THE DEVELOPMENT OF A METHOD TO ASSIST IN THE TRANSFORMATION
FROM PROCEDURAL LANGUAGES TO OBJECT ORIENTED LANGUAGES

WITH SPECIFIC REFERENCE TO COBOL AND JAVA

Jeanette Wendy Wing

A Research dissertation submitted in complete fulfilment for the requirements of the degree of
Master of Technology in Information Technology in the Department of Computer Studies,
Durban Institute of Technology, Durban, South Africa.

Durban, December 2002

APPROVED FOR FINAL SUBMISSION

Mr. D. A. Hunter, M.Sc.(UND) DATE
SUPERVISOR

ABSTRACT

Computer programming has been a science for approximately 50 years. It thistime there have
been two major paradigm shifts that have taken place. The first was from “ spaghetti code” to
structured programs. The second paradigm shiftisfrom procedural programsto object oriented
programs. The change in paradigm involves a change in the way in which a problem is

approached, can be solved, as well as a difference in the language that is used.

The languages that were chosen to be studied, are COBOL and Java. These programming
languages were identified as key languages, and the languages that software development are
the most reliant on. COBOL, the procedural language for existing business systems, and Java

the object oriented language, the most likely to be used for future development.

To complete this study, both languages were studied in detail. The similarities and differences
between the programming languages are discussed. Some key issues that a COBOL

programmer has to keep in mind when moving to Java were identified.

A transformation method isproposed. Thetransformation method identifiesthe creation of two
distinct types of Java classes from one COBOL program. One is called the Java Data Class
(JDC) which develops from the DATA DIVISION, and includes al data input and output
methods. The second type is called a Java Processing Class (JPC), and includes the
PROCEDURE DIVISION processes, which become methods, to complete the processing

functions on the data.

The transformation method is applied to COBOL programs, in order to create Java programs.

Working examples of the programs discussed are presented in the APPENDIXES.

PREFACE

This study represents original work by the author under the supervision of Mr. D A Hunter.

Two papers have been presented in completing this study.

The first paper was presented at the Technikon Natal Reasearch Day, 13 September 2000,
entitled “ The transformation of programming languages: Procedural to Object Oriented”. This
paper focussed on the choice of COBOL as the procedural language, and Java as the Object
Oriented language, and theinitial similarities and differencesidentified. Some of this paper was

presented in Chapter 2.

The second paper was presented on 26 September 2001, at “Going Global”, Faculty of
Commerce Research Day, Technikon Natal. Thetitlewas* Transformation: COBOL to Java’.
At this presentation, the paper was chosen to be presented at the Technikon Natal research day
held later intheyear. This paper proposed amethodol ogy for the transformation, and presented
an example of the transformation method applied to a COBOL program. Thisis expanded in

Chapter 3 and 4.

ACKNOWLEDGMENTS

First 1 would like to thank Mr. D A Hunter for his supervision of this project. His

understanding, in the completion of a project, as a part time student and full time staff member

has been invaluable.

To thelate Mr. F N Heukelman, who encouraged the start of this project, and whose influence

on my life, gave me the determination to complete this study.

To my colleagues in the Department of Computer Studies, thank you for your support.

To my friends and family who assisted in many ways, sometimesin just giving me the freedom

to ignore them, your support was much appreciated.

To God, the Father, who is part of all | do.

Lastly, | wish to dedicate this thesis to Lloyd, Martin and Stacey. Thank you for your

understanding and support.

TABLE OF CONTENTS

Chapter 1 - Introduction.

The need for the study.

The identification of COBOL and Java as the languages to be studied.
121 The paradigm shift.

1.2.2 Other contributing factors.

a)
12

13

14

21

1.2.3 The changing nature of computer systems.

The objectives of the study.

131

132

133

134

135

To identify key elements that define a procedural language with
direct reference to COBOL.

To identify key elements that define an object oriented language
with direct reference to Java

The identification of similarities between the two programming
languages.

The identification of the differences between the two programming
languages.

The development of a methodology (series of procedures and rules
tofollow) to assist in the transformation from procedural languages
to object oriented languages with specific reference to COBOL and
Java.

The study design.
Chapter 2 - The programming languages
Genera description of COBOL

211
212

A brief History of COBOL.
The Structure of a COBOL program. (A main program.)
2121 The Four Divisions.
2122 The program logic.

a) A control break report.

b) A relative file maintenance program.
2123 PROCEDURE DIVISION design.

2.1.3 A COBOL subroutine

Vi

Page

0 0 N B NN B

11
11
13
13
14
15
16
18
19
20

22

2.1.5 Key areas- where the language is used best

216
217

Shortfalls of COBOL

Online versus batch processing.

General description of Java.

221
222

223
224

225
2.2.6
227

Brief History of Java.

The structure of a Java program.

2221 The program logic (Defining a Java class).
2222 Using existing Java classes.
a) Classes within the Java language.

b) Classes designed within an organization.
The Java aternative to subroutines.
Identify the key elements that define an object Oriented language
with reference to Java.
Key areas - where the language is used best.
Shortfalls of Java.

Event driven programming.

Chapter 3 - Analysis, acomparison of the program code.

31

Identify the similarities between the programming languages.

311
312

313

Structure theorem - cohesion and coupling.

Assignment of data.

3121 READiINg in data.

3.1.22 MOVEing data

Procedural code
3.131 Branching
3132 Looping
3133 Calculations
3.1.34 Arrays and tables

Page

20
23
24
25
25
27
29
32
32
33

35

38
39
40

41
43
45
46
47
52
52
56
58
60

3.2

Identify the differences between the two programming languages
3.2.1 Datadefinition.

3.2.2 Event driven programming.

3.2.3 Exception handling.

3.2.4 Working with the web.

3.2.5 Online documentation.

3.2.6 Developing models/'smulations.

Chapter 4 - Proposed Methodology for the transformation, COBOL to Java.

4.1

4.2

4.3

The proposed methodology.

4.1.1 Transforming the DATA DIVISION.

4111 Step 1 Define an object (JDC) for each record

description.

41.1.2 Step 2 Include accessor and mutator methods for the
appropriate instance variables in each class (JDC).

4113 Step 3 Define input and output methods that would work
through a data stream.

41.1.4 Step 4 Include static variables and constants.

4.1.2 Transforming the remainder of the PROCEDURE DIVISION.

4121 Step 5 Define an a Java Processing Class (JPC) to
complete the processing for each object, defined as a Java
Data Class (JDC).

4122 Step 6 More than one Java Processing class (JPC) may
be defined from one PROCEDURE DIVISION.

4.1.3 Step 7 Transforming asystem (collection) of COBOL programs.

Implementing the methodol ogy.

4.2.1 Transformation: A Control Bresk.

4.2.2 Transformation: Relative File Maintenance.

4.2.3 Transformation: A COBOL subroutine.

M ethodology evaluation.

Viii

Page

R g

67
69
72
74
76

77
78
78
79

80

80

81
81

83

R R

91
93

Chapter 5 - Object Oriented COBOL.

The origins of OO COBOL.

Features of OO COBOL.

Features that OO COBOL does not provide.

5.1
52
5.3
54
5.5

Implications of implementing OO COBOL?
The impact of OO COBOL on this study.

Chapter 6 - Conclusion.

6.1

6.2

6.3

Were the objectives met?

6.1.1

6.1.2

6.1.3

6.1.4

6.1.5

To identify key elements that define a procedural language with
direct referenceto COBOL.

To identify key elements that define an object oriented language
with direct reference to Java

The identification of similarities between the two programming
languages.

The identification of the differences between the two
programming languages.

The development of a methodology (series of procedures and
rulesto follow) to assist in the transformation from procedural
languages to object oriented languages with specific reference to
COBOL and Java.

The lessons learned.

6.2.1

6.2.2

Structured programming principals can be applied in the
development of Java systems.
OO design should be applied to systems, rather than programs.

Areas of further study.

6.3.1
6.3.2
6.3.3
6.3.4

Java and database

Working with COBOL’ S indexed files.

A study of design patterns (relating to Java Programs).

Test the proposed methodology on an operational legacy system.

Page

95
96
97
98
9

100
100

101

101

101

101

102
102

103
104
104
104
105
106

6.3.5 Work with agroup of COBOL programmers, training them to

become Java programmers.

6.3.6 Theuser intarface.
6.4 Final word.

References

Appendix A:
Appendix B:
Appendix C:
Appendix D:
Appendix E:

Appendix F:

Appendix G:
Appendix H:

Appendix I:
Appendix J.

Appendix K:

Appendix L:

Appendix M:
Appendix N:
Appendix O:

Appendix P

Appendix Q:
Appendix R:

Appendix S:

Appendix T:

Levels of Cohesion and Coupling.

Event driven program example - changing colors on the screen.
Event driven program example - guess the number game.
Exception handling example - number format exception.
Exception handling example - defining your own exceptions.
An example of an applet - guess the number game converted.
The html document generated by javadoc - GuessNumber.html.
COBOL example - control break report.

The JDC for the control break report.

The JPC for the control break report.

COBOL example - create ardativefile.

COBOL example - add records to arelative file.

The JDC for the relative file.

Thefirst JPC for the relative file - create an empty relative file.
The second and third JPC for the relative file

Add records to arelative file, and display all active records.
COBOL example - a subroutine.

COBOL example - amain program (calling program).

The Java class replacing the subroutine.

The Java class replacing the calling program.

The structure of an OO COBOL program.

Page
107

108

108
109

Chapter 1 - Introduction.

b)

The need for the study.

The following quote from Information week (1998), capturesin essence, the purpose
of thisstudy, “ Evenin progressivel T shops, many developersuse procedural languages
such as COBOL or C, typicaly for maintenance of existing apps. But with the rise of
HTML-based apps and the move to mixed media on networked applications, it's
reasonabl eto expect objectsand componentsto continuetheir slow riseto dominance”.
There are many computer systemscurrently inusethat have beenwritten in procedural
languages. With the development of the object oriented paradigm, and more reliable
programming languages that use the object oriented methodology, it is now the time
to convert “older systems’ in order to benefit from the object-oriented methodol ogy.
Thereisaneed to study methodsof re-engineering existing computer systems, to take

advantage of object oriented methodologies.

This study is significant in that it will identify a methodology which should be able to
assist in this process. As most programmers will be familiar with the procedural
methodology, and the computer systems to be changed are also written using
procedural methodology, it isimportant to use this as a starting point, and wherever

possible take elements through from the old systems into the new.

This study aimsto identify similarities and differences between the two methodol ogies

and then develop a methodology (series of procedures and rules to follow) which

1.2

would assist in the transformation from procedural to object oriented applications.

There have been studies done that address the transformation from one programming
languageto another. In an articlein Midrange Systems, DennisCallaghan (1999) lays
out some proposals on transforming from RPG400 to Java. The same problem is
addressed by Merritt (1997) who published an academic textbook on the migration
from Pascal to C++. Although the languages chosen aredifferent thesetextscould give
some key ideas on how to formulate a methodology for the transformation. Doke and
Hardgrave (1999) present the Javalanguage, in termsthat the COBOL programmer can

understand. There is no transformation methodology presented, however.

Many authors discuss the principles of programming languages and this will assist in
the study. Eliens (1995) who discusses the principles of object oriented software
development. Sebasta (1993) a so has apublished text on the concepts of programming

languages. These will be valuable in comparing the two languages.

A SABINET search was conducted on 14 September 1999. This showed no current

or previous research donein South African institutions comparing these programming

languages.

The identification of COBOL and Java as the languages to be studied.

1.2.1 The paradigm shift.

Computer programming is arelatively new science. Thefirst programs were coded in
machinelanguagein the 1950's. Third generation programming languages, which made
programming alittle easier than 0's and 1's developed in the late 1950's and early 60's.
COBOL was one of the first third generation languages. These third generation
languages, opened up the science of computer programming to a larger group of
people. Thefirst computer programs were described as unstructured. Thismeansthere
was no method to the way in which the problem was solved. The first magjor paradigm
shift in programming, was the advent of structured programming. Structured
programming theory developed over a time period of approximately ten years. The
history is presented by Welburn (1983) as follows. The first step towards structured
programming theory was the structure theorem presented by Bohm and Jacopini in
1964. Thiswas followed by papers presented by Dijkstra on the harmful effects of the
GO TO dtatement, as well as a pilot project, in 1969, named the “New York
Times’ project, where Dijkstra demonstrated that structured programming methods
make for far more productive programmers. Structured programming theory was
presented in a paper entitled “Structured Design” in 1974 by Stevens, Myers and
Constantine. This completed the ten years devel opment, and structured programming
theory become a part of programming methods. In essence structured programming
involves “a program design, documentation, coding, and testing methodology that
utilizestechniquesin program development to create proper, reliable, and maintainable
software products on a cost effective basis.” (Welburn, 1983). Notice the emphasis on
maintenance. A key issuein existing business systemsisthat they often need to change.
In a program written in COBOL, it is necessary for the programmer to be able to

understand the program (or system of programs) in order to make changesto it. This

can be a very costly exercise, if the programs are poorly designed, and therefore
difficult to change. As can be seen from this short description, it took approximately
fifteen years from the beginning of the science of programming, for the paradigm shift
of structured programming to be defined. Welburn (1983) discusses the devel opment
of structured programming theory. In essence this was to create programs using only
the three control structures (Bohm and Jacopini), that did not include a GO TO
statement (Dijkstra), and that implemented the principles of functional cohesion, (each

module executing a single function), and being as loosely coupled as possible.

In the 1980's the second paradigm shift took place. The advent of object oriented
programming. Thefirst maor conference on Object Oriented programming took place
in 1996, OOPSLA, an acronym for the conference on Object-Oriented Programming
Systems, Languages and A pplications (Budd, 2000). Thisisamajor shift in the way of
thinking. Before, in a program language like COBOL, all the data had to be defined,
and be globally available to all modules (procedures). In object oriented programming,

the data is encapsulated by the methods (procedures).

1.2.2 Other contributing factors.

Many texts also confirm the need to move forward into the object oriented
environment. Asdiscussed by Chapin (1997) the need to be able to reuse program code
has been evident since the 1950's. This sentiment of being able to reuse code is also
supported by Wilson (1993) . The need to change is emphasised by Grady (1997)

“businesses involving software are caught up in a crowd moving forward, whether we

4

likeit or not. If we don’t move with it, we'll be pushed aside and left behind.” Other
authors that discuss object oriented programming in general, and also in some cases
identify advantages of object orientation as well as some methods for evaluating

languages are Henderson-Sellers (1994), Ledgard (1996) and Martin (1995).

There are many commercial systems coded in COBOL. It is estimated that COBOL
accountsfor 80% of commercial applications developed inthe 1970'sand 1980's. Nick
Langley (1999) states “COBOL is till the most widely used language after 40 years.
Billions of lines of COBOL exist, used by more than a million companies.”. These
legacy systems are business applications, and companies rely on them for their daily
functions. COBOL systemsarethereforekey systemsinthebusinessenvironment. This
view, the popularity of COBOL and the business world’'s dependance on it are

discussed by Chapin (1997) in theintroduction to hisbook on object-oriented COBOL.

Due to the fact that COBOL is so dominant in the business world, it is the language

chosen to be studied as a procedura language.

The choice of Javaasthe object oriented language to moveto is supported by a number
of articles. The Computer Weekly has an article where Black (1998) describes that a
study completed by Bloor Research shows that more than two thirds of the large IT
industry approached in the UK expect to adopt Java within the next two years. An
article in Computerworld (1998) also discussed that Java has registered 750000
developers and worked its way into major corporate houses within two years. In Wall

Street and Technology (1999) Cavanaugh states that Javais a significant addition to

the Wall Street IT development scene. In a paper presented by Hunter (1999) at the
recent Technikon Natal Commerce Research Conference, he clearly identified that the
way forward seemsto bewith Javaand its application development products. Charles
Babcock (2000) states*“there are currently over 1.3 million developers using Javaand

that number is expected to reach 4.4 million by 2003".

A factor which plays a part in the choice of COBOL and Javais the consistency of the
languages. COBOL was the first language that had its specifications defined by a
committee and enforced by the American National Standards Institute, hence the name
ANS| COBOL. Each compiler that was produced by any company was required to
conform to the ANSI standard. Thismade COBOL alanguage that essentially behaved
the same on different environments, as the compilers adhered to the ANSI standard.
Thisconsistency helped in making COBOL thelanguage of choicefor the development
of business systems. Java has achieved the same consistency but in adifferent way. Sun
Microsystems developed Java, and decided to publish Java on the Internet, making the
code availableto all programmers. Thereistherefore asingle standard for Javaasthere
wasfor COBOL. According to Clifford Swift, “akey factor of Javawhich will enable
its acceptance is the fact that it provides a single technology that enables corporations
to develop, maintain and enhance heterogeneous applications with a single skill base.”
This broad standard of the programming language is what seems to be a unique factor
for both COBOL and Java. Thisfactor influencesthe languages acceptancein industry,
as the programmers, which are the most expensive component in the software
development equation, oncethey have gained the skillsof thelanguage, can easily adapt

to each development environment.

