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ABSTRACT 

Various modelling techniques have been proposed and 
applied for modelling and forecasting of hydrological sys-
tems in different studies. These modelling techniques are 
majorly categorized into two namely, process-based and 
data-driven modelling techniques. While the process-
based techniques provides detailed description of hydro-
logical processes, data-driven techniques however de-
scribe the behaviour of hydrological processes by taking 
into account only limited assumptions about the underly-
ing physics of the system being modelled. Although, 
process-based techniques have been widely applied in 
numerous hydrological modelling studies, the application 
of data-driven modelling techniques on the other hand has 
not been fully embraced in the hydrological domain. This 
paper provides a comprehensive review of several stud-
ies relating to three data-driven modelling techniques 
namely, K-Nearest Neighbours (K-NN), Model Trees (MTs) 
and Fuzzy Rule-Based Systems (FRBS). Modern trends 
with respect to their applications in hydrological model-
ling and forecasting studies are also discussed. The struc-
ture of this review encapsulates an introduction to each of 
the modelling techniques, their applications in hydrological 
modelling and forecasting, identification of areas of con-
cern in their use, performance improvement methods, as 
well as summary of their advantages and disadvantages. 
The review aims to make a case for the application of data-
driven modelling techniques by discussing the benefits em-
bedded in its integration into water resources applications. 
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1. INTRODUCTION

The need to manage water resources across all re-
gions of the world has always been of high importance to 
water managers and decision-makers, most especially in 
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this era of climate variability. The management of water 
resources in arid and semi-arid regions is of crucial im-
portance as the demand for water is these regions are far 
above the quantity available for supply, which conse-
quently leads to water stress.  

Water researchers, the government and other related 
stakeholders have been making concerted efforts towards 
developing various approaches to managing the amount 
of water available in their regions. Various strategies and 
policies are being formulated towards ensuring continuous 
availability of water. However, increase in population, eco-
nomic growth, improved standard of living, higher agricul-
tural water demand among other factors continue to place 
freshwater resources under agglomerative pressure. Con-
sequently, constant availability of water for domestic, in-
dustrial, agricultural, energy, mining, ecological, transpor-
tation and recreational purposes can be considered to be 
under threat. 

The pressure on freshwater resources is now being fur-
ther aggravated by impacts of climate variability on the 
water cycle [1]. Important components of the water cycle 
such as precipitation, streamflow, evapotranspiration etc. 
are severely being impacted upon [2]. In hydrology, changes 
in water availability remain a major consequence of the 
complex, nonlinear and dynamic nature of hydrological 
and climatological processes within and around a catch-
ment area [3]. Thus, hydrological forecasts both on short 
term and long term basis is critically important as it forms 
the basis upon which water managers, consumers, policy 
makers and other stakeholders put in place planning, 
allocation, control and adaptive strategies in order to 
ensure water availability and security.  

Knowledge of the trends of hydrological processes 
also influence the making of financially-related decisions, 
especially when there is need to maximize returns on in-
vestments made on available water resources [4]. Thus, 
results from accurate and reliable hydrological modelling 
studies are of crucial importance to all stakeholders as it 
yields significant economic and social benefits. 

1.1 Modelling techniques in hydrological studies 

Considering the importance of hydrological model-
ling, a significant number of modelling techniques have 
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been developed and adopted for the purpose of modelling 
and forecasting water resource components. Based on the 
internal and spatial representations of hydrological proc-
esses within a catchment, modelling techniques can be 
categorized into two. The two categories are namely, proc-
ess-based models and data-driven models (DDMs) [5].  

The process-based models are generally referred to as 
“knowledge-driven” models based on their ability to pro-
vide detailed representation and interpretation of hydro-
logical processes. This is achieved by incorporating laws 
based on physics of water movement in a catchment. The 
process-based models include the lumped conceptual and 
distributed physically-based models [6]. Examples of 
popular process-based models include the European Hy-
drological System (SHE) [7], the ACRU model – devel-
oped in South Africa [8], the HBV (Hydrologiska Bryång 
Vattenbalansavdelning) model [9,10], the Hydrologic Simu-
lation Program – Fortran (HSPF) model [11], and the 
HYDROLOG model [12].  

However, the complexities and extensive detailing in-
volved in the representation of hydrological processes 
within a river catchment make the development of models 
from first principle extremely challenging, thereby inflict-
ing certain drawbacks on the use of process-based models. 
The major drawbacks to the use of process-based models 
arise from mixed problems such as mis-calibration, over-
parameterization, parameter instability, insensitivity or re-
dundancy, high computational requirements and huge data 
demand [13-16]. These limitations tend to generate some 
uncertainty in the predictive capability of the process-
based models, and thus affect the reliability of their results. 
Recently, attempts have been made to reduce the influences 
of these uncertainties through uncertainty evaluation tech-
niques [17-19], but the processes involved are rather com-
putationally expensive. 

