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ABSTRACT 

The planning and management of water resources systems often involve formulation 

and establishment of optimal operating policies and the study of trade-off between 

different objectives. Due to the intricate nature of water resources management tasks, 

several models with varying degrees of complexities have been developed and applied 

for resolving water resources optimisation and allocation problems. Nevertheless, 

there still exist uncertainties about finding a generally consistent and trustworthy 

method that can find solutions which are very close to the global optimum in all 

scenarios.  

This study presents the development and application of a new evolutionary multi-

objective optimisation algorithm, combined Pareto multi-objective differential 

evolution (CPMDE). The algorithm combines methods of Pareto ranking and Pareto 

dominance selections to implement a novel generational selection scheme. The new 

scheme provides a systematic approach for controlling elitism of the population which 

results in the simultaneous creation of short solution vectors that are suitable for local 

search and long vectors suitable for global search. By incorporating combined Pareto 

procedures, CPMDE is able to adaptively balance exploitation of non-dominated 

solutions found with exploration of the search space. Thus, it is able to escape all local 

optima and converge to the global Pareto-optimal front. The performance of CPMDE 

was compared with 14 state-of-the-art evolutionary multi-objective optimisation 

algorithms. A total of ten test problems and three real world problems were considered 

in the benchmark of the algorithm. Findings suggest that the new algorithm presents 

an improvement in convergence to global Pareto-optimal fronts especially on 

deceptive multi-modal functions where CPMDE clearly outperformed all other 

algorithms in convergence and diversity. The convergence metric on this problem was 

several orders of magnitude better than those of the other algorithms. Competitive 

results obtained from the benchmark of CPMDE suggest that it is a good alternative 

for solving real multi-objective optimisation problems. Also, values of a variance 

statistics further indicate that CPMDE is reliable and stable in finding solutions and 

converging to Pareto-optimal fronts in multi-objective optimisation problems.  
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CPMDE was applied to resolve water allocation problems in the Orange River 

catchment in South Africa. Results obtained from the applications of CPMDE suggest 

it represents an improvement over some existing methods. CPMDE was applied to 

resolve water allocation problems in the agricultural and power sectors in South 

Africa. These sectors are strategic in forging economic growth, sustaining 

technological developments and contributing further to the overall development of the 

nation. They are also germane in capacitating the South African government’s 

commitment towards equity and poverty eradication and ensuring food security. 

Harnessing more hydropower from existing water sources within the frontier of the 

country is germane in capacitating the South African Government’s commitment to 

reduction of the countries’ greenhouse gas emissions and transition to a low-carbon 

economy while meeting a national target of 3 725 megawatts by 2030. Application of 

CPMDE algorithm in the behavioural analysis of the Vanderkloof reservoir showed 

an increase of 20 310 MWH in energy generation corresponding to a 3.2 percent 

increase. On analysis of storage trajectories over the operating period, it was found 

that the real time analysis incorporating a hybrid between CPMDE and ANN offers a 

procedure with a high ability to minimize deviation from target storage under the 

prevailing water stress condition. Overall, the real time analysis provides an 

improvement of 49.32 percent over the current practice. Further analysis involving 

starting the simulation with a proposed higher storage volume suggests that 728.53 

GWH of annual energy may be generated from the reservoir under medium flow 

condition without system failure as opposed to 629 GWH produced from current 

practice. This corresponds to a 13.66 percent increase in energy generation. It was 

however noted that the water resources of the dam is not in excess. The water in the 

dam is just enough to meet all current demands. This calls for proper management 

policies for future operation of the reservoir to guard against excessive storage 

depletions.  

The study herein also involved the development of a decision support system for the 

daily operation of the Vanderkloof reservoir. This provides a low cost solution 

methodology suitable for the sustainable operation of the Vanderkloof dam in South 
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Africa. Adopting real time optimisation strategies may be beneficial to the operation 

of reservoirs. Findings from the study herein indicate that the new algorithm represents 

an improvement over existing methods. Therefore, CPMDE presents a new tool that 

nations can adapt for the proper management of water resources towards the overall 

prosperity of their populace.  
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

1.1.1 Introduction 

Water scarcity has emerged a global issue in recent times. This ominous situation is 

further being exacerbated by escalating water demands due to unprecedented 

population growths, unsustainable urban developments and recently anthropogenic 

climate change among other factors (Hamid and Khan 2003; Olofintoye,  Adeyemo 

and Otieno 2012). As the global population grows and demands for food and energy 

increase, the pressure on freshwater ecosystems intensifies. In addition, the main 

effects of climate change are likely to be felt through changes to the hydrologic cycle 

with resultant effects on the environment, national developments and socio-economic 

growth (Quesne,  Pegram and Heyden 2007). It is therefore pertinent to encourage the 

development of management strategies that facilitate proper management of limited 

water resources while sensitising people of all nations of the perils posed by 

indiscriminate and unsustainable use of water which may lead to significant depletion 

of freshwater resources.  

According to Otieno and Ochieng (2004), South Africa, currently categorized as a 

water stressed country and recently ranked the 30th driest country in the world 

(Crowley and Vuuren 2013), is forecasted to experience physical water scarcity by the 

year 2025 with an annual freshwater availability of less than 1000 m3 per capita. 

Hence, the efficient use and allocation of available water resources with the aim of 

ensuring continuous availability of water calls for proper planning, design, operation, 

allocation, optimisation and management of available water resources using 

sustainable advanced techniques. This study develops a novel evolutionary algorithm 

called combined Pareto multi-objective differential evolution (CPMDE) which is an 

evolutionary multi-objective optimisation algorithm. It further investigates its 
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applicability for optimisation in solving water allocation problems in the Orange River 

catchment in South Africa. 

1.1.2 Agricultural and energy as strategic sectors in South Africa 

In the face of the water stress besetting South Africa as a nation with its attendant 

challenges to the environment and quality of human life, the agricultural (SANTO 

2013) and power (SIDALA 2010) sectors have been considered strategic and germane 

in capacitating the South African government’s commitment towards equity and 

poverty eradication and ensuring food security. The agricultural sector is expected to 

guarantee food security in the nation while simultaneously creating employment 

opportunities for the teeming population, thereby forging national socio-economic 

development necessary for re-launching South African economy (SANTO 2013). 

Therefore, efforts are being geared towards developing and promoting productivity in 

this sector.  

A recent study indicates that in South Africa, the agricultural sector is the largest 

consumer of freshwater through irrigation (Adeyemo 2009). Other studies (DWA 

1995b, 2010) have however reported that despite the numerous benefits associated 

with irrigated agriculture, the agricultural sector is relatively an inefficient user of 

water. For instance, results of an analysis by DWA (1995b), indicate that allocating 

water for use in the industrialised areas of South Africa rather than for irrigated 

agriculture, will, from an economic point of view, render higher returns. Substantial 

differences in the order of 80 to 1 were also found with respect to employment 

opportunities. This implies a clear economic preference for using water in the Gauteng 

(industrialised) economy rather than for irrigated agriculture in the Orange River 

catchment. This however does not imply that water should be taken away from 

irrigation, but rather that industrial activities should not be impeded by lack of water 

in favour of irrigated agriculture and caution should be exercised not to permanently 

commit water to less beneficial uses to the possible future detriment of the economy 

(DWA 1995b). Hence, studies have been undertaken to minimize the water use in 

agriculture especially irrigation water so as to achieve optimum crop production. 
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In efforts to stem the effects of power shortages arising from escalating energy 

demands brought about by rapid urbanization and industrial development, the power 

sector has been considered strategic in forging economic growth, sustaining 

technological development and contributing further to the overall development of the 

nations (Ajenifuja 2009). The electrical company of South Africa (Eskom), 

responsible for the generation, distribution, control and management of electricity in 

the country, produces roughly 95 percent of the electricity in the republic. Due to the 

fact that South Africa is rich in coal, 90 percent of Eskom’s electricity is produced by 

coal fired thermal power plants. The Gariep and Vanderkloof hydropower installations 

in the Orange River basin are operated between two to four hours per day to generate 

peaking power. Studies have shown that electricity produced from the Orange River 

Hydro stations is half as cheap as the ones sourced from Eskom’s thermal power plants 

(ESKOM 2010).  

Due to growing global concerns about anthropogenic climate change and 

environmental degradation brought about partly due to indiscriminate burning of fossil 

fuels, current global policies are pushing toward the reduction of greenhouse gases 

(GHG) emissions to help reduce the rate at which the earth is warming. Also, in line 

with international agreements, the South African Government is committed to four 

percent of estimated electricity demand being met by renewable energy resources by 

2013 (SIDALA 2010). This is expected to result in over 200 000 fewer kilogrammes 

of particulate matter being emitted into the air annually (ESKOM 2010). 

Recent studies have shown that GHG emission factors for hydropower plants are 

typically 30-60 times less than factors for fossil fuel generation, taking into account 

emissions from decaying biomass in reservoirs, (Ajenifuja 2009). Hence, strategies 

aimed at harnessing more hydropower from existing water sources within the frontier 

of the country is germane in capacitating the South African Government’s 

commitment to reduction of the country’s GHG emissions and transition to a low-

carbon economy while meeting a national target of 3 725 megawatts by 2030 

(SIDALA 2010; DOE 2014).  
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It has been reported that the objectives of maximizing hydropower from reservoirs are 

often in conflict with the objectives of irrigation (Salami 2007). While hydropower 

generation requires that the reservoir be full so as to maintain high power generating 

heads at all times, irrigation depletes the reservoir especially during periods of 

extended low flows which often correspond to the dry seasons when irrigation is most 

essential (Reddy and Kumar 2008). Therefore, strategies aimed at maximizing power 

generation within the constraints of agricultural crop production and water demands 

are germane in forging economic growth in South Africa. 

1.1.3 Evolutionary algorithms in water resources management 

Evolutionary algorithms (EAs) are population-based meta-heuristic optimisation 

algorithms that use biology-inspired mechanisms like mutation, crossover, natural 

selection and survival of the fittest in order to refine a set of candidate solutions 

iteratively (Weise 2009). EAs often perform well approximating solutions to all types 

of problems because they ideally do not make any assumption about the underlying 

fitness landscape. Apart from their use as mathematical optimisers, EAs have also been 

utilised in experimental frameworks to validate theories about biological evolution and 

natural selection, particularly through experiments in the field of artificial life. In 

general, they represent system-theoretic procedures for solving real world optimisation 

problems (Price,  Storn and Lampinen 2005).  

In recent times, methods of EAs have found widespread use in the fields of water 

resources single and multi-objective optimisation due to their robustness in the 

resolution of such problems (Cai,  McKinney and Lasdon 2001; Yuan et al. 2008; Selle 

and Muttil 2010). The applications of EAs for solving water resources optimisation 

problems in the agricultural and power sectors have also been widely reported in the 

literature (Reddy and Kumar 2007; Salami 2007; Reddy and Kumar 2008; Adeyemo 

and Otieno 2009c; Madsen et al. 2009) and they have indeed been found excellent in 

solving water management problems in these sectors. A comprehensive review of the 

state-of-the-art on applications of EAs in solving water resources optimisation 

problems is provided by Olofintoye,  Adeyemo and Otieno (2013b). 
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In this study, the applications of an EA in resolving multi-objective water resources 

allocation problems in the agricultural and power sectors in South Africa are 

demonstrated. Results obtained further demonstrate that resolution of multi-objective 

water resources problems using EAs is beneficial to economic growth and 

development of the nation. 

1.2 STATEMENT OF THE PROBLEM 

Several heuristic algorithms have been applied in resolving water resources 

optimisation problems, yet there still exist some uncertainties about finding a generally 

trustworthy method that can consistently find solutions which are really close to the 

global optimum of the problems in all circumstances (Kerkez et al. 2010). Therefore, 

further research aimed at developing single and multi-objective evolutionary 

optimisation procedures that integrate resource planning of available resources and the 

simultaneous management of various demands or allocation is still needed in the fields 

of water resources planning and management. 

1.3 STUDY OBJECTIVES 

The main objective of this study was to develop a new evolutionary multi-objective 

optimisation algorithm and apply it to solve multi-objective water allocation problems 

in the agricultural and power sectors in the Orange River catchment in South Africa. 

Specific objectives of the study are: 

1. To develop and conceptualize a novel multi-objective evolutionary algorithm 

for solving multi-objective mathematical optimisation problems and apply the 

developed method in water resources management in the Orange River 

catchment in South Africa.  

2. To benchmark the developed algorithm with existing state-of-the-art 

algorithms using standard benchmark problems and standardized performance 

metrics to evaluate its performance and adaptability for solving real world 

optimisation problems. 
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3. To solve a multi-objective crop planning problem by using the newly 

developed multi-objective algorithm to optimise planting areas for given crops 

under land and water constraints 

4. To adopt an existing framework for solving problems of water allocation to 

users in real time. In contrast to futuristic scheduling models that have been 

applied, the real time approach will integrate model-based information and 

decision support system for water resources allocation as they occur in the 

present. 

5. To develop a decision support system (DSS) by encoding the real time 

framework into a computer application package using visual basic for 

applications. This will make its application user friendly.  

6. To apply the DSS to reservoir operations by investigating real time multi-

objective water allocation for hydropower generation from the Vanderkloof 

dam. 

1.4 SIGNIFICANCE OF THE STUDY 

In keeping in line with the South African government’s commitment towards equity 

and poverty eradication and ensuring food security, the results of this study will help 

in making recommendations to policy makers, related stakeholders and decision 

makers in the agricultural and energy sectors in South Africa. This will help them in 

making concerted efforts towards developing relevant approaches to managing water 

in different regions across the country. It will also aid operators of reservoir systems 

in the country in planning future operations of dams. 

The results of the study will lead to recommendations on water management which 

will facilitate optimising the use of available resources and help protect and maximize 

the revenue generated from the limited available water resources. Outputs from this 

research will be useful to national water management institutions like South African 

Water Research Commission (WRC), Department of Water Affairs (DWA), 

Department of Agriculture, Forestry and Fisheries (DAFF), Department of Energy 
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(DOE) and Eskom. It will also help in making recommendations to policy makers and 

authorities in other water related industries.  

This study develops a system-theoretic algorithm. The application of the algorithm 

may therefore be extended to solve problems in other strategic sectors. Publications 

from this research may also be useful to scholars undertaking researches in a similar 

field. 

1.5 LIMITATIONS OF THE STUDY 

The accuracy of this study may possibly be influenced by accuracy of data as the data 

used was extracted from record books; due to possible human errors, the accuracy of 

the data may not be totally ascertained. This study was also limited by the availability 

of real time demand data as this could not be accessed during the period of the work. 

However available daily hydrology of the reservoir was used to operate the dam on a 

daily basis. Investigation of the operation of the reservoir using real time hydrologic 

and demand data is hereby left for further studies when relevant information will be 

available. 

1.6 SCOPE OF THE STUDY 

The applications of developed models in this study is restricted to solving water 

allocation problems in agricultural and power sectors in South Africa. Two study areas 

were chosen for investigation. Models were developed for solving a crop planning 

problem in a farmland in Vaalharts irrigation scheme (VIS), South Africa. VIS is one 

of the largest irrigation schemes in the world covering 369.50 square kilometres in the 

Northern Cape Province of South Africa (VIS 2013).  The scheme is supplied with 

water abstracted from Vaal River, which is the main tributary of the Orange River that 

provides water to the Vaal River Supply Area (DWA 1995b). Real time optimisation 

of the Vanderkloof reservoir is also carried out in this study.  

This study is limited to the application of Differential evolution (DE) algorithm in 

resolving water allocation problems in the study areas. DE is extended in developing 

the new evolutionary algorithm in this study. The choice of DE is due to its numerous 
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advantages reported in the literature. Moreover, there exists a study on the application 

of multi-objective DE in resolving crop planning problem in VIS. This facilitated 

further benchmark of the algorithm developed herein. 

1.7 STUDY AREAS 

Vaalharts irrigation scheme and the Vanderkloof reservoir are selected as relevant 

study areas in this research. These study areas are strategic to agricultural production 

and power generation in South Africa. These sectors are vital in forging socio-

economic growth and overall development of the country. Since this thesis presents a 

compilation of manuscripts where each chapter presents an individual study done 

during the course of the research, full description of the relevant study areas are 

presented in respective chapters. 

1.8 OUTLINE OF THE THESIS 

This thesis presents manuscripts that were prepared, compiled or published during the 

course of the research work. The thesis is organized into seven chapters. The work 

starts with a general introduction in chapter 1. Water scarcity as a main issue in water 

resources management in South Africa is discussed. The application of evolutionary 

optimisation algorithm in water resources management is also discussed and proposed 

for resolving water allocation problems in the agricultural and power sectors in South 

Africa. The statement of the problem, study objectives, significance and limitations of 

the study are also presented. This thesis does not incorporate an elaborate literature 

review but rather, literature review relevant to each chapter is given in respective 

chapters. However, chapter 2 gives a comprehensive review of the state-of-the-art on 

some applications of some existing evolutionary optimisation algorithms in water 

resources management. This serves to provide a general introduction to the field.  

In chapter 3, a novel evolutionary multi-objective optimisation algorithm is developed. 

The new algorithm is called combined Pareto multi-objective differential evolution 

(CPMDE). The ability of CPMDE in solving unconstrained, constrained and real 

world optimisation problems is demonstrated. Competitive results obtained from the 

benchmark of CPMDE suggest that it is a good alternative for solving real multi-
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objective optimisation problems. Following an argument that some test problems used 

in benchmarking evolutionary algorithms are not tuneable and it is difficult to establish 

the feature of an algorithm that is being tested, CPMDE is further tested using tuneable 

multi-objective test problems in chapter 4 and applied to solve another real world 

engineering design problem. Results obtained from further benchmark of the algorithm 

corroborate the efficacy of CPMDE as an efficient method of multi-objective 

optimisation algorithm.  

Based on the results of successful benchmark of the algorithm in chapters 3 and 4, 

CPMDE is applied to solve a multi-objective crop planning problem in Vaalharts 

irrigation scheme in chapter 5. Here, a comparative study with existing state-of-the-art 

algorithms is also made. Findings of the study suggest that CPMDE is a good 

alternative suitable for resolving crop planning and other related water resources 

management problems in a multi-crop environment with limited freshwater for 

irrigation in a water-stressed country like South Africa. 

 In chapter 6, a framework for real time water allocation is adopted for operation of 

the Vanderkloof reservoir in the Orange River catchment. This framework involved 

the coupling of a data driven artificial neural network (ANN) model and CPMDE to 

form a hybrid for hydrological simulation and multi-objective numerical optimisation 

of hydropower production from the Vanderkloof dam in real time. It was found that 

the hybrid ANN-CPMDE real time reservoir operation methodology provides a low 

cost solution methodology suitable for the sustainable operation of the Vanderkloof 

dam in South Africa.  

Chapter 7 presents a general summary and conclusion based on the results of the 

previous chapters. It also gives suggestions and recommendations for future research. 

Literature review relevant to each study is incorporated in respective chapters and each 

chapter is concluded by the details of research output(s) from the chapter. Also, 

because this thesis is a compilation of manuscripts, some repetitions between chapters 

are unavoidable. 
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1.9 PUBLICATIONS 

A total of 22 research articles were prepared during the course of this work. In all, five 

book chapters, five journal articles, 10 conference papers/ presentations and two 

workshop papers were written. All the five book chapters have appeared in print. Two 

of the journal papers have been published. One has been accepted for publication while 

two are under review in reputable academic journals at the time of filing this report. 

Five of the conference papers were presented at local conferences while five were 

presented at international conferences. Two workshop papers were also presented at 

an institutional workshop. Articles prepared during this work are listed hereunder. 

 

(a) Book chapters 

 [1] Olofintoye, O., Adeyemo, J. and Otieno, F. 2014. A Combined Pareto Differential 

Evolution Approach for Multi-objective Optimization. In: Schütze, O., Coello Coello 

C.A., Tantar, A., Tantar, E., Bouvry, P., Moral, P. D. and Legrand, P. eds. EVOLVE-

A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation 

III. Switzerland: Springer International Publishing, 213-231.  

[2] Adeyemo, J. and Olofintoye, O. 2014. Optimized Fourier Approximation Models 

for Estimating Monthly Streamflow in the Vanderkloof Dam, South Africa. In: Tantar, 

A., Tantar, E., Sun, J., Zhang, W., Ding, Q., Schütze, O., Emmerich, M., Legrand, P., 

Moral, P. D. and Coello Coello C.A. eds. EVOLVE - A Bridge between Probability, 

Set Oriented Numerics, and Evolutionary Computation V. Switzerland: Springer 

International Publishing, 293-306.  

[3] Enitan, A., Adeyemo, J., Olofintoye, O., Bux, F. and Swalaha, F. M. 2014. Multi-

objective Optimization of Methane Producing UASB Reactor Using a Combined 

Pareto Multi–objective Differential Evolution Algorithm (CPMDE). In: Tantar, A., 

Tantar, E., Sun, J., Zhang, W., Ding, Q., Schütze, O., Emmerich, M., Legrand, P., 

Moral, P. D. and Coello Coello C.A. eds. EVOLVE - A Bridge between Probability, 

Set Oriented Numerics, and Evolutionary Computation V. Switzerland: Springer 

International Publishing, 321-334.  
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[4] Olofintoye, O., Adeyemo, J. and Otieno, F. 2013. Evolutionary algorithms and 

water resources optimization. In: Schütze, O., Coello Coello C.A., Tantar, A., Tantar, 

E., Bouvry, P., Moral, P. D. and Legrand, P. eds. EVOLVE-A Bridge between 

Probability, Set Oriented Numerics, and Evolutionary Computation II. Berlin: 

Springer Berlin Heidelberg, 491-506. 

[5] Olofintoye, O., Adeyemo, J. and Otieno, F. 2012. Impact of Regional Climate 

Change on Freshwater Resources and Operation of the Vanderkloof Dam System in 

South Africa. In: Singh, B. R. ed. Global Warming – Impacts and Future Perspective. 

Croatia: InTech, 165-184. 

 

(b) Journal Articles 

[6] Adeyemo, J. A. and Olofintoye, O. O. 2014. Evaluation of Combined Pareto 

Multiobjective Differential Evolution on Tuneable Problems. International Journal of 

Simulation Modelling, 13 (3): 276-287. 

[7] Olofintoye, O., Adeyemo, J. and Otieno, F. 2015. Real-time optimal water 

allocation for daily hydropower generation from the Vanderkloof dam, South Africa. 

Applied soft computing, 2015. Under review. 

[8] Olofintoye, O., Adeyemo, J. and Otieno, F. 2015. Optimum crop planning using 

Combined Pareto Multi-objective Differential Evolution. Journal of the South African 

Institution of Civil Engineering, 2015. Under review. 

[9] Olofintoye, O., Adeyemo, J. and Otieno, F. 2013. Precipitation-runoff process 

modelling using artificial neural networks. Scientific Research and Essays, 8 (25). 

August, 2013. Accepted for publication. 

[10] Olofintoye, O. and Adeyemo, J. 2011. The role of global warming in the reservoir 

storage drop at Kainji dam in Nigeria. International Journal of Physical Sciences 

6(19): 4614-4620. 
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(c) Conference papers 

[11] Olofintoye, O., Adeyemo, J. and Otieno, F. 2014. Real-Time Hydropower 

Generation from the Vanderkloof Dam, South Africa. International Journal of Arts & 

Sciences’ (IJAS) American Canadian Conference for Academic Disciplines. Ryerson 

University, Toronto, Canada, 19 – 22 May 2014. 

[12] Adeyemo, J. and Olofintoye, O. 2014. Resolution of Multiobjective water supply 

problems in the Vanderkloof dam. International Journal of Arts & Sciences’ (IJAS) 

American Canadian Conference for Academic Disciplines. Harvard Medical School, 

Boston, Massachusetts, USA, 26 to 30 May 2014. 

 [13] Adeyemo, J. and Olofintoye, O. 2012. Application of hybrid models in water 

resources management. In: Proceedings of EVOLVE international conference 2012. 

CINVESTAV-IPN, Mexico City, Mexico, 07 – 09 August, 2012. 

[14] Olofintoye, O. and Adeyemo, J. 2012. Development and Assessment of a Fourier 

Approximation Model for the Prediction of annual Rainfall in Ilorin, Nigeria. In:  

Proceedings of Water Institute of Southern Africa Biennial Conference and Exhibition 

Cape Town, South Africa, 05 – 09 May, 2012.  

[15] Adeyemo, J. and Olofintoye, O. 2012. Impact of regional climate change on the 

rainfall and inflow of the Vanderkloof dam in South Africa. In:  Proceedings of Water 

Footprint: Water Institute of Southern Africa Biennial Conference and Exhibition. 

International Conference Center, Cape Town, 05 – 09 May, 2012.  

[16] Adeyemo, J., Olofintoye, O. and Otieno, F. 2012. Artificial neural networks for 

Precipitation-runoff process modelling. In:  Proceedings of Water Footprint: Water 

Institute of Southern Africa Biennial Conference and Exhibition. International 

Conference Center, Cape Town, 05 – 09 May, 2012.  

[17] Adeyemo, J. and Olofintoye, O. 2012. Impact of global warming on Vanderkloof 

dam catchment. 21st century watershed technology conference and workshop: 

Improving water quality and environment. Hotel Palace Bari, Italy, May 26th- June 

1st, 2012. 
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[18] Adeyemo, J., Olofintoye, O. and Moyo, S. 2011. Differential evolution for the 

minimum weight design for framed structures. In:  Proceedings of Joint Congress of 

the South African and American Mathematical Societies. Nelson Mandela 

Metropolitan University, Port Elizabeth, Eastern Cape, South Africa., 29 November – 

3 December, 2011. 

[19] Olofintoye, O. and Adeyemo, J. 2011. A potential application of nanotechnology 

for the prediction of maximum rainfall. In:  Proceedings of Fourth African Regional 

Conference of Vice Chancellors, Deans of Science, Engineering and Technology, 

(COVIDSET 2011). Birchwood Hotel, Johannesburg, South Africa., 23 – 25 

November, 2011. 

[20] Olofintoye, O. O. and Adeyemo, J. A. 2011. Development of a Micro-Mobile 

Program for Application in Wastewater Treatment. In:  Proceedings of Humboldt-

Kollege International Conference (Ogbomoso 2011). Ladoke Akintola University of 

Technology, Ogbomoso, Nigeria, 4-7 July 2011. 

 

(d) Workshop papers 

[21] Olofintoye, O., Adeyemo, J. and Otieno, F. 2012. A novel multi-objective 

evolutionary algorithm for real-time water allocation in the Orange River catchment 

in South Africa. Paper presented at the Institutional research day 2012. Steve Biko 

campus library complex, Durban University of Technology, Durban, South Africa, 

15th November, 2012. 

