
1

Use of the Alice visual environment in teaching and
learning object-oriented programming

Jeraline Dwarika
Faculty of Accounting & Informatics

Durban University of Technology
+ 27 84 6931380

annirootj@dut.ac.za and
annirootj@gmail.com

M.R. (Ruth) de Villiers
School of Computing

UNISA
+ 27 12 3616080

dvillmr1@unisa.ac.za and
ruth.devilliers1@gmail.com

ABSTRACT
Learners at tertiary institutions struggle with writing object-

oriented programs in complex object-oriented programming

(OOP) languages. This paper describes a study that sought to

improve learners’ understanding of programming in the domain

of OOP. This was done through the use of a visual programming

environment (VPE) called Alice, which was designed to help

novice programmers learn OOP concepts, whilst creating

animated movies and video games. A questionnaire was

administered to obtain quantitative and qualitative data regarding

learners’ understanding of OOP and their experience with the

Alice environment. Findings indicate that learners spend

insufficient time on programming exercises and struggle with

problem-solving, applying OOP concepts, and abstraction.

However, the use of Alice addressed challenges faced by

experiment participants within the object-oriented domain and

improved their motivation to learn OOP. Further results revealed

that the test and exam performance of learners who used Alice,

was not statistically better than those of similar learners who

were not exposed to the Alice intervention.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Program-

ming; D.3.3 [Programming Languages]: Language Constructs

and Features – abstract data types, classes and objects,

inheritance, polymorphism, procedures, functions and

subroutines; I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism – Animation

Keywords

Abstraction, Alice, Motivation, Object-oriented programming,

Problem-solving, Teaching and learning, Visualisation, Visual

programming environments

1. INTRODUCTION
Concern over learner attrition, the lack of learner motivation and

high failure rates in programming courses have generated a drive

towards creative approaches to make undergraduate courses

more attractive to learners and to contribute towards higher

success rates [2].

Such concerns are prevalent in object-oriented programming

worldwide [18, 29, 10], and also occur amongst students at the

Department of Information Technology (IT) of the Durban

University of Technology (DUT), South Africa, where the

research was undertaken.

The purpose of the study was to determine the effectiveness of

implementing the Alice visual programming environment (VPE),

with a long-term view to improving the computer programming

performance and learning experience of second-level IT learners.

The intention was to expose them to new and exciting ways of

programming that enhance problem-solving skills and nurture

higher-order critical thinking. Alice is an open source teaching

tool, designed to provide first-time exposure to learners on the

basics of object-oriented programming (OOP). They can learn

fundamental programming concepts whilst creating 3D animated

movies and basic video games that contribute to an engaging

interactive environment [6, 19].

In related work, studies have been conducted on the use of Alice

with first-year university learners [6, 7, 20]. The present work

differs, because it deals with learners who were exposed to OOP

during their second year of study, having done only procedural

programming in their first year. Previous work by the present

researchers [2] investigated experiences of an earlier cohort who

used Alice in a smaller-scale study where attrition occurred. The

findings were useful, but there was insufficient learner feedback.

That work served as a pilot study and learning curve for the major

case study on which this paper focusses. In this study, the full

group of participants was maintained to the end and the results

are a new contribution.

In the cohort of learners registered for Development Software 2

(DS2) in the Department of IT, students were filtered based on

their first-year results and the fact that they were doing OOP for

the first time. The filtered students had the opportunity to

volunteer for an experimental group that would participate in the

study. A supplementary Alice workshop was held during lunch

hours over a two to three-week period, where these participants

experienced hands-on interaction with the Alice software

installed in the labs and also did collaborative projects.

The performance of the experimental group was measured

against that of a control group with a similar composition and

academic history at first-year level. The learners in the control

group were drawn from the other learners registered for DS2,

who were taught OOP by conventional methods only. The

comparison was done by analysing learner data from tests and

examinations in both groups.

This paper overviews relevant literature (Section 2), explains the

research design (Section 3) and reports selected findings (Section

4). Sections 5 and 6 respectively provide discussion and

recommendations, while Section 7 concludes the study.

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee. Request permissions

from Permissions@acm.org.

SAICSIT '15, September 28-30, 2015, Stellenbosch, South Africa

© 2015 ACM. ISBN 978-1-4503-3683-3/15/09$15.00

DOI: http://dx.doi.org/10.1145/2815782.2815815

mailto:dvillmr1@unisa.ac.za
mailto:ruth.devilliers1@gmail.com
mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2815782.2815815

2

2. LITERATURE REVIEW
This section considers related work by other researchers

regarding the teaching and learning of OOP. In addition, a brief

overview is given of the Alice visual programming environment.

2.1 Teaching and learning OOP
Learning to construct computer programs is considered hard for

novices. Learners often struggle to develop the competencies and

skills required to code programs that execute correctly. Hence, it

is important to understand what makes learning how to program

so difficult and how students learn [24]. It is considered difficult

because “it requires learning about programming concepts and

the language of programming at the same time” [19:3].

Furthermore, program execution is a dynamic process, and it is

complex to mentally grasp and track how variables change

during program execution. Learners have problems visualising

all the changes that occur as a computer program runs.

Programming involves understanding the task on hand, choosing

appropriate methods, coding, debugging and testing an emerging

program [4].

Furthermore, programming courses traditionally emphasise

theoretical understanding of programming concepts, as well as

application. The concepts are reinforced through practical hands-

on experience. Learners without prior programming experience

are likely to be overwhelmed by the breadth and depth of

material, thus contributing to attrition [26].

One of the core challenges experienced by programming

lecturers is developing and sustaining a high level of learner

interest and motivation to learn programming. To develop good

programming skills, learners are typically required to do

considerable intensive practice on programming exercises and to

gain experience in debugging, which they cannot sustain unless

they are adequately motivated [22].

The teaching of programming, particularly OOP, is therefore as

complex as learning how to program. Extensive research efforts

have been invested in developing techniques to assist in teaching

programming and learning programming. Programming has

evolved considerably from the traditional imperative

(procedural) programming languages and techniques.