Data-driven models, on the other hand, define the re-
lationships between system state variables (input, internal 
and output) variables while characterizing the behaviour of 
hydrological processes within a river catchment. DDMs 
achieve this by taking into account only few assumptions 
on the physics of the system being modelled. These models 
rely majorly upon the methods of computational intelli-
gence and machine learning, and thus assume the presence 
of a considerable amount of data describing the physics of 
the modelled system [5]. Popular DDMs include artificial 
neural networks (ANNs) [20-22]; fuzzy rule-based sys-
tems [23-25]; tree-based methods [26,27]; evolutionary 
computational methods such as genetic programming (GP) 
[28-30]; and support vector machines (SVM) [31,32].  

DDMs are relatively quicker to develop and easier to 
use when compared to the process-based models. In addi-
tion, due to the ability of DDMs to directly define input-
output relationships, the large computational and data re-
quirements often associated with process-based models 
are to some extent reduced in DDMs. The use of DDMs 
has also been seen as a promising technique to solving the 

sensitivity and uncertainty challenges inherent in the use 
of process-based models [33-35]. 

In the light of this, DDMs are now being considered 
as an alternative and promising approach that will com-
plement or replace the knowledge-driven models [36,37]. 
This review provides an in-depth appraisal of the applica-
tion of three DDMs (k-nearest neighbour, model trees and 
fuzzy rule-based systems) in hydrological modelling and 
forecasting studies, and suggests areas in which they can 
be integrated to achieve better results. 

2. K-NEAREST NEIGHBOUR (K-NN) METHOD

The K-nearest neighbour method belongs to the class 
of methods based on the working principle of instance-
based learning (IBL) algorithms. IBL algorithms are algo-
rithms which initialize by storing information from the 
training samples using specific instances, and delays 
generalization effort until need arises for the prediction of 
a new query instance [38]. They apply the experiential 
knowledge gained from initial events to generate details 
about relatively new instances. They achieve this by re-
trieving salient information from a set of nearest Neighbours 
and building localized models based on them. The K-NN 
method is a typical representative of IBL, and thus oper-
ates by describing complex functions as a collection of 
less complex local approximations, with the letter, K, 
symbolizing the number of nearest Neighbours. K-NN 
combines the target variables of K selected Neighbours to 
determine the target outputs of a given test pattern. The 
pattern is represented by a limited number of illustrative 
observations referred to as “features”, and consequently 
characterized by a vector known as “feature vector” [39]. 
This enables K-NN to recognize the feature vectors as a 
subgroup of the original pattern. Thus, K-NN is consid-
ered to be intuitive in nature, though it also exhibits highly 
influential statistical features [40].  

In K-NN, the nearest Neighbours are interpreted as a 
function of a Euclidean distance which is a measure of the 
proximity or similarity of a feature vector of query dis-
tance and any feature vector of the training sample [41]. 
The Euclidean distance is often estimated as a weighted 
Euclidean norm. Furthermore, based on the Euclidean 
distance, each of the K Neighbours is assigned a weight 
factor, so as to reveal the relative impact on the prediction 
value. The weights are computed such that they generate 
the lowest mean square error of forecasting over the train-
ing samples. A number of kernels have been used for the 
implementation of K-NN. They include linear, inverse, 
square inverse, exponential and Gaussian kernels [38].  

2.1 Application of K-NN in hydrological modelling 

Karlsson and Yakowitz [40] was the first to subject 
the K-NN method to use in hydrologic studies. K-NN 
method was applied to solve a univariate rainfall-runoff 
forecasting problem. Results obtained showed a competi-



© by PSP Volume 23 – No 7. 2014   Fresenius Environmental Bulletin    

1445 

tive performance between the K-NN, autoregressive mov-
ing average with auxiliary input (ARMAX) method and 
instantaneous unit hydrology (IUH) forecast methods. 
The satisfactory results obtained thereafter defined a ro-
bust theoretical foundation for subsequent use of the K-
NN method. Galeati [41] investigated the potential of K-
NN in predicting daily average discharge in a rocky basin 
in Italy. Results yielded comparable results between K-NN 
and an autoregressive model with exogenous input (ARX). 
Kember et al. [42] used the K-NN method to forecast daily 
river flow at a single site, and found it to provide improved 
forecasts. Shamseldin and O'Connor [39] applied K-NN 
to fine-tune parameters of a linear perturbation model in 
river flow forecasting study, obtaining an improved and 
more reliable forecast. Solomatine et al. [43] compared 
the performance of K-NN, ANN and M5 model trees for 
hourly and daily rainfall prediction. Results demonstrated 
that K-NN is comparable to other DDMs, especially when 
a Gaussian kernel is employed.  