[22] Adeyemo, J., Otieno, F. and Olofintoye, O. 2012. Performance evaluation of 

Multi-Objective Differential Evolution Algorithm (MDEA) strategies for water 

resources management. Paper presented at the Institutional research day 2012. Steve 

Biko campus library complex, Durban University of Technology, Durban, South 

Africa, 15th November, 2012.  
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CHAPTER 2 

EVOLUTIONARY ALGORITHMS AND WATER RESOURCES 

OPTIMISATION 

2.1 OVERVIEW 

Heuristic optimisation models with varying degrees of complexities have been widely 

applied for resolving water resources optimisation and allocation problems. 

Nevertheless there still exist uncertainties about finding a generally consistent and 

trustworthy method that can find solutions which are really close to the global 

optimum in all circumstances. This chapter makes a review of some of the numerous 

evolutionary optimisation algorithms available to water resources planners and 

managers. Evolutionary algorithms have been found propitious and useful in 

facilitating critical water management decisions and are becoming promising global 

optimisation tools for major real world applications. Further research aimed at 

developing optimisation models for water resources planning, management and 

optimisation is therefore necessary. 

2.2 INTRODUCTION 

Water is a natural resource that is essential for good health and the survival of all kinds 

of lives on earth. Less than one percent of the water of the earth is available as 

freshwater on land.  The rest is contained either in the oceans or in form of frozen ice 

on mountain tops and glaciers (Srinivasulu and Jain 2006). Under pressure from 

population explosion, urbanization, extravagant lifestyles, climate change, intensive 

agriculture and industrialization, water is fast becoming a scarce resource. This is 

evident from the fact that a lack of water to meet daily needs is a reality for one in 

three people around the world today. Health consequences of water scarcity and its 

impact on daily life pose a threat to national growth and impede international 

development (WHO 2009).  It is absolutely necessary therefore, to sensitise people of 

all nations about the imminent danger posed by mismanagement which may result in 

the depletion of limited freshwater resources and the impact this will have on people 

and the ecosystems on which they depend. 
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From the earliest times, water resources management and allocation had been on the 

basis of social criteria, maintaining the community by ensuring that water is available 

for human consumption, sanitation and food production (Dinar, Rosegrant and 

Meinzen-Dick 1997). In some cases, there had existed rigid water right policies in 

which water was allocated to users according to their rights without taking into account 

economic efficiency in water use (Reca et al. 2001). However, with the trend in 

population growth and its attributes and continuous pollution of the available water 

sources, there has been increased pressure on the available water resource resulting in 

increased conflict over its allocation and a further stress on this resource leading to 

scarcity (Otieno and Ochieng 2004). In some other cases, existing hydrologic policies 

for resolving deficit had often aimed at increasing water resources through the 

construction of more hydraulic regulation or retention works, mainly large dams.  

Societies have invested capital in infrastructure to maintain this allocation. Yet social 

changes, further population growth and water pollution has made water scarcity more 

widespread than ever before. Thus inefficient use of water, poor cost recovery for 

operating and maintenance expenses, the mounting cost of developing new water 

sources and problems with the quality of service in agency-managed systems has led 

to a search for alternatives that make water allocation and management more efficient 

(Dinar, Rosegrant and Meinzen-Dick 1997). This has oftentimes led to amendments 

in existing water management policies. 

Water inadequacy in most countries calls for concern in the management of existing 

facilities since the building of new facilities requires very high investments (Adeyemo 

and Otieno 2010). If available water resources are not utilised efficiently and 

effectively, water demand may eventually exceed available supply, ultimately leading 

to artificial drought situations in several places on the globe in the near future. 

Therefore, employing advanced water use forecasting and optimisation models that 

integrate resource planning of available supply and the simultaneous management of 

various demands or allocations is of paramount importance in the field of water 

resources planning and management (Srinivasulu and Jain 2006). 
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Awareness of increasing water scarcity has driven efforts to model global water 

resources for improved insight into water resources infrastructures and management 

strategies (Sangodoyin and Adeyemo 2004; Olofintoye, Sule and Salami 2009; Davies 

and Simonovic 2011; Olofintoye and Adeyemo 2011b; Olofintoye and Salami 2011). 

Developing strategies that facilitate the efficient use of available water resources have 

been the subject of many studies in the field of water resources planning and 

management (Sniedovich 1978; Reca et al. 2001; Shangguan et al. 2002; Adeyemo 

and Otieno 2009b). Several optimisation techniques that attempt to propound ways of 

mitigating or resolving water resources allocation problems have been reported in 

several studies (Babel, Gupta and Nayak 2005; Fernandes and Schreider 2009; Otieno 

and Adeyemo 2010).  

In recent times, methods of evolutionary algorithms (EAs) have found widespread use 

in the fields of water resources single and multi-objective optimisation due to their 

robustness in the resolution of such problems (Cai,  McKinney and Lasdon 2001; Yuan 

et al. 2008; Selle and Muttil 2010; Olofintoye,  Adeyemo and Otieno 2013b; Adeyemo 

and Olofintoye 2014a; Enitan et al. 2014). Evolutionary algorithms are population-

based meta-heuristic optimisation procedures that use biology-inspired mechanisms 

like mutation, crossover, natural selection and survival of the fittest in order to refine 

a set of solution candidates iteratively (Weise 2009). EAs often perform well 

approximating solutions to all types of problems because they ideally do not make any 

assumption about the underlying fitness landscape. Apart from their use as 

mathematical optimisers, EAs have also been employed in experimental frameworks 

to validate theories about biological evolution and natural selection, particularly 

through works in the field of artificial intelligence. EAs belong to a class of search 

methods with remarkable balance between exploitation of the best solutions found and 

exploration of the search space. They combine elements of directed and stochastic 

search and therefore, are more robust than existing directed search methods, providing 

the global optimum without being trapped in local optima. Additionally, they may be 

easily tailored to a specific application of interest, taking into account the special 

characteristics of the problem under consideration. They can also be easily parallelized 

(Karterakis et al. 2007).  
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In the past decades, several evolutionary algorithms that mimic biological entities’ 

behaviours and evolution have emerged. Available EAs include but are not limited to 

genetic algorithm (GA), differential evolution (DE), evolution strategy (ES) and 

genetic programming (GP). The superiority of EAs in the solution of single and multi-

objective optimisation problems over other optimisation techniques has been 

demonstrated by several researchers in recent years (Nasseri, Asghari and Abedini 

2008; Yousefi, Handroos and Soleymani 2008; Qin et al. 2010). 

2.3 WATER RESOURCES MANAGEMENT USING GENETIC 

ALGORITHMS 

Genetic algorithms are a subclass of evolutionary algorithms where the elements of 

the search space are encoded using binary strings or arrays of other elementary types, 

although versions of GAs that employ the use or real valued parameters are now 

available (Weise 2009). In a GA setup, possible individual solutions to a mathematical 

optimisation problem are represented by strings of genetic factors called 

chromosomes. A set of individuals make up a generation. The generation is allowed 

to evolve through genetic operations of selection, crossover and mutation till a global 

optimum solution is obtained (Cho, Seok Sung and Ryong Ha 2004). The successful 

applications of GAs in the solution of water resources management problems have 

been reported in several studies (Kerachian and Karamouz 2007; Wang, Chang and 

Chen 2009; Wang et al. 2011). 

Lavric et al., (2004) presented an approach of genetic algorithm optimisation (GAO) 

for generating optimal water network topology (OWNT) with an objective to minimize 

total low-level contaminated water (LLCW) consumption. The algorithm was applied 

to water systems with multiple pollutants and several LLCW sources, considering only 

one resource at a time and complying with all restrictions. The OWNT was viewed as 

an oriented graph, starting from unit operations with the lowest level of contaminants 

at entrance using an ordering rule based either on the load or the maximum LLCW 

consumption. A mathematical model based on the total and contaminant species mass 

balances, together with the input and output units' constraints was developed and 

solved using the GAO. Each internal flow defined the genes on a chromosomal 

representation of the decision variable. The individual chromosomes were interbred 
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according to their frequency of selection, using one-point crossover method, then 

mutation was applied to randomly selected members of the new generation. 

Comparison of the results with a method of mathematical programming showed that 

the performance of the GAO was satisfactory, thus the GAO could be used as an 

alternative for minimizing total LLCW consumption in water network topologies. 

It has been observed that water quality of most large rivers in South Korea is poor due 

to industrialization and pollution due to the high population resident in the cities. Also, 

seasonal variation in river flow is very large. In the drought season, low flows lead to 

an increase in the pollution level. Pollution is a serious problem in the middle and 

lower parts of the rivers because many industrial facilities and large populated cities 

are located around them. It was especially noted that in the Youngsan river basin, one 

of the most polluted rivers in South Korea, water quality has depreciated due to heavy 

pollutant loads from Kwangju city and surrounding areas. In the past, wastewater 

treatment policy for polluted rivers in Korea has been, first of all, to construct 

secondary treatment plants for untreated areas and secondarily, to construct advanced 

treatment plants for the river sections whose water quality is impaired. Unfortunately, 

the water quality goal of the ministry of environment was not met. Thus, Cho, Seok 

Sung and Ryong Ha, (2004), in a study to achieve water quality goals and wastewater 

treatment cost optimisation in the affected river basin, developed a mathematical water 

quality management model integrating a genetic algorithm. 

In the study, total wastewater treatment costs in the basin were calculated as the sum 

of the treatment cost for each plant, which was based on the treatment type. Treatment 

cost for a wastewater treatment plant is the sum of the annual repayment for capital 

construction costs and annual operation-and-management costs. In calculating the 

annual repayment for capital costs, the construction costs of already completed plants 

were not included but the construction costs for the new plants and the additional costs 

for the capacity expansion and the upgrade of existing plants were included. An 

amortization period of 20 years and a social discount rate of 11.3 percent were used in 

the study. Pollution source, land use, geographic features and measured water quality 

data of the river basin were incorporated into the ArcView geographic information 
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system database to facilitate the selection of treatment type and computation of 

treatment cost for 26 wastewater treatment plant in the river basin.   

In applying GA to resolve the water quality management problem, the chromosome 

was designed in such a way that the genes represented the treatment level at each 

wastewater treatment plant. A careful selection of proper genetic operators among 

various kinds of genetic operators was made. The chromosomes were encoded using 

a system of binary digits. In the optimisation process of the GA, a population of 90 

chromosomes was used; crossover and mutation probabilities were set at 80 percent 

and 1 percent respectively. The algorithm was iterated for 100 generations. The fitness 

of the chromosomes were evaluated using the results of the forecasts of water quality 

and treatment cost. The fitness value was represented as the inverse of the sum of the 

total treatment cost and the penalty. A penalty was given whenever the water quality 

goal is violated, the fitness value is modified by linear scaling. Linear scaling was used 

for the proper selection of the parents. The modified fitness values of the chromosomes 

were used for selecting parents that will produce offspring for the next generation. 

Results from four scenarios that do not use the GA were compared with the results of 

the management model using the GA. It was found that the results based on the GA 

were much better than those for the other four scenarios from the viewpoint of the 

achievement of water quality goals and cost optimisation. It was therefore concluded 

that GA could be an alternative to other mathematical programming methods which 

have been applied in regional wastewater treatment cost optimisation. 

Lavric, Lancu and Pleayu (2005) proposed the use of a hybrid technique based on an 

improved GA, to solve the optimisation problem of finding the minimum water supply 

concomitantly with the water network topology ensuring the maximum water reuse. 

The hybrid character of the algorithm is given by the local reshape of the chromosome 

at the gene level to cope with the mass balance restrictions, while the improvement of 

the GA is given by the shrinking neighbourhood cloning strategy which favours the 

individuals surrounding the best-so-far solution. The GA optimisation uses each 

network’s internal flow as a gene, assembling the topology into a chromosome. The 

boundary constraints in terms of minimum and maximum allowable flows for each 
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gene are satisfied during population generation by simply rejecting genes lying outside 

the feasible domain. The individuals were interbred according to their frequency of 

selection using the one-point crossover method and then mutations were applied to 

randomly selected individuals. The algorithm was tested on test problems from 

literature and was proven to have better performance after which it was used to solve 

the more difficult problem of finding an optimal topology of the wastewater network 

when multiple contaminated water sources are considered. A mathematical model 

describing each unit operation based on total and contaminant species’ mass balances, 

together with input and output constraints was developed and solved using the 

algorithm. The topology of the wastewater network was encoded by an oriented graph 

which was adequately represented by an upper triangular matrix in which the units lay 

on the diagonal positions. Finally, the algorithm was encoded in an easy to use 

software which facilitates the computation of the optimal topology of the unit 

operations’ network and the minimum supply water consumption, observing the 

imposed inlet and outlet constraints. 

In a study employing the use of an enhanced genetic algorithm (EGA) for bi-objective 

pump scheduling in a water supply system, Wang, Chang and Chen (2009) argued that 

when a cost-effective water distribution system is to be designed, the best way is to 

plan a profitable schedule for a set of pump combination. Frequently however, existing 

infrastructures more often than not are not allowed to be altered or reconstructed. Thus, 

without modifying the infrastructure, the overall cost can still be cut down by using a 

good pumping schedule. Moreover, a good pump scheduling scheme is a feasible and 

economic way to save pumping cost. This is because there is no need to destroy the 

current infrastructure and the existing pumps and pipelines still can contribute to daily 

efficient water distribution. Therefore, the only thing that needs to be redesign is a 

good schedule, namely that, if possible, the pumps had better be operated in the night 

time.  

Wang, Chang and Chen (2009) further argued that in areas where groundwater is the 

sole water resource, it should be used temperately because depleting groundwater may 

cause land subsidence, an environmental change that can hardly be recovered. This 
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situation may be avoided through artificial mediation through improved pumping by 

pumping water intermittently. Thus by developing an eco-aware schedule, land 

subsidence caused by over-pumping groundwater can be slowed down. Therefore, an 

eco-aware objective was considered in the proposed model such that the final resulting 

schedules can be not only cost-effective but also environmental conscious. A good 

pumping scheme therefore, should be a trade-off between environmental benefits and 

maintenance cost.  

In the study, a GA-based pump scheduling scheme in which pumps need to be used 

intermittently was proposed. In this scheme, a GA-based local search is proposed to 

enhance the intensification force, i.e., the exploitation of the accumulated search 

experience. A real number chromosome encoding was also employed to meet the 

needs of the real world problem. Two selection operators were employed in the 

selection procedure: one for single-objective optimisation and one for bi-objective 

optimisation. For the single-objective optimisation (i.e., cost optimisation), the roulette 

wheel selection is considered while for the bi-objective optimisation (i.e., cost and 

subsidence), a Pareto fitness ranking was used to guide the selection procedure. A 

single-point crossover operator was employed in which a pump is randomly chosen as 

a crossover point and tail parts of two solutions are exchanged to produce two new 

offspring. Five heuristic mutation procedures were employed to access vectors points 

in the search space. The evolutionary population size Np was set at 100 and the number 

of generations, gMax at 1000. The crossover rate and mutation rate used in all methods 

were 0.9 and 0.5, respectively.  

Unlike traditional GA methods, the proposed EGA has two merits. First a method of 

greedy selection is employed to obtain a near-optimal solution at the beginning and to 

accelerate the convergence speed. In comparison to conventional methods, the 

proposed scheme generates a higher quality population. Therefore, only a few 

iterations are needed to achieve desired convergence. Second, a binary local search is 

developed according to the properties of the problem. With this local search, each 

chromosome can converge at the local minimum in its neighbourhood such that 

promising solutions are not ignored by the proposed scheme.  
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To ease the computational tedium involved in the research, the proposed algorithm 

was implemented using Delphi 7, a powerful rapid application development tool. Final 

results showed that the schedule did not only achieve lower cost but also gained more 

environmental benefits. In concluding the study, Wang,  Chang and Chen (2009), 

suggested that future researches should focus on accelerating the convergence speed 

of the EGA. 

2.4 WATER RESOURCES MANAGEMENT USING DIFFERENTIAL 

EVOLUTION 

Differential evolution (DE), developed by Price and Storn in 1995 (Price, Storn and 

Lampinen 2005), is a simple yet powerful heuristic method for solving nonlinear, non-

differentiable and multi-modal optimisation problems. The algorithm combines simple 

arithmetic operators with the classical events of crossover, mutation and selection to 

evolve from a randomly generated initial trial population until a fittest solution is 

found. The key idea behind DE is the scheme it uses for generating trial parameter 

vectors. Mutation and crossover are used to generate new trial vectors while a selection 

scheme determines which of the vectors survives to the next generation (Price, Storn 

and Lampinen 2005). In recent years, DE has gradually become more popular and has 

been used in many practical cases, mainly because it has demonstrated good robust 

convergence properties and is principally easy to understand (Yuan et al. 2008; 

Goudos et al. 2011; Lu et al. 2011). For instance, Adeyemo and Otieno (2010) 

presented four strategies of a multi-objective differential evolution algorithm (MDEA) 

to demonstrate the potential of maximizing the farmer’s total net income despite the 

water shortage problems in South Africa. MDEA is a multi-objective evolutionary 

algorithm based on the original DE algorithm proposed by Price and Storn (1997).  In 

the study, four strategies of MDEA namely, MDEA1, MDEA2, MDEA3 and MDEA4 

were adopted to solve a multi-objective crop planning model with multiple constraints 

in a farmland in the Vaalharts irrigation scheme (VIS). VIS covers about 36,950 ha 

and is located in the east of Fhaap Plateau on the Northern Cape and North West 

province borders in South Africa. The three objectives of the model were to minimize 

the total irrigation water (m3) and to maximize both the total net income in South 

African Rand (ZAR) from farming and the total agricultural output in tons. Four crops 



23 

namely maize, groundnut, Lucerne and Peacan nut were planted with each crop planted 

in at least 5000m2 of land. Monthly estimated of gross irrigation water requirements 

for the crops were computed following standard procedures. The volume of total 

irrigation water to be used for irrigating the four crops on the farm is minimized due 

to shortage of water in the study area.  

Numerical results produced quality non-dominated solutions which converged to 

Pareto optimal fronts. MDEA1 and MDEA2 strategies with binomial crossover 

method were found to be better for solving the crop planning problem than MDEA3 

and MDEA4 strategies with exponential crossover method. It was observed that 

MDEA, which handles multiple constraints using a penalty function proposed by Deb, 

(2001), runs faster with more quality Pareto optimal solutions when tested on 

benchmark problems. All the four strategies of MDEA namely, MDEA1, MDEA2, 

MDEA3 and MDEA4 found non-dominated solutions that converge to the Pareto 

fronts. The solutions were also diverse on the Pareto fronts. Thus, it was concluded 

that the four strategies of MDEA are effective and robust multi-objective optimisation 

algorithms for solving multi-objective models in water resources management 

especially in water deficient countries like South Africa. 

According to Karterakis et al., (2007), the multiple uses of coastal water resources and 

the necessity of maintaining them in good quality require rational design and 

management. The water quality deterioration due to seawater intrusion that is observed 

in the coastal aquifers, especially during the summer season, has been identified as the 

main environmental problem of coastal these regions.  

In an attempt to design an optimal pumping scheme in the coastal aquifer of 

Hersonissos in Crete, to ensure water adequacy during the summer season without 

enhancing the already intense seawater intrusion problem in the region, Karterakis et 

al., (2007) understudied the optimal management of freshwater resources in coastal 

regions based on environmental criteria with focus on the determination of an optimal 

pumping scheme. This will ensure adequacy of portable water supply in coastal 

regions without deteriorating the quality of freshwater due to seawater intrusion.  
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The objective of the management model was formulated to maximize total extracted 

freshwater volume from five preselected pumping locations (production wells). 

Constraints that ensure no further intrusion of the seawater front were imposed at ten 

preselected observation locations where the calculated hydraulic head should be 

greater than a specified value at the end of a 10-year management period. Restrictions 

for all the five production wells regarding the maximum allowable extracting rates 

were also imposed and summarized in a mathematical model. First, a simplex method 

was used to solve the constrained optimisation problem; a piecewise linearization of 

the non-linear optimisation problem was obtained by sequential implementation of the 

simplex algorithm. Secondly, the solution of the non-linear optimisation problem was 

obtained using a DE algorithm. In the implementation presented in the study, the 

constraints were combined with the objective function as penalty terms to form a 

fitness function which is minimized using DE. A comparison of the results obtained 

by the two different optimisation approaches was performed and a sensitivity analysis 

was employed in order to examine the influence of the active pumping wells in the 

evolution of the seawater intrusion front along the coastline. The solutions provided 

by the two methods were similar for values of the volume flow rates and the values of 

the sensitivity analyses. However, a discrepancy between the two solutions was 

observed at a particular pumping well location where the simplex method, contrary to 

the DE algorithm, provided a zero value for the corresponding volume flow rate. 

Additionally, as the sensitivity analysis demonstrated, the simplex solution shows a 

much higher sensitivity at the well compared to the DE solution, which seems more 

robust. 

2.5 WATER RESOURCES MANAGEMENT USING EVOLUTION 

STRATEGY 

Evolution strategy (ES) was developed in 1963 by Ingo Rechenberg and Hans-Paul 

Schwefel at the Technical University of Berlin (TUB) while solving an engineering 

optimisation problem. ES like GA is a stochastic search heuristic based on ideas of 

adaptation and evolution and is conceptually similar to natural evolution (Mirghani et 

al., 2009). An ES is an effective continuous function optimiser in part because it 

encodes parameters as floating-point numbers and manipulates them with arithmetic 
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operators. ES primarily uses mutation and selection as search operators. These 

operators are applied iteratively (Price,  Storn and Lampinen 2005). The uses of ES as 

function optimisers have been reported in studies (Berlich and Kunze 2004; Kanoun,  

Troltzsch and Trankler 2006; Navale and Nelson 2010).  

Mirghani et al., (2009) in a study aimed at finding solutions to groundwater 

contaminant source identification problems argued that groundwater contaminant 

source identification is important in environmental forensics and characterization of 

contamination for the purposes of regulatory enforcement and liability assessment. 

Further, groundwater characterisation can be classified as an inverse problem which 

involves the resolution of unknown system characteristics from observed data. Inverse 

problems are difficult to solve due to their natural ill-posedness and computational 

intractability. In the study, a simulation–optimisation approach that couples a 

numerical pollutant transport simulation model with an evolution strategy search 

algorithm was adopted for solution of the inverse problem. In a simulation–

optimisation approach, the simulation model is coupled loosely or tightly with an 

optimisation technique to determine the model inputs that best represent the observed 

data.  

The research considered three-dimensional heterogeneous and homogeneous flow 

field problems with four to seven unknown parameters to be estimated, with the 

contaminant source located within the aquifer. The solution method uses a loosely 

coupled simulation–optimisation approach. In the context of the problem, source 

locations and historical contaminant release schedules were the unknowns and were 

resolved from the spatially and temporally distributed observations collected at the 

contaminant monitoring wells. The main objective was to enhance the efficiency of 

the simulation–optimisation approach utilizing high performance technologies that 

minimizes the overall computation time for solving groundwater inverse problems. A 

parallelization approach that exploits the fine and coarse grained parallelism exhibited 

by simulation–optimisation frameworks was employed to improve the simulation 

model’s efficiency and reduce forward model computation time. A forward model, 

represented by a system of partial differential equations (PDEs) was used to describe 

the transport processes of the groundwater system and to define the relationship 



26 

between system inputs and outputs. This numerical transport model is then solved 

iteratively during the evolutionary search. Several variations of a groundwater source 

identification problem were examined and the fitness function was evaluated in terms 

of solution quality and computational performance. A population size of 128 vectors 

was used for the ES-based procedure, which was executed for 10 generations, to 

estimate the computation time.  

The results indicate that while ES performs adequately for all scenarios investigated, 

the performance was affected by problem complexity i.e. number of decision variables 

used to characterize the source. It was however found that the parallel simulation–

optimisation framework with the optimal configuration reduces the simulation time 

drastically from days to minutes when compared to a serial implementation method. 

The process involved in the study were computationally intensive since several 

hundreds to thousands of forward model evaluations are typically required for 

solutions to be found, hence the computational experiments were performed on the 

TeraGrid cluster, a mainframe computer available at the National Centre for 

Supercomputing Applications.  

2.6 WATER RESOURCES MANAGEMENT USING GENETIC 

PROGRAMMING 

Genetic programming (GP) is a class of evolutionary algorithm that automatically 

creates computer programs to perform a selected task using the principle of Darwinian 

natural selection. GP is a robust, dynamic and fast growing discipline and has been 

successfully applied and verified in the field of water resources engineering (Aytek,  

Asce and Alp 2008; Ghorbani et al. 2010; Nasseri,  Moeini and Tabesh 2011).  

Shiri and Kisi, (2010) in a study to investigated best-fit models for predicting 

groundwater depth in Bondville and Perry, understudied the ability of GP and adaptive 

neuro-fuzzy inference system (ANFIS) techniques for groundwater depth forecasting. 

Five GP and ANFIS models comprising various combinations of water table depth 

values were developed to forecast one, two and three-day ahead water table depths. 

Comparison of the accuracy of the models were made based of the root mean square 

errors (RMSE), scatter index (SI), variance account for (VAF) and coefficient of 
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determination (R2) statistics. Results showed that the GP and ANFIS models could be 

employed successfully in forecasting water table depth fluctuations. However, GP was 

found to be superior to ANFIS in accuracy and provided explicit mathematical 

expressions for the problem. 

A machine code-based genetic programming for suspended sediment concentration 

estimation in the flow of a river at Jagual, Puerto Rico, was developed by Kisi and 

Guven (2010). The study proposed an application of linear genetic programming 

(LGP) which is an extension to GP technique, for suspended sediment concentration 

estimation. The authors argued that accurate estimation of suspended sediment 

concentration carried by a river is important with respect to channel navigability, 

reservoir filling, hydroelectric-equipment longevity, river aesthetics, fish habitat, 

scientific interests and many water resources projects. Underestimating sediment yield 

ultimately results in insufficient reservoir capacity. Hence, to acquire an appropriate 

reservoir design and operation, it is mandatory to determine sediment yield accurately.  

The study by Kisi and Guven (2010), utilised the LGP variant of GP which operates 

directly on binary machine code strings that are perturbed directly in memory and are 

executed directly without passing through an interpreter during fitness calculation. 

This results in a significant speedup compared with interpreting systems. The main 

characteristic of LGP in comparison to tree-based GP is that expressions of a 

functional programming language (for example LISP) are substituted by programs of 

an imperative language (like C). The main aim of the study was to develop an explicit 

formulation based on LGP to accurately estimate suspended sediment concentration.  