Goodridge (2000), in an articleon Information Technology L abour, discusses COBOL
as the most broad skill base available, and Java, HTML and Web development as the
most required new skills. This clearly indicates that COBOL to Javais aworthwhile

study, and the programming languages are key to the IT industry.

1.2.3 The changing nature of computer systems.

The business systems written in COBOL, were generaly for systems that worked
within a company structure, within a distributed computer network, or other similar
system. The advent of the Internet, and its broad acceptance as a business tool, is
changing the nature of computer systems. It is this change that may finally close the
chapter on COBOL programming. The emphasisis far more than transferring existing
systemsto OO technology, it isare-think of the way in which business processes take
place. If the new approach to business, dramatically changes the business process, the
need to transform the legacy systems no longer exists. The systems need to be
completely re-designed. The new design would have to consider the new business
needs, and if thisinvolves event driven applications, available to abroad base of users,
distributed around the world, the devel opment should be completed in alanguage that
was designed for thistype of application. From this study it has become clear that Java

isidedlly suited to the new business world.

13

The objectives of the study.

The following objectives have been identified. They are presented in the sequence

required for the study.

1.3.1 Toidentify key elementsthat define aprocedural language with direct reference

to COBOL.

Thisisdiscussed in Chapter 2. Section 2.1 gives a description of the COBOL
programming language, from its history to features of the language. The key
elements that define COBOL as a procedural language are identified, and

discussed in 2.1.4.

1.3.2 To identify key elements that define an object oriented language with direct

reference to Java.

This is discussed in Chapter 2. Section 2.2 gives a description of the Java

programming language, from its history to features of the language. The key

elements that define Java as an object oriented language are identified, and

discussed in 2.2.4.

1.3.3 Theidentification of similarities between the two programming languages.

This discussion takes place in Chapter 3. Section 3.1 notes the similarities

14

identified between the programming languages.

1.3.4 Theidentification of the differences between the two programming languages.

This discussion takes place in Chapter 3. Section 3.2 notes the differences

identified between the programming languages.

1.3.5 The development of a methodology (series of procedures and rulesto follow)
to assist in the transformation from procedural languages to object oriented

languages with specific reference to COBOL and Java.

Thisis accomplished as aresult of the analysis of the programming languages.
Chapter 4 presents a methodology in section 4.1 and examples of the

implementation of the methodology are given in section 4.2.

The first four objectives, are set in order to assist with objective five. They will need
to be accomplished first in order to achieve the objective of developing a methodology
to assist in the transformation from COBOL programs to Java classes (procedural

languages to object oriented languages).

The study design.

Thisistheoretica creative research. Literature survey will be used to gain an insight

into the background of each programming language. Analytical work will be donein

identifying the key features of each language, the smilarities and differences. Cregtive
researchisachievedinthat atransformation methodology will be proposed. Theoretical
creative research isdefined by Melville (1996), “ Theoretical creative research is about
the discovery or creation of new models, theorems, algorithms, etc.” . Olivier (1997)
states “most of IT research endeavours to realise ‘theories to guide construction of
automated systems’ which supportsthat thisisthe type of research required in thefield

of Information Technology.

An extensive study of both languages will need to be done. COBOL is mainly a
procedural language, and Javaisin essence an object oriented language. Thisstudy will
be via literature study and by practically coding programs. COBOL programs as well
as Java programs will be coded in order to gain familiarity with the programming
languages. This coding will be done using the RM COBOL 85 compiler and the Sun
Javaversion 1.3.1. Asthe study aims to produce a series of procedures and rulesto
follow in the conversion of COBOL programs to Java programs, the methodology

should be applicable to most versions of the two languages.

Comparisons will be made between the programming languages COBOL and Java.
Again aliterature search will be needed to determine any similar comparisonsthat have
been done between other languages. Then to propose a methodology to assist in the
change from one programming paradigm to the other. This is creative, since a

methodology (set of rules and procedures) will be proposed as a result of the study.

10

Chapter 2 - The programming languages

21

Genera description of COBOL

This section has been completed with reference to the following authors Welburn
(1995; 1983; 1981), Philippakis (1987), Stern (1991), Y ourdon (1979), as well as

twelve years experience in lecturing COBOL.

2.1.1 A brief History of COBOL.

COBOL is described as a third generation language. The first computers were
programmed in machine code, and this was followed by assembler. To program in
machine code, it was necessary to give the computer instructionsin binary. Assembler
uses three, and four character codes to accomplish commands. The first and second
generations of programming languagesrequired ahigh level of expertisein order to use
the languages effectively. The languageswere aso very closely related to the hardware
that was being used, resulting in programs that are not portable. The computer
scientists then developed third generation languages. A third generation language is
easier to use than machine language or assembly language, as the instructions can be
given to the computer in a more English type language. A computer programming
language has strict rules of syntax (the construction of a statement) and certain
reserved words. These reserved words are used in giving instructions to the computer.
A program coded in athird generation language is *“compiled” into machine code (or

object code). The machine code iswhat is executed by the computer. Programs coded

11

in athird generation language are easier to transfer to another computer system. The
program would be re-compiled, on the new hardware system, thereby generating
machine code that works with the new hardware. A number of third generation
languages were developed, each with adightly different emphasis. COBOL isathird
generation language that was developed as a commercial language to deal with large
volumes of data. A mgjor focus in the development of COBOL was that it would be
an English type language, and therefore easy to understand. COBOL was developed
in the late 1950's, by a committee, the CODASY L' committee. (A committee that
actually achieved their goal). COBOL received the support of the United States
military, thisresulted in apolicy which required a COBOL compiler to be available on
computer in order to be awarded government contracts. (Wilson, 1993). Thisresulted
in COBOL becoming the most widely used programming language intheworld in the
1960's and 1970's. The first release of COBOL was named COBOL 60. Revised
versions were released in 1961 and 1962 (by the US Department of Defense) The
language was standardised in 1968 by the American National Standards Institute
(ANSI). Revisions were released in 1974 and 1985 by ANSI. (Sebasta, 1999).
Programming languages were the first truly international languages. COBOL

maintained dominance for almost thirty years.

CODASYL Conference on Data Systems Languages. This set standards and rules
for the COBOL language. (Wilson, 1993)

12

2.1.2 The Structure of a COBOL program. (A main program.)

2121 The Four Divisions.

A COBOL programisstructured infour sectionsdefined asdivisions. They are
the IDENTIFICATION DIVISION, ENVIRONMENT DIVISION, DATA
DIVISION and PROCEDURE DIVISION. Each of these divisions must be
clearly defined in the sequence given. There are rules for the types of

statements that can appear in each division.

The IDENTIFICATION DIVISION identifies the program to the operating
system. The rest of the IDENTIFICATION DIVISION serves mainly as
documentation, with statementsthat identify the programmer, and date written

etc.

The ENVIRONMENT DIVISION identifies the environment in which the
program isrun, as well as establishing the operating system name for any files
that will be accessed. Thisisdonein the SELECT statement. All filesthat are

going to be used in the program must be named in a SELECT statement.

The DATA DIVISION iswhere the each files record format, and any variables
that are to be used in the program must be defined. The DATA DIVISION has
two parts. The FILE SECTION which must be defined first, followed by a

WORKING-STORAGE SECTION. TheFILE SECTION must have an FD

13

(file definition) for each file that is given in a SELECT statement. The record
format must be described giving the exact description (position, length, and
datatype) of each field that isto be used in the program. It isimportant that
therecord lengthiscorrectly defined. The WORKING-STORAGE SECTION
isused for al temporary fields. Thisincludesflags (afield with two statesthat
are used to control processing), line and page countersto control the printing
of reports, the definition of all print lines and any other temporary fields for

calculation or control purposes (control break programs).

The PROCEDURE DIVISION is where the programming logic is found.
Generdly the program logic will deal with the functions of input, processing
and output. The Input would be via a screen or data file (or both) the
processing is done on the data that has been input, and the output is then

displayed to screen, or written to a printer or data file.

2122 The program logic.

Thelogic for aCOBOL program isin the procedure division. As mentioned in

2.1.1 thisusually involvesworking with datafiles. Two common program types

have been chosen for discussion: a control break report, and a relative file

maintenance program.

14

C) A control break report.

Generaly acontrol break report program was written to support management
decision making. In essence this report produces a summary of data that is
present on a master file or a transaction file. A master file is defined as
containing permanent and semi permanent data. An example would be an
employee file. The permanent data being the employee number, and the semi
permanent data is data that can change, eg. Address, salary scale and so on. A
transaction file contains a record of day to day transactions. For an employee
system these may be sick leave or vacation leave changes that need to be made
to those employees that have used their leave. A control break report program
would be written to summarize the datain some way. For example at atertiary
institution academic staff fall within adepartment, and each department is part
of aFaculty. A report showing the total employeesin each department aswell
as the total employees in each Faculty would be a control break report. This

would run off the master file, as this contains the details of each employee.

To write aCOBOL program to do this you would need to define the data and

the procedure to be applied to the data.

The data is defined in the data division. In the FILE SECTION you would
define the master file and the report file (where the report is to be printed).
Control fields that identify when afaculty or department has changed would be

defined in the WORKING-STORAGE SECTION. The fields required to

15

accumulate the counts of employeeswould also be defined in working storage.
Page counters and line counters as well as flags identifying the end of file also
must be defined in working storage. Definitions of all the heading, detail and

total linesto be used in the report would also be defined in working storage.

Once the data has been defined the PROCEDURE DIVISION is coded. This
isthelogic section. Generally thiswould always start with a control paragraph.
This opensthefiles, does any initialisation routines, reads the first record from
themaster file, and callsamore detail ed process (another paragraph) which will
execute until there is no more data on the master file. The files are then closed
and processing is terminated. The detailed process must produce the report. A
control field is set up that will indicate when a department has changed. A
smilar field will also be set up to indicate when a faculty has changed. It is
assumed that when afaculty changes, adepartment will also change. Thereport
headings must be printed aswell astotal lineswhenever acontrol field changes.
The detailed process will generaly call any number of paragraphsin order to

produce the report.

d) A relative file maintenance program.

A file maintenance program will be written for each master file that is present

in a system. This program takes care of adding records to the master file (eg

add a new employee), changing records on the master file (e.g. change an

16

employees address), and deleting records from the master file (eg an employee

has | eft the company).

Again the DATA DIVISION must be defined. In the FILE SECTION you
would define the master file, the transaction file (file containing the changes)
and areport file (given that areport will be printed showing the changes made
to the master). In the WORKING-STORAGE SECTION you would have the
control flagsidentifying if thereis more datato process, and all the report lines

for the report.

The PROCEDURE DIVISION would start with a control paragraph. This
Opens the files, does any initialisation routines, reads the first record from the
transaction file. The control paragraph then calls a more detailed process
(another paragraph) which will execute until there is no more data on the
transaction file. The files are then closed and processing is terminated. The
detailed process must maintain the master filerecords. A transaction record has
been read, and this can be an add, change or delete. For a change or a delete,
this would involve finding the master record that matches the transaction. If a
master record is not found then an error has occurred, and the error - change
or delete where no master exists, would be written to the report. The next
transaction record is read. For an add transaction a matching master record
should not be found in order to affect the add. If there is already an existing
master then this error - cannot add, a record already exists must be written to

the report. If the report is an error report then it will contain only error

17

messages, if it isan audit/error report, then transactionsthat have been correctly
processed as well as errors are written to the report. The detailed process will
generaly call any number of paragraphsin order to maintain the master fileand

produce the report.

2123 PROCEDURE DIVISION design.

The procedure division, is a breakdown by function, of the task that is to be
done. Thereare anumber of methodsthat can be used, to design the procedure
divison. The onethat is most commonly used istop down design. In top down
program design the program problem is broken down by function. Then each
function is again broken down. This is continued until each module (or
paragraph) in the program only hasasingle function. Once this design has been
completed the PROCEDURE DIVISION modules are coded in COBOL. A
structure chart is usually used to assist in the functional breakdown during the
program design phase. As presented here the COBOL PROCEDURE
DIVISION is concerned only with function. The data to be used has all been
defined in the DATA DIVISION. Thisiswhere thereis such alarge paradigm
shift, as far as programming is concerned. “Developers need to shift from
traditional development thinking that used to split data and function, towards
new object oriented thinking which combines aspects of data and function.”

(Labuschagne, 1995)

18

2.1.3 A COBOL subroutine.

Subroutines are used for common program logic that needs to be used by a number of
programs. A subroutine would be written for date conversion eg. Transforming a
Gregorian date into a Julianised date, or validating a check digit on a number (eg.
student number) and so on. The structure of a subroutine is different in that data can
be passed to a subroutine and also received back from a subroutine. In most cases a
subroutine would also not processany files. A subroutine's functionisto receive data,
processit and send aresult back to acalling program. The four division headers are still
required, even although some of the divisions will not contain much or any code. For
examplethe FILE SECTION inthe DATA DIVISION will not be used. A new header
inthe DATA DIVISION isrequired for passing the data between the main and calling
program. This is the LINKAGE SECTION, and it appears after the WORKING-
STORAGE section. All data items that are communicated between the main and the
calling program must be defined here. The procedure division header must list the data
itemsthat are communicated. Thisisdone as PROCEDURE DIVISION USING data-
item-1, data-item-2. This is matched to the CALL statement that is used to call the
subroutine. When acall to asubroutine is executed in amain program, the data values
listed in the cal statement are passed through to the linkage section. The
PROCEDURE DIVISION code is then executed. When a RETURN statement is
encountered in the subroutine, control isreturned to the main program, to the statement
following the call. The data in the linkage section is aso passed back to the main
program. Any changes that have been made to the LINKAGE SECTION data items

would therefore be transferred back to the main program.

19

2.1.4 ldentify the key elements that define a procedural language with reference to

COBOL.

COBOL has basically two elements that a programmer must define. The Data to be
used in the DATA DIVISION and the logic required to process the data in the
PROCEDURE DIVISION. The datais defined and available for all paragraphsin the
procedure division. A problem is solved by developing the logic modules (paragraphs)
that will processthe data as per the specification. Usually top down designisemployed
to achieve this breakdown of the overall problem into smaller manageable tasks. As
most programs will be processing files, the high level control paragraphswill deal with
opening and closing thefiles, as well asthe reading of each record on file. Asyou can

see the focus of the programming effort is on procedures.

2.15 Key areas - where the language is used best.

COBOL provides a very stable environment for data processing. Many systems have
been developed and are still currently running in COBOL. These are often referred to
as legacy systems. The data is managed and large volume processing of data can be
achieved. Any system which is dependant on alot of file handling with large volumes
of data can ill effectively use a COBOL system. Basically anywhere where large
volume data processing supports the daily business transactions COBOL can be very

effectively used.

AsCOBOL processed large volumes of data, indexed fileswere developed in order to

20

facilitate fast and easy access to records. When an indexed file is created in COBOL,
afield that is part of the data record is defined as the record key, this must be unique.
Alternate record keys that are also data fields within the record can also be defined.
There may beanumber of alternate keys, but thereisan overhead associated with each.
Each COBOL compiler would specify a limit to the number of aternate indexes that
could bedefined (usualy five). COBOL then createsindexesthat allow alternate access
to each datarecord. For a customer file, the primary index, which must be a unique
field for each record, would be the customer number. An alternate index on customer
surname is aso defined. COBOL would create a primary index with each customer
number, and the records address, as well as an aternate index with each customer
surname (duplicates allowed) and the records address. When accessing data records
from the indexed file, you would specify the index to be used in the READ, or START
statement. There are a number of rules that apply, and where no index was specified,
the default of the primary index would be assumed. To access a record from the
customer file, there are now a number of options:-

. To access al records on file, sequential access can be used. The COBOL
system would use the primary index, which resultsin all records being accessed
in customer number sequence. The sequential access therefore refers to the
records being accessed in a true sequence.

. To accessasinglerecord, where the customer number isknown, the record can
be directly accessed, by supplying the customer number, viathe primary index.
Thisresultsin fast data access, especialy for online systems.

. To access a single record, where the customer number is not known, only the

customer surname, access is viathe alternate index. The alternate index would

21

however have a number of customerswith the same surname, as duplicates are
allowed, and would normally exist. Thisdoes however provide avery powerful
searching tool for quickly accessing records, whereaprimary key isnot known.
These three examples, illustrate the processing options available when using indexed

files.

Theuse of alternateindexes providesfor flexibility in processing, and apowerful access

tool especialy for online systems. Data base systemsthat devel oped later (historically),

use the principles of indexes and alternate indexes extensively. There are two factors
that must be taken into consideration when using COBOL indexed files:-

. All the indexes required for the data file must be defined when the file is first
created. If an aternate index is to be added to afile, the data file must be re-
created, and all programs that use that data file must be modified and re-
compiled.

. The indexed data file must be re-organised on a regular basis. Whenever
records are added and deleted to/from the data file, the indexes are updated,
usualy by inserting pointers where changes have taken place. Eventually data
accesswill dow down. Re-organising thefileisasimple process of re-creating

the file, but it isimportant that thisis done regularly.