K-NN has also found application in climate change 
impact studies. Yates et al. [44] found that K-NN is capa-
ble of generating alternative climate information when 
conditioned upon hypothetical climate scenarios. Leander 
and Buishand [45] applied the nearest neighbour method 
to resample outputs from a regional climate model (RCM), 
and its performance was remarkably satisfactory. Bannayan 
and Hoogenboom [46] further testified to the reliable 
performance of the K-NN method when used for resam-
pling daily temperature and precipitation events. Sharif 
and Burn [47] used an improved K-NN for perturbation of 
historical datasets in a climate change assessment study of 
the upper Thames River Basin, Canada. Results showed 
that the K-NN was effective in producing the desired pre-
cipitation amounts.  

 
2.2 Areas of concern 

Some issues relating to the efficacy of the K-NN method 
have been raised via its application in some assessment 
studies. Toth et al. [48] investigated the potential of the 
K-NN method comparatively with the ARMA and ANN 
methods for short-range rainfall prediction. Results dem-
onstrated that the K-NN model failed to provide notewor-
thy predictive performance when compared with the ARMA 
and ANN methods. It was discovered that the improvement 
of the performance with an increasing number of nearest 
Neighbours was less noticeable, with no marginal improve-
ment in overall performance when K is increased beyond a 
certain limit. An investigative study conducted by Scheu-
ber [49] further corroborates Toth et al. [48]’s findings, as 
it was remarked that the selection of suitable parameters 
in the development of K-NN is quite challenging and could 
have negative impacts on algorithm performance. He fur-
ther stressed that increasing K translates to the introduction 
of spatially more distant reference data, which consequently 
leads to higher degree of bias.  

Kim and Tomppo [50] carried out a prediction error 
uncertainty assessment of K-NN method, and found out 

that K-NN lacks the logical approach to compute error 
estimates for domains of arbitrary size. This is in agree-
ment with results from Maltamo et al. [51] and Gjertsen 
[52]’s study in which over- and under-estimations of the 
lowest and highest historic observations were evident. This 
further shows that limitations exist to the methodological 
and analytical characteristics of the K-NN method. 

 
2.3 Performance improvement methods 

Several methods have been devised by experts to-
wards improving the performance of the K-NN algorithm. 
Akbari et al. [38] established that inconsistencies do occur 
in query instances in K-NN, which thereafter shows up in 
the data points of output values, thus leading to the dete-
rioration forecasting results. A clustered K-NN (CKNN) 
was introduced to capture inconsistencies in data points, 
and was found to be robust against a set of noisy data. In 
addition, the CKNN demonstrated high level efficacy for 
daily inflow forecasting of a reservoir in Iran. 

Magnussen et al. [53] tested a model-based calibration 
method to reduce the out-of-sample extrapolation bias often 
associated with K-NN. Results showed that the calibrated 
K-NN predictions were considerably closer to observed 
values than regular non-calibrated predictions. Prairie et 
al. [54] also developed a modified K-NN which involved 
the use of a probability metric to resample residuals from 
a traditional K-NN. The approach entails giving more 
weight to the nearest Neighbours and less to the farthest. 
The resultant model was applied to monthly streamflow in 
the Colorado River, United States, and was found to ex-
hibit better performance in terms of capturing the patterns 
inherent in the datasets. Finally, in order to simplify the 
computational task of the K-NN algorithm, there is need 
for a reduction in the dimensionality of the K-NN feature 
space through its synergetic use with other transformation 
methods such as principal component analysis (PCA) [50]. 

 
2.4 Advantages and disadvantages 

The K-NN is a learning algorithm which exhibits sim-
plicity and robustness, and thus can tolerate noise and ir-
relevant attributes. K-NN also possesses the ability to give a 
good representation of probabilistic and overlapping con-
cepts simultaneously, and as well capable of naturally ex-
ploiting inter-attribute relationships [55]. K-NN also gives 
room for the identification of past events (instances), which 
makes it more explicit in nature when compared with the 
ANN. This feature makes it suitable for use in hydrologi-
cal studies, and hence its acceptability by forecasters.  

On the other hand, K-NN does not have the ability to 
discover any input-output mapping functions, not even a 
posteriori like the ANN does [56]. Thus, it has no ex-
trapolation ability when presented with unfamiliar input 
vectors, meaning, it has no ability whatsoever to predict 
values higher than those in the range of the historic obser-
vations [41,57]. This serves as a major disadvantage to 
the use of K-NN, as its credibility is severely limited 
when used for real forecasting. 
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3. MODEL TREES (MTS) 

The model tree (MT) is a piecewise linear model 
unlike other nonlinear models such as the ANN and GP. 
MTs are extensions of classification and regression trees, 
in which computational process is represented by a hierar-
chical tree-like structure [58]. It comprises of a root node or 
decision point that subdivides into several other nodes and 
leaves. The process of developing the nodes and branches 
into a tree is based on the idea of splitting the input space 
into mutually exclusive domains, according to a prede-
fined splitting criterion, progressively narrowing down the 
size of the domains [27]. When the number of instances in 
a domain becomes smaller than the predefined value, the 
splitting of that domain is finally brought into a halt with 
the creation of a leaf. Each time a new instance is fed into 
the tree, it follows after a specified path in accordance 
with the splitting rules defined in the tree-building proce-
dure. A linear regression (LR) model is thereafter devel-
oped for each domain, and thus formulates a piecewise 
linear function for the estimation of nonlinear relationship 
between input-output variables as shown in Jung et al. [60].  