The evolutionary algorithm adopted for the LGP applies tournament selection and puts 

a low selection pressure on the individuals by allowing only two individuals to 

participate in a tournament. The loser of each tournament is replaced by a copy of the 

winner. In the crossover scheme adopted, a segment of random position and random 

length is selected in each of the two parents and exchanged. If one of the resulting 

children exceeds the maximum length, crossover is aborted and restarted with 

exchanging equally sized segments. The crossover points only occur between 

instructions. A mutation operation that randomly replaces instruction identifier, 
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variables, or constants by equivalents from valid ranges was adopted. High mutation 

rates were found to produce better results. The length of initial population of feasible 

programs was 64 instructions per program and the maximum number of instructions 

allowed per program was set to 256. The LGP algorithm was iterated for 10,000 

generations.  

Daily streamflow and suspended sediment concentration data from two stations, Rio 

Valenciano and Quebrada Blanca, operated by the US Geological Survey (USGS) 

were used as case studies. The performance of LGP was compared with those of the 

adaptive neuro-fuzzy, neural networks and rating curve models employed in previous 

studies. Comparison of the results indicated that the LGP performs better than the 

neuro-fuzzy, neural networks and rating curve models based on the root mean square 

errors (RMSE) and determination coefficient (R2) statistics. Unlike the neuro fuzzy 

(NF) and ANN which are black-box models, the LGP model presents a simple explicit 

mathematical formulation. It was concluded that LGP, which is relatively simpler than 

NF and ANN can be successfully employed in modelling daily suspended sediment 

concentrations in rivers. 

Sreekanth and Datta, (2010) developed surrogate models for evolving multi-objective 

management strategies for saltwater intrusion in coastal aquifers. Two different 

surrogate models, one based on GP and the other based on modular neural network 

(MNN) were developed and linked to a multi-objective genetic algorithm (MOGA) to 

derive the optimum pumping strategy for coastal aquifer management, considering two 

objectives. The surrogate models were trained and tested then used to predict the 

salinity concentrations at different locations resulting from groundwater extraction. A 

two-stage training strategy was implemented for training the surrogate models. 

Surrogate models were initially trained with input patterns selected uniformly from the 

entire search space and optimal management strategies based on the model predictions 

were derived from the management model. A search space adaptation and model 

retraining was also performed by identifying a modified search space near the initial 

optimal solution based on the relative importance of the variables in salinity prediction. 

The performance of the methodologies using GP and MNN based surrogate models 
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were compared for an illustrative study area. It was found that the developed GP 

models had lesser uncertainty compared to MNN models and the number of parameters 

used in the GP model was lesser than that used in the MNN models. Results also 

showed that the GP based model were better suited for optimisation using an adaptive 

search space. 

2.7 CONCLUSION 

Optimisation models with varying degrees of complexities have been widely applied 

for resolving water resources optimisation and allocation problems. In recent times, 

procedures based on heuristic EAs have found wide spread applications in the fields 

of water resources planning, management and optimisation. This chapter made a 

review of some of the numerous evolutionary optimisation algorithms available to 

water resources planners and managers. Several heuristic algorithms have been applied 

in resolving water resources optimisation problems, yet there still exist some 

uncertainties about finding a generally trustworthy method that can consistently find 

solutions which are really close to the global optimum of the problems in all 

circumstances (Kerkez et al. 2010). The choice of optimisation model is almost 

arbitrary as no physical basis is available to rationalize the use of any particular 

algorithm. Search for the proper optimisation function has been the subject of several 

studies (Chen and Fu 2005; Khademi et al. 2009; Cisty 2010). 

EAs have been found propitious and useful in facilitating critical water management 

decisions and are becoming promising global optimisation tools for major real world 

applications. Therefore, developing single and multi-objective evolutionary 

optimisation procedures that integrate resource planning of available resources and the 

simultaneous management of various demands or allocation is a topic that is still open 

for further research in the field of water resources planning and management. Further 

research aimed at developing evolutionary optimisation algorithms for water resources 

planning, management and optimisation is therefore necessary. 
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CHAPTER 3 

A COMBINED PARETO DIFFERENTIAL EVOLUTION 

APPROACH FOR MULTI-OBJECTIVE OPTIMISATION 

3.1 OVERVIEW 

In recent years, methods of multi-objective evolutionary algorithms (MOEAs) have 

been developed to solve problems involving the satisfaction of multiple objectives 

within the limits of certain constraints, yet there still exists some uncertainty about 

finding a generally trustworthy method that can consistently find solutions which are 

really close to desired objectives in all situations. In this chapter, a combined Pareto 

multi-objective differential evolution (CPMDE) algorithm is presented. The algorithm 

combines methods of Pareto ranking and Pareto dominance selections to implement a 

novel selection scheme at each generation. The ability of CPMDE in solving 

unconstrained, constrained and real-world optimisation problems was demonstrated. 

Competitive results obtained from benchmarking CPMDE suggest that it is a good 

alternative for solving real multi-objective optimisation problems. 

3.2 INTRODUCTION 

Optimisation problems are ubiquitous in engineering and the sciences. Simply put, 

optimisation is an attempt to maximize a system’s desirable properties while 

simultaneously minimizing its undesirable characteristics (Price, Storn and Lampinen 

2005). Optimisation also refers to the art of finding one or more feasible solutions 

corresponding to extreme values of one or more objectives while satisfying specified 

constraints. A significant portion of research and applications in the field of 

optimisation has focused on single objective optimisation, whereas most of the natural 

world problems involve multiple objectives which are conflicting in nature (Babu,  

Chakole and Syed-Mubeen 2005). The task of finding one or more optimum solutions 

in an optimisation problem involving more than one objective is known as multi-

objective optimisation (MOOP) (Deb 2001). In the solution of MOOPs, the aim is to 

simultaneously optimise a set of conflicting objectives to obtain a group of alternative 
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trade-off solutions called Pareto-optimal or non-inferior solutions which must be 

considered equivalent in the absence of specialized information concerning the relative 

importance of the objectives (Fan,  Lampinen and Levy 2006; Deb 2011). 

Differential evolution (DE) is a stochastic direct search evolution strategy optimisation 

method that is fairly fast and reasonably robust. Since its inception in the 90’s, DE has 

found practical applications in the solution of scientific optimisation problems 

(Adeyemo and Olofintoye 2012). Due to its reported successes, its uses have been 

extended to other types of problem domains, including multi-objective optimisation 

(Price, Storn and Lampinen 2005; Mezura-Montes, Reyes-Sierra and Coello 2008). In 

recent times, several researches extending the application of DE for finding solutions 

in the multi-objective problem domains have been reported in the literature (Babu and 

Jehan 2003; Angira and Babu 2005; Adeyemo and Otieno 2009a). For example, Fan,  

Lampinen and Levy (2006) presented and validated a new differential evolution 

method for multi-objective optimisation. In their study, a new selection scheme was 

designed to replace the existing one to enable DE applicable to solve either single 

objective or multi-objective optimisation problems. In their selection scheme, the trial 

population vector is compared with its counterpart in the current population. If the trial 

candidate dominates the current population member it will survive to the next 

generation and replace the current population vector, otherwise the current population 

member is retained. They suggest that if the trial solution is worse than the target 

solution in any of the objectives, it should be discarded. The method was validated 

using three multi-objective benchmark optimisation problems. Simulation results 

show that the approach is capable of generating an approximated Pareto-front for the 

selected problems. To further examine the practical applicability of the proposed 

method, it was used to optimise a prototype air mixer subject to two objectives. Results 

show that the new DE approach can handle practical multi-objective problems 

successfully. 

A comprehensive survey of the state-of-the-art on methods of multi-objective 

optimisation using differential evolution is provided by Mezura-Montes, Reyes-Sierra 

and Coello (2008). In the survey, methods that adjust the selection scheme of 

traditional DE to implement new selection schemes for multi-objective optimisation 
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are broadly categorized as either methods employing Pareto-ranking or Pareto-

dominance approaches. Methods of Pareto-ranking for multi-objective DE assign 

ranks to each solution in the combined trial and target population based on their non-

domination levels. Solutions on the best non-dominated front are assigned a rank of 

‘1’; the solutions in the next set are assigned ‘2’ and so on. Algorithms using this 

method often select all solutions with the best ranks for propagation to the next 

generation. In Pareto-dominance method for DE, ranks are not assigned, rather, a 

solution that wins the domination contest at an index proceeds to the next generation 

(Mezura-Montes, Reyes-Sierra and Coello 2008). In this chapter, a novel multi-

objective evolutionary algorithm (MOEA) which incorporates DE as its base 

algorithm is proposed. The algorithm combines the Pareto-ranking and Pareto-

dominance approaches in a unique way to implement a novel selection scheme at each 

generation. Hence, it is named combined Pareto multi-objective differential evolution 

(CPMDE). Results obtained from benchmarking CPMDE show its promises as an 

excellent alternative method of MOEA. 

3.3 COMBINED PARETO MULTI-OBJECTIVE DIFFERENTIAL 

EVOLUTION 

At each generation of CPMDE, the combined population of trial and target solutions 

are checked and non-dominated solutions (i.e. solutions on the best non-dominated 

front - with rank ‘1’) are marked as ‘non-dominated’ while others are marked 

‘dominated’. After generating a trial population, tournaments are played between trial 

solutions and their counterparts in the target population at the same index. Four 

scenarios emerge: 1) if the trial solution is marked ‘non-dominated’ and the target is 

marked ‘dominated’ then the trial vector replaces the target vector and the target vector 

is discarded. 2) If the trial solution is marked ‘dominated’ and the target is marked 

‘non-dominated’ then the trial vector is discarded. 3) If both solutions are marked 

‘dominated’ then we resort to the method of Pareto-dominance selection where the 

trial vector replaces the target vector if it dominates the target or if they are non-

dominated with respect to each other. 4) If both vectors are marked ‘non-dominated’, 

then a harmonic average crowding distance measure suggested by Huang et al. (2005) 

is employed to select the solution that will proceed to the next generation. Furthermore, 
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the crowding tournament is delayed until all solutions marked ‘non-dominated’ in the 

first three scenarios are installed in the next generation after which non-dominated 

solutions at the remaining indices are sorted out one at a time. 

3.3.1 CPMDE algorithm 

The step-by-step procedure of the proposed CPMDE can be summarized in the 

following algorithm listing: 

1. Input the required DE parameters like number of individuals in the population 

(Np), mutation scaling factor (F), crossover probability (Cr), maximum 

number of iterations/generations (gMax), number of objective functions (M), 

number of decision variables/parameters (d) and upper and lower bounds of 

each variable. 

2. Initialize all solution vectors randomly within the limits of the variable bounds. 

3. Set the generation counter, g = 0. 

4. Generate a trial population of size Np using DE’s mutation and crossover 

operations (Price, Storn and Lampinen 2005). 

5. Perform a domination check on the combined trial and target population and 

mark all non-dominated solutions as ‘non-dominated’ while marking others as 

‘dominated’. 

6. Play domination tournaments at each population index. Tournaments are 

played by comparing trial and target solutions at the same index.  

i. If the trial solution is marked ‘non-dominated’ and the target is marked 

‘dominated’ then the trial vector replaces the target vector and the target 

vector is discarded. 

ii. If the trial solution is marked ‘dominated’ and the target is marked ‘non-

dominated’ then the trial vector is discarded. 

iii. If both solutions are marked ‘dominated’, then replace the target vector 

with the trial vector if it is dominated by the trial vector or if they are 

non-dominated with respect to each other. 

iv. If both vectors are marked ‘non-dominated’, then note down the index 

and proceed to the next index. When all solutions marked ‘non-
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dominated’ from steps i – iii above are installed in the next generation, 

then sort out all solutions noted in step iv one at a time using the 

harmonic average crowding distance measure (Huang et al. 2005). The 

solution with a greater harmonic average distance is selected to proceed 

to the next generation. 

7. Increase the generation counter, g, by 1. i.e. g = g+1.  

8. If g < gMax, then go to step 4 above else go to step 9. 

9. Remove the dominated solutions in the last generation. 

10. Output the non-dominated solutions. 

Note: domination checks are performed using the naive and slow method suggested 

by Deb (2001). 

 

3.3.2 Visualizing the effect of the combined Pareto selection procedures on the 

difference vector distribution 

DE is based on evolution using difference vectors; therefore the difference vector 

distribution affects the optimisation process (Price, Storn and Lampinen 2005). The 

impact of the distribution of difference vectors on algorithm performance is illustrated 

as follows: Figure 1a shows a hypothetical distribution of 12 vectors in a bi-objective 

optimisation problem where both objectives are minimized. Vectors 1-6 are assumed 

to be target vectors while vectors A-F are the trial vectors. Figure 1b shows the ranks 

of the solutions. In order to fill the six slots in the next generation, it is further assumed 

that solutions 1, 2, 3 compete against A, B, C while solutions 4, 5, 6 compete against 

D, E, F respectively. Following these assumptions, algorithms based solely on Pareto 

ranking selection (PRS), (e.g. NSGA-II) will select solutions 1-6 as parents for the 

next generation (Figure 2a), while the procedure of CPMDE selects solutions 1, 2, 3 

because they have a rank of ‘1’ as parents for the next generation. This serves to 

provide a direction for the search. Also solution D will replace solution 4 while E will 

replace solution 5 because they are non-dominated with respect to each other though 

solutions 4 and 5 lies on a front with a better non-dominated rank (Figure 2b). Figures 

3a and 3b present the difference vector distributions obtained by PRS and CPMDE. 
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Figure 1: Hypothetical distribution of 12 vectors and their Pareto ranks. 

 

 

Figure 2: Solutions selected by PRS and CPMDE for the next generation. 
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Figure 3: Difference vector distributions produced by PRS and CPMDE. 

 

Inspection of Figure 3a shows that the sheaf of vector difference produced by PRS 

algorithms like NSGA-II contains some short vectors suitable for local search. The 

longer vectors are however aligned somewhat longitudinally to the best non-

dominated front found. Figure 3b shows that controlling elitism of the pool by allowing 

solutions on lower ranks to proceed to the next generation, the difference vector 

distribution of CPMDE can be made to contain some short vectors suitable for local 

search and long vectors which are traverse to the fronts and suitable for a global search. 

Figure 4a shows that Perturbation with the difference vector distribution of procedures 

based solely on Pareto ranking selection like NSGA-II has a propensity to get attracted 

to a local optimal front while those of CPMDE are able to escape local fronts in the 

early generations Figure 4b. 

 

Figure 4: Perturbation using PRS and CPMDE difference vector distributions. 
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3.3.3 Promoting diversity among solutions in the obtained non-dominated set 

In order to obtain a diverse set of solutions in the obtained non-dominated front, 

CPMDE employs the harmonic average crowding distance measure suggested by 

Huang et al. (2005) to select the solution that will proceed to the next generation when 

both solutions lie on the best non-dominated front. This method harmonizes the 

average distances of all k-nearest neighbours around a solution. The harmonic average 

distance d, is computed using equation (3.1) (Huang et al. 2005): 

kddd

k
d

1

2

1

1

1
+++

=

L

 …. (3.1) 

where d1, d2, …, dk are the Euclidean distances of k nearest neighbouring solutions 

and k is the number of nearest solutions. If one of the distances is very large and other 

distances are all small, the harmonic average distance will still be small. In this way, 

influence of outliers on the computation of crowding degree may be overcome. 

Solutions with higher harmonic average distances are better (Huang et al. 2005). 

Furthermore, at higher iterations, the harmonic distance measure ensures uniform 

distribution of solutions on the non-dominated front. 

3.3.4 Handling constraints in CPMDE 

3.3.4.1 Variable bound constraints 

In CPMDE, boundary constraints are handled using the bounce-back strategy. This 

strategy replaces a vector that has exceeded one or more of its bounds by a valid vector 

that satisfies all boundary constraints. In contrasts to random re-initialization, the 

bounce-back strategy takes the progress towards the optimum into account by selecting 

a parameter value that lies between the base vector parameter value and the bound 

being violated (Price, Storn and Lampinen 2005). 
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3.3.4.2 Equality and inequality constraints 

Equality and inequality constraints are handled using the constrained-domination 

technique suggested by Deb (2001). A solution x(i) is said to constrained-dominate 

another solution x(j), if any of the following conditions is true: 

i.  Solution x(i) is feasible and solution x(j) is not feasible. 

ii.  Solutions x(i )and x(j) are both infeasible, but solution x(i) has a smaller overall

 constraint violation. 

iii.  Solutions x(i) and x(j) are feasible and solution x(i) dominates solution x(j). 

3.4 BENCHMARKING CPMDE 

The performance of CPMDE was compared with 6 state-of-the-art MOEAs on four 

unconstrained benchmark test beds. The performance of CPMDE was also compared 

on one constrained test problem and assessed on a three-objective optimisation 

problem. Furthermore, the performance of CPMDE on an engineering cantilever 

design problem is demonstrated. Other algorithms used in benchmarking CPMDE in 

this study include NSGA-II (real coded), NSGA-II (binary coded), SPEA, PAES, 

MODE-E (MODE with external archive and crowding distance measure) and 

MOPSO. 

3.4.1 Benchmark test problems 

Four test problems: SCH, FON, KUR and ZDT4 were used for evaluating the 

performance of CPMDE on unconstrained optimisation problems. These are common 

difficult benchmark problems used in the literatures (Deb et al. 2002; Angira and Babu 

2005; Huang et al. 2005; Reddy and Kumar 2007). These are bi-objective problems in 

which both objectives are to be minimized. Each problem poses a different type of 

difficulty to MOEAs. SCH is a single variable problem having a convex Pareto-

optimal front. This is the simplest of the test problems. FON is an n-variable problem 

having a non-convex Pareto-optimal front. The 3-variable version is adopted in this 

study. The non-convexity of the front is the major difficulty posed here. KUR is a 3-

variable problem having a number of disconnected Pareto-optimal fronts. Finding 
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uniform spread of solutions on all discontinuous regions is the challenge in this 

problem. ZDT4 is a 10-variable problem with 219 local optimal fronts. Escaping all 

local non-dominated fronts to converge to the global optimal front is a real challenge 

in this problem.  

To evaluate the performance of CPMDE on constrained optimisation problem, the 

problem TNK is used (Deb et al. 2002). This is a bi-objective problem with two 

constraints. Both of the objectives are to be minimized. TNK has a non-convex, 

discontinuous Pareto-optimal front. Finding uniform spread of solutions on all 

segments while satisfying both constraints is a challenge in this problem.  

Theoretical MOEA optimisation studies generally consider a small number of 

objectives. The bi-objective case is by far the most studied. Real world MOEA 

applications, by contrast, are frequently more ambitious, with the number of treated 

criteria reaching double figures in some cases (Purshouse and Fleming 2003). Hence, 

the performance of CPMDE was evaluated on test problem DTLZ2 to demonstrate its 

effectiveness in solving problems involving more than two objectives. The 3-objective 

version of the test problem is adopted in this study. The definitions and descriptions 

of all test functions are taken from literatures (Deb 2001; Purshouse and Fleming 2003; 

Reddy and Kumar 2007; Adeyemo and Otieno 2009a) and summarized in Table1. 

3.4.2 Performance measures 

Various performance measures for evaluating MOEA performance have been 

suggested and implemented (Deb 2001). For example, Schutze et al. (2012) proposed 

a method for finding good Hausdorff approximations of Pareto fronts using an 

averaged Hausdorff distance measure (∆p). The measure ∆p is a performance indicator 

in multi-objective evolutionary optimisation which simultaneously takes into account 

proximity to the true Pareto front and uniform spread of solutions. Hence, it efficiently 

combines both spread and convergence measures in a single performance metric. The 

proposed methodology has further been found useful in MOEA evaluations (Rudolph,  

Trautmann and Schutze 2012; Trautmann et al. 2012). However, in order to provide a 

uniform basis for comparison of MOEAs used in this study, two performance measures 
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reported in the published studies were adopted (Deb et al. 2002; Huang et al. 2005). 

Convergence metric is used to evaluate convergence to the global Pareto-optimal front 

while diversity metric is employed to measure the spread of solutions on the obtained 

non-dominated front. 

     Table 1: Summary of benchmark test problems. 
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3.4.2.1 Convergence metric 

This is the average distance of the non-dominated set of solutions in Q from a set P*of 

Pareto-optimal solutions. It is computed using equation (3.2). According to Deb (2001) 
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an algorithm with a smaller value of convergence metric ϒgives a closer convergence 

to the Pareto front. 

Q

Q

j

jd∑
=

=ϒ
1  

…. (3.2) 

where dj is the Euclidean distance (in the objective space) between the solution j ϵ Q 

and the nearest member of P*. 

3.4.2.2 Spread/Diversity metric 

This metric measures the extent and spread of solutions in the obtained non-dominated 

front. It is computed using equation (3.3): 
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where di is the Euclidean distance (in the objective space) between consecutive 

solutions in the obtained non-dominated front Q, and d  is the average of these 

distances. M is the number of objectives. The parameter 
e
md is the Euclidean distances 

between the extreme solutions of the Pareto front P* and the boundary solution of the 

obtained non-dominated front Q with respect to each objective m. An algorithm with 

a smaller value of diversity metric ∆ provides a better spread of solutions on the Pareto 

front (Deb 2001). 

3.4.3 Sensitivity analysis 

A sensitivity analysis was performed to determine the best combination of crossover 

rate Cr and mutation scaling factor F that will be the best for CPMDE in solving 

optimization problems. Cr was varied from 0.0 to 1.0 at a step of 0.05 while F was 

varied from 0.1 to 0.9 at a step of 0.05. It was found that the best combination for these 

parameters is when Cr lies between 0.25 – 0.35 or 0.8 – 0.95 while F ranges from 0.25 

– 0.6.  The bifurcation in the values of Cr has also been observed by Price, Storn and 

Lampinen (2005) who suggest that functions solvable with low Cr were decomposable 
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while functions requiring high values of Cr were not. The best combination for Cr, and 

F was found to be when Cr = F = 0.3 for the test problems.  

3.4.4 Experimental setup 

In this study, DE/rand/1/bin variant of DE was used as the base for CPMDE. Cr and F 

were set at 0.3. Population size Np was set to 100 and the algorithm was run for a 

maximum number of generations, gMax = 250 to give a total of 25000 fitness 

computations. A set of 500 uniformly spaced solutions were taken from the Pareto-

optimal set for computation of all metrics. Averages and variances of metric values 

over 10 runs are reported in this study. For test problem TNK, gMax was set at 500 

generations. Harmonic average crowding distances are computed using two nearest 

neighbours. 

3.4.5 Cantilever design problem 

To demonstrate the applicability of CPMDE in solving real-world optimisation 

problems, the algorithm was applied to design a cantilever beam. A problem originally 

studied by Deb (2001) using NSGA-II and further studied by Adeyemo and Otieno 

(2009a) using MDEA is adopted here. A schematic representation of a cantilever beam 

is depicted in Figure 5. 

 

 

Figure 5: A schematic diagram of a cantilever beam. Source: Adapted, Deb, (2001). 

 

This problem has two decision variables of diameter (d) and length (l). The beam is 

designed to carry an end load P. There are two conflicting objectives that should be 

minimized; the weight of the beam f1 and end deflection f2. Minimizing the weight, f1, 

will result in an optimum solution that will have small dimensions of d and l. If the 

dimensions are small, the beam will not be adequately rigid and the end deflection of 



44 

the beam will be large. If on the other hand, the beam is minimized for end deflection, 

the dimensions of the beam will be large, thereby making the weight of the beam to be 

large. There are two constraints in this design problem. 1) The maximum stress, σmax 

must be less than the allowable strength Sy and 2) the end deflection δ must be smaller 

than a specified limit of δmax.  The two-objective constrained optimisation problem for 

the two decision variables d(mm) and l(mm) is formulated as follows (Deb 2001): 
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d
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ρ, P, d and l are the density, force, diameter and length respectively. The following 

parameter values are used: ρ = 7800 kg/m3,P = 1 KN, E = 207 GPa, Sy = 300 MPa and 

δmax = 5 mm. On this problem, the following settings are used for CPMDE: Cr = 0.9, 

F = 0.5, Np = 100 and gMax = 300. 

3.5 RESULTS 

The mean and variance of the convergence metric on the unconstrained test beds over 

10 runs of CPMDE are reported in Table 2 while those of the diversity metric are 

presented in Table 3. The performance metrics for MOPSO on the test problem ZDT4 

is not available. The authors reported that this algorithm failed on this multi modal test 

bed. Reported values of convergence and diversity metrics for other algorithms used 

in benchmarking CPMDE are taken from correlative literatures (Deb et al. 2002; 

Adeyemo and Otieno 2009a) and presented in the respective tables. Best mean results 

are shown in boldface.  

Figure 6 depicts the convergence of the non-dominated front obtained by CPMDE to 

the true Pareto-optimal front in problems SCH, FON, KUR and ZDT4. The values of 

the test metrics are indicated on the respective plots. Figure 7 shows the performance 
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of NSGA-II and CPMDE, respectively, for 500 generations on the TNK problem. 

Figure 8 shows the results obtained by NSGA-II, MODE, MDEA and CPMDE on the 

cantilever beam design problem while Figure 9 depicts the convergence of solutions 

obtained by CPMDE to the true Pareto optimal surface of test problem DTLZ2. 

Table 2: Convergence metrics on unconstrained test beds. 

  Convergence metric 

Algorithm SCH FON KUR ZDT4 

NSGA-II  

(real coded) 0.003391±0.000000 0.001931±0.000000 0.028964±0.000018 0.513053±0.118460 

NSGA-II 

(binary coded) 0.002833±0.000001 0.002571±0.000000 0.028951±0.000016 3.227636±7.307630 

SPEA 0.003465±0.000000 0.010611±0.000005 0.049077±0.000081 9.513615±11.321067 

PAES 0.001313±0.000003 0.151263±0.000905 0.057323±0.011989 0.854816±0.527238 

MODE-E 0.006502±0.000000 0.003031±0.000000 0.030819±0.000008 0.030689±0.004867 

MOPSO 0.006603±0.000000 0.002157±0.000000 0.030858±0.000032 N/A 

CPMDE 0.003273±0.000000 0.001646±0.000000 0.017632±0.000002 0.000731±0.000000 

Table 3: Diversity metrics on unconstrained test beds. 

Algorithm 

Diversity metric 

SCH FON KUR ZDT4 

NSGA-II  

(real coded) 0.477899±0.003471 0.378065±0.000639 0.411477±0.000992 0.702612±0.064648 

NSGA-II  

(binary coded) 0.449265±0.002062 0.395131±0.001314 0.442195±0.001498 0.479475±0.009841 

SPEA 0.818346±0.004497 0.804113±0.002961 0.880424±0.009066 0.732097±0.011284 

PAES 1.063288±0.002868 1.162528±0.008945 1.079838±0.013772 0.870458±0.101399 

MODE-E 0.347156±0.001160 0.220099±0.000393 0.401911±0.000545 0.338330±0.003676 

MOPSO 0.594483±0.002670 0.595938±0.002150 0.620227±0.002170 N/A 

CPMDE 0.156397±0.000102 0.308420±0.000749 0.402617±0.001025 0.203378±0.000400 
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Figure 6: Convergence of CPMDE non-dominated front to the true Pareto-optimal 

front in problems SCH, FON, KUR and ZDT4.
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(a)  

Obtained non-dominated solutions with RTS based 

NSGA-II on constrained problem TNK. 