This evolution has led to a greater emphasis on object-oriented

design and implementation [28]. Learning OOP involves writing

programs in a language with a high level of complexity [5].

Novice programmers tend to find the OOP approach difficult,

mainly because it is more abstract than the procedural style [18].

According to [29], students learning OOP experience problems

not only in developing the required skills for writing programs,

understanding the relevant theory, and debugging, but also in

grasping the underlying concepts of object-orientation. Object-

orientation involves objects, classes, inheritance, encapsulation,

polymorphism, abstraction, modularity and dynamic binding.

These concepts are used to represent the problem situation, to

design object-oriented models, and to decide on suitable means

of implementation [18].

This study highlights prominent challenges faced by learners of

OOP, including the following:

(a) Lack of motivation for programming [12, 15, 10];

(b) Complex syntax and semantics [32, 16, 10];

(c) Immediate feedback and identifying the results of

computation as the created program runs [33, 14, 10]; and

(d) Difficulties in understanding compound logic and the

application of algorithmic problem-solving skills [16, 12,

10].

2.2 Alice 2.2
Alice’s innovative approach in teaching programming, aids

educators in the instructional process and allows for easier

assimilation by learners of traditional program-creating concepts.

The authors of Alice 2.2 consider that Version 2.2 represents a

breakthrough in teaching object-oriented computing. Objects in

Alice are reified as 3D humans, furniture and animals, thereby

making them easily visible, concrete and real.

Furthermore, the state of Alice objects can be changed by calling

methods such as ‘move forward one meter’ or ‘turn left a quarter

turn’. Such object behaviours are intuitively and easily

understood by learners. “One of Alice’s real strengths is that it

has been able to make abstract concepts concrete in the eyes of

first-time programmers” [10:11]. For example, Figure 1 depicts

an animation ‘Defending Naptime’, that tells a story about a

rabbit whose sleep is interrupted by a cell phone. This screenshot

was taken during program execution, and presents the learner

with a visual representation of the status of the program code.

Learners are able to pause, play, restart and stop the animation,

and toggle its speed. They can also take a picture at any point in

time.

Figure 1. An initial scene in an Alice world during program

execution, ©Dr W Dann

Figure 2. An Alice interface during the coding of an

animation, ©Dr W Dann

Alice has an interactive interface, in which learners use drag-and-

drop graphic tiles to formulate coding statements during program

creation, as depicted in Figure 2. Learners are able to relate these

instructions to standard statements in commonly used

3

programming languages, such as C#, Java and C++. The VPE

allows learners to immediately visualise the execution of their

animation programs. Learners are thus easily able to understand

the relationship between the programming statements and the

behaviour of the animated objects. Moreover, they are

encouraged to manipulate the objects in their virtual world,

whilst gaining experience in programming concepts such as

loops, if statements, properties, methods, functions, events, etc.

Alice thus exposes the learner to the basic programming

constructs typically addressed in introductory programming

courses [6, 25, 31].

The features of Alice as a learning tool include the following:

(a) concrete visualisation of concepts such as objects and basic

inheritance;

(b) motivation of learners, by providing interesting problems

for them to solve;

(c) release from dealing with complex syntax mechanics,

while errors in logic become visually obvious; and

(d) simplification of event-driven programming, which is

interesting to explore in the Alice VPE [20].

These characteristics have contributed to the emergence of Alice

as more popular than other visual programming environments

developed to address challenges in teaching and learning

programming, examples being Seymour Papert’s classic Logo

[13]; Karel the robot [3]; Second Life (SL) [12]; MUPPETS [28];

Scratch [23, 30] and Lego Mindstorms [21, 1].

3. RESEARCH DESIGN AND

METHODOLOGY

3.1 Research questions
The aim of this research was to investigate the extent to which

the implementation of the Alice visual programming

environment in a second-level programming course at the

Durban University of Technology could improve the

performance and learning experience of learners. The research

questions are:

1. What is the effectiveness, as perceived by learners, of using

the Alice visual programming environment in addressing

the challenges facing novice programming learners within

the object-oriented domain?

2. To what extent do the test and exam results of participating

learners relate to those of similar learners who were not

exposed to the Alice intervention?

3.2 Research design
The research design of this study is based on Creswell’s [2009]

Framework for Design. The three vertices of this framework

represent the philosophical worldview underlying a study, the

selected strategies of enquiry, and the research methods used.

The philosophical worldviews in this study are

advocacy/participatory and pragmatic. A mixed-methods

strategy of inquiry was employed, which according to Creswell

and Plano Clark [2011], is a research design with philosophical

assumptions as well as methods of inquiry. As a set of methods,

it focuses on collecting, analysing and combining quantitative

and qualitative data. Creswell [2009] [9] posits that this strategy

of incorporating both qualitative and quantitative research, helps

to broaden understanding, and also uses the one approach to

better understand, explain, or build on the results from the other.

The methods used in this study progress from the initial research

questions through to data collection and analysis, followed by

interpretation, write-up and validation.

Figure 3 represents the detailed research process followed in the

case study. Questionnaires were administered to the participants

of the Alice workshop. The quantitative questions measured their

level of agreement or disagreement to the closed-ended questions

in the questionnaire (Likert scale integer values, average rating,

category rating).

QuestionnairesCase Study

Strategies
Data generation

methods
Data analysis

Quantitative
(Closed-ended) SPSS

Quantitative
frequency counts
of qualitative data

Test and
exam

learner data

Quantitative
Experimental vs

Comparison
SPSS + Viscovery

SOMine

Results
(Alice)

Findings

+

QUALITATIVE
(Open-ended)

Applied thematic analysis

Results
(Performance)

D
at

a
re

su
lt
s

co
m
pa

re
d

Primary
research
question

1

2

 Key to forms of data:

1 = Questionnaire

=
Test/Exam

data2

Figure 3. Research processes of the case study

Responses to the qualitative open-ended questions contributed

towards eliciting rich, spontaneous findings and provided some

interesting unanticipated findings. Triangulation of data was

conducted between the quantitative findings (closed-ended

questions) and the qualitative findings (open-ended questions),

which led both to common findings and varying results.

Qualitative interviews were also conducted but are excluded

from this paper due to space constraints.