There may till be aplace for COBOL where systems are confidential, say a personnel
system, or customer processing. However as technology advances customers and
employeeswant accessto their own data in theform of information. In many casesthis

access to information would be requested over the Internet. The actual processing in

22

these systems can till be done by COBOL, but the ability to query etc should be

alowed to the customer.

2.1.6 Shortfalls of COBOL.

In COBOL programming thereis alot of code that is repeated in each program. The
DATA DIVISION must be repeated. ie. there will be any number of programs that
work with amaster file. Each time a program is coded that works with the master file
the DATA DIVISION code must be repeated. To some extent the use of copy libraries
took care of this repetition. Programmers were then however forced to use predefined
data names. Where a different data structure was required the data then needed to be
manipulated within the program in order to modify the format given in the data

Structure.

The PROCEDURE DIVISION aso hasits set of repetitive code. The high level control
paragraph always opens and closes the files, sets up the initia read and control loop.
Generdly the rest of the procedure would be performed until there is no more data on
file. If areport program isbeing written, then the controls for headings and page breaks
are very similar in each program. This code would have to be coded in each program’s
PROCEDURE DIVISION. COBOL programming therefore becomes rather tedious

aslarge portions of code which have been coded before, arerepested in each program.

When designing and coding the procedure division, asmentioned previously atop down

design methodology is often used. This means that the end product is envisaged, and

23

then broken down until we have manageable components, and the componentsarethen
coded. Unfortunately due to the nature of COBOL the components are coded in the
light of achieving the final product. The components cannot be used in constructing
another similar product. Thisis what object oriented programming intends to solve,
where components can be independently developed and then assimilated in order to
solve a problem. The structure of the COBOL programming language, where data is

separate from procedure does not alow for this to happen very easily.

2.1.7 Online versus batch processing.

Batch processing, isthe type of processing that COBOL wasiinitialy designed for. By
definition, a batch process involves collecting data over a period of time, and then
processing the data against a master file in one computer run, abatch run. The period
of time over which data is collected could range from a day, a week or a month.
Basicdly any system where datais notimmediately processed istermed abatch system.
With a batch system for accounts receivable, when a customer makes a purchase, the
transaction is recorded, and then processed against the master file at alater stage. The
new customer balance will only reflect the new amount after the batch run has been

completed.

In contrast online systems have the data available to a user immediately. In an online
system, when a customer makes a purchase their account is updated immediately, and
the new customer balance is reflected at the end of the transaction. The move from

batch processing to online processing has come about as the hardware supporting

24

22

computer systems has developed. Online processing has a far larger overhead on
memory and disk access as opposed to batch systems. Many systems are now
combinations of both processing types. The daily transactions tend to be processed
onling, but there are processes, for example printing monthly statements that are
processed as a batch at the end of each month. When it comes to large volume data
processing, and the printing of reports, COBOL was designed for this type of

processing, and works well in producing high volume reports.

General description of Java.

The following has been completed with reference to the authors Arnold and Gosling
(1998), Lemay (1997), Dietel and Dietel (1998; 2002), Naughton (1996), Reed Doke
and Hardgrave (1999), Savitch (1999; 2001) and Wigglesworth and Lumby (2000).

Included is eighteen months lecturing experience in Java.

2.2.1 Brief History of Java.

Java was developed by Sun Microsystems. They had a design team working on
software for small appliances. Thiseventually changed to become Java. James Gosling
has been given credit asthe father of this programming language (Arnold et. ., 1998),
although originally a design team was working on the project. Some of the other key
players in the development of Java were Patrick Naughton, James Sheridan, Wayne
Rosing, Bill Joy and Jonathan Payne (Naughton, 1996). Initially the language was

called Oak. When it was discovered that a language called Oak aready existed there

25

was an urgent need for a name change. A discussion in this regard took place in a
coffee shop, and hence the name Java. Javawas officially released by Sunin May 1995.
Java is an object oriented language. When Java was first released it was designed
mainly for use with Web applications, where applets are activated within a Web page
(Naughton, 1996). Asthe use of the Java Virtual Machine (JVM) in executing Java
applications introduced a simplicity or facility to execute applications on different
operating systems without aneed to modify the program codein any way. It isthe Java
bytecode that is executed. As Sun published Java on the Web, allowing users to
download the software free of charge, more users started using the language and it has
developed to be far more robust than when first released. Java applets (small
applications) that run within a web page are only one facet of the language. Java can
also be used for the development of enterprise software, interfacing to database
applications and so on. Generally abroad band of all computer processing can be done
using Java, even asfar as setting up and controlling networks. To quote from Dietel
and Dietel (2002, pgl2), “Javais now used to create Web pages with dynamic and
interactive content, to develop large-scale enterprise applications, to enhance the
functionality of World Wide Web servers (the computers that provide content we see
on our Web browsers), to provide applications for consumer devices (such as cell

phones, pagers and personal digital assistants) and for many other purposes.”.

The Java language is still evolving, at a rapid rate. The Java language itself has 48
reserved words, and inthisway isrelatively smple (Reed Doke and Hardgrave, 1999),
the complexity liesin the Java A pplications Programming I nterface (AP!), aso referred

to asthe Javaclasslibraries. It isthese class libraries that continue to develop. In Java

26

1 the original APl (or set of core classes) included about 200 classes, release 1.1
included about 500 API's, and Java 2 about 1600 (Wigglesworth and Lumby, 2000)
. The Java 2 release includes Java Foundation Classes (JFC) of which the swing class
isone. Some of the API’'s are described in 2.2.2.2.b) below. Thefull API for Java 2

can be viewed at http://java.sun.com/j2se/1.3/docs/api/index.html. (12 April 2002).

2.2.2 The structure of a Java program.

Javais an object oriented programming language, as it views everything as an object.
Each Java program is an object. Each object is defined as a classin Java. A class has
fields (instance variables) and methods, the class represents a set of objects that have
acommon structure, and behavior. An instance of aclassis created (instantiated), and
represents a specific object. Each method may aso have its own internal variables
which arethen only available to that method. Each method provides processing actions
that can take place on the fields (instance variables). The relationship between the
instance variables and methods is referred to as encapsulation. The fields (instance
variables) are encapsulated by the class, the only way in which you can gain accessto
the fields is through the methods that are within that class. It is important that you
declare instance variables of a class that you want protected in thisway as private, as
thiswill enforce the protection of data. If an instance variable is declared public it will

be able to be accessed directly from outside the class when an object is instantiated.

Classes may aso inherit from another class. This promotes the reuse of code. Java

allows for single inheritance, where a class may only inherit from one base class (or

27

super class). However the current class being defined aso inherits from all the classes
above that base class. ie. al that the base class has aready inherited is then aso
inherited. Toinherit from abase classthe keyword extendsisused in the Javaprograms
class header. Given below isthe basic structure for a Java class, that does not consider
any inheritance. Each Java class does however inherit from the class object. Thisisa
standard default that is part of the Javalanguage. Below is abasic structure for a Java

class.

d ass header
{ beginning of the class

variable definitions for this cl ass

any nunber
Met hod header y e
{ begi nni ng of net hod of methods nmay
vari abl e definitions be coded

java procedural statenents

} end of met hod

} end of the class

Thisis the basic structure for each Java class. There may be any number of methods
inaclass. Generaly in al Javaapplications except applets and abstract classes, Javawill
look for a mai n method, as thisisthe point at which the execution of the procedural
statements in aclass begins. The instance variables described in the constructor for the
classwill be instantiated before the main method is execured. The main method header

isasfollows:

28

public static void main (String args[])

Thejavainterpreter will look for thismethod header in order to execute the application.
This method is described as void as it does not return any data . An abstract classis
used as a base class for inheritance (see 2.2.2.2 b). An abstract class cannot have an
object instantiated. An abstract classtherefore does not have amain method. Thereare

many possible applications of Java classes that will not have main methods.

An applet is coded to be executed within a web page, and will generally have an
init() method. Thei nit () method initialisesthe applet within the web page, and
iscalled only once by the appletviewer or browser. To continue, the applet must either
have an event listener assigned, through an interface, which will initiate some action
whenaneventisfired,ora start() method that will be called whenever the user

returns to the Web page containing the applet.

2221 The program logic (Defining a Java class).

The entire approach to solving a problem using Java is an object oriented
approach. Firstly the objects need to be designed, for the best implementation,
the inheritance between objects also needs to be designed. The methods
surrounding each object are then defined. Y ou can now define each classin the
solution to the problem. This overall description of object oriented design can
be used in the approach to solving both complex and ssimple problems. Where

larger, more complex systems are designed, a larger base of classes, where

29

inheritanceiscarefully considered would be designed. Moresimple systemswill

have fewer classes.

To define aJavaclass, you need to define the variables (attributes) of theclass,
and the methods that work with that class's attributes. The first methods that
you define in the class would be constructors. There are one or more
constructorsin aJavaclass, that havethe same nameastheclass. A constructor
provides values for the instance variables. When an object of aclassis created
(instantiated), one of the constructorsin the class would be used to provide the
valuesfor the instance variables. When there is more than one constructor, the
constructor methods are described as overloaded. ie. The method names
(constructors) will be the same, but the method signature (parameters supplied
in the method call) will be different. When an object is instantiated, according
to the parameters supplied, the appropriate constructor will be used toinitialise
the variables for the given object. Accessor and mutator methods are a so then
defined. Again this would be dependent on the nature of the system. Accessor
methods provide access to each variable, and mutator methods allow for a
variable to be changed. Methods that perform processes related to the instance
variables, would then also be defined in the class. In larger systems, aseparate
class defining the methods could then be defined, that would then use an object

of this class.

For example lets look at an employee. An employee object isto be used in a

system. Each employee object will have an employee number, name, address,

30

salary scale, sick leave, vacation leave and so on. The constructors would be
set up to initialise the instance variables with values supplied or default values.
Accessor methods' would be set up that provide access to certain of the
variables. The accessor methods would be used by other classes that use the
employee object in order to gain access to the data values. Mutator methods”
would be written to change the values in the instance variables, for example a
change address method to facilitate the change of an address for an employee.
Other processing methods could be defined such as allocate sick leave, or
increase salary that would implement changes on the employee object. When
an employee is instantiated, this can be from another Java class, or in amain
method. To utilise object oriented technology as effectively as possible, it
would be better to work with the employee object from another class that is
focused on the processing of the employee, and not have all these methods
defined in the employee class. These methods, that perform a process, are
procedura in nature. However as can be seen from this description it is the
overal changein designwhichisvastly different from COBOL wheretheentire
focusison procedure. In Javathe focusis on the objects. A huge design effort
needs to take place as far as the overal object design is concerned, only once
that is in place can there be a focus on the procedure that must take place
within a method. When it comes to the procedure design, all the design

principals that are used in COBOL can be used in Java, it is the access to the

An accessor method is also referred to as aget method. As a programmer
standard the method is called getV ariableName (eg getAddress).

A mutator method is also referred to as a set method. As a programmer
standard the method is called setVariableName (eg. SetAddress).

31

data, and overall design that is so different.

2222 Using existing Java classes.

Thiscan be divided into two sections. Thefirst isusing the Java classesthat are
part of the Java package, and the second is using classes that have been

designed within an organization.

a) Classes within the Java language.

To bring in the Javaenvironment, you are required to code an import statement
(or statements) at the beginning of the program. Although the language of Java
itself issimple, you are required to use classes that have already been defined
so that there is no need to keep on developing program code from scratch.
These are known as Java API’s. In order to do this you import the classes that
you require. The import statements will be different depending on the type of
application you are coding. A default import that takes place for each Java
application is the Java language package. To mention some other API’s, the
graphical user interface (awt), and the extended graphical user interface
(swing), the input-output package for file handling (io), the event handler for
event driven programs (event) and the applet class (applet) for coding applets.
Each of these has been defined as a package. A package is a group of classes
that are saved as afolder within the Java application. These are also referred to

as the Java class libraries. At the beginning of each Java class the import

32

statements must be coded. It is not a good idea to import classes that are not
used. The import statement makes all the classes defined in each of the
packages available to your program. According to your application you will
make use of these predefined classes. For example if you want to work with
files you would code i nport java.io.* , and you can use the classes
already availablethat work with data streams, you would not need to work with
files starting from scratch. When a program is written that works with a
graphical user interface there are classes available that describe a window
frame, buttons, menus and whatever else you need for an effective user
interface. To use al these classes you would i nport j avax. sw ng. *

(Java 2). If however you are going to change colors etc. , you need to
import java.aw .* tofacilitate these changes (thisis a Java 1 package
which aso allows you to build an effective graphical user interface (GUI), as
implied by the x, the swing classes in Java 2 extends this feature.) With a
graphical user interface you would also import j ava. awt . event.* in
order to use al the existing event handlers that have been coded. During
compilation whatever is needed from these classes will be referenced by your

program.

b) Classes designed within an organization.

Each program you code in Java is a class. Referring back to the example in
2.2.2.1 Designing aJavaclass, an example was given of an employeeclass. Any

other application that needsto refer to an employeeinstance would then use the

33

223

Employee class. This means that programmers do not have to repeat code,
defining the variables for an employee in a new application, merely create an
instance of the existing employee class in their application. The programmers
work should therefore become easier. As program code is not repeated there
is less opportunity for errors to occur in the code. In addition should any
changes be made to the employee object (class), the changes would
automatically beimplemented wherever the employee codeisused. Thiswould
happen when the employee object is instantiated, there is no need for

recompilation of source code as in procedural languages.

The Java alternative to subroutines.

There are no subroutines in Java, only classes. A class may be used as a
subroutine. The java classes are objects, and these objects can be used as they
are needed. There is much more flexibility in using a Java class as opposed to

a COBOL subroutine.

Where there are a number of Java programs, or classes that have utility
functions, and may be needed by anumber of applications, these classes could
be organised into a package. This involves defining each class as being a
member of the package, and all the classes are then placed in one directory. To
use these classes you then code an import statement followed by the package
name at the beginning of the application where you would want to use part of

the package. Theimport statement is the same as the statement that is used for

34

224

the aready defined Java classes.eg. Import javaio.*. Thisis useful, as it
becomes easy to use the classes, by importing the package rather than ensuring

you have the classes present in the current directory at runtime.

|dentify the key elementsthat define an object Oriented language with reference

to Java.

An object oriented programming language is defined by its ability to satisfy
three criteria. These are encapsulation, inheritance, and polymorphism. Sebasta
states “ A language that is object oriented must provide support for three key
language features. abstract data types, inheritance, and a particular kind of

dynamic binding” (Sebasta, 1999)

Encapsulation is what Sebasta refers to as abstract data types. Thisis where
datais encapsulated or surrounded by the methods associated with it. Thisis
satisfied by the Java programming language. Each class can define an object.
The methods defined in the class are encapsulated with the data to form an
object. The only way in which the data can be accessed, or changed is through

the methods defined in that class.

Inheritance isthe ability of a classto inherit from another. Java supports single
inheritance. A class may inherit from another. Thisisimplemented with the use
of the extends clause in the class header. Although single inheritance may

appear restrictive, any inheritance that the parent classhaswill aso beinherited.

35

Multiple inheritance is accommodated through interfaces. Multiple interfaces
may be implemented within a class. In programs where in is required that a
common group of methods be applied, an interface can be used. This is

common with event driven programming. Eg.

public class M/Wndow ext ends JFrane
I npl enent s Acti onLi st ener,

MouselLi st ener

Thiswill inherit data and methods from the class JFrame, as well asimplement
al the event handling methods in the interface ActionListener, and

MouseL istener.

Polymorphism, is accounted for in Javain a number of ways. Polymorphism
refers to one object, having many shapes. (Naughton, 1996). This is a
straightforward concept that isimplemented effectively in Java. A method may
have many implementations, and the implementation required is sel ected, based
on which type of object is passed during method invocation. Overriding
methodsisan exampleof polymorphism. Where the same method name appears
in a base class, and a sub-class (that inherits from the base class). When the
method iscalled, thetype of the calling object at run timewill determine which

method is executed.

Dynamic binding is one example of how Java implements polymorphism.

36

Inheritance is necessary in order to support dynamic binding. Given a class
shape, that has a method printShape. . Further classes that extend shape are
box, triangle, rectangle. These also each have a method called printShape.
When the method printShapeisinvoked, the method associated with the actual
object that invokes the method will be executed. Shape may hold an object of

any type that extends shape.

Shape N = new Shape();
Box B = new Box();
N = B; / / assign the box object to the shape object
N print Shape(); /1 this will invoke printShape
/'l of the Box class
Triangle T = new Triangle();
N=T,
N print Shape(); /1 this would now i nvoke the
/'l printShape nmethod for the
/[l Triangle class, this is
/1 dynam c bi ndi ng

Although the above codeisprocedural, to demonstrate the principal of dynamic
binding, you can seethe power in thisfeature. Given an array of objectsthat are
type Shape. Any shape could be held in each element of the array. Y et to print
each shape you need only code the call to one method. Java would determine
which method to use depending on the type of the object that is held in the
shape object inthe array. L ater when more shapes are added that further extend
the shape class, there is no need to modify the program code. As long as a

printShape method is coded in each class that extends shape, the processing of

37

the array will still work. Without dynamic binding, it would be necessary to
have large nested if statements that would have to be updated each time a new

shape is added.