Source: Adapted from Deb et al., (2002) 

 

 

 

 

(b) 

Obtained non-dominated solutions with constraint 

domination based NSGA-II on constrained problem 

TNK. 

Source: Adapted from Deb et al., (2002) 

 

 

 

 

 

(c) 

Obtained non-dominated solutions with constraint 

domination based CPMDE on constrained problem 

TNK. 

Figure 7: Performance of NSGA-II and CPMDE on test problem TNK for 500 iterations. 
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(a) 

Non-dominated solutions obtained by MODE and 

NSGA-II for the cantilever beam design problem. 

Source: Adeyemo and Otieno, (2009) 

 

 

 

 

(b) 

Non-dominated solutions obtained by MDEA for the 

cantilever beam design problem. 

Source: Adeyemo and Otieno, (2009) 

 

 

 

 
(c) 

Non-dominated solutions obtained by CPMDE for the 

cantilever beam design problem. 

Figure 8: The results of MODE, NSGA, MDEA and CPMDE for cantilever design problem. 
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Figure 9: Convergence of CPMDE to the true Pareto-optimal surface of DTLZ2. 

 

3.6 DISCUSSION OF RESULTS 

From the results in Tables 2 and 3, it is found that CPMDE performed well in 

converging to the Pareto front of SCH. It produced the third best result for convergence 

metric and the best result for diversity metric ( ϒ =0.003273, ∆=0.156397). PAES 

performed best on this test bed ( ϒ =0.001313), the performance of CPMDE is 

therefore comparable with other algorithms on this problem. CPMDE outperformed 

all other algorithms in converging to the Pareto front of test beds FON and KUR as it 

produced convergence metrics of ϒ =0.001646 and ϒ =0.017632 respectively. 

However, MODE-E produced better values of diversity metrics on this bed while 

CPMDE was the runner up in both cases. It can be said that the performance of 

CPMDE is comparable to MODE-E and better than the other algorithms on these test 

beds.  

The strength of CPMDE in converging to the global Pareto-optimal front in deceptive 

multi-modal functions is amply demonstrated on test problem ZDT4. Here, CPMDE 

outperformed all other algorithms in convergence and diversity ( ϒ =0.000731, 

∆=0.203378). The runner-up in this case is MODE-E with metrics ( ϒ =0.030689, 

∆=0.338330). The convergence metric for CPMDE on this problem is several orders 
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of magnitude lesser than those of the other algorithms. On all unconstrained problems 

except KUR, CPMDE produces variance values of zero (Table 2) and a value of 

0.000002 for test problem KUR. This suggests that CPMDE is reliable and stable in 

converging to the Pareto-optimal fronts of these beds.  

By inspection, Figure 7 shows that CPMDE performs better than NSGA-II employing 

the RTS constraint handling technique on problem TNK. The performance of CPMDE 

is comparable to the performance of NSGA-II employing the constraint domination 

technique. This suggests that the constraint domination approach employed by 

CPMDE for handling constraints is adequate. CPMDE was also able to find uniform 

spread of solutions on all segments of the discontinuous Pareto front of this problem. 

Comparison of results of CPMDE with results obtained by MDEA, MODE and NSGA 

on an engineering cantilever design problem (Figure 8) indicates that the non-

dominated solutions generated by CPMDE are comparable to those of MODE, NSGA 

and MDEA which are recent state-of-the-art MOEAs. CPMDE produced quality non 

dominated solutions along the Pareto front. This shows that CPMDE can perform well 

on real-world engineering problems. From inspection of Figure 9, it is evident that the 

non-dominated solutions obtained by CPMDE are very close to and well distributed 

on the true Pareto-optimal surface of test problem DTLZ2. Therefore, CPMDE may 

be applied to solve optimisation problems involving more than two objectives. 

3.7 CONCLUSION 

In this chapter, a combined Pareto multi-objective differential evolution (CPMDE) 

multi-objective evolutionary algorithm is proposed. By incorporating combined Pareto 

procedures to implement a novel selection scheme at each generation, CPMDE is able 

to adaptively balance exploitation of non-dominated solutions found with exploration 

of the search space. Thus it is able to escape all local optima and converge to the global 

Pareto-optimal front. It was found that CPMDE could converge to the Pareto-optimal 

front of constrained and unconstrained optimisation problems.  

The ability of CPMDE to converge to the global Pareto-optimal front in deceptive 

multi-modal functions is amply demonstrated on test problem ZDT4 which has 21 

billion local optimal fronts. Among the seven algorithms compared in this study, 
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CPMDE produced the best convergence in three out of four, and best diversity in two 

out of four unconstrained test beds. Also, the variances of the metrics suggest that the 

algorithm is stable in finding optimal solutions on the test beds.  

The ability of CPMDE in solving constrained optimisation problems and optimisation 

problems involving more than two objectives was also demonstrated. Furthermore, 

CPMDE was applied to solve a real-world problem where its ability to solve such 

problems was demonstrated. Competitive results obtained from the benchmark and 

application of CPMDE suggest that it is a good alternative for solving multi-objective 

optimisation problems. Therefore, CPMDE is adoptable as a method of MOEA for 

solving real-world MOOPs. 
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CHAPTER 4 

PERFORMANCE EVALUATION OF COMBINED PARETO 

MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION ON 

TUNEABLE MULTI-OBJECTIVE TEST BEDS 

4.1 OVERVIEW 

Many optimisation problems in engineering involve the satisfaction of multiple 

objectives within the limits of certain constraints. Methods of evolutionary multi-

objective algorithms (EMOAs) have been proposed and applied to solve such 

problems. Recently, a combined Pareto multi-objective differential evolution 

(CPMDE) algorithm was proposed. The algorithm combines Pareto selection 

procedures for multi-objective differential evolution to implement a novel selection 

scheme. The ability of CPMDE in solving unconstrained, constrained and real 

optimisation problems was demonstrated and competitive results obtained from the 

application of CPMDE suggest that it is a good alternative for solving multi-objective 

optimisation problems. In this chapter, CPMDE is further tested using tuneable multi-

objective test problems and applied to solve a real world engineering design problem. 

Results obtained herein further corroborate the efficacy of CPMDE in multi-objective 

optimisation. 

4.2 INTRODUCTION 

In most practical decision-making problems, the presence of multiple objectives or 

multiple criteria is evident (Deb 2001). Due to the multi-criteria nature of most real-

world problems, multi-objective optimisation problems (MOOPs) are very common 

particularly in engineering and scientific designs and applications. MOOPs involve 

multiple often conflicting objectives, which are to be optimised simultaneously. There 

is no single optimal solution to this class of problems; rather, the solution consists of 

a group of alternative trade-off solutions called Pareto-optimal or non-inferior 

solutions which must be considered equivalent in the absence of specialized 

information concerning the relative importance of the objectives (Deb 2011; Zhou et 

al. 2011). 
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Evolutionary algorithms (EAs) are population-based meta-heuristic optimisation 

algorithms that use biology-inspired mechanisms like mutation, crossover, natural 

selection and survival of the fittest in order to refine a set of solution candidates 

iteratively. EAs have often performed well approximating solutions to all types of 

problems because they ideally do not make any assumption about the underlying 

fitness landscape (Weise 2009; Olofintoye,  Adeyemo and Otieno 2013b). Since EAs 

deal with a group of candidate solutions, it seems natural to use them in MOOPs to 

find a group of optimal solutions. Indeed, the applications of evolutionary multi-

objective algorithms (EMOAs) to the solution of real world MOOPs have been 

demonstrated and they have been found very efficient in solving these classes of 

problems (Reddy and Kumar 2007; Mezura-Montes, Reyes-Sierra and Coello 2008; 

Qin et al. 2010). The development of the theory of EMOA in recent years has spurred 

researches in the field of development of EMOAs for the solution of real-world 

problems. Over the past decades, several studies involving the extension of 

evolutionary algorithms to solve multi-objective numerical optimisation problems 

have been reported (Fonseca and Fleming 1993; Knowles and Corne 1999; Deb et al. 

2002). 

Differential evolution (DE) is currently one of the most popular heuristics being used 

for solving single-objective optimisation problems in continuous search spaces. Due 

to its reported successes on a myriad of problems, its use has been extended to other 

types of problem domains, including multi-objective optimisation (Price, Storn and 

Lampinen 2005; Mezura-Montes, Reyes-Sierra and Coello 2008). In recent times, 

several researches extending the application of DE for finding solutions in the multi-

objective problem domains have been reported in the literatures (Abbass and Sarker 

2002; Babu and Jehan 2003; Adeyemo and Otieno 2009a; Ali,  Siarry and Pant 2012). 

For instance, Robic and Filipic (2005) proposed three strategies of a Pareto-based 

differential evolution for multi-objective optimisation (DEMO). The suggested 

strategies are DEMO/parent, DEMO/closest/dec and DEMO/closest/obj. In 

DEMO/parent, a child replaces the parent at the same index if it dominates that parent 

while in DEMO/closest/dec, the child replaces the closest parent to it in the decision 

space. DEMO/closest/obj replaces a parent with a child in the objective function space. 
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The performances of the strategies of DEMO were compared with six other methods 

of EMOAs on five benchmark test beds. It was found that DEMO outperformed the 

other algorithms especially those based on other EAs such as genetic algorithm (GA) 

and evolution strategies (ES). It was thus concluded that DEMO may be adopted as an 

alternative for solving MOOPs. 

In chapter 3 (also available in Olofintoye,  Adeyemo and Otieno (2014a)), a combined 

Pareto multi-objective differential evolution (CPMDE) algorithm is introduced. The 

algorithm combines Pareto selection procedures for multi-objective differential 

evolution to implement a novel selection scheme at each generation. The performance 

of CPMDE was evaluated using common difficult test problems obtained from multi-

objective evolutionary computation literatures. The ability of the algorithm in solving 

unconstrained, constrained and real optimisation problems was demonstrated and 

competitive results obtained from its application suggest that it is a good alternative 

for solving multi-objective optimisation problems. However, Deb (2001) has argued 

that most of these test problems are not tuneable and it is difficult to establish the 

feature of an algorithm that has been tested. Based on this argument, the author 

presented a systematic procedure of designing test problems for unconstrained and 

constrained multi-objective evolutionary optimisation and constructed a set of six 

difficult test problems. These problems have further been studied by researcher in the 

field (Fonseca and Fleming 1993; Deb et al. 2002; Robic and Filipic 2005; Adeyemo 

and Otieno 2009a). Motivated by the preceding argument, CPMDE is further tested 

using five (continuous) tuneable unconstrained multi-objective test problems and one 

constrained test problem. Furthermore, CPMDE is applied to solve a real world 

engineering design problem. Results obtained herein further corroborate the efficacy 

of CPMDE in solving multi-objective optimisation problems. A thorough discussion 

on CPMDE can be found in Olofintoye, Adeyemo and Otieno (2014a).  

4.3 THE CPMDE ALGORITHM 

In CPMDE, the combined population of trial and target solutions at the end of every 

iteration is checked for non-dominated solutions. Solutions that will proceed to the 

next generation are selected using a combined Pareto ranking and Pareto dominance 

selection scheme (Mezura-Montes, Reyes-Sierra and Coello 2008).  Diversity among 
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solutions in the obtained non-dominated set is promoted using a harmonic average 

crowding distance measure (Huang et al. 2005). Furthermore, boundary constraints 

are handled using the bounce-back strategy (Price, Storn and Lampinen 2005) while 

equality and inequality constraints are handled using the constrained-domination 

technique suggested by Deb (2001). The CPMDE algorithm is summarized in section 

3.3.1 of this report. A rigorous discussion on CPMDE can be found in Olofintoye,  

Adeyemo and Otieno (2014a) and in chapter 3 of this report.  

4.4 EVALUATING AND BENCHMARKING CPMDE 

The performance of CPMDE is compared with 13 state-of-the-art EMOAs on five 

unconstrained benchmark test beds and one constrained test problem. Furthermore, the 

performance of CPMDE on an engineering two-bar truss design problem is 

demonstrated. Other algorithms used in benchmarking CPMDE in this study include 

NSGA-II (real coded), NSGA-II (binary coded), SPEA, PAES, PDEA, MODE, 

MODE-E (MODE with external archive and crowding distance measure), MOPSO, 

SDE, DEMO/parent, DEMO/closest/dec, DEMO/closest/obj and MDEA. 

4.4.1 Description of benchmark test problems 

Five Zitzler-Deb-Thiele (ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6) test problems, which 

are common tuneable difficult benchmark problems used in the literatures (Deb et al. 

2002; Madavan 2002; Xue,  Sanderson and Graves 2003; Robic and Filipic 2005) are 

chosen for evaluating the performance of CPMDE on unconstrained optimisation 

problems. These are bi-objective problems in which both objectives are to be 

minimized. Each problem poses a different type of difficulty to EMOAs. The 

definitions and descriptions of all test functions are taken from literatures (Deb 2001; 

Robic and Filipic 2005; Reddy and Kumar 2007; Adeyemo and Otieno 2009a) and 

summarized in Table 4. 

ZDT1 is a 30-variable problem having a convex Pareto-optimal front. The difficulty 

an EMOA may face on this problem is in tackling the large number of decision 

variables. ZDT2 is also a 30-variable problem but has a non-convex Pareto-optimal 

front. The non-convexity of the front is the major difficulty posed here.  
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Table 4: Description of benchmark test beds. 

Problem n 
Variable 

bounds 
Objective functions and constraints 
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Comments 
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ZDT3 is a 30-variable problem having a number of disconnected Pareto-optimal 

fronts. Finding uniform spread of solutions on all discontinuous regions is the 

challenge in this problem. ZDT4 is a 10-variable problem with 219 local optimal fronts. 

Escaping all local non-dominated fronts to converge to the global optimal front is a 

real challenge in this problem. ZDT6 is a 10-variable problem having a non-convex 

Pareto-optimal front with non-uniform distribution of solutions on the front. Finding 

a uniform spread of solution on this non-convex front poses a challenge to EMOAs. 
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To evaluate the performance of CPMDE on constrained optimisation problems, the 

problem CONSTR is used (Deb 2001; Reddy and Kumar 2007).  This is a bi-objective 

problem with two constraints. Both of the objectives are to be minimized. CONSTR 

has a convex Pareto-optimal front with two distinct segments. Finding uniform spread 

of solutions on both segments while satisfying both constraints is a challenge in this 

problem. 

4.4.2 Performance measures 

Performance measures that exist for EMOA evaluation are multifarious (Zhou et al. 

2011; Schutze et al. 2012). However, in order to provide a uniform basis for 

comparison of EMOAs used in this chapter, the three performance measures reported 

in the published studies were adopted (Deb et al. 2002; Robic and Filipic 2005; 

Adeyemo and Otieno 2009a). The generational distance and convergence metric are 

used to evaluate convergence to the global Pareto-optimal front while the diversity 

metric is employed to measure the spread of solutions on the obtained non-dominated 

front. 

4.4.2.1 Generational distance 

This is the average distance of the non-dominated set of solutions in a set Q from a set 

of chosen Pareto-optimal solutions. It is computed using equation (4.1): 
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∑
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 …. (4.1) 

For p = 2, di is the Euclidean distance (in the objective space) between the solutions of 

Q and the nearest member in the true Pareto-front. An algorithm having a small value 

of GD is gives a better convergence to the Pareto front (Deb 2001). 

4.4.2.2 Convergence metric 

This is a special case of the GD where p = 1. Convergence metric is computed using 

equation (3.2) in section 3.4.2.1 of this report (Robic and Filipic 2005): 
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4.4.2.3 Diversity metric 

This metric measures the extent and spread of solutions in the obtained non-dominated 

front. It is computed using equation (3.3) in section 3.4.2.2 of this report. An algorithm 

with a smaller value of diversity metric (∆) gives a better spread of solutions on the 

Pareto front (Deb 2001). 

4.4.3 Experimental setup 

In this study, DE/rand/1/bin variant of DE was used as the base for CPMDE. The cross 

over rate, Cr and mutation scaling factor, F were set at 0.3. Population size Np was set 

to 100 and the algorithm was run for a maximum number of generations, gMax = 250. 

A set of 500 uniformly spaced solutions were taken from the Pareto-optimal set for 

computation of all metrics. Averages and variances of metric values over 10 runs are 

reported in this study. For comparison of the performance of CPMDE with NSGA-II 

on the problem CONSTR, the following parameters are used: Cr = F = 0.3, Np = 40 

and gMax = 200. Harmonic average crowding distances are computed using the two 

nearest neighbours on either sides of a solution. 

4.4.4  Two-bar truss design problem 

To demonstrate the applicability of CPMDE in solving real-world optimisation 

problems, the algorithm was applied to design a two-bar truss system. A problem 

originally studied by Palli et al. (1998) using the ϵ-constraint method and further 

studied by Deb, Pratap and Moitra (2000) using NSGA-II is adopted here. A schematic 

representation of the two-bar truss is depicted in Figure 10. 

 

Figure 10: A Schematic Diagram of a Two-Bar Truss. 

Source:  (Deb,  Pratap and Moitra 2000) 
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The truss is designed to carry a certain load without elastic failure. Thus, in addition 

to the objective of designing the truss for minimum volume (which is equivalent to 

designing for minimum cost of fabrication); there are additional objectives of 

minimizing stresses in each of the two members AC and BC. The two-objective 

constrained optimisation problem for three decision variables y (vertical distance 

between B and C in m), x1 (cross-sectional area of AC in m2) and x2 (cross-sectional 

area of BC in m2) is formulated as follows (Deb, Pratap and Moitra 2000): 

   

Objective function 1 (Minimize volume): 2
2

2
1211 116),,( yxyxyxxf +++=  
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σAC and σBC are the stresses in members AC and BC respectively. On this problem, the 

following settings are used for CPMDE: Cr = 0.9, F = 0.5, Np = 100 and gMax = 100. 

4.5 RESULTS AND DISCUSSION 
 

 

The mean and variance of the convergence metric on the unconstrained test beds, over 

10 runs of CPMDE are reported in Table 5 while those of the diversity metric are 

presented in Table 6. The convergence metric for PDEA was not available; therefore 

for comparative study on this algorithm, the available generational distance metric is 

extracted from literatures and presented alongside those of DEMO and CPMDE in 

Table 7. Diversity metrics for MODE on all test functions are not available because 

they were not calculated in the original study. Also, the performance metric for 

MOPSO on test problem ZDT4 is not available. The authors reported that this 

algorithm failed on this test bed. Reported values of generational distances, 

convergence and diversity metrics for other algorithms used in benchmarking CPMDE 

are taken from correlative literatures (Deb et al. 2002; Madavan 2002; Xue,  Sanderson 

and Graves 2003; Robic and Filipic 2005; Adeyemo and Otieno 2009a) and presented 

in the respective tables. Best mean results are shown in boldface. Figure 11 depicts the 

convergence of the obtained non-dominated front to the true Pareto-optimal front in 
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problems ZDT1, ZDT2, ZDT3, ZDT4, ZDT6 and CONSTR respectively. The values 

of the test metrics are indicated on the respective plots. Figure 12 shows the 

performance of NSGA-II and CPMDE, respectively, for 200 generations on the 

CONSTR problem. Figure 13 shows the results obtained by NSGA-II and CPMDE on 

the two-bar truss design problem. 

 Table 5: Convergence metrics on unconstrained test beds. 

Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

NSGA-II  

(real coded) 0.033482±0.004750 0.072391±0.031689 0.114500±0.004940 0.513053±0.118460 0.296564±0.013135 

NSGA-II  

(binary coded) 0.000894±0.000000 0.000824±0.000000 0.043411±0.000042 3.227636±7.307630 7.806798±0.001667 

SPEA 0.001799±0.000001 0.001339±0.000000 0.047517±0.000047 7.340299±6.572516 0.221138±0.000449 

PAES 0.082085±0.008679 0.126276±0.036877 0.023872±0.000010 0.854816±0.527238 0.085469±0.006664 

PDEA N/A N/A N/A N/A N/A 

MODE 0.005800±0.000000 0.005500±0.000000 0.021560±0.000000 0.638950±0.500200 0.026230±0.000861 

MODE-E 0.001999±0.000000 0.001554±0.000000 0.002642±0.000000 0.030689±0.004867 0.005998±0.000005 

MOPSO 0.019659±0.000012 0.017093±0.000133 0.030469±0.000067 N/A 0.751692±0.151000 

SDE 0.002741±0.000385 0.002203±0.000297 0.002741±0.000120 0.100100±0.446200 0.000624±0.000060 

DEMO/parent 0.001083±0.000113 0.000755±0.000045 0.001178±0.000059 0.001037±0.000134 0.000629±0.000044 

DEMO 

/closest/dec 0.001113±0.000134 0.000820±0.000042 0.001197±0.000091 0.001016±0.000091 0.000630±0.000021 

DEMO 

/closest/obj 0.001132±0.000136 0.000780±0.000035 0.001236±0.000091 0.041012±0.063920 0.000642±0.000029 

MDEA 0.000921±0.000005 0.000640±0.000000 0.001139±0.000024 0.048962±0.536358 0.000436±0.000055 

CPMDE 0.000755±0.000000 0.000775±0.000000 0.000916±0.000000 0.000731±0.000000 0.000584±0.000000 

 
 Table 6: Diversity metrics on unconstrained test beds. 

Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

NSGA-II  

(real coded) 0.390307±0.001876 0.430776±0.004721 0.738540±0.019706 0.702612±0.064648 0.668025±0.009923 

NSGA-II  

(binary coded) 0.463292±0.041622 0.435112±0.024607 0.575606±0.005078 0.479475±0.009841 0.644477±0.035042 

SPEA 0.784525±0.004440 0.755184±0.004521 0.672938±0.003587 0.798463±0.014616 0.849389±0.002713 

PAES 1.229794±0.000742 1.165942±0.007682 0.789920±0.001653 0.870458±0.101399 1.153052±0.003916 

PDEA 0.298567±0.000742 0.317958±0.001389 0.623812±0.000225 0.840852±0.035741 0.473074±0.021721 

MODE N/A N/A N/A N/A N/A 

MODE-E 0.306235±0.001130 0.298449±0.000580 0.504275±0.000200 0.338330±0.003676 0.335594±0.019000 

MOPSO 0.586728±0.001480 0.689580±0.038200 0.594200±0.001150 N/A 0.935686±0.018500 

SDE 0.382890±0.001435 0.345780±0.003900 0.525770±0.043030 0.436300±0.110000 0.361100±0.036100 

DEMO/parent 0.325237±0.030249 0.329151±0.032408 0.309436±0.018603 0.359905±0.037672 0.442308±0.039255 

DEMO 

/closest/dec 0.319230±0.031350 0.335178±0.016985 0.324934±0.029648 0.359600±0.026977 0.461174±0.035289 

DEMO 

/closest/obj 0.306770±0.025465 0.326821±0.021083 0.328873±0.019142 0.407225±0.094851 0.458641±0.031362 

MDEA 0.283708±0.002938 0.450482±0.004211 0.299354±0.023309 0.406382±0.062308 0.305245±0.019407 

CPMDE 0.241173±0.000077 0.266395±0.000379 0.353734±0.000522 0.203378±0.000400 0.217533±0.000234 
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 Table 7: Generational distance metrics on unconstrained test beds. 

Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

PDEA 0.000615±0.000000 0.000652±0.000000 0.000563±0.000000 0.618258±0.826881 0.023886±0.003294 

DEMO/parent 0.000230±0.000048 0.000091±0.000004 0.000156±0.000007 0.000202±0.000053 0.000074±0.000004 

DEMO 

/closest/dec 0.000242±0.000028 0.000097±0.000004 0.000162±0.000013 0.000179±0.000048 0.000075±0.000002 

DEMO 

/closest/obj 0.000243±0.000050 0.000092±0.000004 0.000169±0.000017 0.004262±0.006545 0.000076±0.000003 

 

CPMDE 0.000086±0.000000 0.000087±0.000000 0.000107±0.000000 0.000085±0.000000 0.000068±0.000000 

 

From the results in Tables 5 - 7, it is evident that CPMDE outperformed all other 

algorithms on ZDT1 test bed as it produced the minimum values of all test metrics in 

all cases(Υ=0.000755, GD=0.000086, ∆=0.241173). Binary coded NSGA-II 

performed second with respect to convergence (Υ=0.000894) while MDEA was the 

second best with respect to diversity (∆=0.283708). MDEA and DEMO/parent showed 

slightly better convergence property on ZDT2, however, CPMDE performed best with 

respect to diversity preservation on this test bed, reporting a value of ∆=0.266395. 

Therefore the performance of CPMDE on this problem is comparable to MDEA and 

DEMO but better than those of other algorithms. Table 5 shows that CPMDE 

performed best in converging to the Pareto-optimal front of ZDT3 with a convergence 

metric, Υ=0.000916. However, the reported diversity metric for MDEA and all 

versions of DEMO were better. Hence, the performance of CPMDE is comparable 

with MDEA and DEMO on this test bed. The advantage of CPMDE in converging to 

the global Pareto-optimal front in deceptive multi-modal functions is amply 

demonstrated on test problem ZDT4. Here, CPMDE outperformed all other algorithms 

in convergence and diversity (Υ=0.000731, GD=0.000085, ∆=0.203378). The runner-

ups in this case are DEMO/closest/dec (Υ=0.001016) on convergence and MODE-E 

on diversity (∆=0.338330). The convergence metric on this problem is clearly smaller 

than those of other algorithms. On ZDT6, CPMDE performed second best with a 

convergence metric (Υ=0.000584) which is slightly higher than 0.000436 reported for 

MDEA. However, CPMDE produced the best diversity (∆=0.217533) on this problem. 

On all unconstrained problems, CPMDE produces variance values of zero for 

convergence metrics and generational distances (Tables 5 and 7). This suggests that 

CPMDE is reliable and stable in converging to the true Pareto front on these test beds. 
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Figure 11: Convergence of CPMDE Non-dominated Front to the True Pareto-optimal Front 

in Test Problems ZDT1, ZDT2, ZDT3, ZDT4, ZDT6 and CONSTR. 
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Source: Adapted from (Deb 2001) 

 

 

 

Figure 12: Performance of NSGA-II and CPMDE on Test Problem CONSTR, 200 iterations. 