In further quantitative work, test and exam marks were used to

compare the performances of the experimental group who

participated in the Alice workshop with performances of the
control group who did not participate in the workshop.

3.3 Participants
The participants were second-year learners registered for DS2,

within the ND: IT programme at DUT. In order to vet candidates

for attendance at the Alice workshop, criteria were established to

filter potential participants according to subjects they had

completed. A call for participation was made to the filtered

candidates and a sample of volunteers responded. Fifty-five (55)

were selected for the experimental group on a first-come-first-

serve basis and they all signed informed consent.

The 50 other learners who qualified, formed the control group

and were taught OOP by conventional teaching methods only,

i.e. they did not participate in the Alice study. Permission was

obtained from the institution to use their data. All the participants

in both the experimental and control groups were doing OOP for

the first time. We assumed that of the 55 in the experimental

group, about 50 would complete the intervention. In fact, there

was no attrition and all 55 participants remained to the end of the

Alice workshop and completed the questionnaire.

3.4 Data collection and analysis
The first section of the questionnaire requested the participants’

profiles and demographic details. This included student number,

surname, first name(s), gender, age, race, email address, contact

telephone number and class group. The second section contained

25 closed-ended items, based on a 5-point Likert scale from 1

(Strongly Disagree) to 5 (Strongly Agree). Olivier [2004] states

that Likert scales are used by respondents to indicate the degree

to which various statements apply to them. The questions related

to varying aspects, namely:

Questions 1 to 10 investigated usability of the Alice VPE and

were based on Jakob Nielsen’s ten interface design heuristics for

4

usability evaluation [11]. Questions 11 to 19 emerged from

concepts in the literature and findings of previous studies on the

teaching and learning of programming, the challenges faced by

OOP learners, and ways of improving the teaching of OOP.

Questions 20 to 25 were based on criteria identified by the

researcher. They emerged from her personal ten-year

involvement in teaching OOP to IT learners.

For the quantitative components, data analysis was performed

using SPSS (Statistical Package for the Social Sciences). Further

quantitative analysis on learner results in tests and examinations

was performed using Viscovery SOMine. This is excluded from

this paper due to space constraints.

The third section of the questionnaire was a composite question,

Question 26, which had six open-ended subquestions, Questions

26.1 to 26.6. It elicited qualitative responses regarding the

participants’ experiences with the Alice environment, their

consequent understanding of OOP, and improvements they

would like to see in the teaching of OOP.

Qualitative data analysis involves the identification of patterns,

relationships and themes. In this study, the qualitative data was

analysed using applied thematic analysis (ATA) [17], which

involved developing a codebook to quantify the qualitative

responses to open-ended questions. “The ATA approach is a

rigorous, yet inductive, set of procedures designed to identify and

examine themes from textual data in a way that is transparent and

credible” [17:15].

4. FINDINGS
The section discusses participants' responses to closed,

quantitative questions in the questionnaire, as well as responses

to the open, qualitative questions. The questionnaire was

completed by the experimental group only. Quantitative analysis

of test marks and exam results is also presented, comparing

performances of the experimental group and the control group.

4.1 Quantitative analysis of closed-ended

questions
4.1.1 How Alice addressed challenges faced by

learners in learning object-oriented programming
Table 1 presents the percentage distribution of participants'

responses to selected closed-ended questions on their

experiences of learning OOP with Alice. Average values of the

Likert ratings are given in the final column. Since (Strongly

Agree) gave a rating of 5 and (Agree) gave a rating of 4, averages

of 4 or more indicate high ratings.

The high scores for match between the system and the real world

(means 4.75 and 4.36) show that learners appreciated how

realistic 3D objects bring coding into reality, whilst reflecting

real-world scenarios. Similarly, there were high ratings for

visibility of system status, user control and freedom, and the

consistency and standards of the Alice environment. In

addressing error diagnosis and prevention, there were

reasonably positive impressions regarding the level of error

prevention offered by Alice, as 67% (combined A + SA) of the

experimental participants agreed that the Alice software always

gives error messages to prevent errors from occurring.

Furthermore, 73% felt that the Alice interface does not cause the

learner to make errors. There were high means for the criterion

that Alice does not 'crash' (4.04) and 4.13 for quick and easy error

recovery. With regard to aesthetic and minimalist design, 65.5%

of the participants felt there was no irrelevant information in the

Alice interface design that distracted learners and slowed them

down. With an average rating of 3.62, it implied that that Alice

had relatively appealing aesthetics.

Table 1. Percentage distribution of participants’ responses regarding their experiences of Alice

Learners’ experiences of Alice

Criterion SD

(%)

D

(%)

N

(%)

A

(%)

SA

(%)

Avg
Rating

Visibility of the system
status

I am always aware of what is going on in the system. 0.0 1.8 1.8 43.6 52.7 4.47

When I save a world in Alice, the system indicates that
files are being saved.

0.0 1.8 3.6 20.0 74.5 4.67

Match between the
system and the real
world

The system uses words, terms and phrases that I can
easily understand.

0.0 0.0 1.8 21.8 76.4 4.75

The templates used for new worlds and the objects in
the system gallery, relate to real-world objects that I
encounter in my day-to-day experiences.

0.0 3.6 9.1 34.5 52.7 4.36

User control and
freedom

I am comfortable with the level of control that I have
over the system.

0.0 0.0 7.3 50.9 41.8 4.35

Alice allows me the flexibility to use the environment
to perform a task.

0.0 1.8 10.9 34.5 52.7 4.38

Consistency and
standards

The Alice interface maintains a consistent look and
feel.

0.0 0.0 9.1 58.2 32.7 4.24

The startup dialog box, play button, main menu and
tab controls are clearly and consistently displayed.

0.0 1.8 3.6 32.7 61.8 4.55

Recognition rather
than recall

The actions to be taken and options available for
selection are clear and visible at all times.

0.0 3.6 14.5 54.5 27.3 4.05

I do not have to remember the information from a
previous screen in order to proceed with the next one.