Java therefore meets the three requirements of encapsulation, inheritance and

polymorphism, for object oriented programming languages very effectively.

2.25 Key areas - where the language is used best.

Javaoriginally emerged as alanguage for the Internet. The ability to embed Java code
within aHTML page, so that the program becomes active when the HTML pageis
displayed iswhat caused alot of initial interest in the language. These Java programs
areknown as applets, originally derived to represent asmall application. However from

this Java has developed into an all encompassing language.

A definition of Java astaken form the white paper entitled, “The Java™ Language: An
overview” is. “Java: A simple, object-oriented, network-savvy, interpreted, robust,
secure, architecture neutral, portable, high-performance, multithreaded, dynamic
language.” (Sun, 2002). The paper continuesto clearly define each of the key attributes
giveninthisshort definition. Ascan be seen from thisdefinition, the objectives of Java
are far more extensive than those set out for the design of the COBOL programming
language. Java has therefore been developed to solve problems that involve far more
than processing large volumes of data. Java has also developed far beyond being a

programming language for the WEB. Java can be used in any application requiring a

38

good GUI user interface. However for Java to be redly effective within an
organization, it must be implemented with overal OO design as a basis within the
organization. This overall OO perspective is what will supply the reusability of code
and hence the benefit of being able to reuse code. The entire set of data maintained by
the organization needs to be analysed as objects. Developing a set of stand alone
systems, which do not interface with each other, and share objectsis going to lead to

repetition of code and dataas occursin asystem based on procedural design principles.

2.2.6 Shortfalls of Java

The extensive API classes could be viewed as a shortfall in that a programmer needs
to constantly remain up to date with what is being published in Java. These are classes

that are then available for use in developing systems.

COBOL has over 600 reserved words Java has 48 (Reed, 1999). Asfar asknowledge
of the syntax of the language is concerned, learning the Java syntax is far smpler than
learning COBOL syntax. Learning the Java syntax is however only avery small part of
Javaknowledge. When you have learned all the COBOL reserved words and statement
formats you know all there is about the COBOL language. In Java you need to learn
about the API classes. These have grown at a phenomenal rate from 200 in the first
Java release to about 1600 in the Java 2 release (Wigglesworth, 2000). As a
programmer it isonly asyou implement and use each API that you will effectively gain
insight into the features and facilities already coded. Some of the API’syou may never

use. If you never do any network programming for example you would not work with

39

java.net, and so on. This need to keep on finding out about new classesin the Java API

is part of the nature of computing today.

Although listed as a shortfall, this could equally be listed as an advantage, and argued

in such away as to support this viewpoint.

2.2.7 Event driven programming.

Whereas COBOL s objectives were narrow and well defined, Java's are very broad.
Thiswas discussed in 2.2.5. The emphasis in data processing has moved from batch
processing to event driven processing. Thereare still requirementsfor batch processing
programs, for example printing monthly statements is regarded as batch processing.
Thiscan be effectively programmed in Java. Event driven processing however isaform
of processing that is quite different to batch processing. Instead of the programmer
being able to procedurally lay down the sequence in which the program steps are
executed, the user decides on the sequence of events by the selection made by the user.
The programmer programs what is to be done in the case of each event, but the
sequence of events are not in the programmers control. This is a key issue that
programmers that are from a procedural background must deal with, and that is to
merely code for each event and not on to the next action. The user isin control of the
sequence. Javais designed to cater for thistype of programming with ease. There are

anumber of event interfaces in Java that can be used for event driven applications.

40

Chapter 3 - Analysis, acomparison of the program code.

This chapter compares the programming languages COBOL and Java. This includes the

presentation of program code that facilitates the comparison between the programming

languages. Thisis necessary in order to establish how transformations could be accomplished,

and the corresponding program statements that could be used.

31

Identify the similarities between the programming languages.

COBOL isaprocedural language. Javaa so has procedural statements. The procedural
part of both languages are very similar. This will be described further in this section.
The way in which the procedural statements are coded, and executed are quite
different. In COBOL all procedural code isin the PROCEDURE DIVISION, and the
statements can act on any data defined in the DATA DIVISION. In Java, the way in
which the programs are created is very different. The focus is on objects, a concept
whichisvery new toaCOBOL programmer. The datais defined as an object (or class)
and the methods (procedures) that are to act on that data is encapsulated with it. The
methods form part of the class. The only way in which the data (object) can be worked

with is through those methods.

In COBOL understanding, or being able to use the procedural statements constitutes
most of the language knowledge. Defining the data in the DATA DIVISION, is
prescriptive. Usually the data files already exist, and it is clear how the records are to

be described. The focus of the program effort is in the PROCEDURE DIVISION.

41

When a programmer has mastered the procedura statements, their knowledge of
COBOL could be described as complete. There is afinite set of program statements
that can be used in the PROCEDURE DIVISION. In Java dl the corresponding
procedural statements are defined in the Java programming language. Knowledge of
these statements however, only constitutes a small part in being able to complete a
Javaclass. There are other elementsthat must be understood, for example; inheritance
and encapsulation as well being able to effectively use the many Java API’s (more of
which are being published al the time). The approach to an object oriented program is
entirely different to the approach for aprocedural program. It isthis, the differencein
the approach to problem solving that has been identified by both Labuschagne (1995)
and Jansen van Rensburg (1998) as astumbling block for established programmersto
move into OO. Their studies focused mainly on systems analysis and design, which
confirms that it is the approach to the problem solving which is very different. Deitel

et al. (1998, 2002) in the fourth edition of “ Java How to Program” have placed alarge
emphasis on object-oriented design and design patterns. This clearly addresses the
approach to programming and problem solving. The procedural code within methods
(Java) and the PROCEDURE DIVISION (COBOL) isvery similar. Deitel et al. (1998,

2002) describe methodsfor agorithm development that have been used in procedural

program development for many years, it is the difference in the approach to problem
solving that issignificant. It isthereforefeasible that good procedural programmerswill

become good object oriented programmers. It is the approach to problem solving that
must change. Mark Cathcart (1999) supports this viewpoint. A comparison of the

procedura elements in the two languages follows.

42

Where there is a significant difference in the languages, these have been identified in

italics.

3.1.1 Structure theorem - cohesion and coupling.

The structuretheorem isthe basis for structured programming theory. The structure
theorem was developed from apaper by two mathematicians, Bohm and Jacopini who
presented a paper in 1964 (Welburn, 1983). Basically they presented mathematical
proof that any logic problem can be solved using only three control structures
sequence, selection and iteration. Thesethree control structuresare presentin COBOL
and Java in a very similar fashion. This therefore indicates the similarity in the
procedural statementsin the languages. It iswhat surrounds these statementsthat is so

different ie. the data.

COBOL Java
Sequence Sequence
MOVE “Y” TO NEW-PAGE. String newPage = “Y”;
ADD 1 TO PAGE-COUNT. pageCount +=1;
Statements are executed one after another. | statements are executed one after another.

43

Sdlection

IF MINIMUM-BALANCE < 500
MOVE 5 TO SERVICE-CHARGE
ELSE
MOVE ZERO TO SERVICE-CHARGE
ENDIF.

An EVALUATE statement could also be

Sdlection

if (minimumBalance < 800)
serviceCharge = 8.00F;
else

ServiceCharge = 0.00F;

A CASE statement could also be used for

used for selection. salection.
Iteration Iteration
MOVE 1 TO COUNT. int count = 1;

PERFORM UNTIL COUNT > 5
DISPLAY COUNT
ADD 1 TO COUNT
END-PERFORM.

There are other iteration statements

available.

while (count <= 5)

{

System.out.printin (count);

count = count + 1;

}
There are other iteration statements

available.

Structured programming theory also describesthe principles of cohesion and coupling.
Cohesion refers to how closely related the statements within a module are. Here the
more strongly related the statements the better. The highest form of cohesion is
functional cohesion where the statements within a module perform a single function.
Coupling refersto the strength of relationship between modules. Herethe moreloosely
related the better. The lowest level of coupling is data coupling. See appendix A for a

table of cohesion and coupling levels.

44

With reference to the COBOL programming language, a module would be referred to
asa paragraph. Functional cohesion can be achieved by coding statements that only
achieveasinglefunctionin aparagraph. InaJavaprogram amodulewould bereferred
to as a method. A method generally only executes a single function. Therefore

functional cohesion within a module can be coded in both languages.

Coupling, however isvery different. A COBOL program cannot reach thelowest level
of coupling, data coupling. “Data coupling is exhibited when two or more modules
refer to the samenonglobal fields.” Welburn (1983). A COBOL program cannot do this
as the data is aways defined in the DATA DIVISION and al modules (paragraphs
coded in the PROCEDURE DIVISION) can access the data defined there. The next
best level of coupling is stamp coupling. Thisiswhere two or more modules accessthe
same nonglobal data structure. In COBOL this can be achieved using subroutines. The
level of coupling that is evidenced in most COBOL programsis common coupling.,
the weakest level of coupling. Common coupling is when two modules reference the
same global data. In COBOL all the modules reference the global datain the DATA

DIVISION and therefore have common coupling.

Due to the object oriented nature of the Java language a programmer will tend to
naturally develop program codethat has datacoupling. Theonly way inwhich datacan
be changed is through a method, and a method that has one function will generally

work with one element of data.

3.1.2 Assignment of data.

In COBOL data can be placed in a field in three ways:. as the result of a Read

statement, a move statement, or as a result field in a calculation.

45

3121 READING in data.

READ file-name INTO working-storage area AT END imperative statement.

This would place an entire record’s data into the record description given in
working storage. With the read statement an entire record from afileis being
worked with (alogical record). Theworking-storage description must therefore

have sufficient fields described so as to hold the entire record description.

The corresponding statements in Java are defined in a different manner. When
working with data streams, a read statement can be issued that relates to each
data type. In COBOL there are basicaly two data types. numeric and
alphanumeric. Thesize of each field isdefined in the record description. In Java
there are primitive data types and complex data types. The size of the field is
defined by the datatype. A different read statement is given according to which
datatypeisbeing read. Usually you would code a method, that reads the group
of fields that define each record in afile. This read method would be defined
within the class that has the definition of the object. Each read method then
reads in a single field according to the data type defined in the read method

(Roberts, 1999) Examples of these methods are given below :

Read Boolean()
readByte()
readChar()
readDouble()
readFloat()
readlnt()

46

readLong()
readShort()
readUTF()

An example of a*“read” method defined within a classis given in the example
programsin chapter 4. It isimportant to note that the DATA DIVISION and
READ statement code would be repeated in each COBOL program that refers
to thedatafile. In contrast, in Javawhen an instance is created of the classthat
defines the data record, the “read” method can be used to read in the data, as
the read method is defined within the class. The class can be used by a number
of programs and the program code defining the object and the read does not
have to be repeated.

3.1.22 MOVEing data

MOVE fidd-name-1 TO field-name-2.

The move statement does exactly what it appears to do in moving data from
field-name-1to field-name-2. The datatypesthat can be held in these fields can
be either aphanumeric, or numeric. Both fields must be of the same data type
in order for the statement to compile correctly. In the case of an aphanumeric
move, the characters are moved such that the leftmost character from field-
name-1 ismoved to theleftmost character of field-name-2. Thiswould continue
with the next character working from the left and so on. When there are no
more characters to transfer, ie. At the end of field-name-1, the transfer stops.
If thereare additional character positionsavailablein field-name-2 then they are
left as they were before the MOVE. If there are not enough positionsin field-

name-2 to hold al the data, then the transfer of characters stops as soon asthe

47

receiving field (field-name-2) isfull. If anumeric MOVE is executed, then the
move will be aligned according to the position of the decimal point in both
fields. If there isinsufficient space for dl the digitsin the receiving field (field-
name-2), then the excess digits will be truncated. This truncation will occur

even if there are significant digits, to the left of the decimal point.

The maximum length for an a phanumeric field is 256 characters, and 18 digits
for anumeric field. COBOL doestherefore allow for a high degree of accuracy
inan 18 digit numeric field. The size of each field is however governed by the
data definition given by the programmer in the DATA DIVISION. When a
numeric field is used that istoo small, significant digits will be lost. A warning
will only be given if the programmer has placesan ON SIZE ERROR clauseon

the calculation, with appropriate messages should this error occur.

There are no MOVE statements in Java, you would use the assignment
operator. The assignment operator, the equals symbol (=) iswhat isused to
place avauein avariable, (or field). A smple assignment uses the = symbol
asfollows:

inta=0;
The assignment works from right to left, so amultiple assignment can be given
in one statement and the assignments would take place from right to left.
a=b=c=0;

Firstly c gets the value zero, then b gets the value zero, and then a gets the

value zero.

All variables must be of the same data type else errors can occur depending on
the data type defined. In Javathere are primitive data types and complex data

types. The primitive data types are defined as follows:

48

Type Value Memory Range of values
Name |type used
byte integer 1 byte -128 to 127
short integer 2 bytes -32768 to 32767
int integer 4 bytes -2147483648 to 2147483647
long integer 8 bytes -0223372036854775808 to
9223372036854775807
float floating- | 4 bytes +3.40282347 X 10" to
point +1.40239846 X 10*
double | floating- | 8 bytes +1.76769313486231570 X 10™%® to
point +4.94065645841246544 X 103
char sngle 2 bytes all Unicode characters
character
boolean | true or 1 bit not applicable
fase

(Information in this table from Savitch (2001; 57).)

With the primitive data types, the assgnment of data always occurs with the
exact same number of bits, so there are no truncations. Java wraps around in
the numeric fields should the limits be exceeded during program execution. For
example where a positive integer is exceeded, the answer would be the

maximum negativeinteger lessthe number that the positive val ue was exceeded

49

by. No error will be given. It is therefore very important that the programmer

choose the data type carefully.

COBOL works with the number in binary coded decimal format, where the
number is defined asusage DISPLAY (the default). This uses 8 bitsto hold the
code for each digit in anumber, up to amaximum of 18 digits. Thisallowsfor
accurate calculations up to amaximum of 18 digits. A packed decimal number
may be held, that uses approximately half theinternal storage required whenthe
usage is COMP-3, and the number is stored in its true binary value when the
usage is COMP. Java works with the number in its true binary value, using the
primitive data types. This results in Java doing faster calculations, as no data
conversion isrequired. The number of bits used in storing the number is given
in the table above. There is however a compromise in accuracy. COBOL
calculations have a higher degree of accuracy, and very little rounding error. It
istherefore recommended that double isused for all currency amountsin order
to lessen the effect of rounding errors as far as possible, as float would only

produce accuracy to six digits.

If an assignment isrequired where the datatypes are different, atype cast must
be done to ensure that the data is correctly transferred. There are two types of
type cast that can occur with primitive data types, implicit and explicit. An
implicit type cast is done automatically by Java. This happenswhen a primitive
data type that uses less bytes is converted to a data type of larger size. An

explicit type cast isrequired when the new datatypeissmaller than the original.

50

In this case bits are truncated from the left (low order bits are retained). This

may result in data values being changed.

An example of an implicit type cast.
int i =7;
double d = i ; /1 the type cast is inplied
/'l there would be no error in coding

/1 double d = (double) i;

An example of an explicit type cast.

int i =7;

byte b = (byte) i ;

/1 without the type cast there would be a conpiler //
error.

Il ie. byteb =i;

// alsoif the valueini was greater than 127, or //
less than -128, the significant right nost bits //

woul d be | ost, and the data val ue changed.

A type cast can be done with any assignment statement, including those that

involve calculations.

Type casts can also be done on objects, arrays and interfaces. As thereis no

comparative code in COBOL, thiswill not be presented here.

51

3.1.3 Procedural code.

As has been discussed in 3.1.1 under the heading of the structure theorem there is a
high correlation between COBOL and Java, asregards procedural code. Intheinterests
of completeness, acomparisonispresented. Thefollowing elementsof procedural code

will be discussed: branching, looping, calculations, arrays and tables.

3131 Branching.

Both languages use an if statement to facilitate branching. COBOL refersto a
condition, whereas Javarefers to an expression. In COBOL the condition can
be relational, a class test, sign test or condition-name test (boolean value). In
Javathe expression is any valid Java expression, that resultsin atrue or false
condition. The easiest to compare is the relational conditions. Remember the
relational conditions apply to primitive data types. For astring value (complex
data type) , you must use a string method eg. equals to compare values, you
may not use arelational operator. In both COBOL and Javacomplex conditions

can be evaluated using AND (& &) and OR (||) operators.(COBOL and (Java)

respectively).

52

The COBOL if statement. The Javaif statement.
IF CONDITION if (expression)
Statement-1 Statement-1;
ELSE else
Statement-2 Statement-2;
END-IF.