The growing of model trees is carried out using algo-
rithmic rules, which majorly is a function of the splitting 
criterion utilized. The M5 algorithm [59] is commonly used 
for inducing a MT and its working principle is as follows. 
Assuming there exist a set of training samples (initial 
instance), P, characterized by the values of a fixed set of 
(input) attributes and a corresponding target (output) value. 
The objective is to develop a model that relates a target 
value of the training samples to the values of their input 
attributes based on a divide-and-conquer method [36].  

The overall quality of the model will be determined 
by the accuracy with which it predicts the target values of 
set of new unseen data (new instance). The set P is either 
associated with a leaf, or some test is chosen that splits P 
into subsets corresponding to the test outcomes and the 
same process is applied recursively to the subsets. The 
splitting criterion for the M5 algorithm is based on treat-
ing the standard deviation of the class values that reach 
the node, as a measure of the error at that node. Thus, the 
variable that maximizes this error reduction is chosen for 
splitting at that node. The mathematical expression for repre-
senting the standard deviation reduction (SDR) is given in 
equation (1): 

∑−=
i

i
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P
P

PsdSDR )()(     (1) 

where SDR = standard deviation reduction; sd(P) = 
standard deviation of all the training samples having a 
total number, P; Pi = i-th subset of P; and sd(Pi) = stan-
dard deviation of the i-th subset.  

Upon the exploration of all possible splits of input 
space, the M5 algorithm finally selects the one with the 
maximum value of SDR, which it then uses to develop 
linear regression models in the individual domains. Split-

ting terminates when the outputs of all the data that reach 
the node vary slightly or when only a few remain [34]. 
Pruning of the trees is carried out right away to prevent 
the problem of over-fitting which may occur as a result of 
monotonic increase in the training samples during tree 
growth [60]. Finally, a ‘smoothing’ operation is performed 
to compensate for sharp discontinuities that inevitably occur 
between adjacent linear models at the leaves of the pruned 
tree. The smoothing operation thus updates the predicted 
values from neigbhouring equations in order to achieve 
better agreement as a whole.  

 
3.1 Application of MTs in hydrological modelling 

The M5 MT technique can be considered to be rela-
tively new in solving hydrological problems, with its first 
application in rainfall-runoff prediction reported by Kom-
pare et al. [61]. Water-related areas in which MT have been 
successfully applied include rainfall-runoff and streamflow 
modelling [26, 62, 63]; sedimentation modelling [64]; mod-
elling of water pollutants [65, 66]; and climate change 
impact modelling [67, 68]. 

Comparative studies have also been conducted with 
the aim of estimating the potential of M5 MTs against 
other DDMs. Solomatine and Dulal [26] applied M5 MTs 
for rainfall-runoff modelling at different hourly time-slices, 
and compared its performance to that of ANNs. The per-
formance of both models were said to be comparable, al-
though the ANNs performed slightly better at higher lead 
times. However, the M5 MTs produced more interpretable 
models and also allowed for the development of modular 
models of varying complexity and accuracy. Khan and 
See [62] employed one statistical model and three DDMs 
namely MLR, ANN, M5 MTs and evolutionary neural 
network (Evo-NN) in river level forecasting. The study 
was carried out in the Ouse River catchment located in 
Northern England. Results showed that the M5 and Evo-
NN models provided the best performance based on global 
performance measures. Furthermore, it was observed that 
the M5 model demonstrated its ability to make explicit its 
internal structures, unlike other black-box models such as 
the ANNs. 

In a quest for more accurate predictive models in hy-
drology, M5 MTs have gained some recognition in the 
development of modular and hybrid models, due to its 
transparent and intelligible nature. Solomatine and Xue 
[69] built a modular model comprising of the M5 MT and 
ANN which was applied to flood forecasting in the upper 
Huai River, China. Flood samples with different hydro-
logical features also split into groups using separate M5 
and ANN models. Improved accuracy in predicting high 
floods was generated by the modular model when com-
pared with both individual models. The authors also at-
tested to the fact that the incorporation of M5 MTs en-
sured transparency of the internal features inherent in the 
hydrological processes. Likewise, Bhattacharya and Solo-
matine [70] constructed a model with an ANN model and 
M5 MT for river stage-discharge modelling. The model 
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was found to be superior in accuracy to a conventional 
stage-discharge rating curve, most especially during peri-
ods of high flow. It was finally submitted that the M5 algo-
rithm did not only allow for higher accuracy, but was also 
being transparent, simple, verifiable and easily demonstra-
ble. Results from Ajmera and Goyal [71]’s stage-discharge 
modelling study also supported this claim, as the M5 MTs 
outperformed three different ANN algorithms as well as the 
conventional stage-discharge method. 