1.8 32.7 30.9 25.5 9.1 3.07

Flexibility and
efficiency of use

Alice caters for beginner to expert users. 1.8 0.0 14.5 40.0 43.6 4.24

5

Criterion SD

(%)

D

(%)

N

(%)

A

(%)

SA

(%)

Avg

Rating

Aesthetic and
minimalist design

There is no irrelevant information in the Alice interface
design that distracts me and slows me down.

1.8 16.4 16.4 49.1 16.4 3.62

Error diagnosis,
recovery and
prevention from
errors

Alice does not crash while I’m using it. 1.8 5.5 20.0 32.7 40.0 4.04

In cases where I encounter system errors, the system
provides an appropriate error message in simple
language.

1.8 7.3 21.8 43.6 25.5 3.84

I can recover from mistakes quickly and easily. 1.9 3.7 13.0 42.6 38.9 4.13

The Alice software always gives error messages to
prevent errors from occurring.

0.0 5.5 27.3 34.5 32.7 3.95

Help and
documentation

The four tutorials in the startup dialog box are useful
in helping me to learn how to use Alice.

0.0 1.8 10.9 49.1 38.2 4.24

The example worlds in the startup dialog box are
useful.

0.0 0.0 12.7 52.7 34.5 4.22

Lack of motivation for
programming

Alice has improved my motivation for programming. 1.8 1.8 9.1 54.5 32.7 4.15

Fragile mechanics of
program creation,
particularly syntax

It is easier to learn how to solve a problem and to learn
the basic concepts of object-orientation without
having to deal with brackets, commas and semicolons.
(Alice shields learners from these distractions.)

3.6 12.7 14.5 29.1 40.0 3.89

Identifying results of
computation as the
program runs

Alice provides immediate feedback as the program
runs.

0.0 0.0 20.0 50.9 29.1 4.09

Difficulty of
understanding
compound logic

Alice allows me to focus on problem-solving. 0.0 1.8 12.7 58.2 27.3 4.11

Appreciation of trial
and error

When using Alice, I use trial and error to ‘try out’
individual animation instructions as I create new
methods.

1.8 7.3 25.5 49.1 16.4 3.71

I can visibly see the effect that each new animation
instruction has on the animation.

1.8 12.7 30.9 50.9 3.6 3.42

Incremental
construction approach

Alice has taught me how to program incrementally i.e.
I write one method at a time, testing and running each
piece.

0.0 0.0 14.5 49.1 36.4 4.22

Impact of Alice on
understanding OOP
concepts

Inheritance 0.0 3.6 23.6 41.8 30.9 4.00

Methods 0.0 0.0 14.5 43.6 41.8 4.27

Properties 0.0 0.0 18.2 47.3 34.5 4.16

Functions 0.0 1.8 10.9 50.9 36.4 4.22

Impact of Alice on
understanding basic
programming
concepts

Loops 0.0 0.0 20.0 38.2 41.8 4.22

If..statements 0.0 3.6 18.2 40.0 38.2 4.13

Data types 1.8 5.5 27.3 32.7 32.7 3.89

Event-driven programming 1.8 1.8 25.5 41.8 29.1 3.95

Ability to collaborate The Alice workshop has provided the opportunity to
work in pairs with other learners and I have chosen to
do so.

0.0 5.5 20.0 47.3 27.3 3.96

The experience of working with other learners has
helped me to learn the Alice programming
environment.

0.0 7.3 20.0 52.7 20.0 3.85

Impact of Alice on
DS2 learners

The Alice workshop relates directly to the sections on
object-oriented programming covered in the
Development Software 2 syllabus.

0.0 9.1 7.3 49.1 34.5 4.09

I am interested in learning more about computer
graphics and animation.

0.0 1.8 5.5 25.5 67.3 4.58

I am interested in learning and working more with the
Alice visual programming environment.

0.0 0.0 7.3 36.4 56.4 4.49

I used Alice during my personal time after attending
the first lesson of the Alice workshop.

1.8 10.9 16.4 41.8 29.1 3.85

6

It has been previously highlighted that novice programmers face

various challenges and difficulties in learning OOP. These core

issues include, but are not limited to:

Motivation for programming and Problem solving: Relating to

these aspects, 87% (A + SA) of the experimental participants

indicated that Alice had improved their motivation to learn

programming, and 86% agreed or strongly agreed that the

environment allowed them to focus on problem solving.

The findings that follow, are not all shown in Table 1. Sixty

percent (60%) acknowledged spending a lot of time intensively

practicing programming exercises, indicating an association

between motivation and practice. This relates to the assertion

made by [22], which states that, to develop good programming

skills, learners should do a great deal of intensive practice to gain

experience in debugging. However, the learner must be

adequately motivated to sustain this level of competence. Further

investigation may be required to establish reasons for the

somewhat tentative responses to this question.

Complex syntax, logic and semantics: A fair percentage (47%) of

the experimental participants agreed (A + SA) that it was

challenging to learn the syntax and semantics of a programming

language, while 35% were unsure. A good percentage, 69% (A +

SA) believed that the feature of Alice whereby one does not have

to deal with brackets, commas and semicolons, simplifies

problem solving and learning the basic concepts of object-

orientation. This demonstrated appreciation for Alice’s drag-and-

drop feature, which releases learners from dealing with complex

syntax.

However, 45% were not intimidated by direct exposure to

programming syntax, and it was notable that 78% disagreed that

the textual nature of conventional programming environments

makes it difficult to learn how to program. Carlisle [2009] [5]

suggests that the textual nature of most programming

environments works against typical learning styles, but the

present results do not appear to support this assertion. Seventy-

eight percent were comfortable learning OOP by conventional

means, as well as enjoying the visual experience with Alice.

Immediate feedback and identifying results of computation as a

created program runs: The speed of feedback was rated with a

mean of 4.09, while 80% (A + SA) felt that the feedback was

immediate. Seventy-six percent could identify errors and correct

them using the feedback given by a program. Ninety-three

percent were able to work independently on a program, from

coding through to testing. Due to their prior experience of

running and debugging programs, 89% of the participants felt

that they were equipped to solve similar problems in OOP.

