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MODEL BASED REAL TIME CONTROLLER 
PERFORMANCE ASSESSMENT FOR NONLINEAR 

SYSTEMS

N. PILLAY & P. GOVENDER

Abstract

The aim of this paper is to present a novel methodology for the performance 
assessment of proportional-integral-derivative (PID) controllers operating in 
the presence of process nonlinearities. The principle objective is to assess the 
quality of controller performance in real time when subjected to setpoint 
changes. Using prescribed operating regions, optimal PID controller settings 
are synthesized off-line by numerical optimisation from a trained artificial 
neural network (ANN) of the process. To demonstrate the effectiveness of the 
proposed controller benchmarking scheme, the procedure is applied to a 
simulation example, plus a real process control loop operating in a full scale 
pH neutralization pilot plant. Results obtained from the experiments indicate 
that the method is suitable for servo tracking in nonlinear control loops such as 
those found in the pulp and paper, and water purification industries. 
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1. INTRODUCTION

In modern industrial and process control there are many control loops which 
operate using the conventional proportional-integral-derivative (PID) 
controller (Agrawal & Lakshminarayanan, 2003). This is attributed to its simple 
and flexible control algorithm, low cost and effectiveness in linear systems. 
These controllers are often initially designed to meet some desired 
performance objectives but often fail when severe process nonlinearities are 
encountered. Many complex factors can contribute to gradual or abrupt 
performance deterioration such as control valve nonlinearities (Bacci di 
Capaci, Scali & Huang, 2016), sensor degradation and even intrinsic 
nonlinear process dynamics (Jelali, 2012). Performance evaluation is thus 
important and must be conducted regularly to ensure proper functioning of the 
controller design during the life cycle of the control loop (Veronesi & Visioli, 
2015). Furthermore, continuous monitoring of plants has become increasingly 
relevant since poorly performing control loops contribute negatively from an 
economic and safety perspective (Srinivasan, Spinner & Rengaswamy, 
2012).

The emerging area of controller performance assessment (CPA) determines 
controller performance by assessing and detecting the 'health' of a control 
loop (Jelali, 2012). Whilst there are well established CPA tools available, most 
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of them assume the process dynamics can be represented by a linear model 
(Harris & Yu, 2007). Notable research conducted by Harris (1989) has paved 
the way for more complex CPA algorithms which are discussed in Harris, 
Seppala & Desborough (1999) and Jelali (2012). Harris showed that the 
philosophy of minimum variance (MV) control can be used as a benchmark for 
closed loop performance assessment (Harris, 1989). The idea is central to 
many other performance measures found in literature and has been extended 
to evaluate controllers designed for cascade, feedforward and multivariate 
systems. Whilst MV is an important lower performance bound, it does not take 
into consideration the structure of the controller and may be regarded as an 
overly ambitious index when PID type control structures are concerned (Yu, 
Wilson, Young & Harris, 2009).

For nonlinear systems that can be adequately described by Volterra models, 
Harris and Yu (2007) showed that MV performance estimation is only possible 
through the existence of feedback invariance from routine plant operating 
data. Feedback invariance is the dynamic part of a closed loop system that is 
not affected by feedback for that specific sampling instant. For linear systems, 
the feedback invariance can be easily recovered from the process closed loop 
time series; however this is not the case for general dynamic nonlinear 
systems as discussed by Harris and Yu (2007). To avoid this limitation of the 
aforementioned MV lower bound, Yu, et al. (2009) suggested an alternative 
strategy using variance decomposition based on the analysis of variance of 
Nonlinear AutoRegressive Moving Average with eXogenous (NARMAX) input 
models. Closed loop identification of the NARMAX model and initial conditions 
are a requirement for computing the index. 

Nonlinear controller performance assessment (NLCPA) in the presence of 
moderate control valve stiction was discussed in Yu, Wilson & Young (2010), 
where spline smoothing is applied to remove the nonlinearity caused by valve 
stiction prior to estimating the MV index. For this case, an alternate approach 
is proposed which takes advantage of steady state periods when the feedback 
loop is ineffective due to the 'stuck' valve. By exploiting these steady state 
periods, it is possible to compute the MV benchmark. Finally it was shown by 
Yu, Wilson & Young (2012) that disregarding any nonlinearity present in the 
control loop may lead to an erroneous loop performance estimate. Therefore it 
is important to account for any nonlinearity when estimating controller closed 
loop performance. For the case of setpoint tracking, researchers (cf. Swanda 
& Seborg, 1999 ; Yu, Wang, Huang, & Bi, 2011) have proposed controller 
performance benchmarking indices which are based on linear process 
models. Significant interest has been shown towards restricted structured 
controllers operating under system constraints which allow for realistic 
performance benchmarks. Thus the contribution of this work is to present a 
methodology to extend NLCPA of gain scheduling PID controllers that are 
designed to operate for setpoint tracking in general nonlinear dynamic 
processes.   
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2. DEVELOPMENT OF THE CONTROLLER BENCHMARK 
METHODOLOGY