 
3.2 Areas of concern 

Some issues relating to the application of M5 model 
trees in hydrological studies have been identified. One of 
such issues which have been reported in literature is the 
partitioning or splitting problem. Solomatine and Dulal 
[26] observed from their study that the results from the M5 
model at higher lead times and peak flows produced sub-
standard predictions compared to the ANN model. This 
was ascribed to the splitting criteria used to build linear 
models at the leaves. They noticed that model trees do not 
use all available attributes to make linear models at any 
leaf. Only attributes which fulfill the condition of certain 
criteria (such as SDR) go under one sub-tree, terminating 
to a leaf. This therefore may have resulted into the non-
inclusion of influencing attributes. In addition, the resul-
tant model tree was deemed to be so large, and an attempt 
made to prune it to a smaller size led to deterioration of 
accuracy. Thus, it can be inferred that unsupervised prun-
ing operation of model trees could result into poor predic-
tive performance.  

Londhe and Charhate [36] also reported cases of over-
estimations of peak values in their river flow forecasts, 
which were attributed to the absence of influencing attrib-
utes in the development of the linear models. Bhattacharya 
and Solomatine [64] additionally suggested that further im-
provement in terms of performance could be achieved by 
including additional information about physical processes, 
using larger datasets or by exploring other machine learn-
ing methods. 

In furtherance to the abovementioned, the ability of 
MTs to rapidly increase computational requirements when 
confronted with high dimensionality have also attracted a 
bit of concern. Although, such ability enables MTs to learn 
efficiently and undertake tasks with high dimensionality 
[26]; it could however lead to extremely high computa-
tional demands [72].   

 
3.3 Performance improvement methods 

Some efforts have been directed towards addressing 
the aforementioned areas of concern. An M5’ algorithm, a 
modification to the M5 algorithm, was presented by 
Wang and Witten [73]. M5’ allows for the pruning of the 
tree size with minimal penalty in prediction performance 
via incorporation of a pruning factor, which can be speci-
fied by the user, thus it seemingly outperformed the origi-
nal M5 algorithm. Samadi et al. [74] tested the M5’ MT 
for prediction of scour depth below free overall spillways, 

and evaluated its performance against classification and 
regression trees (CART). The results indicated that the 
M5’ MT produced better predictions than the CART 
method. Mafi et al. [75] also applied the M5’ for model-
ling long-shore sediment transport rate (LSTR), and its 
performance compared to that of existing empirical equa-
tions initially proposed for such purpose. Results found 
that equations derived from the M5’ model tree predicted 
the LSTR more accurately than the existing formulas, pro-
ducing lesser error estimates. This result is also agreement 
with that obtained from Nasseri et al. [68]’s climate change 
modelling study. They employed a combination of M5’ 
algorithm and three other nonlinear data mining methods in 
developing a nonlinear data mining downscaling model 
(NDMDM). The performance of the NDMDM model was 
evaluated comparatively with a popular statistical down-
scaling model (SDSM), using daily precipitation events. 
Results indicate better performance of the NDMDM model 
when a combination of M5’ and multivariate adaptive 
regression splines (MARS) methods is employed.  

Asides the applications of the M5’ algorithm, some 
experts have also proposed other methods aimed at solv-
ing the partitioning problem in M5 model trees. Rather 
than use piecewise linear regression models at the leaf 
nodes of the model tree, Jung et al. [60] employed partial 
least square regression (PLSR), which is an extension of 
multivariate linear regression. The M5-PLSR MTs was 
then compared to the M5’ MTs, MLF- and RBF-ANN 
and K-NN for algal growth prediction in a reservoir. Re-
sults show improved prediction by both M5’ and M5-
PLSR MTs using partitioned datasets, with the M5-PLSR 
MTs performing better than other algorithms via the use 
of more closely correlated multivariate datasets. 

Hong and Chen [76] proposed an extension of the 
sample efficient regression tree (SERT) approach, which 
entails the fusion of the forward selection of regression 
analysis and the regression tree methodologies. This was 
done with the aim of maximizing the degree of freedom 
of the datasets and also to obtain unbiased model esti-
mates. The outcome of the study was the realization of an 
unbiased MT. Recently, an innovative method termed 
turning point regression tree induction (TPRTI) was de-
veloped by Amalaman et al. [77] to determine optimal 
split points in MTs. The workings of the TPRTI method 
include: division a set of data into subsets using a sliding 
window, computation of a centroid for each subset, use of 
the centroid for identifying turning points which indicates 
where general trend changes in the input space. The novel 
approach was compared to the M5 algorithm using syn-
thetic and real-life datasets for experimentation. Results 
from the TPRTI showed higher predictive accuracy, im-
provement in scalability and low model complexity when 
compared with the M5 algorithm. 

However, irrespective of the recent developmental 
concepts which have resulted into improved accuracy of 
MTs, the need to reduce its high computational demands 
is still of concern to modellers [72]. Galelli and Castelletti 
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[27] recently advised on the need for the development of 
techniques that will strike a balance between accuracy and 
computational requirements. 