Difficulties in understanding compound logic and the application

of algorithmic problem-solving skills: The confidence levels of

participants in the experiment were fairly high, in that 78%

claimed they were able to apply basic problem-solving

techniques to create algorithms. However, it is of interest and

somewhat of a paradox that, although 69% felt they had a good

understanding of pseudocode and 66% stated they were able to

decompose a large, complex programming task into smaller

subtasks, only 35% had actually used pseudocode to outline and

understand the logic of a program before they started coding.

Furthermore, a third (33%) of the participants disagreed with

using pseudocode to help in understanding the logic. This

appears to contradict the participants’ claims that they do not

experience difficulty in understanding pseudocode.

Returning to items included in Table 1 and referring to the four

core concepts, inheritance, methods, properties and functions,

that form the foundations of learning OOP, 72%, 85%, 82% and

87% of participants, respectively, agreed (A + SA) that Alice had

helped them to understand. Furthermore, percentages ranging

between 65% and 80% agreed that Alice helped to improve their

understanding of iteration, selection, data types and event-driven

programming.

A high percentage (84% of participants) found that the Alice

workshop related directly to OOP concepts covered in the DS2

syllabus. A great majority (93%) expressed interest in learning

more about computer graphics and animation, with 93% also

eager to work more with Alice, and 100% wanting to learn more

about OOP. Seventy-one percent had used Alice during their

personal time since the workshop intervention had commenced.

These positive experiences encourage future use of Alice in

teaching and learning OOP.

4.1.2 How to improve the teaching of object-

oriented programming
To address the challenges, this section suggests techniques to

help in teaching OOP. Some of the points here are not included

in Table 1, although they emanate from the closed questions.

Objects-first strategy: While 69% of the participants in the

experiment felt they had a sound understanding of objects, gained

from their first year of study, 7% had disagreed. A fair percentage

(58%) felt confident that it would be easier to learn OOP during

the first year of study, and later learn the conventional control

structures such as loops, if statements etc., while 27% disagreed.

A high percentage (91%) stated that Alice helped them to view

everything as an object.

3D animation authoring tools and visualisation: Participants’

responses to this criterion were positively influenced by their

exposure to Alice. Eighty five percent agreed that a visual

representation improved their understanding of programming

concepts. Moreover, 95% agreed that Alice's visual effects

provided a meaningful context for understanding classes, objects,

methods, and events and that they could use the Alice

environment to write new methods to make objects perform

animated tasks. Finally, 91% agreed that three-dimensionality

made objects seem real.

4.2 Qualitative analysis of open-ended

questions
The same two points that were addressed in the quantitative

section, are now considered for the qualitative responses.

4.2.1 How Alice addressed challenges faced by

learners in learning object-oriented programming
In responding to the open-ended questions, which addressed

similar territory to the closed questions, participants provided

spontaneous unprompted feedback about some of the challenges

in learning OOP:

A notable 25% expressed difficulties, and even inabilities, in

solving problems and applying programming concepts.

Furthermore, 20% claimed to have a poor understanding of

instantiation (i.e. creating an instance of an object). This is

unsatisfactory, particularly in view of the fact that learners had

practiced instantiation since their first year at DUT. Thirteen

percent of the experiment participants spontaneously admitted

that they had experienced difficulty in understanding the logic of

methods. Moreover, a theme emerged from 11% who had had

difficulties with inheritance. Other challenges were the need to

remember syntax, the inability to understand every line of code,

problems in debugging, and so on.

Table 2 provides some unprompted responses given by the

participants regarding their experiences in using Alice. The

responses are paraphrased into themes. The text that follows,

discusses certain rows in the table.

7

Regarding the match between the system and the real world, 24%

spontaneously described how they enjoyed using Alice’s

graphics and animation. Regarding aesthetic and minimalist

design, 29% explicitly stated that Alice’s interface is easy to use.

Thirty-five percent reported that Alice enhanced their grasp of

OOP concepts, such as methods, functions, events, inheritance,

properties, parameters, classes, objects, instantiation and

polymorphism. Thirteen percent attributed this improvement to

the visual nature of Alice.

Thirteen (24%) felt that programming through visualisation

alleviates the learner from having to remember syntax and code.

Eleven percent appreciated seeing the effects of every statement

of code, i.e. immediate feedback.

Furthermore, eleven percent found the Alice environment to be

engaging and fun, whilst stimulating a greater interest in

programming.

Table 2. Spontaneous responses on learners’ experiences when using Alice

Criterion

Frequency

counts %

Match between the system and
the real world

Graphics and animation make things more real 13 24

Dealing with concrete objects associates the code with real-
world objects

6 11

User control and freedom Learning how to create movies/storytelling 2 4

Learning how to develop video games 2 4

Recognition rather than recall Drag-and-drop feature limits typing 9 16

Alice releases learners to focus on problem-solving 2 4

No complex syntax, only English-like statements 2 4

Flexibility and efficiency of use User-defined methods are used to manipulate objects and can
be tested individually

4 7

Aesthetic and minimalist design The Alice interface is simple and easy to use 16 29

Working with Alice has
improved my understanding of
OOP

I have a better understanding of OOP concepts such as
methods, functions, events, inheritance, properties,
parameters, classes, objects, instantiation and polymorphism

19 35

I can create methods to manipulate and animate objects to
perform actions

6 11

Everything in Alice is viewed as an object 6 11

Alice as a VPE can help address
challenges faced by learners in
learning object-oriented
programming

It is easier to learn programming through visualisation and
graphics, than having to remember the syntax for coding, e.g.
I can see creation of methods, see objects move on command,
and see the visual effects of every statement of code

13 24

Alice is fun, engaging and cultivates an interest in
programming

6 11

An interactive environment that represents real-life situations 5 9

It makes programming concepts easy to learn and understand 24 44

4.2.2 Spontaneous responses on how the teaching of

OOP could be improved
In order to address the challenges identified in Section 4.2.1, the

participants were asked to suggest techniques that would help

alleviate the issues.

Following their positive experiences in using the Alice VPE, 27%

suggested that a visual, graphical environment, such as Alice,

should replace or supplement the conventional tools used in

teaching OOP. Participants believed this would improve their

interest and motivation to learn OOP.