2.1 CPA for nonlinear systems

Consider the negative feedback single-input-single-output (SISO) closed loop 
control system under performance inspection illustrated in Figure 1. 

Figure 1. Controller performance assessment scheme for SISO nonlinear 
process.

The basic idea is to compare the closed loop performance of the actual 
controller to that of an optimal controller designed offline for the generalized 
nonlinear process. For the purpose of comparison, an open loop model of the 
nonlinear process is required. In this paper, we utilize artificial neural networks 
(ANNs) for modeling open loop nonlinear system dynamics. The 
characteristics of neural networks suggest that they are useful in their ability to 
represent arbitrary nonlinear mappings (Lightbody & Irwin, 1997). This 
encourages their use for NLCPA. 

For this study we consider SISO negative feedback systems; however the 
approach can be readily extended to multivariable systems, plus model based 
and feed forward control strategies. Procedures for estimating the nonlinear 
restricted structure performance bound          are discussed in the 
subsequent sections.
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2.2  Nonlinear plant identification (stage 1)

In order to establish a suitable performance benchmark we first train a neural 
pnetwork to capture relationships between the actual plant input u (t) and its 

pcorresponding output y (t). Later, the trained ANN is used in the design of 
optimal controllers and for real time estimation of a synthetic process output 

my (t) under closed loop conditions for the NLCPA procedure. A nonlinear 
discrete time process of a neural network based NARMAX model is 
considered:

pWith regards to (1), the process output y (t) can be evaluated in terms of a 
nonlinear function f(.) of the past output and input values denoted by y(t-1) and 
u(t-1) respectively, in which n  and n  are the corresponding lag terms; d(t) y u

denotes the disturbance noise signal affecting the process output. An 
appropriate excitation signal will drive the system in order to capture its 
nonlinear behavior. It is important that the input signal is adequate for 
capturing the system's dynamics over its entire operating range of interest. 
This stage of the procedure is repeated if process changes occur. A suitably 
trained ANN is capable of mapping the nonlinear relationship f(.), thus 
replicating actual process output behavior for a given input signal. If 
identification is satisfactory, the model residual error will be unpredictable and 
uncorrelated with its past inputs and outputs. For these conditions, the 
residual error can be used for model validation (Chen, Billings & Grant, 1990). 
Expressing Eq.(1) in terms of a deterministic model yields:

mwhere y (t) is the instantaneous value of the neural NARMAX (NNARMAX) 
system output. The regression vector is defined as:

NARMAX models have been widely studied and applied to nonlinear system 
identification (Chen, et al., 1990; Bittani & Pirrodi, 1997). In this study, a 
multilayer feed forward ANN structure with hidden layers is utilized to 
approximate a NARMAX process model structure. The ANN's free 
parameters are adjusted during offline supervised training to minimize the 
sum squared error performance measure. An ANN model can be used to 
obtain linearized models for optimal PID parameter determination. Well 
established design methodologies can be applied to linearized systems for 
optimal controller design.

Separate linearized models are necessary for different operating regions. A 
linearized model at any operating region may be represented as:



where the instantaneous control loop error, e(t) = r(t) - y(t) is deviation of the 
process output from the setpoint; k ,     and       c

gain, integral time constant and the derivative time constant, respectively. 
Adopting a discrete time PID version of Eq.(6) gives the velocity form at each 
sample point T :s

represent the proportional 
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-1  
With regards to (4), Z
coefficients; polynomials A(z) and B(z) are given as:

is the delay operator and a , b  are the polynomial n n

The system discrete dead-time by which the input signal affects the output 
is denoted by n . For a desired operating point (t ), the first partial k OP

derivative term can be used.

With regards to (5), a and b ; y(t) and u(t) denote the output and input signals, i i

respectively. 
 