In both COBOL and Java, statement-1 will be executed when the
condition/expression is true, and statement-2 will be executed when the
condition/expression is false. Both programming languages support nested if

statements.

In COBOL thefull stop at the end of the END-IF statement is what terminates
the IF. Any number of statements may be listed in the place of statement-1 and
statement-2. Only one full stop may appear at the end. If afull stop is coded
anywhere in the |F statement, that is where the IF statement will end. This
could result in a logic error, or where a full stop appears before the EL SE

statement, will result in a compilation error.

In Java, the expression that resultsin atrue or false condition must be enclosed
in brackets (). Whenitisrequired that multiple statements are executed for the
true or false result of the expression, then the statements must be placed within
braces{}, forming ablock of code. Remember that the terminator ; is present

at the end of each statement. Thisisa significant difference, in that a COBOL

53

programmer is used to the terminator (.) terminating the if. Thisis not so in

Java.

Given below is atable that shows the comparative relational conditions.

COBOL Java
AND &&
EQUAL TO, = ==
GREATER THAN, > >
GREATER THAN OR EQUAL TO, >= >=
LESSTHAN, < <
LESSTHAN OR EQUAL TO, <= <=

NOT I

NOT EQUAL TO, NOT =, <> I=

OR II

As can be seen thereis a high correlation as regards branching in COBOL and
Java. The statements within the true or false branch may call other paragraphs
(COBOL) or methods (Java). Remember that the relational operators can only
be applied to primitive data types in Java. It is common practice to compare
alphanumeric values in COBOL. In Java, you would place the aphanumeric

field in a String. Y ou would then use the predefined String method equals to

54

compare String values. An exampleis given below:-

The COBOL if statement. The Javaif statement.
IF CO-BRANCH = “PAV” if (companyBranch.equals(“PAV"))
MOVE “PAVILLION” TO printBranch = “PAVILLION";
PR-BRANCH
END-IF.

COBOL has three other categories of condition testing, apart from relational.
These are the class test, sign test and condition-name test. The class test
determinesif thedatain afieldisNUMERIC or ALPHABETIC. In Javathere
isno corresponding classtest. The sign test in COBOL testsanumeric field for
being POSITIVE, NEGATIVE or ZERO. In Java this is replaced by the
corresponding relational condition, >0, <0, = 0. A condition-name test in
COBOL, iswhere the value for a true condition has been indicated in working
storage with an 88 level where the data field is defined. The condition-name
becomes a boolean value that has a result condition of true when the 88 level
value is present, and false if the value is not that given in the 88 level. The

condition nametest iseasily replaced by acorresponding relational test in Java.

Branching can also be achieved with the use of the EVALUATE statement
(COBOL) and switch statement (Java). These statements are different in that
the values that can be tested for may be any relationa condition in COBOL ,

but may only be an equal condition in Javaof aninteger (int) or character (char)

55

data type. In each case however multiple branches can be listed. In COBOL
oncean evaluated conditionistrue, al other conditionsareignored, and control
passesto the end of the evaluate statement. In Java, abreak statement must be
coded to pass control to the end of the switch statement, if no other conditions

are required to be tested.

3132 Looping.

Looping in COBOL is done through different formats of the PERFORM verb.

PERFORM paragraph-name n TIMES.
PERFORM paragraph-name UNTIL terminate-condition.
PERFORM paragraph-nameV ARY ING variable-nameFROM initial-valueBY

increment-value UNTIL terminate-condition.

In al versions of COBOL up to and including COBOL 74, the terminate-
condition is tested before the paragraph is executed. In COBOL 85 a
programmer may specify WITH TEST AFTER, in the PERFORM statement,
to force the paragraph to be executed at least once (asin the Javado .. while).
Another very important featureisthat in all formats of the PERFORM, theloop

is exited when the terminate-condition becomes true.

Java has three looping structures, these are; while, do while, and the for loop.

56

while (boolean-expression)

{

statements

The while loop test the boolean-expression first. The loop will execute only if
the boolean-expression is true. When the boolean-expression is false the loop

is exited. It is therefore possible that the statements in the loop will not be

executed at all.
do {
statements

} while (boolean-expression);

The do statement ensures that the statement block will always be executed at

least once. The loop terminates when the boolean expression is false.

for (initialise-statement; bool ean-expression; increment-statement)

{

statements

}

The Javafor loop has al the features of the PERFORM VARYING. The for

loop terminates when the boolean expression isfalse.

57

f)

9)

Given this comparison of program code, it appears as if the loop structures
avallablearevery similar in execution. Thisistrue, but thereisavery significant
difference. In COBOL the loop terminates when the condition specified
becomes true. In Java the loop terminates when the condition specified
becomesfalse. It isimportant that the COBOL programmer takes note of this,
as the way of thinking must be reversed in determining the termination

condition for loops. Thisis a key difference in the languages.

3.1.3.3 Calculations.

Astheresult of acalculation, dataismoved into aresult field. In COBOL there
are a number of ways that a calculation can be done. There are a number of
statements that perform calculations. Each statement has a defined result field.
In the following examples, the result field is underlined. (Note: all possible

arithmetic statements are not listed.)

COMPUTE identifier ROUNDED = arithmetic expression.

ADD identifier-1 [identifier-2] ... TO identifier-m.

ADD identifier-1 [identifier-2] ... GIVING identifier-m.

DIVIDE identifier-1 BY identifier-2 GIVING identifier-m REMAINDER
identifier-n.

DIVIDE identifier-1 INTO identifier-2 GIVING identifier-m.

DIVIDE identifier-1 INTO identifier-2 .

MULTIPLY identifier-1 BY identifier-2 GIVING identifier-m.

58

h)

SUBTRACT identifier-1 [identifier-2] ... FROM identifier-m.
SUBTRACT identifier-1 [identifier-2] ... FROM identifier-m GIVING

identifier-n.

In Java, the assignment operator, the equals symbol (=) isused to place a
value in avariable, (or field). A simple assignment has been discussed as a
MOVEin 3.1.2.2, however in most cases multiple functions will be carried out
on data before it is assigned to the variable stated on the left of the = symbol.
For calculations an arithmetic expressionisused, asinthe COBOL COMPUTE
statement. There are no individua arithmetic statements in Java The
calculations will store a result according to the java data type. If you require
rounding or truncation of answers you can use the Math.ceil(), Math.floor()
methods respectively. This returns the closest integer value from a double
value. The data types of the variablesincluded in a calculation are significant.
All variables should be of the same type el se errors can occur. A type cast must
be included where necessary so that the correct number of bytes is used for
each variableinthecalculation. A corresponding Javastatement for each of the
example COBOL statementsiis (the identifier names have been kept the same

for smplicity, these are not names that would generally be used in Java):-

identifier = Math.cell(arithmetic expression);
identifier-m = identifier-1+ [identifier-2] + ... + identifier-m;
identifier-m = identifier-1+ [identifier-2] + ... ;

identifier-m = identifier-1/ identifier-2;

59

f)
9)
h)

identifier-n = identifier-1 % identifier-2;

identifier-m = identifier-2 / identifier-1 ;

identifier-2 = identifier-2 / identifier-1;

identifier-m = identifier-1 * identifier-2;

identifier-m = identifier-m - identifier-1 - [identifier-2] - ... ;

identifier-n = identifier-m - identifier-1 - [identifier-2] - ...;

Therefore although there is not a corresponding separate statement for each
COBOL calculation statement, any arithmetic can be taken care of in an
arithmetic expression. A corresponding Java statement can be coded for all
COBOL calculation statements. A key difference that a COBOL programmer
must get used to is that what would usually be coded as a number of separate

calculation statementsin COBOL , is completed in one line of code, in Java.

3134 Arrays and tables.

COBOL refers to tables, and Java refers to arrays. In COBOL the table is
defined in the DATA DIVISION. Data can be loaded into the table in the
DATA DIVISION, this is known as a compile time table, or from the
PROCEDURE DIVISION, thisisknown as an execution timetable, asthe data
is only present during program execution. The OCCURS clause is used to
definethe multiple occurrences of data. Torefer to the elementsinthetableyou
would use a subscript. The subscript value runs from 1 to n (where n is the

number of elementsin an array). Generally the PERFORM...VARY ING can be

60

used to search for, or access e ements of the table. An example of a compile

time TABLE that holds the number of daysin each month is given below.

01 WS-DAY SIN-MONTH-TABLE.
05 WS-DATA PIC X(24) VALUE
“312831303130313130313031".
05 WS-DAY S IN-MONTH REDEFINES WS-DATA PIC 99

OCCURS 12.

Given that WS-MM holds the month number, WS-DAY S IN-MONTH (WS-
MM) would access the days in the month for the given month number. To
access the days in the month for January you could code WS-DAY S-IN-

MONTH (1).

A very similar example can be given in Javacode. In Javamultiple occurrences,
or repeating groups, of data are referred to as arrays, not tables. To reference
an element of the array, an index isreferred to. (Please note, that this does not
refer to an INDEX, which is a specia data type in COBOL, but merely the
terminology in referring to entriesin an array). In COBOL the term subscript
isused for the field that points to the appropriate entry in the table.. An index
value runs from 0O to n-1, where n is the number of elementsin the array. To
define the array of number of daysin each month as an array of integer values,

and place the values in the array, you could code:-

61

int daysinMonth [] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
OR

int daysinMonth [] = new int [12];

daysinMonth [0] = 31,

daysinMonth [1] = 28; // and so on for each of the 12 months

Giventhat monthNumber isthe month number, daysinMonth [monthNumber-
1] would accessthe daysin the month for the given month number. To access

the days in the month for January you could code daysinMonth [O].

Tables of multiple dimensions, defined in COBOL can also be coded in Java.
A key difference isthat each subscript islisted separately in Java. For example
atable that is used to accumulate the total sales for each week, within each
month of the year.

01 WS-SALES-TABLE.
05 WS-MONTH OCCURS 12 TIMES.
10 WSWEEK OCCURSS5TIMES.
15 WSSALE PIC9(8)V99.
To accessthe salesfor thefirst week in February you would refer to WS-SALE

(2, 1). Thefirst subscript refers to the month and the second to the week. The

same code in Java, would appear as follows:-

int monthWeekSales[] [] = new int [12] [5];

To access the sadles for the first week in February you would refer to

62

monthWeekSales[1] [0]. Noticethat theindex values are listed separately. The
way in which the multiple dimensions are worked with is however very similar.
In both COBOL and Java, more than two dimensions can be defined. Each new
dimension becomes another subscript/index when accessing elements of the

table/array.

In COBOL thereis afeature to define tables so that a SEARCH or SEARCH
ALL can be executed in order to find elements in the table. There is no
corresponding feature in Java. A for loop, however, can be used just as
effectively in searching for elements in an array. Java aso has additional
features that are very useful. One of these features is that Java maintains the
length of an array. Y ou can use the length to control afor loop etc. it is not
necessary to look back at the array definition to determine its length. For
example dayslnMonth.length would return a value of 12. (Note to access the
last element in the array you could use dayslnMonth [daysinM onth.length-1]).
This makes working with arrays more dynamic. If the array length changes, all

procedural code will automatically change to refer to the new length.

COBOL tables can be converted to Java arrays very effectively. The key issues

that need to be faced (memorised) by the COBOL programmer are the

following:-

. Refer to arrays not tables.

. Refer to an index, not a subscript.

. With multiple dimensions, list the indexés separately, in square

63

3.2

brackets.
. Thefirst element of the array is at position zero, and the last element

is the number of e ements less one.

Identify the differences between the two programming languages.

Thefollowing topics are areas where a difference between the programming languages
has been identified. In some casesthisis also an area where computing is developing

and Java provides a solution where COBOL does not.

3.2.1 Datadefinition.

In COBOL all data is defined in the DATA DIVISION. This may be in the FILE
SECTION, wheretherecord format for each datafileisdefined, or in the WORKING-
STORAGE SECTION, where calculation fields, and other work fields (eg page and
line counters, end-of-file condition fields etc) are defined. The record definitionsin the
FILE SECTION will hold the current data for the most recent record read or written.
The data held in the record definition will change with each READ operation that is
executed. The WORKING-STORAGE fields are of a more permanent nature during
program execution. Constant val ues can be defined in WORKING STORAGE by using
aVALUE clause. All tables are also defined in WORKING STORAGE. All fields are
available to be accessed by the program code in the PROCEDURE DIVISION. Each
field isdescribed with its own PICTURE clause. The picture clause definesthefield as

aphanumeric or numeric, giving the number of charactersin each case, the position of

64

the decimal point, and presence or absence of a sign for numeric fields. As can be seen
from this description the COBOL programmer has to be very specific when defining
data fields. Giving the wrong definition for a single field in a record description will
result in the data not being correctly read from the file. Remember that each program
that used adatafile had to repest the record descriptions. The use of copy librariesdid
aleviate the problem of record definition to some extent, in that it did save the
programmer the time of repeating the record description, but in each case there was a
large repetition of procedural code. Dueto thisrequirement for detail, and the necessity
of defining al variables in the DATA DIVISION for use in the PROCEDURE
DIVISION, a COBOL programmer has become accustomed to define all possible
variablesthat they may need, before beginning with the PROCEDURE DIVISION, ie.
The function of the program. Thisisahabit which hasto change when a Java program
iswritten. In order to explain this, the data definition methods used in Java need to be

summarised.

Javavariables can be defined in different ways. The definition of a variable determines
which parts of the program have accessto it. It is possible for avariable to be defined
so that it is only available within a statement. An example of this would be afor loop
counter which is only available to the block of statements within the for loop. The

integer variablei is only available within the for loop given below.

for (inti =1,i <=10,i++)

System.out.printn (“i =" +1i);

65

Thisisto such adegree, that you could define another i variable in a second for loop,
and there would be no conflict identified by the compiler. This variableislocal to the
program block where it is defined, and is therefore commonly referred to as a local
variable. A local variableis only available in the program block in which it is defined.
Java programmerstend to define local variables asthey are needed within the program
code. Instance variables (also called class variables) are defined in the outermost block
of aJava program, so that they are associated with the class header. In some casesthis
traditionally was at the end of the class, however most texts now present the instance
variables at the beginning of a class under a class header. The instance variables define
each attribute that is to exist for each object.(each instance of the class). If ten objects
are instantiated (created), ten separate instances of the same variable will be created.
Local variables must be initialised when they are used, instance variables are
automatically initialised The instance variables are available to al the methods in the
class. Instance variables, can aso be declared with an access modifier of private or
public. It is strongly recommended that instance variables are declared as private. This
makes them only accessible to the methods of the class in which they are defined. This
ensures encapsulation, where the data can only be accessed by the methods defined in
that class. A class variable may also be defined as static. In the case of astatic variable
there isonly one instance of this variable. Each object that is instantiated for the class
will refer to thissingle variable. Y ou can draw aparalel between the instance variables
of aJavaclassasrelating to adatarecord (the DATA DIVISION), the static and local
variables are what would have been in the WORKING-STORAGE storage of a
COBOL program. Constants are defined in Java as being final. This means they cannot

bemodified. eg. Static final double PRIME_INTEREST_RATE =0.13; would declare

66

a constant interest rate. Traditionally constant values are named in capitals in Java.

Java variables can be a primitive data type, see 3.1.2.2 for the table of primitive data
types. This works for COBOL numeric fields. The aphanumeric fields in COBOL
would be defined as stringsin Java. Java has a String class which defines a string object
aswell as anumber of methods that work with strings. These methods enable alot of
flexibility in string manipulation. All COBOL processing/manipulation done on
alphanumeric fields can be coded in Java using the string methods. It is aso important
to note that when working with GUI’s in Java, al data displayed on the screen isin
string format. To convert a string to a primitive data type the Java wrapper classes are
used. Exception handling is used extensively to control errorsin datatype conversion.
Exception handling isdiscussed intopic 3.2.3. The Javastring offersfar moreflexibility

to the programmer, than a COBOL a phanumeric field.

Apart from the instance variables that relate to an instance of an object for a class,
a COBOL programmer must learn to define variables only when they are needed. Java
will then remove these variables from memory when they are no longer required. This
means that the COBOL programmer must rely on Java to clean up memory, and not

beintotal control of all that is taking place.

3.2.2 Event driven programming.

In COBOL, when a program is written to interact with a user via a screen, the

programmer has to write the program code to control the interaction. If a menu is

67

presented to the user, the COBOL programmer has to set up a loop structure that
controls the exit to the loop before writing the code that deals with the menu choices.
All options must be controlled by the programmer. In Java, the event handling program
logic has aready been set up. The programmer must work with what is already there.
Define components that can fire events, and then write program code that can handle
each event. The Java programmer need only concern themselves with defining these
relationships, and then writing the procedural code that needs to take placein the case
of each event. The overall structureistaken care of in the JavaL anguage, asyou define
Events, and Event Listeners, and implement the appropriate interface to handle each
event. When a Java programmer defines a GUI (graphical user interface) component,
be it a button, items on a menu etc., the programmer will assign an action listener.
When a user interacts with the screen, for example clicking on abutton with amouse,
aneventisfired. ie. Javacreates an object containing information about the event. Java
also callsthe appropriate event-handling method. An exampleisgiven below, showing
the definition of a button, assigning an action listener, and then a portion of the event
handling method - actionPerformed. For the full program listing please see

APPENDIX B - Event driven program example - changing colors on the screen.