A response from 25% of the experiment participants, requested

that lecturers should explain programs in more detail,

supplemented with practical examples to concretise theoretical

concepts. Participants were not keen on merely being given

solutions to problems without associated discussions. Eighteen

percent (18%) requested that the pace of lecturing be slowed

down to afford learners more time to grasp new concepts.

4.3 Quantitative analysis of test and exam

results
Inferential statistical analysis was applied to the final marks to

compare the performance of learners from the experimental

group with those from the control group. For the data sets that

were normally distributed according to the Shapiro-Wilk Test (p

> 0.05), parametric tests (2-tail t–test) were used to determine

significance of differences. For the others, non-parametric tests

(Mann-Whitney) were used. The result of the t-test for the

comparison of the means is given below:

Null hypothesis: difference = 0

t statistic = 1.143

Two-sided p-value = 0.256

The null hypothesis claims that there is no difference in the mean

values between the two groups. The traditional approach to

reporting a result (of a hypothesis test) requires a statement of

8

statistical significance. A p-value is generated from a test

statistic. A significant result is indicated with "p < 0.05". In this

study, NONE of the p-values were significant. This means that

statistically, there are no significant differences between the

average scores of the experimental group and the control group.

Although the results are not significantly different, the last two

rows of Table 3 show that the mean examination mark of the

experimental group was 2.6% higher than that of the control

group and the final mark was 2.8% higher. The authors

acknowledge, however, that there is no evidence that the

difference in the sample means would be reflected in the

population means. Some attrition occurred in the control group,

where only 48 of the 50 wrote the exam.

Table 3. t-test for equality of means, mean scores and

standard deviation for the experimental group and the

control group

Assessment Test

Sig.

(2-

tailed)

Group N Mean

Std.

Devia-

tion

DS101

Mann

Whitney

U =

1190.00

0.943

Control 48 67.4 12.7

Experim 50 67.3 11.4

DS102

Mann

Whitney

U =

1005.50

 0.166

Control 48 66.4 12.0

Experim 50 69.7 8.6

Test
t-value

= -0.509
 0.612

Control 49 59.5 16.0

Experim 55 61.0 14.4

Exam

Mark

Mann

Whitney

U =

1189.50

0.388

Control 48 71.3 16.1

Experim 55 73.9 14.5

Final

Mark

t-value

= 1.143
 0.256

Control 48 66.1 12.8

Experim 55 68.9 11.3

According to Clarke [1994] [8], teaching methods delivered by

different media or by combinations of media, tend to produce

similar learning results. Similarly, Owusu, Monney, Appiah and

Wilmot [2010] [27] investigated cohorts of learners from two

different schools, where one group was exposed to computer-

assisted instruction (CAI) and the other to conventional teaching.

Results revealed that the CAI learners did not perform better than

the conventional group, indicating that the use of CAI was not

superior to the traditional approach. However, the learners in the

CAI group found their e-learning exposure interesting. These

claims are relevant to the present study, where although no

significant difference occurred, participants found that the Alice

environment added value to their learning of OOP concepts. As

stated in Section 3.2, interviews were conducted, but are not

reported in the present paper for reasons of space. In brief,

however, the unprompted data from 18 interviewees included

spontaneous praise regarding the use of Alice for learners starting

OOP. Alice supported understanding, self-learning and

collaboration in ways that were fun, enjoyable and interesting.

5. DISCUSSION
This paper presents selected empirical findings which emanated

from a case study at DUT. The mixed-methods approach of

Creswell [2009] [9] involved quantitative and qualitative studies,

which triangulated data collection and analysis, and strengthened

the findings, although the researchers acknowledge that

qualitative data can be subject to bias. Commonalities arose

where similar findings occurred across two or three methods,

thus confirming the findings. Contrasting results also occurred,

showing the complementary value of mixed methods.

Examples of common findings:

Although percentages in the qualitative study are lower than

those in the quantitative, it is emphasised that they came from

unprompted responses, unlike the quantitative responses, where

participants selected from options.

In response to the open-ended qualitative questions, eleven

participants spontaneously indicated that they had a poor

understanding of creating and instantiating objects. Similarly, in

the closed-ended questions, a good percentage (69%) found that

learning the basic concepts of OOP was easier when they were

relieved by Alice from dealing with complex syntax. This

confirmed the difficulties they experienced in applying basic

concepts, such as creating and instantiating objects.

Another example emerged when the responses to closed-ended

questions showed participants' desire to formally learn OOP via

a visual, graphical environment such as Alice. They felt that this

would increase their interest in OOP and improve the motivation

to learn it. Similarly, by means of qualitative feedback, fifteen

such requests (27%) came from responses to the open-ended

questions. Further common findings emerged from the

quantitative study, with a combined agreement of 91% in favour

of using 3D visual tools to improve understanding of OOP.

Example of a contrasting finding

There were contrasting findings regarding techniques for

improving the teaching of OOP, showing that individual learning

styles differ. Open-ended questionnaire responses showed that

some participants required in-depth support and liked being

guided through the program logic with step-by-step instructions.

Conversely, 40% of the closed-ended questionnaire responses

indicated that the respondent could independently write a

program, understanding each line of code. Although these

statistics are not significantly high, they are sufficient to show

the value of the unanticipated data that emerges from qualitative

research.

6. RECOMMENDATIONS AND FUTURE

RESEARCH
Based on the results of this study, the researchers propose:

(a) The positive results presented in this paper motivate the

incorporation of Alice as a component of programmes for

teaching and learning OOP.

(b) Human beings are known to learn from pictures. Gomes and

Mendes [2007] [16] point out that many tools exist for

solving programming complexities by means of graphical,

animation and simulation techniques, capitalising on the

potential of the human visual system. The participants

responded enthusiastically and positively to visualisation. It

is recommended that, no matter which visual programming

environment is implemented, at least one such intervention

should be used in tertiary institutions to supplement the

teaching and learning of OOP.

(c) Robotic software, and in particular the Lego Mindstorm

NXT robot, can provide an affordable, flexible and fun

learning experience for programming learners. This could

contribute to solving two of the challenges, namely, lack of

motivation for programming and the need for immediate

feedback and response.