2.3 Optimal PID controller design (stage 2)

One form of a linear PID controller is as follows:

For a particular preselected sampling time the objective is to determine the 
best values of k ,    and     that will result in optimal control in terms of the c

integrated absolute error (IAE) performance measurement. Variations of 
nonlinear PID architecture are found on industrial controllers from different 
manufacturers. Tuning of the controller for nonlinear systems is accomplished 
through numerical optimization. 
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The NLCPA benchmark will give an indication of control health when the 
performance of the real-time controlled plant is compared to that of an optimal 
gain scheduler controlling an ANN model of the nonlinear process.

Matlab® is a popular software environment used by many researchers for 
offline controller design (Sendjaja & Kariwala,  2009; Agrawal & 
Lakshminarayanan, 2003). In this paper, a hybrid Nelder Mead-Particle 
Swarm Optimization (NM-PSO) function is utilized to determine optimal 
controller parameters. The NM simplex algorithm (Nelder & Mead, 1965) is a 
widely used numerical method for solving nonlinear unconstrained 
optimization problems. The objective of the algorithm is to minimize a cost 
function without any derivative information. 

The PSO method, developed by Eberhart and Kennedy (1995), is based on 
the concept of social interactions that exists in nature. The technique is highly 
stochastic and is population based which can search a large feature space 
without succumbing to the effects of local minima for which the NM is prone to. 
By combining the stochasticity of the PSO and the local search capabilities of 
the NM optimization, the hybrid NM-PSO is proficient in determining global 
optimal controller parameters. Further details of the hybrid optimization 
algorithm can be found in Pillay and Govender (2013).

During the controller design, step responses of the closed loop system for 
different operating conditions are simulated and the optimal controller 
parameters are determined using the NM-PSO algorithm to solve the 
objective function:

with the following inequalities imposed:

These constraints ensure that the simulated process output will not exceed 
the prescribed operating points and the controller parameters will not lead to 
excessive values which if applied on a real PID controller may lead to 
excessive final control element wear. A scheduling variable is chosen and 
adjusted accordingly for each operating condition. 
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Once the optimal values are determined for each operating region, it can be 
mused on the simulated PID algorithm to obtain u (t) in a generalized gain 

scheduling scheme. Since performance evaluation of the PID controller is the 
central theme of this work, the linear intuitive gain scheduling method 
represents a convenient approach for PID implementation in nonlinear control 
problems (Rugh & Shamma, 2000).

2.4  Controller performance index (stage 3)

In the final stage of the methodology we use the NNARMAX model obtained 
from open loop system identification experimentation, and the optimal PID 
controller parameters computed for each operating point in the real time 
estimation of the NLCPA. By computing the closed loop response of the gain 
scheduled optimal PID controller in series with the NNARMAX model we can 

mobtain an artificial process output y (t). To establish the real time performance 
index, we use the synthetic signal of the simulated process output and 

p
compare it to the actual plant process variable y (t). The desired reference 
trajectory r(t) is mutual to the simulated PID control and the real PID process 
controller as indicated in Figure 1. A novel dynamic performance assessment 
benchmark that relates current controller performance to an optimal gain 
scheduled nonlinear PID controlled system is given as:

(13)

where w is the length of the moving window used to provide continuous update 
on the current controller performance and is a user defined parameter. An 
illustration of the moving window of the real and artificial process outputs is 
shown in Figure 2. The proposed NLCPA index is bound in the range, 0 < 
n <1 where  would indicate good control; conversely if, NLPID

the actual closed loop performance is regarded as poor relative to the 
modeled process output.

n nNL 0 NL  1 PID              PID            
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Figure 2. Real time performance assessment based on running window IAE.

3. ILLUSTRATIVE EXAMPLES

3.1 Preliminaries to the experiments

The output from a real world pH plant and a simulated system are necessary to 
assess the performance of the NLCPA index. The MATLAB System 
Identification Toolbox ® was used to determine open loop nonlinear discrete 
models for all the presented examples. A unit step-up and unit step-down input 
signal with equal magnitude was injected into the processes for the purpose of 
capturing nonlinear system dynamic behaviors. A NNARMAX feedforward 
model having three hidden layers of 10, 20 and 15 neurons with 
corresponding sigmoid, sigmoid and linear activation functions respectively 
was used to develop the process model. 