 

 
 
 

Source: Adapted from  (Deb 2001) 
 

Figure 13: Performance of NSGA-II and CPMDE on a Two-bar Truss Design Problem. 

By inspection, Figure 12 shows that while NSGA-II was able to produce solutions 

covering roughly 80 percent of the Pareto-optimal front for 200 iterations on the 

CONSTR test problem, CPMDE spanned the entire front with better convergence 

property. Therefore, CPMDE outperforms NSGA-II which is one of the state-of-the-

art algorithms on this problem.  
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On the two-bar truss design problem, ϵ-constraint found only five solutions with spread 

(0.004445m3, 89983 kPa) - (0.004833m3, 83268 kPa) while NSGA-II found many 

solutions in the range (0.00407 m3, 99755 kPa) - (0.05304 m3, 8439 kPa). CPMDE 

was also able to find many solutions spanning the range (0.00408m3,98787kPa) - 

(0.07384m3, 8433kPa). If minimization of stress is important, NSGA-II finds a 

solution with stress as low as 8439 kPa, whereas the ϵ-constraint method found a 

solution with minimum stress of 83268 kPa, an order of magnitude higher than that 

found in NSGA-II (Deb et al. 2002). CPMDE found a solution with minimum stress 

of 8433kPa which is slightly less than that found by NSGA-II, thus, the performance 

of CPMDE is comparable with NSGA-II on this problem. CPMDE produces many 

quality non-dominated solutions on the Pareto-optimal front of this problem in a single 

simulation run (Figure 13). This shows that CPMDE can perform well on real-world 

engineering problems. 

4.6 CONCLUSION 

A benchmark of Combined Pareto multi-objective differential evolution (CPMDE) on 

tuneable multi-objective test problems is presented in this chapter. The ability of 

CPMDE in solving constrained and real multi-objective optimisation problems was 

also illustrated. The ability of CPMDE to converge to the global Pareto-optimal front 

in deceptive multi-modal functions is amply demonstrated on test problem ZDT4 

which has 21 billion local optimal fronts. Among the 14 algorithms compared in this 

study, CPMDE produced the best convergence in three out of the five and best 

diversity in four out of five unconstrained test beds. Also, the variances of the metrics 

suggest that the algorithm is stable on the test beds. Furthermore, CPMDE was applied 

to solve a real-world problem where its efficacy on such problems was confirmed. 

Competitive results obtained from the application of CPMDE suggest that it is a good 

alternative for solving multi-objective optimisation problems. Therefore, this study 

further corroborates that CPMDE is adoptable as a method of EMOA for solving real-

world MOOPs. 
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CHAPTER 5 

OPTIMUM CROP PLANNING USING COMBINED PARETO 

MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION 

5.1 OVERVIEW 

Formulating adoptable policies congenial to adequate management of water in 

agricultural production and planning with aims of ensuring food security while 

providing employment opportunities is of great practical value in ensuring sustainable 

use of freshwater in a water-stressed country like South Africa. The application of a 

novel combined Pareto multi-objective differential evolution (CPMDE) optimisation 

algorithm for water resources and crop planning management in a farmland in 

Vaalharts irrigation scheme (VIS), South Africa, is illustrated in this chapter. The main 

aim of this chapter is to demonstrate the application of CPMDE to crop planning under 

limited water availability. The two objectives of the model are formulates to maximize 

total crop planting area while minimizing total irrigation water use. CPMDE found 

quality Pareto solutions specifying the recommended planting areas for each of the 

four crops modelled in the study area. Furthermore, Competitive results obtained from 

a benchmark of CPMDE with two state-of-the-art multi-objective optimisation 

algorithms (NSGA-II and MDEA) suggest that it is a good alternative suitable for 

resolving crop planning and other related water resources management problems in a 

multi-crop environment with limited freshwater for irrigation in a water-stressed 

country like South Africa. 

5.2 INTRODUCTION 

The main goal of agricultural water resources management and crop production in any 

nation is to guarantee sufficient food resources for its teeming population. Most 

developing countries have contributed notably to the drastic population increase 

worldwide over the last hundred years. Recent analyses show that world’s population 

is currently growing by over 80 million people each year and is projected to exceed 

six billion by the year 2000 (USDA 2008). World’s population is expected to grow 
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from approximately six billion in 1999 to between eight and 11 billion by 2050. 

Human numbers are expected to increase by roughly 80 million people annually over 

the next 30 years. These levels of increases are unprecedented in human history and 

create challenges to the environment and quality of human life. Furthermore, the 

increasing growth in human population has resulted in an inevitable upsurge in demand 

for food and water resources as well as for arable acreage (Rose 2014).  

Recent analysis of population in the Orange River basin which houses major cities that 

form the main economic hub of South Africa shows that the total population in the 

catchment is expected to grow at an annual rate of 1.64 percent from 719 821 in 1980 

to 1 271 229 in 2015. For the period 1995 to 2015 in particular, a higher growth rate 

of 1.78 percent per annum is speculated (DWA 1995b). Against the backdrop of recent 

population explosion and its attendant challenges to the environment and quality of 

human life, the agricultural sector has been considered strategic in subsistence, 

survival, development and in re-launching South African economy as it has relative 

importance in terms of job creation and ensuring food security (SANTO 2013). Efforts 

are being geared towards developing and promoting productivity in the agricultural 

sector and the food processing industries with aims of providing surplus food resources 

while simultaneously creating employment opportunities for the teeming population 

in the region. Without an iota of doubt, agricultural crop production is essential to 

societal development and economic growth in developing countries like South Africa, 

where the entire benefit, success and farming fortunes are proximately related (Perret,  

Anseeuw and Mathebula 2005). Hence, developing policies that maximize arable 

acreage for agricultural crop production are of great practical importance to the 

economy of the nation. 

The need to manage limited freshwater resources in arid and semi-arid regions is of 

paramount importance to stakeholders and decision-makers in the water resources 

management sector, most especially in this era of climatic vicissitude. South Africa, 

being a water-stressed country and the 30th driest in the world (Crowley and Vuuren 

2013), has not been left out in formulating sustainable policies and strategic plans 

aimed at ensuring continuous availability of freshwater. South Africa is a dry country 
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with erratic rainfall throughout the year. She receives less than 500 mm rain on average 

annually over about two-third of its area (Adeyemo 2009). Most commercial farmers 

in the country therefore depend solely on irrigation. The major dams in the region 

supply irrigation water to farmers at a price. Farmers buy water from Department of 

Water Affairs (DWA) which manages the dams and water resources in South Africa 

(Adeyemo 2009).  

Agriculture uses more than half of surface water in South Africa. Many studies have 

been undertaken to minimize the water use in agriculture especially irrigation water. 

For instance, results of a recent analysis by DWA (1995), indicate that allocating water 

for use in the industrialised areas of South Africa rather than for irrigated agriculture, 

will, from an economic point of view, render higher returns. The economic gains of 

applying water to industrialised areas are approximately 240 times more than those in 

the source areas. Substantial differences, in the order of 80 to 1, were also found with 

respect to employment opportunities. This implies a clear economic preference for 

using water in the Gauteng (industrialised) economy rather than for irrigated 

agriculture in the Orange River catchment. Furthermore, results obtained from 

economic analyses indicate that agriculture as a general economic sector, and irrigation 

as a specific sub sector, are relatively inefficient users of water. The agricultural sector 

utilises significantly more water to produce output and creates less employment per 

unit of water than any other sectors in the economy (DWA 1995b). This however does 

not imply that water should be taken away from irrigation, but rather that industrial 

activities should not be impeded by lack of water in favour of irrigated agriculture and 

caution should be exercised not to permanently commit water to less beneficial uses 

to the possible future detriment of the economy (DWA 1995b). Hence, in the face of 

the water-stress challenge besetting agricultural water management in the country, 

operational policies that seek to minimize irrigation water uses are highly desirable. 

Crop planning is the engagement of acreage by several crops planted yearly and their 

spatial dispersion in the allocated farmland (Joannon et al. 2008). Crop planning in a 

water scarce country like South Africa is a serious challenge. Under a multi-crop 

environment, various crops compete for the available water whenever the water 
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available is less than the irrigation demands. In water-scarce conditions, the deficit 

allocation among the competing crops has significant influence on irrigation system 

performance (Reddy and Kumar 2008). Crop planning objectives are conflicting in 

nature with many objectives that must be satisfied simultaneously. Therefore, crop 

planning is often handled in multi-objective framework to facilitate the development 

of suitable and sustainable strategies for practical implementation (Raju, Kumar and 

Duckstein 2006; Adeyemo 2009). Sundry methods employing the application of 

evolutionary multi-objective optimisation algorithms (EMOA) have been found useful 

for resolving crop planning problems with encouraging results. For instance, Sarker 

and Ray (2009) adopted methodologies of a proposed evolutionary multi-objective 

constrained algorithm and an existing method of multi-objective genetic algorithm for 

resolving multi-objective crop planning models. The new EMOA found quality non-

dominated solutions which represent adoptable crop planning policies for application 

in real-world situations. It was concluded that methods of EMOAs are adoptable as 

suitable alternatives for solving multi-objective crop planning models. Several studies 

implementing the application of EMOAs in the solution of multi-objective crop 

planning models have also been reported in the literature (Reddy and Kumar 2008; 

Brunelli and Lücken 2009; Adeyemo and Otieno 2010).  

Recently, combined Pareto multi-objective differential evolution (CPMDE) algorithm 

was proposed by Olofintoye,  Adeyemo and Otieno (2014a). The ability of CPMDE 

in solving unconstrained and constrained optimisation problems was demonstrated and 

competitive results obtained from the benchmark and application of CPMDE suggest 

that it is a good alternative for solving real multi-objective optimisation problems 

(MOOP). This chapter presents the first application of CPMDE for the resolution of 

multi-objective crop planning models. The methodology is applied to a farmland in 

Vaalharts irrigation scheme (VIS), South Africa. The objectives of the model were 

formulated to maximize farmland areas for crop production while minimizing 

irrigation water use. CPMDE was found useful in formulating sustainable policies 

pragmatic to the peculiar situation in the Orange River basin in South Africa described 

in the preceding paragraphs. Therefore, CPMDE is adoptable for solving crop planning 

problems. 
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5.3 METHODOLOGY 

A new EMOA, CPMDE is proposed for solving multi-objective crop planning models 

in this chapter. The performance of CPMDE is compared with two state-of-the-art 

EMOAs; multi-objective differential evolution algorithm (MDEA) and elitist non 

dominated sorting genetic algorithm (NSGA-II). CPMDE and MDEA are based on 

differential evolution (DE) algorithm while NSGA-II is based on genetic algorithm 

(GA). In particular, this study revisits an earlier study by Adeyemo and Otieno (2009c) 

to facilitate comparison of the performance of CPMDE with MDEA on this problem. 

NSGA-II was also chosen for comparison because it has successfully been employed 

in previous crop planning studies (Sarker and Ray 2009). In particular, because this 

study involves a comparative study with an existing study (Adeyemo and Otieno 

2009c), the crop planning models developed in the earlier study are adopted here and 

no new crop planning models are developed. 

5.3.1 Study area 

The models in this study are adapted to solve crop planning problem in a 771,000 m2 

farmland in Vaalharts irrigation scheme (VIS), South Africa. Water resources in VIS 

is managed by Vaalharts water user association (Grove 2006). VIS is one of the largest 

irrigation schemes in the world covering about 369.50 square kilometres in the 

Northern Cape Province of South Africa. It lies east of Fhaap Plateau located in a 

summer rainfall climatic zone on latitude 28°01′S and longitude 24°43′E (VIS 2013). 

The area experiences paucity of rainfall with an average rainfall of about 442 mm per 

annum (Grove 2006; Adeyemo 2009) which makes irrigation important in the area. 

There is significant difference between the maximum and minimum temperatures as 

the seasons change. Temperatures ranges between 17.4 °C - 32.7 °C in January to a 

minimum of about 2.4 °C in July which is the coldest month (Grove 2006). 

The scheme is supplied with water abstracted from Vaal River, which is the main 

tributary of the Orange River that provides water to the Vaal River supply area (DWA 

1995b). Water abstracted at Vaalharts diversion weir along the Vaal River, about 8 km 

upstream of Warrenton, is conveyed through a 1 176km long network of canals. This 

system provides irrigation water to a total of 39 820 ha scheduled land and industrial 

water to six towns (VIS 2013). Irrigation water is supplied to 680 commercial farmers 
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in the scheme. Water is supplied to farmers through feeder canals with capacities of 

150 m3 per hour for 5½ days per week. The water quota for irrigation in the scheme is 

9 140 m3 per ha/annum. Common crops grown in the area include wheat/barley, maize, 

groundnuts, cotton and other permanent crops like lucerne, pecan nuts, grapes, olives 

and some other fruits (Grove 2006; Adeyemo 2009). A map of the study area is 

presented in Figure 14.  

 
Figure 14: Vaalharts irrigation scheme. 

Source: Rensburg et al. (2011) 

5.3.2 Model formulation 

The crop planning optimisation problem in this study was conducted for a planting 

season at VIS. A farmland with an area of 771 000 m2 and maximum water quota of 

9140 m3 per ha/annum was selected as a case study. Four different crops namely maize, 

groundnuts, lucerne and pecan nuts are planted on the piece of land. In addition, an 

assumption that all the crops are not rainfed but rely solely on irrigation (Adeyemo 

and Otieno 2009c) was adopted in this study. Formulation of the constrained multi-

objective mathematical optimisation problem follows. 

5.3.2.1 Decision variables and objectives 

The main aim of the study was to find the corresponding planting areas where each of 

the four crops should be planted to maximize the total planting area (m2) while the 

farmer is minimizing irrigation water use (m3). The decision variable which represents 
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an area of land where a crop is planted is denoted Ai, (i = 1, 2, 3, 4) for maize, 

groundnuts, lucerne and pecan nuts respectively. The objectives are formulated as 

follows: 

Objective 1: Maximize total planting area 

Total planting area (A) in m2, is maximized to increase food production and 

employment on the farm. This has relative importance in terms of job creation and 

ensuring food security. Moreover abundant food supply will invariably result in 

cheaper food prices for South Africans. The mathematical model maximizing the total 

planting area is presented in equation (5.1): 
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=

nAA
n

i

i  …. (5.1) 

 

Ai is the area of land in m2 where the ith crop is grown. 

Objective 2: Minimize irrigation water use 

South Africa has emerged a water-stressed country and agriculture has been reported 

to consume more than half of the freshwater resources in the country (Olofintoye,  

Adeyemo and Otieno 2012), it is therefore pertinent to minimize irrigation water use. 

This will afford the use of more water for profitable ventures like water transfer to 

Gauteng for industrial uses. Besides, formulating policies that minimizes irrigation 

water use within the limits of supply constraints encourages efficient use of water for 

irrigation which can help in sustainable development of agriculture (Reddy and Kumar 

2008). The mathematical model equation minimizing total irrigation water use is 

presented in equation (5.2): 
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where vol is the total irrigation water use in m3 and CWRi is the total annual estimated 

gross crop water requirements under flood irrigation, in mm, for crop i, selected from 

Table 8.  
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5.3.2.2 Problem constraints 

The bi-objectives mathematical crop planning optimisation problem is subject to the 

following constraints: 

Constraint 1: Total land area available. 

The sum of areas Ai where the crops are grown must not be greater than the total land 

area available for farming. This constraint is presented in equation (5.3): 

771000)(
1

≤= ∑
=

n

i

iAA  …. (5.3) 

Constraint 2: Minimum and maximum crop planting areas. 

The minimum and maximum planting areas for each crop constitute the boundary 

constraints of the problem. Each crop is planted in at least 50 000 m2
 to avoid crop 

scarcity which may lead to hike in selling prices of food while the maximum planting 

areas ensure there will not be excessive surplus so that farmers will not have storage 

or selling problems (Adeyemo 2009). Yields in excess of storage when demand is less 

than supply creates storage and selling problems which cause a drop in selling prices 

of crops. This invariably results in loss to the farmer. Computation of maximum crop 

planting areas used for optimisation in this study is as follows: 

Since the minimum planting area for each crop = 50000 m2 

Then the other 3 crops will occupy a minimum of (50000 x 3) = 150000 m2 

This leaves (771000 – 150000) = 621000 m2 as the maximum area available for a particular crop.  

Therefore, 621000 m2 is chosen as the maximum planting area for all the crops. 

The boundary constraints for this problem is therefore specified in equation (5.4) as: 

62100050000 ≤≤ iA  …. (5.4) 

 

Table 8: Crop water requirement and planting areas for the crops. 

SN Crop Crop water requirement (mm) 

1 Maize 720 

2 Ground nuts 840 

3 Lucerne 1800 

4 Pecan nuts 1920 

Source: Grove (2006) 
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Constraint 3: Irrigation canal capacity. 

The amount of water available on the farm annually is limited by the capacity of the 

irrigation canal. Water is supplied to the farm through a feeder canals with a maximum 

capacity of 150 m3 per hour for 5½ days in a week (Grove 2006; Adeyemo and Otieno 

2009c). To avail consistency in computation, the canal capacity is converted to 

volumetric units, m3 as follows (Adeyemo and Otieno 2009c): 

Amount of water available per day = 150 m3/hour x 24 hours = 3600 m3daily 

Water available for 5½ days per week = 5.5 x 3600 = 19800 m3weekly 

Therefore Water available for a month = 4 x 19800 = 79200 m3 monthly 

Hence, the canal is able to supply a maximum of (79200 x 12) = 950400 m3 of water annually 

It is thus required that total irrigation water use do not exceed the maximum that can 

be supplied by the feeder canal. This constraint is presented in equation (5.5): 

950400≤vol  …. (5.5) 

5.3.3 Model solution EMOAs and experimental setup 

The mathematical model equations (5.1 – 5.5) representing the constrained multi-

objective crop planning optimisation problem in this study were solved using three 

methods of EMOAs namely, NGSA-II, MDEA and CPMDE. An open source 

MATLAB program encoding the original version of the pseudo code for NSGA-II 

developed at the Kanpur genetic algorithm laboratory (KANGAL), India, by Deb et 

al. (2002) and made available online from the repository of Seshadri (2009) was 

downloaded for use in this study. MATLAB files encoding MDEA were also 

developed using the pseudo code for MDEA available from the repository of the 

developers (Adeyemo 2009), while the pseudo code for CPMDE (Olofintoye,  

Adeyemo and Otieno 2014a; Adeyemo and Olofintoye 2014c) was encoded using 

visual basic for applications (VBA) to facilitate its application in resolving the crop 

planning optimisation problem stated herein. 

The population size for all the algorithms was set at Np = 40 based on sensitivity 

analysis from an earlier study by Adeyemo and Otieno (2009c). All algorithms were 

iterated for 1000 generations resulting in 40 000 fitness computations for each 

algorithm. Furthermore, 10 independent runs were made for each algorithm to 
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facilitate statistical comparison of these algorithms on this problem. For NSGA-II, the 

crossover probability Pc was set to 0.9 while the mutation probability was set to ¼ as 

recommended by Deb et al. (2002). For MDEA and CPMDE both implementing DE 

algorithm, the crossover rate Cr was set at 0.95 while the mutation scaling factor F was 

set at 0.5 as advised by Storn and Price (1995) and Adeyemo and Otieno (2009c). 

DE/rand/1/bin variant of DE was implemented for both MDEA and CPMDE. 

Harmonic average distance for maintaining spread of solutions on the Pareto front of 

CPMDE was computed using the 2-nearest neighbours scheme. 

5.3.4 Comparison of solution methodologies 

The performance of CPMDE in comparison with NSGA-II and MDEA was evaluated 

using three performance metrics viz. Set coverage metric, spread metric and non-

parametric Wilcoxon’s signed rank test. Set coverage was used to provide an 

indication of convergence to true Pareto front while spread metric was computed to 

give an indication of how well an algorithm finds solution spanning the entire Pareto 

front. The Wilcoxon signed rank test was adopted to determine if there is a statistical 

significant difference in the performance of the algorithms. 

 

5.3.4.1 Set Coverage metric (SC) 

This metric may be used to compare the performance of EMOAs in situations where a 

priori information about the true Pareto front is not available. The set coverage metric 

SC (A, B) calculates the proportion of solutions in set B which are weakly dominated 

by solutions of set A. A metric value of 1 means all members of B are dominated while 

0 indicates that no member of set B is dominated by any solution in set A (Deb 2001; 

Reddy and Kumar 2007). If SC (A, B) < SC (B, A), then solutions in B are less 

dominated by solutions in A. Therefore solutions in B are closer to the true Pareto front 

than solutions in set A. The expression for computing this metric is presented in 

equation (5.6): 
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5.3.4.2 Spread metric (∆) 

This metric measures the extent and spread of solutions in the obtained non-dominated 

front. It is computed using equation (3.3) in section 3.4.2.2 of this report. An algorithm 

with a smaller value of diversity metric ∆ provides a better spread of solutions on the 

Pareto front (Deb 2001). In this study, the extreme solutions are taken as the extremes 

found in the combined runs of the algorithm. 

5.3.4.3 Wilcoxon’s signed rank test  

The results of metrics obtained by CPMDE were analysed statistically with those of 

NSGA-II and MDEA using the non-parametric Wilcoxon’s signed ranks test (Garcia 

et al. 2009; Ali,  Siarry and Pant 2012). A multiple-problem analysis model is adopted. 

This is a pair wise test aims at detecting significant difference between the 

performances of two EMOAs. The null hypothesis for Wilcoxon’s test is H0 : ӨD = 0; 

in the underlying populations represented by the two samples of results, the median of 

the difference scores equals zero. The alternative hypothesis is H1 : ӨD ≠ 0. In this test, 

the difference between the performance scores of two models on ith out of N functions 

are ranked according to their absolute values; average ranks are assigned in case of 

ties. Let R+ be the sum of ranks for the functions on which the second algorithm 

(CPMDE, herein) outperformed the first and R- the sum of ranks for the opposite. Let 

T be the smallest of the sums, T = min(R+,R-). If T is less than or equal to the value of 

the distribution of Wilcoxon for N degrees of freedom, the null hypothesis of equality 

of means is rejected. The p-value associated to a comparison is performed by means 

of the normal approximation for the Wilcoxon T statistics. In this study, SPSS software 

package was used for computing the p values. The critical value for the Wilcoxon’s 

signed rank test at the 95 percent level of significance is 0.05, which implies that if the 

p-value is greater than 0.05, there is no significant difference between the 

performances of the models (Garcia et al. 2009; Lowry 2013; Adeyemo and 

Olofintoye 2014a). 

5.3.5 Selecting the best compromise solution 

In contrast to single objective optimisation problems where the solution is a single 

vector that comprises of decision variable values representing the global optimum of 



77 

the problem, solution of multi-objective optimisation problems (MOOP) results in a 

set of non-inferior solutions which are Pareto optimal. No solution in this set can be 

considered better than any other in the absence of specialized information about the 

peculiarities of the problem at hand. From a practical standpoint however, a decision 

maker needs only one solution for final implementation. Deb (2001) has suggested a 

compromise programming approach (CPA) to facilitate choosing of a final operating 

policy when specialized information concerning the problem being solved is available. 

CPA picks a solution which is minimally located from a given reference point. In this 

study, the reference point is chosen as the ideal point which comprises the best of each 

of the m objectives. The best compromise solution (BCS) is the solution with a 

minimum lp metric distance from a reference point z. lp metric is computed using 

equation (5.7) (Deb 2001; Reddy and Kumar 2007). When p=2, the l2 metric specifies 

the Euclidean distance metric. 
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5.4 RESULTS 

The multi-objective crop planning problem of maximizing total planting area while 

minimizing irrigation water use in a farmland in VIS was solved using NGSA-II, 

MDEA and CPMDE. Figure 15 depicts the Pareto front obtained by CPMDE. The 

BCS is indicated on this figure. Figure 16 shows the Pareto front obtained by NSGA-

II while Figure 17 depicts that obtained by MDEA. Figure 18 is a replication of the 

Pareto front obtained by MDEA from an earlier study (Adeyemo and Otieno 2009c). 

Plots in Figures 15 – 17 were made based on runs with the best values of diversity 

metrics in Table 11. Figure 19 presents the objective values for the final non-

dominated solutions obtained in the best run of CPMDE while Figure 20 shows the 

corresponding crop planting areas for the BCS obtained by CPMDE. Table 9 presents 

the details of the Pareto solutions obtained from the best run of CPMDE. Numbers set 

in boldface indicate new solutions that lie outside the clusters of solutions found by 

MDEA in an earlier study by Adeyemo and Otieno (2009c). The BCS marked with an 

asterisk (solution 29) is set in italics. This also lies outside the range of solutions found 
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from earlier study and therefore also set in boldface. Table 10 presents the results of 

the computation of set coverage metrics while Table 11 presents the values of diversity 

metrics. A very high values of infinity (INF) is assigned for the diversity metric in 

Table 11 in cases where an algorithm could not find a feasible solution to the problem. 

The summaries of the statistical Wilcoxon signed rank test in benchmarking the 

performance of CPMDE with NSGA-II and MDEA using the set coverage and 

diversity metrics are presented in Tables 12 and 13 respectively. 

 

 
Figure 15: Pareto front obtained by CPMDE for the 

crop planning model when maximizing total planting 

area and minimizing irrigation water. 
 

 
Figure 16: Pareto front obtained by NSGA-II for the 

crop planning model when maximizing total planting 

area and minimizing irrigation water. 

 

 
Figure 17: Pareto front obtained by MDEA for the 

crop planning model when maximizing total planting 

area and minimizing irrigation water. 
 

 
Figure 18: Pareto front obtained by MDEA from 

previous study. 

Source:Adeyemo and Otieno (2009c). 
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Figure 19: Non-dominated solutions for the crop planning model when maximizing 

total planting area and minimizing irrigation water using CPMDE. 

 

 

 

 
 

Figure 20: Optimal crop planting areas for maize, ground nut, lucerne and peacan 

nut using CPMDE. 
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Table 9: Details of Pareto solutions for the crop planning model when maximizing total 
planting area while minimizing irrigation water. 

