

by programming user-friendly interfaces for use by
plant personnel.

o The models must be tested on plant data over a longer
period of time and variety of conditions. This would
make it possible to quantify confidence limits for the
model. It would be advisable to repeat the laboratory-
plant flotation alignment processes (as discussed
above), specific to the plant on which the model is
being implemented.

= The use of these models to troubleshoot or optimise
processes must be combined with extensive knowledge
and experience in deinking processes. The models rely
heavily on the underlying data base of laboratory work.
An understanding of this data base and its limitations is
essential to make effective use of the neural network
models.

e Lastly, the system would need to be maintained. Bugs
could develop and the operating environment could
change, necessitating revisions and enhancements.
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APPENDIX 1: Neural Network training and prediction performance

Training Performance Prediction
mean square error (MSE) Training Performance correfation (R) vs. plant data
Ranking | Training | Validation | Test | TrainingR | ValidationR | TestR | Total R | Correlation R| MSE
BRIGHTNESS (%)

Best 5845 02 501 0.950 0.966 0.957 0.954 0.940 26
Median a7 924 891 0.850 0.963 0.857 0.953 0.924 69
Worst 3756 1146 582 0.968 0.960 0.871 0.965 0.740 217

ERIC {ppm)

Best 1974668 | 310646 332271 0.887 0.832 0.806 0.853 0.934 1021
Median 461843 | 276934 293051 0.957 0.879 0.874 0.933 0.871 6798
Warst 881200 | 266974 504903 0.922 0.908 0.603 0.890 0.712 20667

FLOTATION YIELD (%)

Best 210683 10013 2786 0.826 0.598 (.816 0.790 0.425 101
Median 39837 g241 3282 0.688 0673 0.647 0.679 -0.41 153
Worst 57041 10986 6865 0.502 0.447 0.633 0.499 -0.711 240
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