But t on nagent aButton = new Button("Mgenta");
magent aBut t on. set Backgr ound(Col or . magent a) ;
magent aBut t on. addAct i onLi st ener (thi s);

but t onPanel . add(magent aBut t on) ;

public void actionPerforned(ActionEvent e)

{

Cont ai ner newPane = get Cont ent Pane() ;

68

if (e.getActi onCommand().equal s("Magenta"))
{

newPane. set Backgr ound(Col or. nagent a) ;

}

else if (e.getActionCommand().equals

Another example of an event driven programislistedin APPENDIX C - aprogram that

plays a game where the player guesses a number between 1 and 1000.

The key issue is that the overall logic that controls the listening for an event is no
longer the concern of the programmer. The Java programmer need only assign the
listener, and the processing required when each event is fired. The listening and
passing of control to the method to handle the event is controlled by Java. The event

could be clicking on a button, selecting from a menu, moving the mouse €tc.

3.2.3 Exception handling.

Exception handling is Java's method of dealing with errors. Exceptions are thrown by
the Java language, and the programmer can catch or ignore the exception. If the
exceptions are ignored, a program will often terminate abnormally with the exception
listed by Java at the time of program termination. If the exception is caught and dealt
with by the programmer, processing can continue. Thisisespecially truein event driven
programs, where after an appropriate error message, the user would typically respond

to an error message, and then continue processing.

There arethree elementsinvolved in Javaexception handling. An exception isthrown,
atry block and a catch block. When an exception is thrown, this may be the result of
a coded throws statement (in programmer defined exceptions), or thrown from a

predefined Java class. The exception has an identity, and Java will identify that an

69

exception has been thrown. The section of program code that can throw the exception
must be placed in a try block, or the throws clause must be defined on the method
header. Immediately after the try block, or calling the method with the throws caluse,
acatch block must be coded for each exception that can occur in the try block. (Note:
One try block can throw multiple exceptions.) The value of this is that the Java
programmer can code the procedure to be executed, as if there would be no error
condition. Should an error occur, and an exception be thrown, control isimmediately
passed to the catch block for that particular exception. This means that Java will not
try to continue the normal processing . Once the exception has been caught, program
execution will continue from the point before the try block. If the program is event
driven, that program will wait for the user to fire the next event. An example of some
of the exceptions that can be thrown in the java.lang package are:-
Exception
ClassNotFoundException
|llegal A ccessException
| nstantiationException
NoSuchFieldException
NoSuchM ethodWxception
RuntimeException
ArithmeticException
ArrayStoreException
ClassCastException
Illegal ArgumentException
NumberFormatException
IndexOutOf BoundsException
ArraylndexOutOfBoundsException
StringlndexOutOf BoundsException

NegativeArraySizeException

70

Indentation has been used to indicate inheritance, for example all these exceptions
inherit from the class exception. The Java programmer must know where in the
inheritance hierarchy, an exception fits in, as the more specific (lowest level in the
hierarchy) exception must always be caught first, when there are multiple catch blocks
for a try block. As al the exceptions listed above have been defined in Java, a
programmer would not have to code a throw statement for them. These exceptions,
should an error occur, would automatically be thrown. The programmers work is
therefore to ensure that atry block is present, and that a catch block has been coded
for the exception should it occur. The listing of the Java program MiniCalc, which
catches the NumberFormatException is listed in APPENDIX D.

When an exception can be thrown in a method, and that method is to be used by a
number of programmers, it is appropriate to include a throws clause in the method
header followed by the list of exceptions that can be thrown in the method. It then
becomes appropriatefor the programmer that callsthe method, to place the method call

in atry block, and then follow the try block with a catch block for each exception.

A Javaprogrammer may definetheir own exception classes, by extending the Exception
class. In this case the throw clause must be coded when the exception occurs. The
programs listed in APPENDIX E, show two programmer defined exceptions, as well

as using the throws clause on the method header.

When working with data streams there is an anomaly, in that exceptions can be a
normal part of program code. For example when processing binary files, an EOF
exception is thrown when the end of the data file is reached. This is a normal data
processing situation, which identifies that there is no more data on file. In this case

when the programmer “catches’the exception, they can go ahead and close the data

71

stream as there is no more data to process. This has been used however, as it means
when thereisno more data, control isimmediately passed to the catch, asthe exception
is thrown. The program code is simpler for the programmer, as they need to do no
condition testing to determine if there is data to process. The program code is placed

in atry block, and then coded asif there is aways new data to process

Error processing in a COBOL program is part of the program code throughout the
proceduredivision. Inworkingwithfiles, aprogrammer may codeaDECLARATIVES
SECTION. This can be used to process error conditions relating to file handling only.
The DECLARATIVES SECTION in COBOL, athough limited in use, does have a
smilar function in that should an error occur, control is passed immediately to this
section of program code. A difference isthat, once the error is identified and reported
on as specified by the programmer, the COBOL program will terminate. The COBOL
programmer hasto test for, identify and process al error conditions at the point when

they could occur during program execution.

Java s exception handling isavery powerful programming tool, that should be used to
ensurethat programsare asrobust as possible, and will not terminate abnormally when

unexpected errors occur (Deitel et al., 2002).

A key issue for the COBOL programmer to assimilate is that once an exception has
been thrown and caught, normal program execution can continue. Also, as far as
program control flow is concerned, when an exception is thrown, control passes

immediately to the catch block.

3.2.4 Working with the web.

Java applets provide an easy connection to the Internet. Thisiswhat attracted a huge

72

interest in Java, when it was first released. Java applets (named to represent small
applications), can run in any web page, and be viewed through a browser. The
requirement is that the Java virtual machine, that executes the Java code is available
where the applet is being viewed. Most texts, teach Java by starting with applets. The
newer texts do not, but rather approach Java application programs first. This can be
seen in the latest texts presented by Deitel and Deitel (2002) and Savitch (2001). Asa
COBOL programmer, there is no way to activate a COBOL program for use on the

Internet. There is therefore no comparative program code.

A Java application can be changed to an applet, and then be run through aweb page.
Anexampleof thisisgivenin APPENDIX F, where the program to guess anumber has
been changed to an applet. The changesthat were made to the program are asfollows:-

. change the extends to extend Applet and not Frame.

. remove the main method. Most of the initialisation done in main is
automatically applied in and applet. (eg setting window size, making a
window visible)

. replace the constructor with an init method.

. delete any use of the WindowL.istener, when the html document is
closed, the window is aso automatically closed.

. remove setTitle and setSize, as applets have no titles, although you
may give atitleto the html page, and the sizing is controlled by the html
page.

. code an html file, that will refer to the compiled applet (.class), and call
it to be executed within the page. (An exampleislisted in APPENDIX

F).

Oncethe appl et has been successfully compiled, it can be executed from within an html

page. To test an applet, you must activate the html page using appletviewer, or click

73

on the html file though a web browser. Most java applications can be changed to
appletsusing the above steps. There are many security featuresthat are set up with Java
applets. One such featureisthat an applet may not read or writeto adisk, thus ensuring
that when aweb page isviewed by someone on the Internet, and an applet is activated,
their computer resources would not be accessed, or written to. This means that any

Java application that works with files would not be able to be created as an applet.

Java has many classes defined that can make applets or other GUI applications very
interactive, and user friendly. The benefit is that the Java programmer can use these
classes, and does not have to keep working from scratch. Graphicsfilesin .gif and .jpeg
format can be imported and manipulated from within a Java program. Animation and
sound can be added through classesthat already exist. Thisisalarge area of study, due
to COBOL having no comparative code, programming for the Internet has not been

extensively studied.

3.2.5 Online documentation.

Javahas afeature available, in which online documentation can be generated for aJava
program. The documentation is generated by using javadoc, and referring to the java
source file. The command would be:-

>javadoc GuessNumber.java

An html document is generated that can be viewed through a web browser. This
document explains many features of the Java program. Any comments in the program
source codethat are enclosed between /*...comments here....*/, arealsoincluded in the
html document. The java documentation file generated by javadoc for the

GuessNumber program islisted in APPENDIX G.

74

This facility saves time and effort. Program documentation is a necessary part of
programming, which is usually left to after the program is completed, or not at al. In
Java, as a program is coded, the comments for the html file can be inserted. The
documentation generated by javadoc includes many other aspects of the java program.
As the documentation is an html fileit is easy to publish so that another programmer

can easily access it. All these features are not available for a COBOL program.

Documentation iswhat should be done asaprogram isdeveloped. Usually this gets|eft
tolast, if itisdoneat all. Effective documentationis part of the definition of structured
programming. In a COBOL program the documentation was placed as comments
within the program. This is fine, but if the program was a subroutine, and another
programmer wanted to useit, they would need to accessthe COBOL programs source
code in order to read the documentation. Due to the time pressure, publication of
documentation on a COBOL program, so that other programmers can gain access to
the documentation was rarely done. Thisresultsin alot of work being done again, as
how can a programmer use a subroutine, if they do not know that it exists. Weak

documentation (Chapin, 1997) has been the downfall of many computer systems.

Java goes a long way towards solving this problem. The Java API, which has many
classes that can be used by a programmer, is available. As Javais published, and freely
available at the Sun Microsystemsweb site, so isthe documentation available on al the
Java API’sat http://java.sun.com/j2se/1.3/docs/api/index.html Sun Microsystems. The
javadoc feature however isatool that can be used to effectively publish documentation
on any Java class. This is a very powerful feature that will improve programmer
productivity if used correctly. Instant online documentation is available for each Java

class, over the Internet.

75

3.2.6 Developing models/smulations.

Javaisideally suited to developing models, or smulations of events. The graphics and
imaging capabilities are extensive. There is aso so much that has already been
developed in Java, and isavailable for use. In many cases Java source code is released
so that programmers can make their own changes, or use the objects as they are.
Inheritance allows programmers to make their own additions or extensions to objects
that have already been defined. The possibilities are endlessfor the types of modelsthat
could be developed. Also in Java the models can be developed as interactive, with
sound and animation, the models therefore become very life like, and are therefore a
useful tool. COBOL has not got the extensive graphics, animation, sound and

reusability features, and is therefore not recommended as a modeling language.

76

Chapter 4 - Proposed Methodology for the transformation, COBOL to Java.

4.1

The proposed methodology.

From the study of COBOL and Java, the similarities and main differences in the
programming languages have been identified. The areas of significance, as regarding

program code, were discussed in chapter 3.

The nature of the programming languages is very different. This has been clearly
identified in this study. Whereas COBOL was designed for commercial programming,
with extensivefile handling, and alarge number of reports, Javawas designed with very
different objectivesin mind. These differences were discussed in chapter 2, see 2.1.1,
2.1.5for the COBOL objectives, and 2.2.1, 2.2.5, for the Java objectives. Asthese are
clearly very different, the proposed methodology is for applications that are common
inthe COBOL programming Language. The proposed methodology will be applied to
the following applications:.- a control break report, a relative file maintenance

application and a subroutine.

As this transformation is COBOL to Java, the COBOL programs will be transformed
to Java programs. The two main components that need to be studied in the COBOL
program, arethe DATA DIVISION and then the PROCEDURE DIVISION. As Java
works with objects that incorporate both data and methods, it is not possible to
transform each section independently. The proposed transformation steps, have been

placed in two sections. The first deals with the transformation of the DATA

77

DIVISION, and will include some code from the PROCEDURE DIVISION, and the

second step deals with the remainder of the PROCEDURE DIVISION..

4.1.1 Transforming the DATA DIVISION.

The DATA DIVISION should be transformed into a separate classfor each filethat is

defined. As each data file would contain information that describes an object of a

different type. To identify the Java classes that define the data, they will be referred to

as aJava Data Class (JDC), but these classes will include methods, not only data.

4111

Step 1 Define an object (JDC) for each record description.

Identify the record description/ or descriptions that the program
processing is dependent on. In some cases there may be more than one
record description, as more than one data file can be used. Each record
description, must be defined in aJava class as an object. Each field in
the data record will be an instance variable in the new Java class. To
adhere to structured programming principles, each instance variable

should be declared as private.

The aphanumeric fields will be defined as strings, and the numeric
fields as the appropriate primitive data type. Thiswould beint (9 digit
accuracy), or long (18 digit accuracy) for numeric fields without a

decimal point, and double(18 digit accuracy) for those numeric fields

78

4112

with adecimal point. All Javanumeric fields are automatically signed..

Boolean can be used for fields with only two states.

Step 2 Include accessor and mutator methods for the appropriate

instance variables in each class (JDC).

Some analysis needs to be done as regards which fields can be modified
and which should not. A mutator method changes a value, replacing it
with anew value. For a customer accounts object (record) it would be
acceptable to have a mutator method for an address. The customers
current balance however, should not be changed by a mutator method,
the customer balance would be changed by a process, such as a
purchase, receipt or return. A mutator method therefore is not

necessarily defined for each instance variable.

In most cases an accessor method would be coded for each instance
variable. Given the recommendation, that the instance variables are
defined as private, the only way to access their value is through
methods available in the defining class. To access the value in an

instance variable, the accessor method would be used.

79

4113

4114

Step 3 Define input and output methods that would work through a

data stream.

Asthe record descriptions in the COBOL file section, are for datafiles
(or report files), it is necessary to code the input and/or output methods
that would place the instance variables for each object in a data stream,
or retrieve the instance variables from a data stream. The READ and
WRITE paragraphsin COBOL would indicate the type of processing
that isgoing to berequired for each object. Theseinput/output methods
are defined in the IDC. Javaworks with datafiles, as data streams. The
JDC therefore contains the object, with each instance variable (the
COBOL record is the object, and the data fields are the instance
variables), as well as the input/output method for that object. The
input/output method is directly associated with the object, as each
instance variable must be referred to in the exact same sequence in the
input/output method. The COBOL READ and WRITE statements
work with the entire data record, the Java input/output method must
therefore do the same by working with al instance variables of an

object.

Step 4 Include static variables and constants.

In order to do this, you need to study the WORKING-STORAGE

SECTION in the COBOL program, as al the constants and working

80

fields needed in the COBOL program have been defined here. The
working fields should not be defined as part of the new JDC, as
working fieldsin Javaare defined asthey are needed in aprocess by the
Java programmer. This saves space in memory, as the working fields
are only allocated memory when they are needed, and then removed by
the Java garbage collector when they are no longer required. In
COBOL, the memory is permanently alocated for the fields in
WORKING-STORAGE, and the memory remains allocated to the
COBOL program until it terminates. There may be fields that are
required to be processed with the data class, for example a vat
percentage figure. This constant can be defined asa static final variable
inthe Javaclass (JDC), and will then be available when each Javaobject
isinstantiated. Only one instance of a static variable is created, and all

instances of the class will refer to the single variable.

4.1.2 Transforming the remainder of the PROCEDURE DIVISION.

The Java Data Classes that have been defined are now available to be used by many

applications. The processes that are executed in the PROCEDURE DIVISION that do

not directly deal will datainput or output, now become a separate Java class, thiswill

be referred to as a Java Processing Class (JPC).

Step 5 Define an a Java Processing Class (JPC) to complete the

processing for each object, defined as a Java Data Class (JDC).

81

All the procedures that are defined to operate on each data filein the
COBOL program that have not been transferred to a JDC, must be
identified. These now become part of a second Java class. This class
will instantiate objects of the JDC and use them to complete the
processing required. Where the COBOL program has been well
designed, and the paragraphs have functional cohesion, each COBOL
paragraph will amost directly transform to a Java method. The high
correlation between the procedural statements in each language will
facilitate this transformation. The key points raised in chapter 3 will
have to be kept in mind to make sure the transformation from COBOL

to Javais correctly coded. These points are:-

. Branching.
Remember that the terminator ; is present at the end of each
statement. This is a significant difference, in that a COBOL
programmer is used to the terminator (.) terminating theif. This

isnot so in Java

. Looping.
In COBOL the loop terminates when the condition specified
becomes true. In Java the loop terminates when the condition
specified becomes fase. It is important that the COBOL
programmer takes note of this, as the way of thinking must be

reversed in determining the termination condition for loops.

82

4122

Thisisakey difference in the languages.

. Calculations.
A key difference that a COBOL programmer must get used to
is that what would usually be coded as a number of separate
calculation statementsin COBOL , is completed in one line of

code, in Java

. Tables transformed to arrays.
Refer to arrays not tables. Refer to an index, not a subscript.
With multiple dimensions, list the indexes separately, in square
brackets. The first element of the array is at position zero, and

the last e ement is the number of ements less one.

Step 6 Morethan one Java Processing class (JPC) may be defined from

one PROCEDURE DIVISION.