Solution 
Land area for each crop (m2) Total Land Area 

(m2) 

Total Water 

Irrigation water 

(m3) Maize Ground nut Lucerne Pecan Nut 

1 576191.58 50068.03 50015.33 50031.41 726306.35 643002.99 

2 312049.94 51368.54 50057.74 50404.55 463880.77 454706.20 

3 605562.30 51178.53 50021.57 50001.47 756763.86 665036.46 

4 83574.58 50154.95 50022.58 50014.88 233766.98 288373.05 

5 591597.23 50004.39 50002.97 50015.18 741619.77 653988.18 

6 100001.18 50005.70 50018.62 50009.71 250035.21 300057.80 

7 187372.62 51320.00 50010.24 50006.48 338709.34 364047.96 

8 373036.76 50024.49 50000.41 50003.99 523065.65 496615.44 

9 480428.07 50005.27 50016.68 50017.27 630467.28 573975.81 

10 194280.14 51347.82 50012.82 50002.42 345643.19 369041.59 

11 158328.57 50003.63 50019.89 50015.10 308367.19 342064.42 

12 65267.70 51248.34 50070.55 50148.38 216734.97 276453.23 

13 510584.81 50207.18 50008.64 50030.93 660831.56 595870.03 

14 300765.30 50667.12 50027.85 50011.41 451471.68 445183.43 

15 461082.53 51457.16 50025.57 50044.49 612609.75 561334.88 

16 171296.51 50333.63 50014.96 50000.44 321645.54 351641.51 

17 549821.15 50001.68 50012.48 50177.97 700013.28 624236.80 

18 418456.27 50716.81 50047.05 50008.19 569228.32 529991.05 

19 619253.17 51324.00 50043.23 50376.20 770996.60 675774.56 

20 443809.45 51250.65 50012.78 50016.53 595089.41 548648.09 

21 263288.52 51384.23 50025.56 50035.15 414733.47 418843.99 

22 494619.55 51237.45 50013.35 50028.10 645898.45 585243.51 

23 431572.01 50000.12 50000.17 50033.09 581605.39 538795.78 

24 404934.20 50000.08 50000.07 50001.72 554936.06 519556.11 

25 240989.17 50716.77 50020.97 50007.33 391734.24 402166.12 

26 225491.95 50736.05 50035.36 50013.22 376276.58 391061.52 

27 564983.99 50059.44 50050.27 50013.59 715107.29 634954.97 

28 50000.00 50000.00 50000.00 50000.00 200000.00 264000.00 

29* 327374.44 51208.06 50011.84 50022.00 478616.34 464787.92 

30 518901.46 50081.48 50036.61 50071.79 669091.34 601881.23 

31 209470.20 50805.84 50050.00 50064.03 360390.07 379708.38 

32 276306.54 50000.00 50048.03 50005.87 426360.44 427038.43 

33 358162.37 50476.59 50004.83 50000.22 508644.00 486286.34 

34 385586.77 50000.00 50058.66 50041.61 535687.04 505807.95 

35 288033.99 50079.64 50013.63 50025.35 438152.61 435524.58 

36 144318.15 50002.15 50000.01 50003.60 294323.91 331917.81 

37 535676.52 50052.67 50003.21 50006.45 685738.86 613749.51 

38 113816.22 50061.33 50023.77 50001.60 263902.92 310045.06 

39 125527.36 51177.46 50013.92 50008.70 276727.44 319410.54 

40 344929.67 51031.54 50015.86 50021.88 495998.95 477286.42 



81 

 

Table 10: Set coverage metrics for the crop planning problem. 

Run SC(M, C) SC(C,M) SC(N,C) SC(C,N) 

1 0.025 0.100 0.000 0.975 

2 0.025 0.000 0.000 1.000 

3 0.025 0.025 0.000 0.850 

4 0.025 0.000 0.000 0.825 

5 0.025 0.000 0.000 0.425 

6 0.025 0.050 0.000 1.000 

7 0.025 0.050 0.000 0.725 

8 0.025 0.075 0.000 0.975 

9 0.050 0.000 0.000 0.800 

10 0.025 0.025 0.000 1.000 

  NSGA-II (N) MDEA (M) CPMDE (C)   

 

 

Table 11: Diversity metrics for the crop planning problem. 

Run CPMDE MDEA NSGA-II 

1 0.1399 1.0955 0.6118 

2 0.1810 0.9855 INF 

3 0.1977 1.3097 0.5155 

4 0.2144 1.1543 0.5417 

5 0.1781 1.0903 0.5241 

6 0.1608 1.1309 INF 

7 0.1940 1.1084 0.6237 

8 0.2399 1.0955 0.5806 

9 0.2014 1.0807 0.5044 

10 0.1748 1.3097 INF 

 

 

Table 12: Results of Wilcoxon test on set coverage metric. 

CPMDE   R+ R- Z p-value 

MDEA  4 4 3.590 0.719 

NSGA -II   10 0 -2.810 0.005 

 

 

Table 13: Results of Wilcoxon test on spread metric 

CPMDE   R+ R- Z p-value 

MDEA  10 0 -2.803 0.005 

NSGA -II   10 0 -2.803 0.005 
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5.5 DISCUSSION OF RESULTS 

The findings in this study indicate that in general all the algorithm performed well in 

finding optimal solutions to the problem stated herein. In a single simulation run, 

CPMDE found quality Pareto solutions that provide trade-off between the conflicting 

objectives of the crop planning optimisation problem. All the solutions converged to 

Pareto front. The solutions are also diverse on the Pareto front. From the analysis of 

the 40 non-dominated solutions in the Pareto optimal set (Figure 15), it is evident that 

total planting area is directly proportional to irrigation water use. In reality, increasing 

planting area invariably results in an increase in irrigation water use. The BCS (see 

Figures 15, 19, 20 and Table 9) suggests that maize should be planted in 327 374.44 

m2 land area, ground nut should be grown in 51 208.06 m2 in the farmland, while 

lucerne and peacan nuts should be cultivated in 50 011.84 m2 and 50 022.00 m2 areas 

of land respectively. This results in total cultivated land of 478 616.34 m2 and a 

cumulative of 464 787.92 m3 volume of irrigation water use. Analysis of the BCS 

indicate that maize is planted in an area roughly six times more than those of the other 

crops while the other crops are planted in approximately equal areas of land. This 

suggests that maize is more lucrative in the study area. These results are consistent 

with the findings of Adeyemo and Otieno (2009c). The total planting areas of land for 

all the solutions range from a minimum of 200 000.00 m2 (solution 28) to a maximum 

of 770 996.60 m2 (solution 19), which correspond to volumes of 264 000.00 m3 and 

675 774.56 m3 irrigation water use respectively (see Figure 19 and Table 9). Solution 

28 suggests that all crops be planted on an area of 50 000 m2 while solution 19 indicates 

that maize, ground nut, Lucerne and pecan nut should be grown in farmland areas of 

619 253.17 m2, 51 324.00 m2, 50 043.23 m2 and 50 376.20 m2 respectively. Since the 

BCS is the solution which is minimally located from the ideal point which comprises 

the extremes of all the conflicting objectives, solution 29 is suggested for final 

implementation in this study. 

NSGA-II was able to generate optimal solutions close to the Pareto front in most of 

the runs of the algorithm. This indicates that the algorithm is adoptable for solving the 

crop planning problem. However, by inspection, a vertical section consisting of three 
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solutions is seen in the extreme right of the Pareto front generated by NSGA-II (Figure 

16). The solution just below the 750 000 m3 irrigation water use in this vertical section 

is better than the two solutions above this threshold. While this solution has a lower 

value of water use, the trio have equal values of cultivated land. Therefore the two 

solutions above the 750 000 m3 water use threshold in the vertical section are not part 

of the Pareto front. This vertical section indicates that the algorithm was not able to 

fine-tune all the solutions to converge to Pareto front before the end of the iteration. 

Also, it was observed that in 3 out of the 10 runs of the algorithm (see runs 2, 6 and 10 

in Table 11) NSGA-II was not able to find feasible solutions to the problem. On the 

average, NSGA-II couldn’t find feasible solutions in 30 percent of the trials in solving 

the problem herein. This phenomenon has also been observed by Sarker and Ray 

(2009) who reported that NSGA-II experienced difficulties in finding feasible 

solutions to a complex crop planning multi-objective optimisation problem. This 

problem may probably be resolved by solving the starting point problem (Price, Storn 

and Lampinen 2005). This involves writing special procedures that ensures that at least 

one feasible solution if found before iteration commences. Also, increasing the number 

of iterations cycles may be beneficial in the application of this algorithm in solving 

these types of problems.  

Analysis of results show that CPMDE demonstrates good convergence ability. 

Inspection of Table 10 shows that CPMDE demonstrated better convergence ability 

when compared to NSGA-II on this problem. None of the Pareto solutions obtained 

from the runs of CPMDE are worse than those of NSGA-II in all the 10 runs (SC(N, 

C)=0 in all cases). Also in all cases of spread metric computation (Table 11), CPMDE 

produced lower values of the metric. Results of the Wilcoxon signed rank test in Tables 

12 and 13 also indicate that there is a significant difference in the performances of the 

algorithm at the 95 percent level of significance. CPMDE performed reasonably well 

in converging to Pareto front (Z=-2.810, p=0.005 in Table 12) and in finding good 

spread of solutions on the front (Z=-2.803, p=0.005 in Table 13).  

MDEA achieved fast convergence to Pareto front in all runs of the algorithm. This 

suggests that the algorithm is also adoptable for solving crop planning problems. 
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Visual inspection of Figures 15 and 17 however shows that while MDEA produced 

solutions covering roughly half the length of the Pareto front for 1000 iterations on the 

crop planning problem, CPMDE generated solutions that spanned the entire front with 

better convergence property. Also, analysis in an earlier study (Adeyemo and Otieno 

2009c) produced a fragmented Pareto front consisting of three main clusters (See 

Figure 18). Based on sizes of total planting areas, the first cluster is from total planting 

area of 220 000 m2 to 270 000 m2, the second cluster ranges from 320 000 m2 to 

450,000 m2, while the third cluster spanned planting areas between 550 000 m2 and 

700 000 m2. In Table 9, new solutions found lying outside these three clusters are 

indicated in boldface. CPMDE found 18 new solutions which lie outside the reported 

clusters found by MDEA. This corresponds to roughly 45 percent of the entire Pareto 

front. Thus, whereas MDEA found solutions covering approximately 55 percent of the 

entire Pareto front, NSGA-II and CPMDE found solutions spanning the entire front 

(see Figures 15, 16, 17 and 18).  

The difference in the appearance of the Pareto fronts in Figures 17 and 18 also indicates 

instability in the ability of MDEA in maintaining spread of solutions on the Pareto 

front. While some runs generated fronts similar to Figure 17, others generated fronts 

similar to that in Figure 18. Computation of average spread of the runs however 

indicated that the algorithm finds solutions covering roughly half of the front in all 

cases. Figure 17 was chosen for presentation as it has the lowest value of diversity 

metric in all the runs. MDEA was not consistent in finding quality Pareto solutions 

spanning the front probably due to the fact that the algorithm does not explicitly 

incorporate a mechanism for preserving diversity on the generated non-dominated 

front (Deb 2001; Huang et al. 2005; Ali,  Siarry and Pant 2012; Olofintoye,  Adeyemo 

and Otieno 2014a).  

Values of set coverage metrics for the 10 runs of the algorithms in Table 10 indicate 

that CPMDE and MDEA performed equally in converging to Pareto front in two cases 

(runs 3 and 10), MDEA outperformed CPMDE in four runs (2, 4, 5 and 9), while 

CPMDE performed better in four cases (runs 1, 6, 7 and 8). However, in all the 10 

cases of spread metric computation (Table 11), CPMDE produced better spread of 
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solutions on the Pareto front than MDEA. From the results of the Wilcoxon signed 

rank test in Tables 12, there is no significant difference in the performances of the 

CPMDE and MDEA in converging to the Pareto front at the 95 percent level of 

significance (Z=3.590, p=0.719). However, Table 13 shows that there is significant 

difference in the performances of the algorithms in finding good spread of solutions 

on the Pareto front (Z=-2.803, p=0.005). Here CPMDE was able to generate better 

spread of solutions on the Pareto-optimal front. 

5.6 CONCLUSION 

Proper water resources management in agricultural crop production and planning with 

aims of ensuring food security while providing employment opportunities is 

paramount to ensuring sustainable use of freshwater in a water-stressed country like 

South Africa. In this chapter, the application of a novel multi-objective optimisation 

algorithm (CPMDE) for water resources and crop planning management in VIS is 

illustrated. It is shown that CPMDE can be successfully employed to search the 

feasible solution space for a complex cropping pattern that involves multiple 

objectives and multiple constraints. CPMDE generated adoptable quality Pareto-

optimal solutions corresponding to the recommended planting areas for the four 

different crops modelled in the study area. These solutions efficiently trade-off the 

objectives of maximizing total planting area while minimizing irrigation water use in 

the farmland. It is hereby suggested that the generated Pareto solutions be further 

investigated and adopted as crop production policies for use in the study area. 

The study and interpretation of the solutions of multi-objective crop planning 

optimisation models using three methodologies of EMOAs was also investigated. The 

application of a method of multi-objective genetic algorithm (NSGA-II) and two 

techniques of multi-objective differential evolution (CPMDE and MDEA) in resolving 

multi-objective crop planning models were compared. A benchmark of solution 

methodologies show that CPMDE can be ranked in the class of state-of-the-art 

algorithms like NSGA-II and MDEA based on results of evaluations using set 

coverage metric, spread metric and a non-parametric Wilcoxon signed rank test.  
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The two goals in multi-objective optimisation are to discover solutions as close to the 

Pareto front as possible while finding solutions as diverse as possible on the front. A 

good multi-objective evolutionary algorithm will be known if both goals are satisfied 

(Deb 2001; Adeyemo 2009). Whereas MDEA was able to achieve close convergence 

to the Pareto front, it was not stable in finding good spread of solutions on the front. 

Therefore, it is advised that diversity should be preserved when using this algorithm 

henceforth.  

Competitive results obtained from the application and benchmark of CPMDE herein 

suggest that it is a good alternative suitable for resolving crop planning and other 

related water resources management problems in a multi-crop environment with 

limited freshwater for irrigation in a water scarce country like South Africa. In this 

chapter, it has been established that CPMDE (Olofintoye,  Adeyemo and Otieno 

2014a) performs reasonably well when compared with MDEA (Adeyemo and Otieno 

2009a) and NSGA-II (Deb et al. 2002) which are two state-of-the-art algorithms, in 

finding solutions to the water resource management problem stated herein. The 

findings in this study therefore, further confirms that CPMDE is adoptable as a method 

of EMOA for the analysis and resolution of real-world mathematical multi-objective 

water resources optimisation models. 

5.7 RESEARCH OUTPUTS 

[1] Olofintoye, O., Adeyemo, J. and Otieno, F. 2015. Optimum crop planning using 

Combined Pareto Multi-objective Differential Evolution. Journal of the South African 

Institution of Civil Engineering, 2015. Under review.  

[2] Adeyemo, J., Otieno, F. and Olofintoye, O. 2012. Performance evaluation of 

Multi-Objective Differential Evolution Algorithm (MDEA) strategies for water 

resources management. Paper presented at the Institutional research day 2012. Steve 

Biko campus library complex, Durban University of Technology, Durban, South 

Africa, 15th November, 2012.  
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CHAPTER 6 

REAL TIME OPTIMAL WATER ALLOCATION FOR DAILY 

HYDROPOWER GENERATION FROM THE 

VANDERKLOOF DAM, SOUTH AFRICA 

6.1 OVERVIEW 

Against the backdrop of power shortages arising from escalating energy demands due 

to rapid global urbanization and industrial development, the power sector has been 

considered strategic in forging economic growth, sustaining technological 

development and contributing further to the overall development of the nations. 

Unfavourable conditions experienced by communities as a result of power failures due 

to shortage of supplies have driven efforts worldwide in search of improved techniques 

propitious to sustainable reservoir optimisation and operations for power generation.  

Recent studies have established that combining accurate reservoir inflow forecasting 

models with optimisation technologies can provide more efficient and balanced 

solutions for operating multi-purpose reservoir systems. This has often produced 

improvements in the economy of hydropower generation (Ngo 2006; Madsen et al. 

2009). This chapter presents the coupling of a data driven artificial neural network 

(ANN) model with a novel combined Pareto multi-objective differential evolution 

(CPMDE) for hydrological simulation and multi-objective numerical optimisation of 

hydropower production from the Vanderkloof dam in real time. Results from the 

application of the real time model indicate that 728.53 GWH of annual energy may be 

generated from the reservoir without system failure under medium flow condition. It 

was also found that the real time method developed in this study indicates a 49.32 

percent improvement in performance over current practice. It is concluded that the 

hybrid ANN-CPMDE real time reservoir operation methodology suggested herein 

provides a low cost solution methodology suitable for sustainable operation of the 

Vanderkloof reservoir in South Africa. This suggests that adopting real time 

optimisation strategies may be beneficial to operation of reservoirs. 
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6.2 INTRODUCTION 

Since the advent of the industrial revolution in the mid-1700s, the global community 

has continuously witnessed a systematic increase in technological development, 

industrialization and rapid urbanization. This has inevitably led to an unprecedented 

increase in energy demands worldwide. In a true global perspective of the demand, it 

is being generally accepted that the countries of the world are experiencing “energy 

crisis” and are therefore, constantly developing cutting edge strategies aimed at 

satisfying the exponential growth in the demand (Ajenifuja 2009; Awoyemi 2010).  

Against the backdrop of rapid urbanization and industrial developments worldwide 

with their attendant challenges of skyrocketing energy demands, the power sector has 

been considered strategic in forging economic growth, sustaining technological 

development and contributing further to the overall development of the nations 

(Ajenifuja 2009). The electrical company (Eskom), is responsible for generating, 

distributing, controlling and managing electricity in South Africa. Eskom Holdings 

Limited generates roughly 95 percent of the electricity in the republic and is among 

the largest producers of electricity in the world. South Africa is rich in coal and 90 

percent of Eskom’s electricity is produced by coal fired thermal power stations. The 

Gariep and Vanderkloof hydropower installations in the Orange River basin are used 

to produce based energy during periods of high flows and occasionally operated 

between two to four hours a day to generate peaking power especially in periods of 

low flows. Studies have however shown that electricity produced from the Orange 

River hydropower stations is half as cheap as the ones sourced from Eskom’s thermal 

power plants (ESKOM 2010).  

Concerns about global climate change have prompted calls for action at every level of 

government and across many sectors of economy and society. It has become pertinent 

to establish suites of coordinated activities that will examine the serious and sweeping 

issues associated with global climate change and provide advice on possible 

mitigations to stem the tide of global warming and environmental degradation 

(McBean and Motiee 2008; Olofintoye and Adeyemo 2011b; Adeyemo, Olofintoye 

and Otieno 2012; Olofintoye, Adeyemo and Otieno 2012). Recent anthropogenic 
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global warming has been attributed to unsustainable industrialization which releases 

greenhouse gases (GHG), technological development, urbanization, deforestation and 

indiscriminate burning of fossil fuels among other factors (Odjugo 2009). Current 

global policies are therefore pushing toward the reduction of GHG emissions to help 

reduce the rate at which the earth is warming. For instance, the Energy Act of 2007 

passed by the state of Minnesota aims to reduce GHG emissions by 15 percent by 

2012, 30 percent by 2025 and 80 percent by 2050 (Awoyemi 2010). Also, in line with 

international agreements (DOE 2014), the South African Government is committed to 

4 percent of estimated electricity demand being met by renewable energy resources by 

2013. This is expected to result in over 200 000 fewer kilogrammes of particulate 

matter being emitted into the air annually (ESKOM 2010). Due to high costs of 

maintenance and operation, pollution and environmental degradation problems 

associated with the operation of thermal power plants, it is expedient to seek other 

forms of energy which are cheaper, renewable, greener and sustainable in South Africa 

(SIDALA 2010). 

According to Ajenifuja (2009), recent studies have confirmed that GHG emission 

factors for hydropower plants are typically 30-60 times lesser than factors for fossil 

fuel generation, taking into account emissions from decaying biomass in reservoirs. 

Further research has also shown that development of about half of the world’s 

economically feasible hydropower potential could reduce GHG emissions by roughly 

13 percent. Hydropower at present supplies approximately 20 percent of the world’s 

electricity. If all economically feasible hydropower potentials are developed, 

hydropower could substitute fossil-fuelled thermal plants and reduce global carbon 

dioxide pollution by up to 7 million tons/year. Hence, strategies aimed at harnessing 

more hydropower from existing water sources within the frontier of the country is 

germane in capacitating the South African Government’s commitment to reduction of 

the countries’ GHG emissions and transition to a low-carbon economy while meeting 

a national target of 3 725 megawatts by 2030 (SIDALA 2010; DOE 2014). 

As a result of their outstanding advantages, the first half of the 20th century witnessed 

exceptional growths in the use of hydropower. Today, it stands as the most significant 
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of renewable and sustainable source for electrical power production globally (Paish 

2002). In operation, hydroelectric power plants produce no direct waste and have 

considerably lower output levels of GHG than fossil fuel powered energy plants. They 

also have longer economic lives and lower operating and labour costs (Ajenifuja 2009; 

SIDALA 2010). However, notwithstanding their excellent performances and 

numerous advantages, construction of new water resources structures, mainly large 

dams for hydropower generation is very expensive and are therefore highly opposed 

(Adeyemo 2009; Loucks and Bee 2005). Furthermore, building of new dams are often 

accompanied by various environmental challenges like net loss of total streamflow due 

to increased evaporation from reservoir surface and seepage under structures, changes 

in the ecology of watershed and river systems, displacement of humans and human 

settlements, inundation of arable agricultural lands, land use changes and other 

environmental degradation problems (WCD 2001; Loucks and Bee 2005; Aremu and 

Adebara 2007; Salami 2007). Therefore, management of existing water resources 

facilities using efficient cutting edge techniques is of paramount importance in water 

resources management. Studies have shown that even small improvements in the 

operating policies of existing water related structures often lead to large benefits for 

many consumers (Adeyemo 2009; Madsen et al. 2009; Bosona and Gebresenbet 

2010). 

Results from recent researches have demonstrated that the combination of accurate 

reservoir inflow forecasting and numerical optimisation techniques can provide more 

efficient and balanced solutions for operation of multi-purpose reservoir systems and 

thereby improve the economy of hydropower production (Madsen and Skotner 2005; 

Ngo 2006; Madsen et al. 2009; Adeyemo and Olofintoye 2012; Olofintoye, Adeyemo 

and Otieno 2014b). This chapter presents the coupling of a data driven artificial neural 

network (ANN) model and a novel combined Pareto multi-objective differential 

evolution (CPMDE) algorithm for hydrological simulation and multi-objective 

optimisation of hydropower production from the Vanderkloof dam in real time. ANN 

is employed to forecast daily reservoir inflow while CPMDE is used to generate 

Pareto-optimal policies for daily operation of the reservoir. The optimisation problem 

considers the trade-off between a short-term objective in terms of maximizing 
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hydropower production within the forecast period and a long-term objective in terms 

of minimizing deviations from the optimised storage control curve.  

6.3 METHODOLOGY 

This study adopts a forecast-optimisation framework suggested by (Ngo 2006) for real 

time operation of reservoir systems. This framework has been applied for resolving 

reservoir operations and has been found useful in generating quality optimal solutions 

for operating reservoir systems (Madsen and Skotner 2005; Richaud et al. 2011). In 

this chapter, the forecast-optimisation framework is applied to daily operation of 

Vanderkloof dam in South Africa. An ANN forecast model was developed to predict 

daily reservoir inflows while CPMDE is used to generate Pareto-optimal policies for 

daily operation of the reservoir. CPMDE is a new evolutionary multi-objective 

optimisation algorithm (EMOA) proposed by Olofintoye, Adeyemo and Otieno 

(2014a). The ability of CPMDE in solving unconstrained and constrained optimisation 

problems has been demonstrated and competitive results obtained from the benchmark 

and application of CPMDE suggest that it is a good alternative for solving real multi-

objective optimisation problems (MOOP) (Olofintoye, Adeyemo and Otieno 2013a; 

Adeyemo and Olofintoye 2014b; Adeyemo and Olofintoye 2014c; Enitan et al. 2014; 

Olofintoye, Adeyemo and Otieno 2014a, 2014b).  

At the beginning of each day, forecast is made about the expected inflow based on 

inflows obtained in past three consecutive days. The reservoir is optimised based on 

the expected reservoir inflow and releases for the particular day are made. In particular, 

the methodology is applied for operating the Vanderkloof reservoir with the aim of 

investigating the feasibility of generating hydropower throughout the day over the 

operating period. The method was applied to the operating period from May 1, 2012 

to April 30, 2013. The decision date for reservoir operation in South Africa is May 1 

when reservoir operating analysis is undertaken to decide how the reservoir should be 

operated in the coming year (Mugumo 2011; DWA 2013). It was observed that the 

reservoir was able to meet all demands without failing throughout the planning period. 

To gauge the performance of the proposed methodology, actual release decisions made 

over the operating period were extracted and used to estimate actual power generation 

over the operating period.  
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6.3.1 Data  

Climatic, hydrologic, reservoir characteristics and operation, water demand, flood 

control curves, storage control and characteristics relations, turbine and power plant 

characteristics, canal and penstock discharge data for the Vanderkloof dam were 

obtained from the Department of Water Affairs (DWA) and Eskom. These agencies 

are responsible for the measurement, control and storage of hydrologic and other 

relevant information about major dams and hydropower plants in South Africa. Data 

from these agencies are regarded the best that could be found anywhere in the republic 

(Mugumo 2011; Mugumo, Ndiritu and Sinha 2013). 

6.3.2 Study area 

The methodology in this study is adapted to the operation of the Vanderkloof reservoir 

and power plant in South Africa. Vanderkloof dam along the Orange River is a 

multipurpose reservoir for flood control, irrigation, hydropower generation and 

recreation activities in that order of importance (Adeyemo 2009). The dam is located 

in a summer rainfall climatic zone in the country. It is situated near Petrusville in the 

Northern Cape province of South Africa on latitude 29.99222°S  and longitude 

24.73167°E (Adeyemo and Olofintoye 2014a).  

Vanderkloof forms the second largest storage reservoir in South Africa with a capacity 

of about 3 200 million m3 and a surface area approximately 133.43 square kilometres 

when full. It is an important part of the Orange River Project (ORP). Water entering 

the dam is either released downstream through the two installed hydropower 

generators or transferred through the Vanderkloof main canal having a discharge 

capacity of 57m3/s. The main canal supplies water to the Ramah branch canal and the 

Orange-Riet canal. The Orange-Riet canal transfers water to the Riet River basin 

where it is used to irrigate about 29 086 ha of agricultural land (Adeyemo and 

Olofintoye 2014a; DWA 2013).  

The penstock inlet at 1 150.80 metres above sea level (m.a.s.l), defines the minimum 

operating level for hydropower generation while the irrigation canal outlet at 1 147.78 

m.a.s.l, slightly lower than the penstock inlet defines the minimum operating level for 

the reservoir. (Adeyemo 2009; Mugumo 2011; DWA 2013; Mugumo, Ndiritu and 
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Sinha 2013). Eskom’s hydroelectric power station is situated within the dam wall. The 

station houses two turbo generators with efficiencies rated at approximately 92.41 

percent. These machines are located in an underground cavern below the dam wall on 

the left flank of the river at an average elevation of 1 089 m.a.s.l. The combined 

capacity of the two installed generators is 240 MW at 120 MW each at a maximum 

discharge of about 200 m3/s and a total of 400 m3/s. The minimum net generating head 

for hydropower at the station is about 54 m while the average tail water elevation is 

roughly 1 095.95 m.a.s.l (Adeyemo 2009; ESKOM 2010; Mugumo 2011).  