 
3.4 Advantages and disadvantages 

The application of MTs in hydrological studies has 
been found to have certain advantages. Such advantages 
include its ability to produce simple, accurate, transparent, 
provable and understandable models [60, 70]. M5-derived 
models have also been found to consistently showcase 
high rate of convergence, especially under fewer events 
[71, 78]. The pruning operation performed newly built 
model trees also help to counter overfitting problems [60], 
provided the operation is well supervised. Furthermore, 
the partitioning of the input space of model trees allows 
for the combination of several local linear models, and 
consequently results in improved model accuracy [79]. 

However, certain drawbacks to the use of model trees 
have also been identified. They include: (i) partitioning prob-
lems which normally occurs when the ratio of instances 
(observations) is smaller than the number of attributes 
(variables) [60]; (ii) need for high level of expertise for 
model implementation, especially as it relates to the 
achievement of optimal partitioning and pruning [80]; (iii) 
high computational demand and fallible performance when 
used to model data with high dimensionality and nonlin-
ear features [81,82]; and (iv) generation of equations that 
are easily verifiable but not realistic in terms of physical 
interpretation [36]. 

 
 
4. FUZZY RULE-BASED SYSTEMS (FRBS) 

Fuzzy rule-based systems (FRBS) are based on the 
method of fuzzy logic, established by Zadeh [83]. FRBS 
are built by simulating the reasoning process of humans in 
order to achieve transparency in modelling processes [84]. 
In FRBS, knowledge is represented using IF-THEN rules 
[85]. A typical rule is represented as IF-(antecedent part)-
THEN (consequence part) [86]. The initialization proce-
dure of an FRBS model entails choosing input and output 
variables which it uses in defining fuzzy sets. The FRBS 
model thereafter uses the fuzzy sets to construct member-
ship functions on the input domain of the model. This is 
achieved by partitioning the domain into a number of 
overlapping regions. The membership functions are repre-
sented using quantitative and linguistic terms. Several 
types of membership functions that can be used for the 
fuzzy set in the antecedent of the rules include triangular 
and Gaussian functions.  

Relationship between membership functions of the 
inputs and that of the outputs are expressed by using lin-
guistic logical statements based on the subjective knowl-
edge of the modeller. For example, river flow can be cate-
gorized as “low”, “intermediate” and “high”. Thus, the 
matching of the inputs and outputs with fuzzy rules can be 
expressed as:  

“IF Input 1 is LOW and Input 2 is HIGH THEN Out-
put is INTERMEDIATE” 

The structure of the rule could either be a fuzzy set 
such as the Mamdani model [87], or a function, often 
linear referred to as a Takagi-Sugeno-Kang (TSK) model 
[88, 89]. Upon the formulation of a rule, an iterative and 
tuning process is introduced to relate observations to the 
rules. Finally, FRBS combines the fuzzy rules through an 
inference engine, and “defuzzification” is used to collapse 
the fuzzy or estimated model output into a single crisp value 
[84]. Conventional defuzzification methods include center 
of area (or gravity) method, bisector methods, and some 
other methods which focuses on the maximum membership 
value attained by the set. Following the working principle 
of the FRBS, hydrological systems can be modelled through 
the processing of historical observations and mapping of 
input-output variables, thus forming a DDM. 

 
4.1 Applications of FRBS in hydrological modelling 

FRBS has found application in several water-related 
studies, such as rainfall-runoff modelling, management of 
reservoir operations, streamflow and water-level forecast-
ing, ecological and sediment yield modelling [85, 86, 90-
94]. 

FRBS has also been found to be effective for river 
flow prediction purposes. Valença and Ludermir [95] 
used a neuro-fuzzy network model for monthly stream-
flow forecasting for a hydropower plant in Brazil. Results 
showed that the neuro-fuzzy model provided better pre-
dictions than models based on the traditional Box-Jenkins 
method. Aqil et al. [96] evaluated the potential of a neuro-
fuzzy model for the purpose of predicting flow from local 
source in the Citarum River in Indonesia. The perform-
ance of the neuro-fuzzy model was compared to a MLR. 
It was reported that the neuro-fuzzy model gave better 
performance for low and medium flows, but underesti-
mated the magnitude of high flows. Katambara and Ndiritu 
[86] applied FRBS for simulating daily streamflows at 
three reaches of the Letaba River in South Africa. Satis-
factory results were obtained from the FRBS model de-
spite the irregular and intermittent water abstractions that 
characterize the river.  

Recently, the use of an adaptive neural fuzzy infer-
ence systems (ANFIS), a hybrid of FRBS and ANN ap-
proaches have been widely reported in river flow predic-
tion studies [97-99], with results showing that the ANFIS 
performed slightly better when compared to ARMA and/ 
or ANN. 