Wherea COBOL program uses multiple datafiles, aseparate Javaclass
(JDC) would be defined for each file. This would imply that the
PROCEDURE DIVISION will have many processes that work with
each data file. It is therefore feasible that multiple Java classes to

process the data would be created.

An analysis of which process belongs to which data file would need to

83

4.2

be done. In some cases the processes will apply to both, or al data, and
then a single processing class can be defined. However, where the
processes can be identified as belonging to one datafile only, it would
be better as far as program design is concerned , to create separate

processing classes.

4.1.3 Step 7 Transforming asystem (collection) of COBOL programs.

Where systems have been written in COBOL, there are a number of programs that
work with the same datafiles. In COBOL programming, for each application, the data
definition had to be repeated in each COBOL program. With Javathisis not required.
If the IDC has been correctly coded, all applicationsthat work with the data, can refer
to the same JDC, by instantiating the object. The work done transforming the first
COBOL program in asystem would not therefore be repeated for subsequent COBOL
programs that work with the same data. Where the same data is used there is no need
to recode the JDC, it will only be necessary to repeat step 4.1.2, to transform the

PROCEDURE DIVISION of each program in the COBOL system.

Implementing the methodol ogy.

4.2.1 Transformation: A Control Break Report.

Step 1 Identify the record description for the datafile. Thefile being worked

with in the COBOL program is a Sales transaction file. This is a LINE

84

SEQUENTIAL file, and therefore will be ableto beread asa TEXT fileinthe
Javaprogram. Refer to APPENDIX H for the COBOL program code, and the
output produced when the program is run. In APPENDIX I, the Java Data
Class (JDC) isdefined. Thisidentifiesthat each record in the Sales Transaction
file contains three elements of data. These are then defined as the instance
variables in the SalesRecord object in the Java class (JDC) SalesRecord.java.
Each data item is defined as private. This means that the data can only be

changed by the methods in the SalesRecord class.

Step 2 The accessor and mutator methods are included for each variable.
These can be clearly identified in the Java classin APPENDIX |. The accessor
methods are identified by using “get”in the method header, and the mutator
methods are identified by using “set”in the method header. An additional
variableindicating each line of text had to be defined. Thisisin order to control
the end of file condition which isindicated by anull value being returned from
the read method. The Java utility class StringTokenizer was used to break
down the individual fieldsfrom the input line. The utility class therefore had to

be imported at the beginning of this class, SalesRecord.java.

Step 3 Identify theroutinesthat deal with the input, and output when working
with the data files record description. The Salestransaction fileisread in order
to print the control break report. Therefore only a read method is coded in
SalesRecord.java. , thistakescareof 400-READ-A-RECin APPENDIX H, the

COBOL program.

85

Step 4 There are no static variables and constants that need be included in

SalesRecord.java.

Step 5 Create further Javaclasses, that work with the first, and complete the
processing of the COBOL program. The SalesRecord classdoesnothing active,
it is an object that defines the instance variables in a record, and the methods
to work with that data. The SalesRecord class may be used by other programs
that need to work with the Sales transaction file, thisis a good representation
of what has been defined as a Java Data Class. To complete the processing, the
Java Processing Class (JPC) WriteSalesReport.java has been coded. The
program listing and output is presented in APPENDIX J. Asthisisasingle
processing requirement there is no need for more that one processing class.

Step 6 thereforeis not required.

Step 7 would be completed for all other COBOL applications working with

the employee datafile.

WriteSalesReport.java(APPENDIX J) includesthe COBOL proceduredivision

code, ascomments, to demonstratethe correlationinthe procedural statements.

It can be seen that the logical breakdown of the problem, can be

86

coded in avery similar fashion. There was arequirement to use some additional
Java classes. The import statements at the beginning of the program are:-
import java.io.*;
import java.util.*;

import java.text. Number For mat;

The io package is required to facilitate working with data streams. In this
application, atext fileisread (96ASS12.DAT), thisis the same data file, that
is read by the COBOL program. A text file is also created, that contains the

control break report. (cbreport.txt).

The util package is required, in order to access the date from the operating
system for the headings. The Date classis used as follows:

Date toDay = new Date();

outputStream.printin("\f* + toDay.getDay() +"/"

+ (toDay.getMonth() + 1) + "/"+ (toDay.getY ear() +1900));

(Note: \f is the escape sequence for anew page).

The java Date class, has the methods getDay(), getMonth(), getYear(). The
method getM onth() returns the month number , starting at zero. ie. January is
month number 0. This means that if you were using the month number as an
array index, it would not need to be manipulated. For output, one must be

added to the month number. The method getY ear(), returns the year number

87

4.2.2

with theyear 1900 as zero. The year 2002, istherefore year number 102, hence
the necessity to add 1900 for output. Using the date classin the Java program
does create warning messages, that the Date class has been updated in later
versions of Java. This is noted as a deprecated API, and the compilation
requires -deprecated as a parameter to the compilation. The program will

compile successfully, but with warnings as regards the date class.

The text.NumberFormat class is required for the $ symbol, and two decimal
places on the double value for saleAmount, when it is printed in the report.
NumberFormat moneyFormat =

NumberFormat.getCurrencylnstance (Locale.US);

outputStream.printin(moneyFormat.format(salesData.getSaleAmount());

All features that are required for the report, are available in Java, and the same
output can be generated. A control break report is a very common COBOL
application. With Java, if the application was being designed in Java, and not
converted, it would typically work with a screen through a GUI, rather than

aprinted report.

Transformation: Relative File Maintenance.

Step 1 Identify the record description for the datafile. The file being worked
with in the COBOL programs is an Employee data file. Refer to APPENDIX

K and L for the program code. In APPENDIX K, the record description is

88

given. Thisidentifiesthat each record in the Employee master file containsfour
elements of data. These are then defined as the instance variablesin the Record
object in the java program (JDC) Record.javain APPENDIX M. Each data
item is defined as private. This means that the data can only be changed by the

methods in the Record class.

Step 2 The accessor and mutator methods are included for each variable.
These can beclearly identified in the Javaclassin APPENDIX M. The accessor
methods are identified by using “get”in the method header, and the mutator

methods are identified by using “set”in the method header.

Step 3 Identify theroutinesthat deal with the input, and output when working
with the data files record description. In the CREMP program in APPENDIX
K, the setting up of empty datafields, and writing out the record isgivenin the
paragraph 200-PROC. In the ADDEMP program in APPENDIX L, the
paragraphs 230-WRITE-MASTER and 420-READ-MAST work with the
Employee master file. In APPENDIX M, you can see how thisis implemented
in Java. There are two read methods, and two write methods. These methods
have been defined in the Record class, and are overloaded. In each case the
sequential read and write method has no parameter passed to it. The direct read
and write methods have the empl oyee number passed asaparameter. Thedirect
read and write methods use the seek method (defined in the Java
RandomA cessFile class) to position the record pointer for the direct read, or

write The record class can now be used by any program wishing to work with

89

the Employee master file. The read and write methods do not need to be
repeated in any other classes. The direct Read is used in the Java class
WriteRandomFilejava(to add anemployee, APPENDI X O), and thesequential
Read is used in ReadRandomFilejava (APPENDIX O) to display al the

employees on file.

Thelinking of the datastream to the actual datafileisaso amethod (openFile)
in Record.java. Thisreplacesthe OPEN satement, and SELECT statement in
the COBOL program. This means that the actual data file does not need to be
defined in the classes that use the employee object. The open mode is however

supplied as a parameter to the openFile method.

A closeFile method is also defined in Record.java. The JDC therefore has al
the methods defined that would be required by any number of applications that

use the employee random access file.

Step 4 There are no static variables and constants that need be included in

Record.java.

Step 5 Create further Javaclasses, that work with thefirst, and complete the
processing of the COBOL program. The Record class does nothing active. It
is an object that defines the instance variables in arecord, and the methods to
work with that data. The Record classwill be used by other programsthat need

to work with the Employee record, thisis a good representation of what has

90

4.2.3

been defined as a Java Data Class. Given the two COBOL programs, the
functions are to create a file of 100 blank records, that have an employee
number of zero (APPENDIX K), and add active records to the employee file
(APPENDIX L). These functions are then accomplished in the programs
CreateRandomFile (APPENDIX N) which creates afile of 100 empty records,
and WriteRandomFile (APPENDIX O), which placesactiverecordsonfile. An
additional JPC that displaysall active records has been givenin APPENDIX O,
ReadRandomFilejava. As more than one processing class has been created,

Step 6 has also been compl eted.

In a COBOL processing system there would be many other application
programs that work with the employee file. As these are sample programs, a
small representation of the data and processing has been given. Step 7 would
be completed for al other COBOL applications working with the employee
datafile. These further applicationswould typically include deleting employees
that leave the company, changing details of employees, processing saaries,

leave, tax returns, and many other reports.

Transformation: A COBOL subroutine.

The COBOL subroutine, is one which checks anumber to ensure if the check
digitiscorrect according to the modulus-11 method. The COBOL subroutine
islistedin APPENDIX P. Anexamplecalling programislistedin APPENDIX

Q. The transformation is of the COBOL subroutine. As there is no real data

91

defined in the subroutine, only parameters, the following appliesfor each of the
transformation steps:-

Step 1 Identify the record description for the datafile.

Step 2 The accessor and mutator methods are included for each variable.
Step 3 Identify theroutinesthat deal with the input, and output when working
with the datafiles record description.

Step 4 Thereare no static variables and constants that need be included in the
Java Data Class.

In the case of the subroutine not referring to adatafile, thesefirst four stepsfall

away, asthereis no Java Data Class to develop.

Step 5 Create further Javaclasses, that work with thefirst, and complete the
processing of the COBOL program. The Javaclass CheckDigit iscreated. This
classis listed in APPENDIX R. The CheckDigit class can be instantiated,
whenever it isnecessary to validate anumber using the modulus-11 method. To
usethisclass, you must provide the number asastring value when instantiating
the class. The method isValid will return aboolean value of true, if the number
isvalid, and fase if the number isnot. A demonstration calling class has been
coded, and is listed as APPENDIX S DemoCeckDigit.javaAsthisisasingle
processing requirement there is no need for more that one processing class.

Step 6 thereforeis not required. Step 7 is also not applicable.

92

4.3

M ethodology evaluation.

This methodology highlights the advantages of object oriented programming. The
object to be worked on, the data record isidentified. The methods that work with the
instance variables in the object are identified and become encapsulated with the data.
These methods are defined here so that any changes to the instance variables can only
be done from within the Java Data Class. Where there is more than one datafile in the
DATA DIVISION, it is probable that a Java Data Class would be developed for each
file. Thisrelatesto object oriented programming, where each object is clearly defined.
From then on all applications that work with that file (object) can use the appropriate
Java Data Class. This effectively achieves reuse of program code. Where a COBOL
system is transformed, the benefits of this will be clearly seen, in that once the Java
Data Classis established, there is no need to repeat the data definition code. The data

definition code was always repeated in each COBOL program’s DATA DIVISION.

In the Java classes that need to use the data files, an instance of the JDC is created.
There is no need to repeat the definition of the fields, or the read and write methods,
only use them. This methodology therefore ensures that the benefits of object oriented
programming are incorporated in the Java programs. A Java Processing Class is
developed from the PROCEDURE DIVISION of each COBOL program. Again some
analysis is necessary. Where the processing can be divided, as it relates to separate

functions, separate Java Processing classes should be created.

The methodology proposed worked for the control break processing application, and

93

therelativefile application. The subroutine application wasalittle different in that there
was no need for a Java Data Class. The Java subroutine, is far simpler than the
COBOL subroutine, and easy to use in any application. The Javacode even allowsfor
afield of any length, whereasin COBOL you could only use aseven digit number. This
isakey areawhere Java code can be so much more useful, asit iseasy to code flexible

code. COBOL program code is very restrictive.

The disadvantage of this methodology is that it relies on agood knowledge of both

COBOL and Javain order to be effectively implemented.

94

Chapter 5 - Object Oriented COBOL.

5.1

The origins of OO COBOL.

COBOL was developed in the late 1950's and became an ANS| standard in 1968. The
second main release of COBOL wasthe COBOL -74 standard. Then came COBOL -85,
which implemented quite a few changes in the language. (For example the test
before/after on the PERFORM verb, and the inline PERFORM). Then the move to
OBJECT ORIENTED COBOL. Remember that COBOL iscontrolled by acommittee.
The standards are published by the American National Standards Institute. Then the
software developer, like MicroFocus, needsto ensurethat they implement thelanguage
as specified by the committee. Thisisavery ow process. The OO COBOL standard
wasfirst released in 1997 (Chapin, 1997). At the OOPSLA conference 1993, therewas
apanel discussion on the status of OO COBOL (Van Stee et al., 1993). As can be seen
the discussion, and intent was there, but it was still four years to publication. A long
process, when you compare this to the rapid development that has taken place in Java
sinceitsfirst publication in 1995, the dow progress of COBOL into the field of object
oriented programming can be seen. Releasing COBOL to run on the Internet has not
even reached the discussion stage (Chapin, 1997). So Object Oriented COBOL hashad
a slow emergence into the market place, as opposed to other object oriented

development languages.

95

52

Features of OO COBOL.

This has been completed with reference to the following authors, Chapin (1997),
DeWard Brown (1999), and Grauer et al. (1998). The features of an object oriented
language are described as encapsulation, inheritance and polymorphism. Object

Oriented COBOL is discussed as regards these three features.

OO COBOL providesencapsulation. Y ou can definedata inaWORKING-STORAGE
SECTION that isonly accessible through the methods in that class. The referenceisto
a COBOL class, as the PROGRAM-ID statement is replaced by a CLASSID
statement. The methods are listed in the PROCEDURE DIVISION, and each is
identified by a METHOD-ID. Method-name. header, and END METHOD
Method-name. at the end of the method. Each method has its own LINKAGE
SECTION. , for the data fields that are local to the method. The entire class ends with
an END CLASS class-name. The basic structurefor an OO COBOL program isshown

in APPENDIX T - OO COBOL program structure.

As can be seen in the class header, the COBOL class can inherit from a base class.
Objects are created by using the reserved word NEW to instantiate a class. The
inheritance in OO COBOL works in the same way as it does in Java. Descendant
classes are referred to as subclasses, and ascendant classes as base classes or
superclasses. All subclasses inherit the data and methods from the classes above them.

A superclass may not reference methods in a subclass.

96

5.3

Polymorphism is provided for in that if two methods have been defined with the same
name, COBOL will refer to the OBJECT-REFERENCE defined with the pointer to

determine which method to call.

So OO COBOL does provide for the requirements of object oriented programming.

Features that OO COBOL does not provide.

Object oriented COBOL does not provide event driven programming, Internet
applications, graphics, and many other features that have been included in Java from
the beginning of its design. This means that although the benefits of object oriented
programming can be gained by using OO COBOL, there are many other featuresin the
programming languages that have been developed as pure OO languages that are just

not availablein COBOL.

A disadvantage of OO COBOL presented by Chapin (1997), is weak documentation.
In order to benefit from OO design, the program code, or objects must be re-used. In
order to use objects, programmers must know of the objects existence and features.
There are two main ways in which a class may be used. 1) For processing purposes,
where the classis used asis, or 2) as a base class that this then further extended by a
programmer. Lamping (1993) discusses these as two interface methods, 1) a client
interface for users of the objects of aclassand 2) the speciadisation interface, wherethe
class is extended and overriding is implemented, in the paper entitled “Typing the

Specidlization Interface’. In each case the documentation required by the programmer

97

5.4

isdifferent. In order to use aclass, there must be documentation available on aclass.
There is no automation of documentation in OO COBOL. Java takes care of this

problem with the javadoc feature.

Implications of implementing OO COBOL?

OO COBOL means that existing legacy systemsin COBOL can be re-engineered to
enjoy the benefits that object oriented systems provide. The transfer of data should be
relatively easy to accomplish. The key is the difference between procedura COBOL
and OO COBOL. There-engineering of the system, to be properly implemented, must
involve OO analysis of the entire system. The OO analysis is required in order to
achieve the reuse of objects, and thereby gain the benefits of an OO system. To do this
the programmerswill have to be trained in OO principles. As has been identified in this
study, it is the difference in approach which is so vast. Instead of breaking problems
down into smaller and smaller processes, the system must be looked at as objects,
composed of data and methods, and so on. Object oriented programming is
substantially different from structured programming. A programmer must undergo a
learning process to understand OO, and be able to implement it successfully. With this
in mind, and given the need to re-engineer the system anyway, it may be better to re-
engineer with an object oriented programming language, that provides a far greater

scope than OO COBOL.

98

5.5

The impact of OO COBOL on this study.

The programming world, had moved into the new paradigm of object oriented
programming in the 1980's. Javaand the I nternet exploded into the programming world
inthe 1990's. OO COBOL was published in 1997. In view of the other OO languages
that have become available within the same time period, OO COBOL isalittlelate. It
istrying to play catch up to a programming paradigm that has been around for awhile.
As this study has looked on the transformation from structured programming to OO
programming, with reference to COBOL and Java, it was necessary to look at OO
COBOL as an dternative for OO development. Unfortunately once the scope, and
flexibility that isprovided in the Java programming language has been experienced, OO
COBOL appearsvery dull. There are so many benefitsin using Java as opposed to OO
COBOL. The learning still has to take place, whatever OO language is chosen, as a
replacement for COBOL. If the effort is going to be made to transform alegacy system
so as to take advantage of OO, it may be better to choose an OO language that has

more features than OO COBOL.