Two operating points was chosen for obtaining linearized models at the 
prescribed operating region to demonstrate the methodology. Corresponding 
linearized transfer functions (Eq.4) was used in the computation of 
determining optimal PID controller settings that minimize Eq.(8). Constraints 
(Eqs. 9-12) imposed on the optimization are listed in Table 1. With regards to 
Table 1, the regression variables are based on the Akaike criterion (Akaike, 
1974) and yielded the best fit for a linearized model; the controller parameters 
were determined intuitively. The limits on the outputs were chosen to 
encapsulate the best dynamic behavior of the process. The optimal controller 
settings in Table 2 are based on NM-PSO (Pillay & Govender, 2013).
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Tests using a Volterra model and a real time pH system were conducted to 
assess the performance of the NLCPA. These are discussed in experiments 
1-2.

Table 1. Constraints used in the determination of the optimal PID controller 
settings for respective operating points. 

Table 2. The optimal controller parameters for each case study at respective 
operating points

3.2 Hardware and OPC setup for real time experiments

To demonstrate real time NLCPA for the control loops operating in the pH 
neutralization pilot plant, an open process control (OPC) server was set up to 
transfer data from the distributed control system (DCS) to the MATLAB 
processing environment. ABB® AC700 control hardware was used in the real 
time control of the process plant and connected to an Intel i7 personnel 
computer with 4 megabytes of random access memory running MATLAB and 
ABB® Freelance software. The experimental setup used for the real process 
control loops is shown in Figure 3. The advantage of this scheme will allow for 
implementation of the NLCPA on an external system platform while 
computational power of the DCS is reserved for primary process control 
computations such as PID control and basic data manipulation. 
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Furthermore, the DCS platform is restricted to primitive function blocks and 
higher level programming tools (for example; system identification and 
optimization computation) are more suited to a separate computer system 
that is connected to the DCS through the OPC server (Hägglund, 2005). The 
proposed nonlinear performance index is computed in MATLAB and 
transmitted to the DCS in real time for presentation on the Human Machine 
Interface (HMI).

Figure 3. Connection between MATLAB and DCS using OPC for the 
experimental setup.

3.3 Example 1: Simulation case study

Consider a nonlinear dynamical system represented by a second order 
Volterra series given by (Harris & Yu, 2007):

Where the disturbance d(t) is defined as:

and a(t) is a zero mean white noise sequence with variance 0.1. 

For our study, we compared the controller performance of an optimal PI gain 
scheduler scheme to that of a similar controller having suboptimal 
parameters. This was done in order to assess the efficacy of the NLCPA. 
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Optimal controller values are used in the gain scheduling scheme for the 
developed NLCPA methodology and the simulation results are shown in 
Figure 4(a).

Figure 4. (a) Closed loop simulation following setpoint changes. (b) Dynamic 
NLCPA index for Example 1.

A comparative assessment was done to evaluate the performance of the 
optimal gain scheduled controller acting on the simulated process response 

my . It is observed from Figure 4(a) that the suboptimal gain scheduler yields 
excessive oscillations at setpoint r(t)=0, whilst acceptable control 
performance occurs at r(t)=1. This is so because of changes to process states 

pfor transitions of y . 

From Figure 4(b), the variations in closed loop performance is clearly 
indicated by the proposed performance index given by Eq.(13) where at time t 
= 200 seconds, = 0.96 

respectively. This was 
expected due to the inherent nonlinear behavioral characteristics of the 
process affecting control loop performance for setpoint changes. 

n and at time t=900 seconds the n = 0.91with NL NLPID PID 

suboptimal gain scheduled control; the corresponding indices for the optimally 
tuned controller are n = 0.13 and n = 0.12 NL NLPID PID 
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3.4 Example 2: Real-time pH control case study

The control of pH is commonly encountered in many chemical, 
pharmaceutical and biotechnological industries in which tight control of the 
variable is sought (McMillan, 1994). It is often recognized as a challenging 
task due to the time varying behavior exhibited by many pH neutralization 
processes. Furthermore, these processes experience rapid transitions within 
the control channel which lead to changes in process gain over a small range 
of pH (Henson & Seborg, 1994).

In this example, we use the control of pH to demonstrate the application of the 
proposed NLCPA technique on an actual full scale pH neutralization pilot plant 
shown in Figure 5 and its corresponding process and instrumentation diagram 
(P&ID) illustrated in Figure 6. Regulation of pH according to a desired setpoint 
is of importance, where a strong alkaline solution (sodium hydroxide (NaOH)) 
is neutralized by a strong acidic solution [sulphuric acid (H SO )]. 2 4

The reagents are mixed in a continuous stirred reactor (CSTR) with the level 
maintained at a steady state. Relevant CSTR parameters are listed in Table 3. 