FRBS have also found application in the development 
of rainfall-runoff models. See and Openshaw [90] integrated 
a hybrid neural network, an ARMA model and a fuzzy rule-
based model for rainfall-runoff forecasting. Hundecha et 
al. [100] formulated a set of fuzzy rule-based routines to 
independently simulate components of snowmelt, evapo-
ration, runoff and basin response for a physically-based 
(HBV) model. With the aim of automatically generating 
IF-THEN rules from historical observations, the first-
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order Takagi-Sugeno models were used to simulate rain-
fall-runoff transformation [91, 101, 102]. Luchetta and 
Manetti [103] employed fuzzy logic to predict rainfall-runoff 
dynamics, and comparison with ANN approach indicated a 
better performance by the fuzzy method. Nayak et al. [104] 
developed a rainfall-runoff model by combining fuzzy logic 
and ANN. Results from the hybrid models were found to be 
comparable with an ANFIS model, with a suggestion that 
the hybrid model could be used as a promising alternative 
to ANFIS for rainfall-runoff modelling purposes. 

FRBS has also been used conjunctively with other 
models or optimization algorithms. Chang and Chen [105] 
used a counter-propagation fuzzy-neural network (CFNN) 
rainfall-runoff model for hourly streamflow forecasting, 
and was found to be better in terms of prediction accuracy 
when compared to the ARMAX model. Maskey et al. [23] 
used a combination of FBRS and genetic algorithm (GA) 
for treating precipitation uncertainty in a rainfall-runoff 
model. Shiri and Kisi [24] applied a hybrid wavelet neuro-
fuzzy model to investigate daily, monthly and annual stream-
flows in the Filyos River in Turkey. Bagis and Karaboga 
[106] compared FRBS and neural-fuzzy network system, 
and results indicated that the former was effective for 
regular reservoir operations, while the latter was effective 
primarily for flood control. Katambara and Ndiritu [107] 
developed a calibrated hybrid conceptual-fuzzy-logic model 
and investigated its potential in simulating daily streamflow 
in the Letaba River, South Africa. The model perform-
ance was satisfactory regardless of the intricacy of the 
system and insufficiency of relevant data. Results from 
the study suggest that hybrid conceptual-fuzzy logic-
modelling could be adopted for more detailed and reliable 
planning analysis than single FRBS modelling, especially 
when used to model complex data-scarce river systems. 

 
4.2 Areas of concern 

Despite the successful application of FRBS in model-
ling studies, some areas of concern have been identified. 
An area that seems to be of major challenge in the use of 
FRBS is the identification of the optimal number of rules 
to achieve the best performance. Abebe et al. [108] noted 
that improper selection of fuzzy-rules could lead to ex-
treme generalization and overfitting, especially when faced 
with data insufficiency. It was however suggested to carry 
out test runs in order to determine the optimal number of 
rules.  Aqil et al. [109] also attributed the failure of their 
neuro-fuzzy model in underestimations of high flows to 
the FRBS, which was unable to make proper fuzzy rules 
corresponding to a high-range from the training datasets. 
They however encouraged the inclusion of another input 
variable for the refinement of the fuzzy rule. Katambara 
and Ndiritu [107] corroborates this claim by stating that 
their stand-alone fuzzy-systems performed poorly in simu-
lating baseline recession due to the lack of subjective trans-
formation rainfall and evaporation, and therefore failed to 
obtain realistic modelling. Thus, the representation of in-
put-output relationships by FRBS may be hampered if 
optimal fuzzy rules are not employed. 

In addition, since the determination of optimal rules 
in FRBS entails choosing appropriate input variables and 
membership functions, the choice of input variables and 
membership functions is therefore important. It has been 
established that FRBS rules increase exponentially with 
increase in input variables or membership functions, im-
posing a curse of dimensionality of the system, which 
translates into poor model performance [110]. Thus im-
proper selection of input variables and membership func-
tions may result into the addition of unnecessary variables 
that will create a more complex model than required, and 
further complicate the rule selection process.  

Another issue that is of concern in the application of 
FRBS to hydrological modellers is the partitioning of the 
input domain. In FRBS, the number of partition represents 
the number of fuzzy sets, and the corresponding member-
ship function defined in that order [111]. As a result, the 
partitioning of the input domain is vital to achieving op-
timal configuration of the model. The partitioning of input 
domain is done using different methods - grid partitioning 
and fuzzy clustering. However, the challenge remains as 
to which method to employ, as both methods come with 
their strength and limitations. The major limitation of grid 
partitioning are that the number of rules increase exponen-
tially [111], and that the membership functions of the vari-
ables are independent of each other, leading to the disregard 
of the relationship between the variables [101]. Moreover, 
attempt to optimize the antecedent parameters leads to the 
more complexity. In fuzzy clustering, the antecedent pa-
rameters are obtained from fuzzy clusters. The drawback to 
the use of fuzzy clustering is that, the falling off of any 
data point from the cluster center or outside the cluster 
affects the model performance. 