The operating policy for the reservoir requires that all releases to areas downstream of 

the dam be channelled through the turbines to meet demands downstream of the dam 

while maximizing hydropower generation. Figure 21 shows the general layout of the 

dam. 

 

Figure 21: General layout of Vanderkloof dam, South Africa. 
Source: Adapted from DWA (1995a) 
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6.3.3 Reservoir inflow modelling and forecasting 

Historical streamflow data was necessary for development of daily reservoir inflow 

forecast model for daily operation of the reservoir. The nature of data collected for this 

purpose is streamflow volume in mega litres (Ml) recorded for every day of the year. 

This was converted to mega cubic meter (Mm3) for use in the analysis herein. A period 

spanning 36 years of data (1977 – 2013) was used in the analysis.  

This study implements the system-theoretic modelling approach through the adoption 

of an ANN modelling technique for the purpose of forecasting daily reservoir inflows. 

The main advantages of modelling input-output relations using ANNs lie in their 

abilities to simulate linear, non-linear and time varying systems where the modeller 

does not require a detailed knowledge about the complex physical processes driving 

the predictor-response system (Jeong and Kim 2005; Kalteh 2007).  

While conceptual hydrological models have proved their importance in understanding 

hydrological processes, their implementation and calibration often present various 

difficulties. Oftentimes they are found to be too complex, data intensive and 

cumbersome to use. This therefore calls for the use of simpler system-theoretic models 

like ANNs which establish relations between input and output variables without 

considering the intricate physical laws governing the hydrological process (Rajurkar,  

Kothyari and Chaube 2002).  

In particular, Mugumo (2011) and Mugumo, Ndiritu and Sinha (2013)  have argued 

that the conceptual South African water resource planning model (WRPM) currently 

used to simulate stochastic streamflow into the Vanderkloof reservoir is overly 

complex. The intricacy and non-user friendly structure of the model limit its 

application and hence there is need to develop simpler models capable of achieving 

the same task. Consequently, Mugumo (2011) developed an ANN model to forecast 

monthly streamflows necessary for the monthly operation of the dam. It was found 

that the ANN forecast model performed favourably well in predicting monthly inflows 

into the reservoir.  
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The applicability of ANN methodology for modelling daily streamflows into 

reservoirs has also been demonstrated by several authors with encouraging results. 

Moreover, studies have further shown that ANNs provide a systematic approach for 

reservoir inflow forecast and represent an improvement in prediction accuracy over 

their conventional conceptual counterparts (Kalteh 2007; Dorum et al. 2010; 

Abdulkadir 2011). 

The structure adopted for the ANN model in this study is a multiple input single output 

(MISO) ANN with a single hidden layer (Rajurkar, Kothyari and Chaube 2002). The 

universal approximation theorem of ANN modelling states that an ANN model with 

only one layer of hidden unit suffices to approximate any function with finitely many 

discontinuities to arbitrary precision, provided the activation functions of the hidden 

units are non-linear (Krose and Smagt 1996). A feed-forward network having a single 

layer of hidden units with logistic sigmoid activation functions and an output unit with 

pure-line function is used herein. Specifically, this ANN-MISO structure has been 

used by Mugumo (2011), Mugumo, Ndiritu and Sinha (2013), and Oyebode and 

Adeyemo (2014) to forecast monthly streamflows in the Vanderkloof dam.  

An assumption that the streamflow phenomenon is governed by a Markov process is 

also adopted in formulating the ANN model in this study. In a Markovian flow process, 

the flow in a given time period is assumed to depend on a series of antecedent flows 

and a random component. One explanation for adopting this assumption in modelling 

streamflow might be that a high flow in one time period will build up groundwater 

level and thus provide a tendency towards another high flow in the next period. 

Similarly, groundwater will be depleted during periods of low flows and so a low flow 

may be expected to be followed by another low flow (Salami 2007). Markovian flow 

model assumption has been adopted by several authors in developing models for 

reservoir inflow forecasts (Campolo, Andreussi and Soldati 1999; Salami 2007; 

Mugumo 2011).  

Through a preliminary sensitivity analysis (Mugumo 2011), it was found that the best 

configuration for the ANN model forecasting daily streamflow into the Vanderkloof 

dam based on available historical daily data is a model with three input nodes, five 
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hidden nodes and one output node. The input nodes represent flow 1-day ago (Qt-1), 

flow 2-days ago (Qt-2) and flow 3-days ago (Qt-3) while the forecast flow which is a 

function of flows in the past 3 days is presented on the output node (Qt). The detail 

and configuration of the ANN model developed for daily streamflow forecast into the 

Vanderkloof dam in this study is presented in Figure 22. 

 

Input layer Hidden layer Output layer Connection weights 

w14=-2.74543164115761 

w24=1.57338556116515 

w34=-6.08400739061531 

w15=-2.72109711097362 

w25= 0.987932921247742 

w35= 1.40283647525363 

w16= 1.89128916396619 

w26=-6.29108718128105 

w36=-0.280536161490062 

w17= 5.65584008580005 

w27= 2.6291940396584 

w37=-1.55510286297244 

w18=-2.12038162102118 

w28=-4.04742246654997 

w38=-1.6008210407248 

w49=-0.802171358557908 

w59=-0.679968929545429 

w69= 0.178310049150624 

w79= 7.837139067394E-02 

w89=-0.631142037984442 

Neuron bias 

B4=-2.12458227879054

B5= 0.240753939132842 

B6=-0.295636248663134 

B7= 5.22521968177888 

B8= 2.44563227295442 

B9= 0.913913578292504 

 

 

Figure 22: Detail and configuration of ANN daily streamflow forecast model for Vanderkloof dam  

 

The development of the ANN streamflow forecast model was carried out in accordance 

with standard procedure (Krose and Smagt 1996; Kalteh 2007; Oyebode and Adeyemo 

2014). An exhaustive review investigating the role of ANNs for hydrological 

modelling is reported by the American Society of Civil Engineers (Rajurkar,  Kothyari 

and Chaube 2002). Details on ANN structuring for streamflow modelling is also 

available in Mugumo (2011) and Oyebode and Adeyemo (2014). Also, applications of 
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ANN-based streamflow modelling are widely reported in the hydrological literature 

(Campolo, Andreussi and Soldati 1999; Rajurkar, Kothyari and Chaube 2002; 

Mugumo 2011; Oyebode and Adeyemo 2014). Hence, details of ANN model 

development are not repeated here as the main focus of this study is to optimise daily 

reservoir operation for hydropower production, while ANN is only adopted for daily 

streamflow forecast. 

6.3.4 Development of reservoir storage relationships 

Storage relationships are important in reservoir operations. These relationships are 

useful in computation of reservoir storage head and surface area necessary for the 

estimation of generating head for hydropower and lake evaporation in each time 

period. The two storage relationships developed in this study are storage-elevation and 

storage-area equations. 

Reservoir characteristics design data of the reservoir (DWA 1995a) were used in the 

development of these relationships. Exponential, linear, logarithmic, polynomial and 

power functions were fitted to determine the best model for the storage relationships 

(Salami 2007; Ajenifuja 2009). It was found that polynomial models of degree six best 

define the storage relationships of the Vanderkloof dam based on high values of 

coefficient of determination, R2.  

The Polyfit() function of MATLAB engineering software was used in fitting the 

polynomial models. This function embeds a subroutine that automatically determines 

the condition of the model. If it is reported that the model is ill-condition then the 

model either under fits or over fits the data points. The results from the fit in this study 

were reported to be well-conditioned which indicate that the models are adoptable for 

use in determining the storage head and storage surface areas. In applying these 

models, the existing storage first need to be divided by 1000 then the resulting 

elevation is multiplied by 1000 while the resulting surface area from the model is 

multiplied by 100. This is due to the mathematical transformations employed in the 

development of the models. Figure 23 shows the developed storage-elevation model 

while Figure 24 presents the storage-surface area model. 
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Figure 23: Storage-elevation curve for Vanderkloof reservoir. 

 

 

Figure 24: Storage-surface area curve for Vanderkloof reservoir. 

 

6.3.5 Model formulation for real time optimal reservoir operation 

The methodology in this study was adopted for daily operation of Vanderkloof dam 

for the 2012 – 2013 operating period. This period was chosen because it was the most 

recent operating period with complete data in the available dataset as at the time this 

study was performed. A preliminary frequency analysis of annual streamflows also 

shows that the flow in this period is categorized among the medium flows. Operating 

a reservoir without failure under a medium flow condition indicates that the reservoir 
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will perform reliably at least 75 percent of the time (Scott and Smith 1997). This study 

inspects the scenario of application of the proposed model against existing practice. 

Formulation of the real time constrained multi-objective mathematical reservoir 

optimisation problem follows. 

6.3.5.1 Decision variable and objectives 

The main aim of the study was to determine the daily water releases into the main 

canal and the turbines that would maximize daily hydropower generation while 

satisfying the existing canal and irrigation demands. The existing monthly water 

demands on the reservoir are specified by DWA (2010) and are presented in Table14. 

These values are converted to daily demands by dividing by the number of days in the 

month for the analysis in this study.  

The releases were also constrained to satisfy the maximum specified water supply 

deficit rate. The chosen decision variable for analysis herein is the reservoir storage at 

the end of the day, SEnd (Mm3). This facilitates the computation of the total daily 

reservoir release Rcts (Mm3) using the mass balance equation. Rcts comprise the sum of 

the releases to the main canal Rc (Mm3), turbine release Rt (Mm3) and the reservoir 

overspill Rs (Mm3). Once a decision on total release is made in each iteration of the 

optimisation algorithm, the breakdown of the release is specified as follows: 

• If release is less than the total demand for the day, there is a deficit in water 

supply. A deficit rate is computed and the turbine and canal demands are 

supplied at the computed deficit level. 

• If the release meets the turbine and canal demands then satisfy the canal 

demand and allot any extra water to the turbine to maximize hydropower 

production. Here, hydropower generation takes precedence over irrigation 

because DWA (1995) has noted that agriculture as a general economic sector 

and irrigation as a specific sub sector are relative inefficient users of water 

compared to other economic sectors. Hence industrial activities should not be 

impeded by lack of water in favour of irrigated agriculture. 
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• When the turbine has been satisfied to full capacity and yet there is still extra 

water, assign the extra to the canal to avoid wastage of water that may result 

from spill from the reservoir. 

• The reservoir is allowed to spill only when the hydro turbines and canal have 

been satisfied to capacity and yet there is excess water over the overspill crest. 

 

 Table 14: Monthly water demands and hydrology of Vanderkloof dam, South Africa. 

Month 

 
Monthly water demands (Mm3) Hydrology 

 

Power Plant Main canal Total 

Net 

Evaporation 

 depth (mm) 

Flood control Volume 

FCC (Mm3) 

May  81.69 4.10 85.79 102 3120.142 

Jun  79.06 2.47 81.53 81 3143.088 

Jul  88.84 9.92 98.76 93 3159.342 

Aug  130.65 19.92 150.57 123 3173.684 

Sep  193.83 37.86 231.69 176 3174.322 

Oct 
 

234.91 48.12 283.03 230 3160.617 

Nov 
 

232.95 49.66 282.61 269 3135.121 

Dec  274.99 32.36 307.35 313 3110.580 

Jan 
 

263.21 50.95 314.16 315 3088.271 

Feb 
 

197.23 37.6 234.83 256 3087.952 

Mar  178.51 26.35 204.86 191 3093.689 

Apr  124.26 10.71 134.97 132 3104.844 

Total  
2080.13 330.02 2410.15 2281  

 Source: DWA (2010) 

 

The objectives for the real time operation of the Vanderkloof reservoir for daily 

generation of hydropower are formulated as follows: 

Objective 1: Maximize daily hydropower production. 

Usually, hydropower generation is the cheapest form of electricity generation. It has 

also been observed that electricity produced from the Orange River Hydro stations is 

half as cheap as the ones sourced from Eskom’s thermal power stations (ESKOM 

2010). Hence, daily hydropower generation from the dam is maximized with the aim 

of generating electricity for the citizens at a cheaper cost. This is in line with the 

commitment of the government of South Africa towards equity and poverty 

eradication (SIDALA 2010). Furthermore, this underpins the South African 
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Government’s commitment to reduction of the countries’ GHG emissions and 

transition to a low carbon economy in line with international agreements (DOE 2014). 

The mathematical model equation for maximizing hydropower production from 

reservoirs is presented in equation (6.1) (Loucks and Bee 2005; Salami 2007; Ajenifuja 

2009): 

 

Maximize   εHRHp t725.2=  …. (6.1) 

Where, Hp is hydropower production in the day in megawatt hours (MWH). Rt is the 

volume of water released through the hydropower turbine during the day in mega 

meter cube (Mm3), Ԑ is the turbine efficiency in converting the mechanical energy of 

water to electrical energy and H is the average hydropower generating head in the day 

in metres (m). H is specified as the vertical distance between the water surface 

elevation in the reservoir that is the source of the flow through the turbines and the 

maximum of either the turbine elevation or the tail water elevation (Loucks and Bee 

2005). 

Objective 2: Minimize deviation from optimised flood control curve. 

The second important objective in real time optimal hydropower generation from 

reservoirs is minimizing deviation from monthly target storage specified by the flood 

control rule curve (FCC) (Ngo 2006; Madsen et al. 2009). This aims to retain enough 

water in the reservoir and keep the storage head as high as possible for power 

generation in subsequent days. This objective is in conflict with the objective of 

maximizing hydropower generation in the day when the existing reservoir storage is 

below the target storage. Increasing the power output in a single day will result in fast 

fall of upstream water level, thus the average generating head is depressed and the total 

volume of water and generating head for future generation of hydropower is decreased.  

The objective of minimizing deviation from optimised FCC also serves as an automatic 

switch between flood control when the reservoir is above the FCC and provision of 

inherent hedging against reservoir failure when the existing water level is far below 

the FCC (Ngo 2006). The mathematical model equation for minimizing deviation from 

optimised FCC is given in equation (6.2): 
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Minimize  mEnd FCCSS −=∆  …. (6.2) 

Where, ∆S is the deviation from target flood control storage (Mm3), SEnd is the storage 

volume (Mm3) in the reservoir at the end of the day after all releases have been made 

and all losses computed. FCCm is the flood control target volume for a day existing in 

an operating month m (m = 1, 2, … , 12 ). The values of FCCm for Vanderkloof dam 

are specified by DWA and are presented in Table 14. 

6.3.5.2 Problem constraints 

The bi-objective real time reservoir optimisation problem of maximizing daily 

hydropower production while minimizing deviation from the optimised flood control 

curve is subject to the following constraints: 

Constraint 1: Mass balance or storage continuity equation: 

The mass balance equation defining the relationship between inflow and outflow 

variables at the reservoir site must be satisfied. The storage continuity equation is 

presented in equation (6.3) (Loucks and Bee 2005; Salami 2007). Equations (6.4, 6.5 

and 6.6) gives details of the terms in equation 6.3. 

LsREQSS ctsnetStartEnd −−−+=  …. (6.3) 

 where; 

)( stccts RRRR ++=  

)( PEEnet −=  

0=Ls  

 

.… (6.4) 

.… (6.5) 

…. (6.6) 

where SEnd is the reservoir storage at the end of the day as defined in equation (2), SStart 

is the existing storage volume in the reservoir at the beginning of the day, Q is the 

streamflow into the reservoir during the day, P is precipitation on the reservoir surface 

during the day, E is gross evaporation from the reservoir surface, Ls is seepage loss, 

Rc , Rt and Rs are daily reservoir releases as previously defined. All variables are 

measured in volumetric units of mega cubic metres (Mm3). Since the reservoir is stable 

and has been in operation for a long time, seepage losses are assumed to be negligible 

in this study. The reservoir inflow Q is obtained from forecast using the ANN model 

developed in section 6.3.3.  
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For the analysis herein, daily net evaporation values are used. Values of monthly 

average net evaporation depth (mm) have been complied by DWA (1995a) for analysis 

of the reservoir. These values were obtained from historical records by subtracting the 

values of monthly reservoir precipitation from gross evaporation and averaged over 

the length of the historical record. These values are presented in Table 14. Daily net 

evaporation depth is obtained by dividing the monthly value by the number of days in 

the specified month. Net evaporation volume Enet (Mm3) is obtained by multiplying 

the daily evaporation loss depth by the average surface area of the reservoir during the 

operating day.  

Constraint 2: Limits on reservoir storage: 

The storage volume in the reservoir is allowed to vary only between the minimum and 

maximum permissible storages. This constraint is specified in equation (6.7): 

maxmin SSS End ≤≤  …. (6.7) 

Where, Smin (Mm3) is the minimum permissible storage volume and Smax (Mm3) is the 

reservoir capacity. Because this study aims to investigate the feasibility of generating 

hydropower from the dam without failure, Smin is set to the minimum operating storage 

volume for hydropower generation at the reservoir (1 222.1 Mm3). The flood control 

rule curve is a hard boundary constraints which should not be crossed during long term 

reservoir operation and planning. However, during day-to-day or real time operation 

of reservoirs, the flood rule curve may be crossed temporarily during reservoir spilling 

(Savenije 1995; Mugumo 2011). Therefore, Smax (3188.6 Mm3) is used as the 

maximum permissible storage volume instead of values from the FCC in the real time 

analysis herein. 

Constraint 3: Limits on releases through the turbines and canal: 

The values of daily releases through the turbines and main canal must lie between the 

minimum and maximum releases allowed through these outlets. The South African 

Department of Water Affairs (DWA) has adopted a maximum water supply deficit rate 

of 20 percent to cushion the frequency and severity of shortages in operating the 

reservoir (DWA 2010). This implies that water supplied through these reservoir outlets 
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must meet at least 80 percent of the demands in the supply areas. This specifies the 

minimum releases. Maximum release through these outlets are specified by the 

discharge capacity of the respective outlet. These constraints are presented in equations 

(6.8) and (6.9):  

ccc CRD ≤≤8.0  

ctt TRD ≤≤8.0  

…. (6.8) 

…. (6.9) 

where, Dc and Dt (Mm3) are daily canal and turbine demands respectively. These daily 

demands are computed by dividing the monthly demands in Table 14 by the number 

of days in the respective month. Cc is the maximum volumetric daily discharge of the 

main canal (4.9248 Mm3) while Tc (Mm3) is the daily discharge capacity of the turbines 

(34.56 Mm3). 

Constraint 4: Hydropower plant capacity: 

The maximum electrical energy that can be produced from a hydropower generating 

plant at any time is limited by installed plant capacity P (MW) and the plant factor f. 

The plant factor is a measure of hydroelectric power plant use and is usually dictated 

by the characteristics of the power system supply and demand. The total energy 

produced (MWH) during any period cannot exceed the product of the plant factor f, 

the number of hours in the period h and the plant capacity P, as defined in equation 

(6.10.) (Loucks and Bee 2005; Salami 2007): 

)( max PhfHpHp =≤  …. (6.10.) 

Hpmax is the cap on hydropower that can be generated in the day in megawatt hours 

(MWH). Since this study investigates the feasibility of generating hydropower 

throughout the day, it is assumed that the plant will be in full use and power generated 

from the plant will be fully consumed. Therefore, a plant factor, f = 1.0 is assumed in 

this study. The time step for the real time optimisation herein is a day, hence h = 24 

hours is used. The plant capacity of the Vanderkoolf power plant is 240 MW. 
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6.3.6 Model solution and experimental setup 

The mathematical model equations (6.1 – 6.10) representing the constrained multi-

objective real time reservoir optimisation problem were solved using CPMDE which 

is a new methods of EMOA proposed by Olofintoye,  Adeyemo and Otieno (2014a). 

The pseudo code for CPMDE was encoded using visual basic for applications (VBA) 

to facilitate its application in resolving the real time reservoir operation problem stated 

herein. The population of solution vectors was set at Np = 10. This is based on the 

advice by Storn and Price (1995) that a minimum population size 10 times the number 

of decision variables suffices in the application of methodologies based on DE. The 

algorithm was iterated for 3000 generations for each day in the real time analysis 

herein. Crossover rate Cr was set at 0.90 while the mutation scaling factor F was set at 

0.60 as advised by Storn and Price (1995). Harmonic average distance for maintaining 

spread of solutions on the Pareto front was computed using the two-nearest neighbour 

scheme. 

6.3.7 Selection of daily reservoir operating policy 

Application of CPMDE for real time multi-objective optimisation of the daily 

operation of Vanderkoolf reservoir produces a set of 10 non-inferior solutions 

representing feasible daily optimal operating policies. These policies trade-off power 

generation against storage depletion and reservoir storage head drop. These set of non-

inferior solutions are Pareto-optimal and no solution in the set can be considered better 

than any other in the absence of specialized information regarding the nature of the 

problem at hand (Deb 2001; Huang et al. 2005; Reddy and Kumar 2007). These 

provide a basis for choosing a preferred solution that balances short-term and long-

term objectives taking other considerations into account. Based on these results, the 

operator can express his/her preference to choose the most suitable solution in the set 

of Pareto-optimal solutions.  

In order to select daily best compromise solutions (BCS) for the real time analysis of 

the reservoir in this study, the existing release restriction policies for the reservoir 

(Mugumo 2011) were used in collaboration with a compromise programming 

approach (CPA) suggested by Deb (2001). CPA (see section 5.3.5) selects a solution 

which is minimally located from a given reference point as the BCS. Figure 25 shows 
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the current release restriction policy that are used for operating the reservoir. The 

penstock elevation at 1 150.8 m.a.s.l specifies the minimum operating level for 

hydropower generation. This corresponds to a storage of 1 222.1 Mm3. Hydropower 

can only be generated from the dam when storage is above the minimum operating 

level for hydropower generation, that is, when the reservoir storage is in zone 1 or zone 

2. For the purpose of the real time study herein, the release restriction policy is applied 

in determining the daily reference point as follows: 

• If the existing storage volume (ESV) at the beginning of the day is in zone 2 

which is the restriction zone, releases are reduced by a restriction factor to 

hedge against complete depletion of storage in the reservoir. This helps in 

ensuring that there will be water in the reservoir for hydropower generation in 

the future. The restriction factor depends on how depleted reservoir is at the 

present day and is computed as a linear interpolation between the maximum 

and minimum storage volume of this zone. 

• If ESV resides in the lower part of the normal operating zone, that is, in the 

lower part of zone 1, the storage is considered to be far below the FCC but 

above the restriction zone. The aim here is to release just enough water to meet 

the full daily demands of the turbine and canal. Here no extra water is allocated 

to downstream users so as to aid in build-up of storage in the reservoir. This 

zone is defined as the zone with storage volume 40 Mm3 less than the storage 

defined by the corresponding FCC. 

• If ESV is in the upper part of the normal operating zone but below the FCC, 

then storage is considered to be in the vicinity of the FCC. In this zone, the aim 

is to operate the reservoir in a steady state mode while keeping reservoir 

storage in the vicinity of the FCC. Here, the release is made as close as possible 

to the inflow as possible. The operating rule in this zone is to release the total 

forecasted inflow or 100 percent of the total demand, whichever is greater. This 

zone is defined as the zone with storage volume less than the storage defined 

by the corresponding FCC by not more than 40 Mm3. The combined discharge 

capacity of the canal and turbine is 39.4848 Mm3. This is approximated to 40 

Mm3 in this study to define storage within the vicinity of the FCC. 
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• If the reservoir storage is above the FCC then the reservoir is operated in flood 

control mode. Releases are made to avoid spillage and safeguard the structure.  

The aim in this scenario is to release the total forecasted inflow or 100 percent 

of the total demand whichever is greater plus the excess storage above the FCC. 

This helps to deplete the storage to fall below the FCC. 

VAN DER KLOOF DAM   

Reduced Level 

(m) 

Zone Volume 

(million m3) 

Capacity 

(million m3) 
 LEVEL 

1 1750.50 
 

3 187.07 
 

Full Supply Level 

ZONE 1 

 

 

1  153.00 

ZONE 1 

 

 

1  802.13 

ZONE 1 

 

 

1  386.47 

 

Normal 

Operation 

ZONE 2 

 

 

1  150.80 

ZONE 2 

 

 

1 64.37 

ZONE 2 

 

 

1  222.10 

 

Only 

Eskom 

ZONE 3 

 

 

1  147.78 

ZONE 3 

 

 

206.70 

ZONE 3 

 

 

1  015.40 

 

 

Releases 

ZONE 4 

 

 

1  128.45 

ZONE 4 

 

 

809.92 

ZONE 4 

 

 

205.48 

 

 

Low Level Storage 

Low Level 

Storage  

 

1  071.00 

Low Level 

Storage  

 

205.48 

Low Level 

Storage  

 

0.00 

 

 

Bottom 

Figure 25: Release restriction policy for Vanderkloof dam (Mugumo 2011). 

 

6.3.8 Operation scenarios. 

Three operation scenarios were investigated in this study. In the first scenario, the 

behaviour of the reservoir was inspected under existing current practice. The existing 

storage volumes and actual reservoir releases made were used to compute power 

generation and investigate the behaviour of the reservoir over the operating period. 

This scenario starts with a low storage based on the data of actual operation of the dam. 

The other two scenarios adopt the methodology developed in this study to investigate 

the performance of the reservoir under two different starting storage volumes. The 
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starting storages investigated herein are low starting storage and high starting storage. 

First simulations through the operating period were carried out using an initial starting 

storage of 2 689.536 Mm3. This was the ESV at the beginning of the operating period 

according to the available data. This resulted from the current operation of the system. 

This scenario is considered a low starting storage case as the initial volume was about 

430 Mm3 short of the value specified by the optimised FCC. A final storage volume 

of 3 107.898 Mm3 was obtained at the end of the operating period. This represents the 

initial starting storage for the next operating season. This volume, which is about 

12.243 Mm3 short of the expected starting storage, was then used to rerun the 

simulation over the operating period. This scenario is considered as a high starting 

storage scenario. Results show that the starting storage of the reservoir affects the 

amount of power that can be generated from the reservoir over the operating period. 

6.3.9 Development of a decision support system (DSS) for real time operation of 

the Vanderkloof reservoir. 