(d) The Alice intervention provided a platform for learners to

collaborate with each other, whilst learning in an engaging

environment. It is recommended that other support

9

structures, such as formal peer-to-peer negotiated

programming and paired-programming, be adopted to foster

collaborative learning. For example, the informal system in

place at DUT, whereby third-year learners assist their

second-year counterparts, could become a constructive and

rewarding formalised initiative. It is widely believed that an

excellent way to learn and to consolidate learning, is to

teach. In so doing, senior learners could solidify their own

prior knowledge. This could be implemented as early as the

first year of study.

(e) It is further recommended that Alice workshops be

conducted with first-year computing learners. This would

provide an interesting learning experience, along with a

gentle introduction to basic programming concepts.

(f) Learners experienced difficulties in problem solving.

Logical programming is developed through sound pre-code

planning and organisation, assisted by tools such as

flowcharts, pseudocode and algorithms. The introduction of

an additional subject on ‘Logic’ into Computing and IT

programmes would benefit learners by improving their

motivation and confidence to write programs.

(g) Tertiary institutions should continuously strive to ensure

quality education. International and national best practice

recommendations around quality dictate that professionals,

such as doctors and engineers, attend continuing

professional development (CPD). Formal compulsory

intervention on state-of-the art technologies is of equal

worth for Computing academics, who impart market-

oriented knowledge and support the transfer of skills.

Incentives should be in place to encourage lecturers to take

training course, particularly discipline-based, structured

CPD programmes, including courses on visualisation.

(h) A further study should be conducted using the latest version,

Alice 3, in comparison to the set of related tools presented

in the last paragraph of the literature overview. This version

contains more explicit support for transitioning to Java.

7. CONCLUSION
The mixed-methods approach, combining quantitative and

qualitative research, broadened understanding as it triangulated

the findings. This section briefly revisits the research questions

in Section 3.1:

1. What is the effectiveness, as perceived by learners, of using

the Alice visual programming environment in addressing

the challenges facing novice programming learners within

the object-oriented domain?

In response to this, Alice has shown itself to be an effective tool

that explicitly addresses challenges faced by programming

learners in the object-oriented domain. The learning experiences

with Alice, as described in Sections 4.1 and 4.2, motivated the

participants and improved their problem-solving skills, as well as

facilitating the construction of programs.

2. To what extent do the test and exam results of participating

learners relate to those of similar learners who were not

exposed to the Alice intervention?

The findings in Section 4.3 demonstrate that the performance in

object-oriented programming by learners in the experimental

group was not significant when compared with that of learners in

the control group. Nevertheless, it does provide a high quality

learning experience, as attested by participants’ feedback that

Alice improved their enjoyment and understanding of

programming concepts.

8. ACKNOWLEDGEMENTS
The authors expressed gratitude to the Alice team for permission

to use screen shots of the software.

9. REFERENCES
[1] AGARWAL, R., HARRINGTON, D. & GUSMAN, C.

2012. Lego Mindstorm NXT controller with peer-to-peer

video streaming in Android. Journal of Computing

Sciences in Colleges, 27, 243-252.

[2] ANNIROOT, J. (now DWARIKA, J.) & de Villiers, M.R.

A study of Alice: A visual environment for teaching

object-oriented programming. Proceedings of the IADIS

International Conference Information Systems 2012, 10-12

March 2012 Berlin, Germany. IADIS Press.

[3] BECKER, B. W. Teaching CS1 with Karel the robot in

Java. SIGCSE '01: Proceedings of the thirty-second

SIGCSE technical symposium on Computer Science

Education, 2001 Charlotte, NC, USA. ACM, 50-54.

[4] BROOKS, R. 1999. Towards a theory of the cognitive

processes in computer programming. International Journal

of Human-Computer Studies, 51, 197-211.

[5] CARLISLE, M. C. 2009. Raptor: a visual programming

environment for teaching object-oriented programming.

Journal of Computing Sciences in Colleges, 24, 275-281.

[6] CARNEGIE MELLON UNIVERSITY. 2012. Alice: an

educational software that teaches students computer

programming in a 3D environment [Online]. Carnegie

Mellon Foundation. Available:

http://www.alice.org/index.php?page=what_is_alice/what_

is_alice [Accessed 08 August 2010].

[7] CHANG, C., LIN, Y.-L. & CHANG, C.-K. 2013. Using

Visual Programming Language for Remedial Instruction:

Comparison of Alice and Scratch. In: WANG, J.-F. &

LAU, R. (eds.) Advances in Web-Based Learning – ICWL

2013. Springer Berlin Heidelberg.

[8] CLARK, R.E., 1994. Media will Never Influence

Learning. Educational Technology Research and

Development, Vol.42, No. 2, pp. 21–29.

[9] CRESWELL, J.W., 2009. Research Design. Qualitative,

quantitative and mixed methods approaches. Third

Edition. Sage Publications, United States of America.

[10] DANN, W. P., COOPER, S. & PAUSCH, R. 2009.

Learning to program with Alice, Upper Saddle River, New

Jersey, Pearson Education, Inc.

[11] DIX, A., FINLAY, J., ABOWD, G. D. & BEALE, R.

2004. Human-computer interaction, Harlow, England,

Pearson Education Limited.

[12] ESTEVES, M., FONSECA, B., MORGADO, L. &

MARTINS, P. Contextualization of programming learning:

A virtual environment study. FIE '08: Proceedings of the

38th Annual Frontiers in Education Conference, 22-25

October 2008 Saratoga Springs, NY. IEEE, F2A-17-F2A-

22.

[13] FOLK, M. 1981. Review of "Mindstorms: Children,

Computers, and Powerful Ideas by Seymour Papert", Basic

Books: New York, 1980. ACM SIGCUE Outlook, 15, 23-

24.

[14] GÁLVEZ, J., GUZMÁN, E. & CONEJO, R. 2009. A

blended E-learning experience in a course of object

oriented programming fundamentals. Knowledge-Based

Systems, 22, 279-286.

http://www.alice.org/index.php?page=what_is_alice/

10

[15] GÁRCIA-MATEOS, G. & FERNÁNDEZ-ALEMÁN, J.