 
4.3 Performance improvement methods 

Following the above-mentioned areas of concern, some 
techniques have been employed with respect to improving 
the performance of FRBS. Chang and Chang [112] intro-
duced GA for the purpose of synergizing it with the AN-
FIS model. GA was used to achieve several objectives such 
as searching for the optimal reservoir operation histogram, 
construction of suitable model structure and parameters for 
the ANFIS model and estimation of optimal water release 
from the reservoir. Abolpour et al. [113] developed a new 
approach called “adaptive neural fuzzy reinforcement 
learning” (ANFRL) which was derived by the combination 
of ANFIS and fuzzy reinforcement learning. The ANFRL 
method was used for optimizing allocation of water re-
sources and to obtain optimal values of decision parame-
ters. Results also showed that ANFRL brought about an 
increase of 16% in water allocation; a value considered 
not attainable by the regular ANFIS model. However, two 
limitations to the use of ANFRL were identified. The first 
is its requirement for long series of hydrological data in 
deriving a robust set of rules, and the second - the per-
formance of the ANFRL-derived models is a function of 
the ability of the ANFIS model to handle data variability. 
Thus, if the ANFIS model does not yield suitable estima-
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tion of water resources variability, then the ANFRL re-
sults will not be accurate.  

Recently, Akrami et al. [114] applied a new method 
earlier proposed by Jovanovic et al. [115] to model the 
dynamic nonlinear behaviour of rainfall. The new method, 
referred to as modified ANFIS (MANFIS) entails the modi-
fication to the structure of the conventional ANFIS model, 
with the aim of improving its performance. MANFIS was 
used to find the optimal number of rules, discover the 
appropriate membership functions and learning algorithm. 
A hybrid learning algorithm which combines the least 
square and back-propagation gradient descent methods was 
used to train membership function parameters. Results 
showed that the MANFIS method when compared to the 
conventional ANFIS method produced faster convergence 
and low computational while maintaining outstanding per-
formance. However, improved performance was not no-
ticeable when using additional input member functions. 

Generally, majority of the studies have demonstrated 
that FRBS has good predictive abilities. However, some 
studies have shown that the predictions produced by FRBS 
are quite inferior to that of other simple conventional mod-
els, such as ARMA [90] or MLR [116]. These results there-
fore substantiate the need to subject the quality of a model 
to test for each given situation, as there is no such flaw-
less model that will perform well, at all times, in solving 
all modelling problems [117]. 

 
4.4 Advantages and disadvantages 

Going by the applications of FRBS discussed in the 
previous sections, the advantages that can be derived from 
its use as stated by Jacquin and Shamseldin [102] include: 
(i) ability to infer the nature of complex systems purely 
from data, while also providing  insight about their inter-
nal operations; (ii) ability to present knowledge that can 
easily be interpretable by humans; (iii) subjective knowl-
edge by expert can be incorporated into the model in a 
natural and transparent way; (iv) flexibility of use, as their 
architecture and inference mechanisms can be adapted to 
a given modelling problem. Additional advantages of FRBS 
systems according to Aqil et al. [109] include: (v) ability to 
handle large amount of noisy data from dynamic and 
nonlinear systems, especially where the underlying phys-
ics of the system is not fully understood; (vi) ability to 
improve the performance of other models, and (vii) fast 
model development with less computation time, provided 
the input vector space is well-dimensioned. 

The disadvantages of FRBS however include: (i) in-
ability to provide adequate representation of input-output 
relationships in cases where too many variables are re-
quired or when used for modelling highly complex sys-
tems [110]; (ii) suffers from “the curse of dimensionality”, 
where the number of fuzzy rules increases exponentially 
with little increment of inputs, leading additional complex-
ity and higher computational time [114]; (iii)  attempts to 
reduce the number of rules generally decreases model 
generalization ability [110]; and (iv) lacks an appropriate 

set of guidelines for calibrating model parameters in a way 
that will maximize model interpretability [102]. 

 
 
5. CONCLUSIONS 

Following this extensive review of the application of 
three popular DDMs in the hydrological domain, one 
cannot boldly say one modelling technique is superior to 
the other, as all DDMs have their strengths and drawbacks. 
With a wide-range of modelling options to choose from, 
the challenge remains as to which particular technique will 
generate the best results for a given task, as one cannot 
continue to subject each DDM to test one after the other. 
Thus, it is of crucial importance for modellers and other 
decision-makers to subject DDMs to test comparatively, 
in order to determine the approach that best suites the 
given problem. Furthermore, another promising approach 
that has been producing improved results is the develop-
ment of modular and hybrid models, which allows for 
complementary modelling. The K-nearest neighbours, model 
trees and fuzzy rule-based techniques have showcased great 
potential in this respect, as they can be easily be inte-
grated into the process-based models and other DDMs. 
More importantly, adoption of these techniques can help 
reduce uncertainty inherent in the use of process-based 
models. Thus, this review showcases the possibility of 
achieving better effective management of water resources 
via the integration of DDMs to produce more accurate 
and reliable hydrological forecasts. 
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