Table 3. pH neutralization plant parameters

Parameters of the CSTR Value 
Volume of the tank 125 liters

Steady state level of the tank

 
40%

 Steady state flow rate of NaOH

 

2.5 liters/min

 Range of pH setpoint change

 

8.5 – 10.5

Concentration of influent process stream, NaOH 32.1x10-3 mol./liter

Concentration of titrating stream, H2SO4 6.53x10-3 mol./liter

Figure 5. pH neutralization pilot plant housed in the Unit Optimization Studies 
Laboratory at the Durban University of Technology.
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Figure 6. P&ID of the pH neutralization pilot plant.

The CSTR has two main inlet streams: the influent process stream (NaOH) 
and the titrating stream (H2SO4). Before being pumped into the effluent 
storage tank, a small percentage of effluent stream is directed back to the 
CSTR tank for efficient mixing. 
  
The dominant problems associated with continuous control of pH are the 
varying nonlinear degrees of sensitivity of the chemical reaction, and the 
limiting capabilities of control hardware such as the rangeability of the control 
valve and poor process design (McMillan, 1994). Therefore, in order for the pH 
control system to work efficiently, special attention must be paid to the design 
and installation of pH electrodes, control valves, piping and mixing equipment. 
According to McMillan (1994), the pH process gain is dynamic and is 
influenced by changes in pH concentration for acid-base ratio changes within 
a CSTR. The dynamism of the pH variable is demonstrated in Figure 7(a) 
which illustrates the closed loop responses for a suboptimal gain scheduler 
and an optimized gain scheduling PI controller. The proposed NLCPA index is 
also shown in Figure 7(b) to indicate varying qualities of the control effort.
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Figure 7. (a) Closed loop pH response following setpoint change for the 
suboptimal and optimal gain scheduled PI controllers. (b) Dynamic NLCPA 
index for Example 2.

As expected optimal gain schedule control yielded a superior control 
performance for changes in setpoint. Computed mean values of the 
performance index for the fixed and gain scheduled controllers are = 
0.759 and = 0.424, respectively. 

nNLPID 

nNLPID 

4. DISTRIBUTION ANALYSIS OF THE DYNAMIC NLCPA INDEX

To study the effects of different controller parameters on the distribution of 
n , T for each operating point was increased progressively for the NL i PID 

simulation case study discussed in example 1. In this instance, T is chosen i

because of its substantial impact on the closed loop stability of the selected 
process. Figure 8 shows the kernel density estimates of the distribution of nNLPID  

for variations in T.i
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From Figure 8, the optimal controller values for the nonlinear performance 
index shows a narrow distribution falling between 0 and 0.4. For increases in 
integral time, the distribution of  gets broader with a higher distribution of 

 approaching 1. Table 4 shows the variance from the mean of the closed 
loop error and the corresponding. It is observed that the optimal controller 
results in the lowest error variance and mean  with strong correlation as 
the controller integral time constant is increased. This indicates that the 
proposed nonlinear index is capable of detecting increasingly poor closed 
performance when the controller parameters deviate from optimal settings.

nNLPID

nNLPID

nNLPID

Figure 8. Kernel density estimates of  for Example 1 with varying       
     values.

Table 4. Error indices and the mean controller performance index for 
increasing integral time constants from Example 1.

nNLPID
 

it
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5. CONCLUSIONS AND FUTURE WORK

This work has presented a methodology for real time controller performance 
estimation of SISO nonlinear control loops. The methodology is effective for 
determining acceptable and poor closed loop performance during setpoint 
changes. The technique has been successfully implemented online using an 
OPC server interface that establishes access of the process control loop 
signals from the DCS to a real time monitoring PC. This approach allows for 
convenient transfer of raw process data to the monitoring PC running the 
NLCPA tool. Using the proposed NLCPA index, simple high alarms can be 
setup for each process control loop to alert practitioners of unacceptable loop 
behavior. 

An optimally tuned gain scheduler controller was chosen as a realistic 
benchmark for a broad class of nonlinear dynamic systems represented by 
the NNARMAX model. ANN models of simulated and real process systems 
were constructed using only I/O data. As with most designs that rely on a 
process model, insufficient and/or inapt data may lead to poor model 
estimation and will negatively impact on the NLCPA tool. It is therefore 
important for accurate model identification to determine optimal PID controller 
settings, since it is used directly in the real time benchmarking index. 
Furthermore, the methodology presented in this paper can be extended by 
incorporating the controller output variance with that of the process output 
within the controller design. Finally, the novel NLCPA index provides an 
alternative to the MVC benchmark and considers nonlinearities inherent in the 
control loop. 
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