L. A course on algorithms and data structures using on-line

judging. ITiCSE '09: Proceedings of the 14th annual ACM

SIGCSE conference on Innovation and technology in

computer science education, July 2009 Paris, France.

ACM, 45-49.

[16] GOMES, A. & MENDES, A. J. An environment to

improve programming education. CompSysTech '07:

Proceedings of the 2007 international conference on

Computer systems and technologies, June 2007. ACM,

IV.19-1-IV.19-6.

[17] GUEST, G., MACQUEEN, K. M. & NAMEY, E. E. 2012.

Applied thematic analysis, Thousand Oaks, California,

Sage Publications, Inc.

[18] HADJERROUIT, S. A constructivist approach to object-

oriented design and programming. ITiCSE '99:

Proceedings of the 4th annual SIGCSE/SIGCUE ITiCSE

conference on Innovation and technology in computer

science education, June 1999 Cracow, Poland. ACM, 171-

174.

[19] HERBERT, C. W. 2011. An introduction to programming

using Alice 2.2, United States of America, Course

Technology, Cengage Learning.

[20] JOHNSGARD, K. & MCDONALD, J. Using Alice in

overview courses to improve success rates in Programming

1. CSEET '08: Proceedings of the 21st Conference on

Software Engineering Education and Training, 14-17 April

2008. IEEE, 129-136.

[21] KLASSNER, F. A case study of Lego Mindstorms

suitability for artificial intelligence and robotics courses at

the college level. SIGCSE '02: Proceedings of the 33rd

SIGCSE technical symposium on Computer science

education, 27 February - 3 March 2002 Covington,

Kentucky, USA. ACM, 8-12.

[22] LAW, K. M. Y., LEE, V. C. S. & YU, Y. T. 2010.

Learning motivation in e-learning facilitated computer

programming courses. Computers & Education, 55, 218-

228.

[23] MALONEY, J., BURD, L., KAFAI, Y., RUSK, N.,

SILVERMAN, B. & RESNICK, M. Scratch: A sneak

preview. C5 '04: Proceedings of the Second International

Conference on Creating, Connecting and Collaborating

through Computing, 29-30 January 2004. IEEE, 104-109.

[24] MATTHEWS, R., HIN, H. S. & CHOO, K. A. Multimedia

learning object to build cognitive understanding in

learning introductory programming. MoMM '09:

Proceedings of the 7th International Conference on

Advances in Mobile Computing and Multimedia, 14-16

December 2009 Kuala Lumpur, Malaysia. ACM, 396-400.

[25] MONTEIRO, I., DE SOUZA, C. & TOLMASQUIM, E.

2015. My Program, My World: Insights from 1st-Person

Reflective Programming in EUD Education. In: DÍAZ, P.,

PIPEK, V., ARDITO, C., JENSEN, C., AEDO, I. &

BODEN, A. (eds.) End-User Development. Springer

International Publishing.

[26] MOSKAL, B., LURIE, D. & COOPER, S. Evaluating the

effectiveness of a new instructional approach. SIGCSE

'04: Proceedings of the 35th SIGCSE technical symposium

on Computer science education, 3-7 March 2004 Norfolk,

Virginia, USA. ACM, 75-79.

[27] OWUSU, K. A., MONNEY, K. A., APPIAH, J. Y. &

WILMOT, E. M. 2010. Effects of computer-assisted

instruction on performance of senior high school biology

students in Ghana. Computers & Education, 55, 904-910.

[28] PHELPS, A. M., EGERT, C. A. & BIERRE, K. J.

MUPPETS: Multi-user programming pedagogy for

enhancing traditional study: An environment for both

upper and lower division students. FIE '05: Proceedings

of the 35th Annual Conference Frontiers in Education, 19–

22 October 2005 Indianapolis, IN. IEEE, S2H-8-S2H-15.

[29] SAJANIEMI, J., KUITTINEN, M. & TIKANSALO, T.

2008. A study of the development of students'

visualizations of program state during an elementary

object-oriented programming course. ACM Journal on

Educational Resources in Computing (JERIC), 7, 3:1-3:31.

[30] SANDOVAL-REYES, S., GALICIA-GALICIA, P. &

GUTIERREZ-SANCHEZ, I. Visual learning environments

for computer programming. CERMA '11: Proceedings of

the Electronics, Robotics and Automotive Mechanics

Conference, 15-18 November 2011. IEEE, 439-444.

[31] SHANNON, L.-J. & WARD, Y. 2014. A Case Study:

From Game Programming to ICTs. In: KAUR, H. & TAO,

X. (eds.) ICTs and the Millennium Development Goals.

Springer US.

[32] WINSLOW, L. E. 1996. Programming pedagogy-a

psychological overview. ACM SIGCSE Bulletin, 28, 17-22.

[33] WRIGHT, T. & COCKBURN, A. Writing, reading,

watching: A task-based analysis and review of learners'

programming environments. IWALT '00: Proceedings of

the International Workshop on Advanced Learning

Technologies, 2000. IEEE, 167-170.

	1. INTRODUCTION
	2. LITERATURE REVIEW
	2.1 Teaching and learning OOP

	3. RESEARCH DESIGN AND METHODOLOGY
	3.1 Research questions
	3.2 Research design
	3.3 Participants
	3.4 Data collection and analysis

	4. FINDINGS
	4.1 Quantitative analysis of closed-ended questions
	4.1.1 How Alice addressed challenges faced by learners in learning object-oriented programming
	4.1.2 How to improve the teaching of object-oriented programming

	4.2 Qualitative analysis of open-ended questions
	4.2.1 How Alice addressed challenges faced by learners in learning object-oriented programming
	4.2.2 Spontaneous responses on how the teaching of OOP could be improved

	4.3 Quantitative analysis of test and exam results

	5. DISCUSSION
	6. RECOMMENDATIONS AND FUTURE RESEARCH
	7. CONCLUSION
	8. ACKNOWLEDGEMENTS
	9. REFERENCES