Analyses in hydrological studies often require handling large volumes of data and 

rigorous computations. Developing software/expert systems for this purpose may help 

reduce the cumbersome computational tedium involved to a great extent (Islam and 

Kumar 2003; Olofintoye and Adeyemo 2011c). The advent of personal computers and 

the development of standardized programming platforms have spurred engineers and 

scientists worldwide into developing software applications for the solution of unique 

engineering and scientific problems (Olofintoye and Adeyemo 2011a). Several studies 

reporting the development and applications of computer programs or software for the 

solution of engineering and water resources problems have been cited in the literature 

(Vivoni et al. 2002; Islam and Kumar 2003; Raji 2004; Morin et al. 2006; Olofintoye,  

Salami and Jimoh 2009).  

According to Loucks and Bee (2005), developing and implementing a decision support 

system (DSS) for water resource management may offer great benefits in making 

critical water allocation decisions. These interactive modelling and display 

technologies can, within limits, adapt to the level of information needed and can give 
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decision-makers some control over data input, model operation and data output 

(Loucks and Bee 2005). 

Mugumo (2011), while operating the Vanderkloof reservoir noted a general absence 

of a software which is versatile in data manipulation, user friendliness and at the same 

time specifically tailored toward reservoir operations. The author further 

recommended development of a software or DSS dedicated to water resource 

management and reservoir operations, especially in South Africa. Hence, in this study, 

the models and all relevant information for the daily operations of the Vanderkloof as 

presented in the methodology, were compiled into a user friendly software application 

program using visual basic for applications (VBA) embedded in Microsoft Excel. This 

resulted in the development of a new software program called VanResOp for real time 

operation of Vanderkloof dam in South Africa. The acronym is formed by taking 

preceding letters as follows: Vanderkloof Reservoir Operation. VanResOp represents 

a DSS that generates daily optimal operating policies for the Vanderkloof reservoir. 

The user interface of the DSS is presented in Figure 26. 

The DSS takes as input the current month, ESV at the beginning of the operation day, 

and flows into the reservoir in the past three days. These are entered into respective 

cells in the input section on the interface, following which the user clicks on the 

‘Optimize’ button. VanResOp undertakes all necessary calculations incorporating the 

details in the methodology section herein and produces as set of 10 daily Pareto-

optimal solutions which represent feasible operating policies for the reservoir.  These 

provide a basis from which a decision maker may choose from to operate the dam for 

a particular day. Details of the optimal solutions are presented in the output section. A 

graph showing the Pareto front of the solutions is also shown in the lower right corner 

of the interface while the suggested best compromise policy is displayed in the best 

compromise section near the centre of the user interface (Figure 26). 

The DSS was specifically developed using VBA in Microsoft Excel due to the 

excellent data manipulation ability and user friendliness of Microsoft Excel. Users 

familiar with Microsoft Excel need not spend excessive time in learning to use and 

apply a new user interface.  
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Figure 26: Graphical user interface (GUI) of VanResOp 
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VanResOp was employed to perform a real time behavioural analysis of the reservoir 

over the operating period. This facilitated the investigation of the feasibility of daily 

hydropower generation from the Vanderkloof reservoir under normal flow conditions. 

VanResOp may be available in the future on request from the repository of Durban 

University of Technology (DUT), South Africa. 

 

6.4 RESULTS 

The real time multi-objective reservoir operation problem of maximizing daily 

hydropower generation while meeting long term objectives in terms of minimizing 

deviations from the optimised flood control curve at  the same time satisfying existing 

water demands riparian to the river, was solved using an ANN-CPMDE hybrid 

solution technique. ANN was employed to forecast daily reservoir inflow while 

CPMDE was used to optimise the daily operation of the reservoir to obtained daily 

Pareto-optimal solutions representing feasible daily operating policies for the dam. 

Figure 27 shows the fit of the ANN forecast model over the operating period used in 

this study. The sum of daily hydropower produced in each month are presented in 

Figure 28 while Figure 29 shows the daily storage trajectories over the operating 

period.  

 

  Figure 27: Fit of the ANN streamflow forecast model over the operating period. 
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    Figure 28: Cumulative monthly hydropower production over the operating period. 

 

 

   Figure 29: Reservoir storage trajectories over the operating period. 

 

6.5 DISCUSSION OF RESULTS 

Figure 27 shows that the developed ANN streamflow forecast model produces good 

generalization of the underlying phenomenon generating the inflow dataset. This 

further proves the ability of ANN in modelling hydrological processes. The model 

exhibits a good representation of the streamflow dynamics of the Vandekloof reservoir 

as it was able to adequately reproduce the inflow pattern with a substantial degree of 
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accuracy. This also suggests that the assumption of a Markovian flow process in the 

selection of input variables for the model is adequate. The satisfactory performance of 

the network further corroborates the authenticity of the universal approximation 

theorem for ANN that a three layered feed-forward neural networks is sufficient for 

most hydrological modelling and forecast applications. The fact that an ANN with a 

simple network architecture, that is, a three layered ANN network with three neurons 

in the input layer, five neurons in the hidden layer and one neuron in the output layer 

could satisfactorily simulate reservoir inflow in this study also demonstrates the power 

and applicability of ANNs in operating complex reservoir systems.  

Simulation through the operating period using well balanced optimised solutions 

shows a general pattern in possible hydropower generation from the dam. Figure 28 

shows two peak periods for hydropower generation corresponding to periods of peak 

streamflow into the reservoir. The higher of the peaks for possible hydropower 

generation occurs during the spring months (around August – October) while the lower 

peak occurs during the summer months (December – February). Rainfall and 

consequently streamflow into the reservoir are generally higher in the summer months 

than the spring months, however it was observed (Figure 28) from real time simulation, 

that the peak hydropower generated during spring (111.035 GWH) is slightly higher 

than that generated in summer (105.063 GWH). This is probably due to the fact that 

the FCC (Figure 29) restricts storage volume during the high inflow period so as to 

reserve storage space necessary for flood control during the flood season. This 

consequently enforces reservoir operations to maintain lower storage heads during this 

period even though much water is available for power generation.  

The reservoir storage specified by the FCC for the month of September (3 120.14 

Mm3) corresponds to a generating head approximately 74.5 m, while storage specified 

for January (3088.27 Mm3) corresponds to a generating head of about 73.8 m. 

According to Salami, (2007), the amount of water in storage may sometimes not be as 

important as the depth of water in the reservoir. This is because potential energy which 

is ultimately converted to mechanical energy for power generation is a function of 

elevation and must be sufficiently high to do useful work. Therefore, it may be said 
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that more power is produced in spring due to high inflows and higher reservoir 

elevations specified by the FCC.  

The season from October to December is marked by significant drop in reservoir 

storage and hydropower generation due to low inflows (Figures 28 and 29). Although 

the FCC specifies high storage values during this season, flows during this period are 

generally low thereby resulting in significant deviation in storage from that specified 

by the FCC and consequently a drop in hydropower generating head. From the result 

of the analysis however, it was found that it is still possible to generate a low amount 

of energy (minimum of 43.01 GWH) despite the prolonged period of low streamflow. 

The period between March and July is also accompanied by low flows, however, due 

to pockets of high flows during this season it is possible to maintain a high head. In 

order to maintain high heads in this period however, reservoir releases have to be 

restricted, thus resulting in lower hydropower generation. 

The current practice in operating the dam requires that the turbines should be operated 

at full capacity when storage is above the FCC until storage drops below the FCC. 

When storage is significantly depleted, restriction rules (Figure 25) are applied to 

hedge against further depletion (DWA 2010; Mugumo 2011). No rule specifies the 

exact amount of water to discharge on daily basis. Unlike the procedures of the current 

practice, the real time methodology produces optimal policies that specify the exact 

amount of water to release thus providing guidance facilitating the daily operation of 

the reservoir.  

Examination of Figure 28 shows that while starting with a low storage, the power 

generated from actual operations and real time analysis were roughly equal in the first 

two months (May-June). In the following two months (July-August), power 

production using the real time methodology was generally higher while in September 

power generation from real time operation was slightly lower. Performance of the 

system was roughly the same through the period of low flows (October to December). 

After the low flow period, the real time application method was able to recover faster 

and produced higher power in the second peak generation period (January).  
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While the real time method was able to balance power generation towards the end of 

the operating period (March – April), actual operations witnessed a significant drop in 

power production and storage fluctuations (Figure 29) probably in an attempt to keep 

the reservoir full in anticipation of the next operating period. A difference in power 

production of about 23.6 GWH was observed between the performance of the real time 

methodology and the actual operation in this period. The total power generated from 

actual operation of the dam over the planning period was 629 GWH. In applying the 

real time method, it was observed that the dam generated 649.31 GWH over the 

operating period. This difference of 20.31 GWH in power production indicates an 

increase of about 3.2 percent in power generation. This suggests that power production 

from the dam may be improved by adopting real time strategies. 

The advantage of employing the real time methodology is amply evident from 

inspection of the storage trajectories over the operating period (Figure 29). While the 

real time method was able to recover from storage depletion in about four months, the 

actual operation of the reservoir indicates that the dam did not recover storage until 

eight months (Figure 29). The failure of the dam to recover before the period of 

extended low flows led to a further depletion of the reservoir during the low flow 

period. This depletion was in the range of 50 Mm3 more than the depletion observed 

from the application of the real time methodology. Due to this high depletion, it is 

evident that the operator applied strict hedging rules which brought the storage above 

the FCC within 3 months after the low flows. While this was useful in keeping the 

reservoir storage high, it reduced the power produced during this period as the 

operation of the reservoir was not optimal (Figure 28). Further attempt to keep the 

reservoir around the FCC resulted in the fluctuations observed towards the end of the 

operating period as there was no methodology in place to specify optimal daily release 

from the reservoir.  

Figure 29 shows that while it was possible to minimize deviations from target storages 

and keep storage as close to the FCC as possible by applying the real time 

methodology, significant deviations from the FCC were observed during the actual 

operation over the operating period. An average cumulative storage deviation of 95.4 
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Mm3 was observed during operations using the proposed real time methodology while 

about 139.4 Mm3 resulted from actual operations. This difference of 44 Mm3 indicates 

a decrease of 46.12 percent in deviation from target storage. Therefore, it may be said 

that the real time methodology presents a method that is roughly 46.12 percent times 

better than the actual operations in minimizing deviations from reservoir target storage 

volumes. 

From further analysis of results of simulation over the operating period, it was 

observed that the starting storage of the reservoir significantly affects the amount of 

hydropower that can be generated over the period. Total annual hydropower 

production reduces with reducing starting storage volumes. Starting real time 

simulation with a storage volume of 2 689.536 Mm3 which is roughly 14 percent short 

of the expected starting storage, produced a total annual power of 649.31 GWH, while 

starting with a higher volume (3 107.898 Mm3), roughly 0.4 percent short of the 

volume specified by the FCC produced about 728.53 GWH of annual energy. This 

difference in power generation of about 79.23 GWH indicates an increase of about 11 

percent in power generation.  

From Figures 28 and 29, it is evident that when simulation is started with a low storage 

volume, power production is restricted while a systematic attempt is made to build 

reservoir storage and hydropower generating head. Examination of real time 

operations in these Figures (28 and 29) shows that it took about 112 days (almost 4 

months) for the reservoir to recover from a storage shortage of only 14 percent to be 

at par with the operation started with a high storage volume. However, the reservoir 

was able to recover before the prolonged period of low reservoir inflows. It was further 

observed that once the reservoir recovered storage, operations follow the same pattern 

to the end of the operating season. Furthermore, it was noted that if the reservoir is 

able to maintain its storage head close to the FCC before the low flows, it will 

ultimately recover from storage depletion after the low flows period and maintain a 

high head into the next operating season.  

The low starting storage that was 14 percent short of the expected starting storage 

specified by the FCC, resulted from the current operation of the reservoir. However, 
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by applying the real time reservoir operation methodology suggested herein under a 

medium flow condition, the reservoir was able to systematically recover from storage 

depletion and maintain a high head into the following operating season. This suggests 

that adopting real time cutting edge technologies for the operation of Vanderkloof dam 

may be beneficial for future operation of the reservoir. 

Results from the real time reservoir analysis in this study indicate that under a medium 

flow condition with a high reservoir storage volume at the beginning of the operating 

period, it is possible to generate hydropower on a daily basis from the reservoir without 

a failure of the system. An average of 1.26 GWH/day could be generated in the month 

of May, 1.15 GWH/day in June while 1.79 GWH/day could be produced in July. 

Average daily power generation of 2.28 GWH/day is possible in August, 3.70 

GWH/day in September, 1.60 GWH/day in October and 1.43 GWH/day may be 

generated in November. Mean daily hydropower generation in December is 1.62 

GWH/day while an average of 3.39 GWH/day and 2.95 GWH/day can be produced in 

January and February respectively. Daily average energy of 1.31 GWH/day may be 

generated in March while 1.54 GWH/day is possible in the month of April. Minimum 

power generation (1.15 GWH/day) occurs in June while maximum generation (3.70 

GWH/day) occurs in September. A total of 728.53 GWH of annual energy may be 

generated under medium flow condition when the reservoir is full at the beginning of 

the operating period.  

It was also observed that storage was maintained above critical levels and at no time 

did storage fall to the restriction zone throughout the simulation. The deficit rate was 

zero in all the days of the operating period and there was no need for water rationing. 

Also, the reservoir was 99.6 percent full at the end of the operating period. This 

suggests that the hydrology of the dam can sustain its current water demands under the 

prevailing climate situation. This is consistent with the findings of (Adeyemo, 

Olofintoye and Otieno 2012; Olofintoye, Adeyemo and Otieno 2012) that hydropower 

generation from the dam and water supplies to other sectors are is still sustainable 

under the prevailing climate condition. However, the fact that the dam took a period 

of about four months to recover from a storage depletion of only 14 percent indicates 
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that the water resources of the dam is not in excess. The water in the dam is just enough 

to meet all current demands. This calls for proper management policies for future 

operation of the reservoir to guard against excessive storage depletions.  

The findings of this study are also consistent with the findings of Mugumo (2011), 

Mugumo, Ndiritu and Sinha (2013), and Olofintoye, Adeyemo and Otieno (2014b) 

that if water in the reservoir is properly managed, hydropower can be sourced from the 

Vanderkloof dam over the operating period without system failure. However, 

Mugumo (2011) investigated the operation of the dam using monthly streamflows and 

not real time reservoir inflows as used in this study.  

The results from the analysis in this study also support the findings of Madsen and 

Skotner (2005), Richaud et al. (2011) and Ngo (2006) that the combination of accurate 

reservoir inflow forecasting and optimisation technology for real time operation of 

reservoirs, can provide more efficient and balanced solutions for operating reservoirs 

to improve the economy of hydropower production. For instance while operating the 

Hoa Binh reservoir in Vietnam, Madsen et al. (2009) observed an increase in power 

generation of about 210 GWH per annum while implementing a real time 

methodology. In this study, an increase of 3.2 percent in power generation and 46.12 

percent in ability to minimize deviations from storage targets were observed. This 

indicates that the real-time reservoir operation methodology applied herein may 

represent an improvement of up to 49.32 percent in performance over current practices.  

The real time reservoir operation in this study involved averaging monthly values to 

obtain daily values by dividing by the number of days in a month since real time data 

was not readily available. This may possibly impact on the accuracy of the study. 

Investigation of the reservoir using exact real time data is left for further studies when 

relevant information will be available. 

6.6 CONCLUSION 

Water scarcity has emerged a global issue in recent times. The situation is being further 

exacerbated by escalating water demands while available water resources are limited, 

population explosion, unsustainable urbanization and in recent times anthropogenic 
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climate change among other factors (Hamid and Khan 2003; Olofintoye, Adeyemo 

and Otieno 2012). This has driven efforts worldwide in search of improved techniques 

propitious to proper water allocation planning and reservoir optimisation and 

management operations. A real time reservoir behavioural analysis was performed to 

inspect the feasibility of daily hydropower generation from the Vanderkloof reservoir 

under normal flow conditions. A hybrid between a data driven artificial neural network 

(ANN) model and a novel combined Pareto multi-objective differential evolution 

(CPMDE) was employed for hydrological simulation and numerical multi-objective 

optimisation of hydropower production from the dam in real time. ANN was adopted 

to forecast real time streamflows while CPMDE was employed to search the decision 

space for feasible Pareto-optimal solutions representing daily operating policies for the 

reservoir. These Pareto solutions trade-off the short term and long term objectives and 

provide a basis from which a decision maker may choose from to operate the dam in 

real time and subsequently gauge system performance. Results from the application of 

the real time model indicate that 728.53 GWH of annual energy may be generated from 

the reservoir under medium flow condition without system failure. Storage was 

maintained above critical levels while the reservoir supplied the full demands on the 

dam throughout the operating period. This indicates that the system yield is sufficient 

and there is no immediate need to augment the system (Mugumo 2011; Olofintoye, 

Adeyemo and Otieno 2012; Mugumo, Ndiritu and Sinha 2013). However, the long 

period required for storage recovery when the dam is depleted suggests that the water 

resources of the dam are not in excess. Hence, effective water management strategies 

for future operation of the reservoir to guard against excessive storage depletions are 

needed. 

Generating daily hydropower from the dam will provide electricity for the citizens at 

a cheaper cost. This aligns with the South Africa government’s commitment towards 

poverty eradication and reduction of the countries’ greenhouse gas emissions to 

conform to international standards and reduce the country’s contribution to 

anthropogenic global climate change. Results of simulation in this study indicate that 

it took the reservoir close to four months to recover from a storage depletion of only 

14 percent. This is due to the fact that the reservoir is located in a semi-arid region 
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with low rainfalls. Hence methodologies that encourage indiscriminate allocation of 

water which may lead to significant storage depletions should be avoided. Findings 

from the application of the real time methodology suggested herein show that the 

reservoir could systematically recover from storage depletion and maintain a high 

storage head into the next operating season. Therefore, the hybrid ANN-CPMDE real 

time reservoir operation technique suggested herein provides a low cost solution 

methodology suitable for the sustainable operation of the Vanderkloof reservoir in 

South Africa. Results from the application of real time method developed in this study 

indicate a 49.32 percent improvement in performance over current practices. 

Recommendation is hereby made to stakeholders, policy makers and operators of the 

reservoir to further investigate, embrace and adopt cutting edge real time optimisation 

systems which may be beneficial to future operation of the reservoir. The real time 

optimisation of the reservoir was investigated under normal flow conditions, this 

indicates that the reservoir will perform successfully at least 75 percent of the time. 

Investigation of the reservoir under drought condition is hereby left for further studies. 
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CHAPTER 7 

CONCLUSION AND RECOMMENDATIONS 

7.1 CONCLUSION 

The search for accurate and reliable hydrologic and optimisation models for water 

resources management has been the point of much discussion in previous researches 

with promising applications in many areas of human endeavours such as crop growth, 

irrigation planning, hydrological systems, reservoir operations and other simulation 

studies (Lennox et al. 2003; Olofintoye 2007). Water inadequacy in most countries 

calls for concerns in the management of existing facilities since the building of new 

facilities requires very high investments and are highly opposed (Adeyemo 2009; 

Adeyemo and Otieno 2010). Hence, several heuristic optimisation models with 

varying degrees of complexities have been widely applied for resolving water 

resources optimisation and allocation problems. Nevertheless there still exist 

uncertainties about finding a generally consistent and trustworthy method that can find 

solutions which are really close to the global optimum in all circumstances 

(Olofintoye, Adeyemo and Otieno (2013b). 

In this study, a new evolutionary algorithm (CPMDE) was developed and applied to 

resolve water allocation problems in the Orange River catchment in South Africa. 

Results obtained from the applications of CPMDE suggest it represents an 

improvement over some existing methods. CPMDE combines methods of Pareto 

ranking and Pareto dominance selections to implement a novel and unique selection 

scheme at every generation. The new scheme introduces a systematic approach for 

controlling elitism of the population which provides an adequate balance between 

exploitation of non-dominated solutions found and exploration of the decision search 

space. CPMDE was benchmarked against 14 state-of-the-art evolutionary multi-

objective optimisation algorithms. Findings suggest that the new algorithm presents 

an improvement in convergence to global Pareto-optimal fronts especially on 

deceptive multi-modal functions. Competitive results obtained from the benchmark of 

CPMDE suggest that it is a good alternative for solving real multi-objective 
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optimisation problems. Results from a rigorous comparison of solution methodologies 

using standardized performance metrics and a statistical Wilcoxon signed rank test 

further show that CPMDE can be ranked in the class of recent and standardized state-

of-the-art evolutionary multi-objective algorithms. 

CPMDE was applied to resolve water allocation problems in the agricultural and 

power sectors in South Africa. The results suggest that these methodologies are 

applicable in other countries with similar or different climate and conditions. The 

agricultural and power sectors have been considered strategic and germane in 

capacitating the South African government’s commitment towards equity and poverty 

eradication and ensuring food security. On a crop planning problem, CPMDE found 

18 new policies that were not found in an earlier study. This indicates that the 

algorithm represents an improvement of roughly 45 percent over an existing method 

that has been formerly applied.  

The results of application of CPMDE in the real time behavioural analysis of the 

Vanderkloof reservoir showed an additional 20.31 GWH of energy corresponding to 

an increase of 3.2 percent in power generation. Analysis of storage trajectories over 

the operating period showed an increase in ability to minimize deviation from target 

storage. Overall, the real time analysis provides an improvement of 49.32 percent over 

the current practice. Further analysis involving starting the simulation with high 

storage volume suggests that 728.53 GWH of annual energy may be generated from 

the reservoir under medium flow condition without system failure. This corresponds 

to an 11 percent increase in energy generation.  

It is concluded that a hybrid ANN-CPMDE real time reservoir operation methodology 

suggested herein provides a low cost solution methodology suitable for the sustainable 

operation of the Vanderkloof dam in South Africa. This suggests that adopting real 

time optimisation strategies may be beneficial to operation of reservoirs. Therefore, 

CPMDE presents a new tool nations can adapt for the proper management of water 

resource towards the overall prosperity of their populace. 
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The main objective of this study was to develop a new evolutionary multi-objective 

optimisation algorithm and apply it to solve multi-objective water allocation problems 

in the agricultural and power sectors in the Orange River catchment in South Africa. 

As mentioned in chapter 1, this study has six specific objectives which were: 

1. To develop and conceptualize a novel multi-objective evolutionary algorithm 

for solving multi-objective mathematical optimisation problems and apply the 

developed method in water resources management in the Orange River 

catchment in South Africa.  

2. To benchmark the developed algorithm with existing state-of-the-art 

algorithms using standard benchmark problems and standardized performance 

metrics to evaluate its performance and adaptability for solving real world 

optimisation problems. 

3. To solve a multi-objective crop planning problem by using the newly 

developed multi-objective algorithm to optimise planting areas for given crops 

under land and water constraints 

4. To adopt an existing framework for solving problems of water allocation to 

users in real time. 

5. To develop a decision support system (DSS) by encoding the real time 

framework into a computer application package using visual basic for 

applications. 

6. To apply the DSS to reservoir operations by investigating real time multi-

objective water allocation for hydropower generation from the Vanderkloof 

dam. 

Specific objective 1 was addressed in chapters 3 and 4 where a novel evolutionary 

multi-objective optimisation algorithm (CPMDE) was developed. This algorithm was 

later employed in resolving strategic water resources optimisation problems in 

Chapters 5 and 6. Benchmark of CPMDE on standardized benchmark test beds was 

achieved in chapters 3 and 4. Chapter 5 further provides a benchmark of the algorithm 

using a real world multi-objective crop planning problem. Hence, specific objectives 
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2 and 3 are satisfied. In chapter 6, specific objectives 4, 5 and 6 where achieved. In the 

chapter, a simulation-optimisation framework for solving real time optimal water 

allocation problems was adopted. The specifics of the framework in this study 

involved combining CPMDE with ANN to form a useful hybrid for real time operation 

of Vanderkloof dam for power generation under irrigation and existing riparian 

demand constraints. The ANN-CPMDE hybrid was implemented in a new DSS called 

VanResOp to facilitate is application for real time operation of the reservoir. 

VanResOp was the employed to investigate the feasibility of daily power generation 

from the Vanderkloof dam over the operating period. Results showed that the DSS was 

useful in generating optimal policies that facilitate the daily operation of the dam. 

Therefore, all the objectives of this study have been achieved. 

 

7.2 NOVELTIES AND CONTRIBUTIONS TO THE BODY OF KNOWLEDGE 

The following novelties and contributions to the general body of knowledge are 

accomplished and published as enumerated in chapter one: 

1. The development of a novel evolutionary multi-objective optimisation 

algorithm (CPMDE) that represents an improvement over existing techniques. 

The algorithm proposes a new selection methodology that provides a 

systematic approach for controlling elitism of the population which provides 

an adequate balance between exploitation of non-dominated solutions found 

and exploration of the decision search space. The studies herein provide the 

first applications of CPMDE in resolving water management problems in the 

agricultural and power sectors in South Africa. Furthermore, since this study 

develops a system-theoretic algorithm, the application of the algorithm may be 

extended to solve problems in other strategic sectors. 

2. Development of a new DSS (VanResOp) that incorporates model based 

information for the real time operation of Vanderkloof dam. 

3. Development of ANN-CPMDE heuristic hybrid for real time operation of the 

Vanderkloof reservoir. 
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7.3 RECOMMENDATIONS AND FUTURE RESEARCH 

The following recommendations suggest areas for further research to improve the 

applicability of the methods developed in this work. 

 

• Gariep and Vanderkloof dams are the two most important dams along the 

Orange River. This study focuses only on the Vanderkloof dam because it is 

the last in the series and therefore captures the operation of the Gariep dam 

upstream. Furthermore, it serves as the last valve in the river system up to the 

river mouth. Further research will be to employ CPMDE to optimise the 

combined operations of these dams to satisfy the conflicting objectives of 

hydropower, irrigation, flood control and municipal and industrial water supply 

in real time. 

• Upgrade of VanResOp to capture the operation of the Gariep dam and other 

important water structures within the river system may be considered for 

further studies. 

• This study was also limited by the availability of real time demand data. 

Investigation of the reservoir using real time hydrology and demands is hereby 

left for further studies when relevant information becomes readily available. 

• The real time optimisation of the reservoir in this study was investigated under 

normal flow conditions. This indicates that the reservoir will perform 

successfully at least 75 percent of the time. Investigation of the reservoir under 

drought condition is hereby left for further studies. 

• The Orange River is shared among three riparian countries i.e. Lesotho, 

Namibia and South Africa. Due to the trans-boundary nature of the basin, there 

is a need to manage the water resources of the river in such a way as to avoid 

conflicts among these countries and minimize water shortages especially in 

Namibia, which lies at the tail end of the basin. The decision making algorithm 

proposed in this research work was applied for water resources management 

only in the context of South Africa. Application of CPMDE for resolving real 

time multi-objective water resources conflicts among the countries riparian to 

the river is left for further studies.  
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