99

Chapter 6 - Conclusion.

6.1

Were the objectives met?

To repeat some of the discussion that took place in Chapter 1:-

Theoretical creative research is defined by Melville (1996), “ Theoretical creative
research is about the discovery or creation of new models, theorems, algorithms,
etc.”. Olivier (1997) states“ most of IT research endeavoursto realise ‘theories' to
guide construction of automated systems’ which supports that this is the type of

research required in the field of Information Technology.

This has been accomplished in that a transformation methodology has been proposed,
and tested as a result of this study. In order to achieve this, the following objectives

were met.

6.1.1 To identify key elements that define a procedura language with direct

reference to COBOL.

The key elements that define a procedural language were identified, and

presented in Chapter 2, Section 2.1. The key elements that define COBOL as

aprocedural language are identified, in this study.

100

6.1.2

6.1.3

6.1.4

6.1.5

To identify key elements that define an object oriented language with direct

reference to Java.

Thekey elementsthat define an object oriented language, and how Javameets
these requirements is accomplished. This has been discussed in Chapter 2,

Section 2.2.

The identification of similarities between the two programming languages.

Thesimilarities between COBOL and Java have been highlighted and presented
in Chapter 3, Section 3.1. The clear identification of the smilarities is a key
requirement towards developing a transformation methodology. This was
therefore akey objective that was achieved and thereby enabled amethodology

to be proposed.

Theidentification of the differences between the two programming languages.

This discussion takes place in Chapter 3. Section 3.2 the differences between
theprogramming languageswereclearly identified. Thesedifferencesinfluenced

the development of the proposed methodology.

The development of a methodology (series of procedures and rules to follow)
to assist in the transformation from procedural languages to object oriented

languages with specific reference to COBOL and Java.

101

6.2

Thisis accomplished as a result of the successful completion of the first four
objectives. The examples of the implementation of the methodology are given
in section 4.2. These examples illustrate a successful implementation of the

methodology proposed.

The lessons learned.

6.2.1 Structured programming principals can be applied in the development of Java

systems.

This dissertation has highlighted the fact that structured programming
principals can be applied in the development of Java systems. The change to
OO, changestheway inwhich the overall problem is approached. The separate
objects are identified. These objects describe data, a JDC or Java Data Class,
with the methods to access and manipulate the data, then the main processing
functions become another object the JPC, or Java Processing class. The
principals of structured programming theory can be applied just as effectively
within the Java class, as they can be applied in a COBOL program. In terms of
coupling, the principals can be adhered to, to afar higher standard than in
COBOL. A good structured programming background, is a background in
problem solving methods. This can be used just as effectively to solve Java
problems, as COBOL problems. The correlation in procedural statements,

makes the changeover from COBOL to Java straightforward. The few key

102

differences, asregardstheactual statementswerehighlighted in chapter 3, topic

3.1.

6.2.2 OO design should be applied to systems, rather than programs.

As can be seen from the discussion in 6.1, to effectively transfer a system to
OO, the changeover needs to be done for the system, not the individua
programs. This study was approached from the point of view of transforming
a COBOL program into a Java program. A methodology was proposed and
implemented, and seemsto be effective. This approach however, does not take
into account acomputer system. To effectively use OO technology, the overall
gystem must be re-engineered to use OO. After implementing the
transformation methodology, you will have asystem writtenin Java, but to gain
thefull benefit of OO, it would be better to redesign, rather than work from the
COBOL programs. The key is that the business processes presented in the
COBOL programs have been well tested. A possible approach could be to
redesign the data classes, and then complete steps 5, 6 and 7, asrelates to the
PROCEDURE DIVISION to get the Java Processing Classes. The COBOL
paragraphs can become methods in Java, and the business processes would

effectively be transferred to the new system.

103

6.3

Areas of further study.

The following are areas that could be further investigated as a result of this study.

6.3.1 Javaand database.

6.3.2

Javaprovides easy database accessthrough the JDBC classinthe JavaAPl. An
interface has been written, and it is necessary to import java.sgl.* in order to
work with adatabase. M ost textsthat were studied did not give comprehensive
examples of working with the JDBC. Thisis however an areawhere there are
many business applications. There is a need for more work to be done on the
practical implementation on working with data base applicationsfrom Java. The
classes are available, but not discussed in the general text books. Other areas,
such as animation, sound, multithreading, and networking are. An interesting
project would be to set up a Java system that works with an MS Access

database. Thereare also interfaces available that work with an Oracle database.

Working with COBOL’ S indexed files.

Indexed files are used extensively in COBOL programs. The advantages of
indexed files were discussed 2.1.5, as an area where COBOL is used best. In
searches conducted, there was no reference found to processing indexed files
from a Java program. In this study, COBOL LINE SEQUENTIAL fileswere

effectively processed as text files in Java. The development of Java classes to

104

6.3.3

process indexed sequentia files, is a study that could be conducted.

A key objective would be to ensure that the data files that are read by the
COBOL programs could then be read by the Java programs. Classes that
navigate the indexes, as well as maintain them would have to be coded. The
transfer of the data files from the COBOL system to the Java system without

having to modify them would be a very significant advantage.

It must be considered however, that in many cases with the change over to
object oriented, it may be advantageous to also change the data structures to

a database format.

A study of design patterns (relating to Java Programs).

In the development of the transformation methodology, COBOL to Java, two
types of Java classes were described. These were referred to as a Java Data
Class (JDC) and Java Processing Class (JPC). The design of these classes are
inherently different, asthe JDC isdevel oped primarily fromthe COBOL DATA
DIVISION, and only contains methods relating directly to the input and or
output of data. The JPC is developed from the COBOL PROCEDURE
DIVISION, and focuses on the business processes applied to the data. The JPC
would work with the JDC to process the data. Thisis atype of design pattern.
A number of design patterns have been recognised in object oriented software

development. Jia (2000) mentions design patterns as being in three main

105

6.3.4

classifications, creational patterns, structural patterns and behavioral patterns.
Deitel et al.(2002) discusses some behaviora design patterns, these are Chain-
of-Responsibility, Command, Observer, Strategy and Template M ethod design
patterns. In describing adesign pattern, each pattern describesaproblem which
occurs over and over again, and then describes the core of the solution to that
problem in such away that you can use the solution to the problem over and
over again. Design patterns were first applied to architectural designs by
Christopher Alexander in 1979, and these principals were first applied to
software design by Gamma et a. in 1995 (Jia, 2000). Budd (2000) also
discusses design patterns, and presents a number of examples. The definition
of design patterns, and their implementation as Java reusable objects, is a

possible field of further study.

Test the proposed methodology on an operational legacy system.

To work in co-operation with industry, and convert aworking COBOL system
to a Java system, the study would need to note the effectiveness of the
transformation methodology, and also measure its effectiveness. Designing a
tool in order to measure the effectiveness of the methodology would be a part

of the research process.

106

6.3.5 Work with a group of COBOL programmers, training them to become Java

programmers.

This study focused on the transformation COBOL to Javain terms of program
code. There are a number of COBOL programmers that need to change to
object oriented programming. Inthisstudy somekey issueswereidentified, that
a COBOL programmer must understand in order to move to OO. A possible
study would be to measure if the key issues identified here, being applied in a
training program, make the transition easier for a programmer. There would
need to be a control group of programmers that do not have training in order
to complete the comparison. This would also determine how important these

key issues are, in order to assist a programmer in making the change.

In the initial stages of the study, some articles were encountered that were
negative as regards a programmers movement from COBOL to Java
Goodridge (2000), in an article discussing the IT labor market, stated that
companies are reluctant to hire COBOL programmersfor new development in
Java, even when the COBOL programmers had undergone sometraining onthe

new Technology.

The theory that a COBOL programmer can be an effective Java programmer,

would have value in being measured.

107

6.4

6.3.6 The user intarface.

The user interface has not been extensively studied here. Thisisdueto the fact
that COBOL has limited corresponding features. The COBOL user interfaceis
very much text based. Java provides avast range of classesthat can be used in
the user interface. Design studies could range from the corresponding user
interface for commercial, business applications, where datais entered via the
screen to interactive visual screens that smulate events. An example of the
interactive type of user interface, is to view the smulation result, for a
modeling system that predicts elephant movement patterns (Duffy, 2001). To
use graphics depicting actual elephants moving on the screen rather than color
shading, or dots representing each elephant would be of more interest to a

person viewing the simulation.

Final word.

Thisstudy hasinvolved the analysis of structured design, of OO methodologiesaswell
as the COBOL and Java programming languages. Upon setting out on the journey,
therewas no way of predicting theresult. It ishoped that this dissertation has provided
away for the transformation to take place. The principals of structured programming,
and the ability to solve problemsis arequirement for programming skills whether they
be applied to a procedural language, or an object oriented programming language. The
study may also haveresulted in no transformation methodology. | am pleased that there

is aproposed methodology that can be used to transform COBOL programs to Java.

108

REFERENCE LIST

Arnold, K. and Godling, J. 1998. The Java™ Programming L anguage, Second Edition, Sun
Microsystems Inc., California, ISBN 0201310066.

Babcock, C. 2000. Java’ Can Sun Control the Flood. | nter @ctive Week . June 5, 2000, v7
i22, p116.

Black, G. 1998. Java shadow looms over C++ despitelack of uses. Computer Weekly , Sept.
24,1998 p14(1) .

Budd, T. 2000. Under standing Obj ect-Oriented Programmingwith Java, updated edition,
Addison Wedley Longman Inc., ISBN 0-201-61273-9.

Callaghan, D. 1999. Road to Java can take different paths (migrating from RPG to Java),
MIDRANGE Systems, March 1, 1999 v12 i3 p28(1)).

Cathcart, M. 1999. OO alternatives for $/390. Enterprise Systems Journal, April
1999v14i4p34(1).

Cavanaugh, K. 1999. Java' sUncharted Waters. Wall Street & Technology, March 1999 v17
i3p30(1).

Chapin, N. 1997. Standard Object-oriented COBOL . Wiley Computer Publishing, ISBN
0-471-12974-7. p69.

Deitel, H. M., Deitel, P. J. 1998. Java How to Program. Prentice Hall Inc. New Jersey. 2™
edition. ISBN 0-13-89939%4-7.

Deitel, H. M., Deitel, P. J. 2002. Java How to Program. Prentice Hall Inc. New Jersey. 4"
edition. ISBN 0-13-0345151-7.

DeWard Brown, G. 1999. Advanced COBOL, for structured and Object-Oriented
Programming. Third Edition. John Wiley & Sons, Inc., ISBN 0-471-31481-1.

Doke, E. R. and Hardgrave B. C. 1999. Java for the COBOL Programmer. Cambridge
University Press, UK, ISBN 0 521 65892 6.

Duffy, K. 2001.Elephant tracking research. Technikon Natal Research Day 2001. 13
September 2001.

Eliens, A. 1995. Principles of Object-oriented Software Development . Addison-Wedley,
ISBN 0-201-62444-3.

Gaudin, S. 1998. Java holds its own, starts to make inroads. Computerworld , Jan. 19, 1998

109

v32n3 p32(1) .

Goodridge, E. 2000. Older IT Professionals Struggle with Age Bias - DESPITE THE IT
LABOUR SHORTAGE, MANY EXPERIENCED WORKERS SAY THEY CAN'T
FIND JOBS, InformationWeek , Oct. 9, 2000, p228

Grady, R. B. 1997. Successful Software Process Improvement . Hewlett-Packard
Professional Books, Prentice-Hall, ISBN 0-13-626623-1. p2.

Grauer, R.T, Vazquez Villar, C., Buss, A. R. 1998. COBOL , From Micro to Mainframe,
Preparing for the New Millennium. Third Edition. Prentice-Hall. ISBN 0-13-
790817-2.

Henderson-Sellers, B. and Edwards, J. M. 1994. Booktwo of Object-Oriented K nowledge.
TheWorking Object . Prentice-Hall Australia Pty. Ltd., ISBN 0 13 148 404 4.

Hunter, D. 1999. What should we teach our Commercia programmersin the new millennium,
Technikon Natal, Commer ce Resear ch Conference 1999, p4

InformationWeek, User Survey. 1998. Objectson therise . InformationWeek Sept 28, 1998
n702 p192(1) .

Jansen van Rensburg, M. 1998. Pitfallsand guidelinesin thetransition to object oriented

softwar edesign methodologies. University of the Witwatersrand, M .Sc Engineering.

Jia, X. 2000. Object-Oriented Softwar e Development using Java, principles, patterns,
and frameworks. Addison Wesley Longman Inc., ISBN 0-201-35084-X.

Labuschagne, |. L. 1995. Framework for object oriented analysis: Adopting object

oriented analysis in software development . Rand Afrikaans University, M Sc.

Computer Science, p 5.

Lamping, J. 1993. Typing the Specialization Interface. Conference on Object-Oriented

programming systems, lanquages, and applications. (OOPSL A 1993), Eighth

Annual Conference. , published proceedings.

Langley, N. 1999. The Language of the millennium bug. Computer Weekly. Dec. 9, 1999
p58.

Ledgard, H.F. 1996. TheL ittle Book of Object-Oriented Programming. Prentice-Hall Inc.
New Jersey, ISBN 0-13-396342-X.

Lemay, L. 1997. Java 1.1™ I|nteractive Course, Waite Group Press, California, ISBN 1-
57169-083-2.

110

Martin, J. and Oddll, J. J. 1995. Object-Oriented M ethodsa Foundation . Prentice-Hall Inc.
USA, ISBN 0-13-630856-2.

Melville, S. 1996. Research Methodology, An introduction for science and engineering
students. Juta& Co. Ltd., ISBN 0-7021-3562-3 .

Merritt, S. M.. and Stix, A. 1997. Migrating from Pascal to C++ . Springer-Verlag New
York Inc. , ISBN 0-387-94730-2.

Naughton, P. 1996. The Java HandBook . Osborne McGraw-Hill, California, ISBN 0-07-
882199-1.

Olivier,M. S. 1997. Infor mation Technology Resear ch, A Practical Guide. Printedby MS

Olivier.

Philippakis, A. S. and Kazmier, L. J. 1987. Advanced COBOL . McGraw-Hill, United States
of America, 2™ Edition, ISBN 0-07-049813-X.

Reed Doke, E and Hardgrave B. C. 1999. Java for the COBOL Programmer . Cambridge
University Press, United Kingdom, ISBN 0521 65892 6.

Roberts, S. and Heller, P. and Ernest, M. 1999. Java™ 2 Certification Study Guide, Sybex
Inc., United States of America, ISBN: 0-7821-2700-2.

SABINET. 1999. www.sabinet.co.za accessed on 14 September 1999.

Savitch, W. 2001. Java, An Introduction to Computer Science. Prentice-Hall Inc. New
Jersey, 2™ edition, ISBN 0-13-031697-0.

Savitch, W. 1999. Java, An Introduction to Computer Science. Prentice-Hall Inc. New
Jersey, 1% edition, ISBN 0-13-287426-1.

Sebasta, R. W. 1993. Concepts of programming L anguages. The Benjamin/Cummings
Publishing Company Inc. , ISBN 0-8053-7136-3.

Sebasta, Robert W. 1999. Concepts of programming L anguages. Addison Wesley Longman
Inc., 4" edition, ISBN 0-201-38596-1. p 437

Stern, N. and Stern, R. A. 1991. Structured COBOL programming . John Wiley & Sons,
United States, 6™ edition, ISBN 0-471-53400-5.

Sun Microsystems. 2002. The Java™ L anguage: An Overview . Available at

http://java.sun.com/docs/overviews/javaljava-overview-1.html. (12 April 2002).

111

Swift, C. 1999. “The Rise of Java, Enlightening the Enterprise’, Network Times, Issue 104,
July 1999, Pg 25.
Van Stee, J.G., Clarke, D., Filani, D. Lenkov, D.Obin, R. 1993. Status of Object-Oriented

COBOL, a Pand discusson, Conference on Object-Oriented programming

systems, lanquages, and applications. (OOPSLA 1993), Eighth Annual

Conference. , published proceedings.

Welburn, T. 1981. Structured COBOL, Fundamentals and Style . Mayfield Publishing
Company, First Edition, ISBN 0-87484-543-2.

Welburn, T. 1983. Advanced Structured COBOL . Mayfield Publishing Company, First
Edition, ISBN 0-97484-558-0.

Welburn, T. 1983. Advanced Structured COBOL . Mayfield Publishing Company, First
Edition, ISBN 0-97484-558-0. Pg 6.

Welburn, T. and Price, W. 1995. Structured COBOL , Fundamentalsand Style . Mc Graw-
Hill, Cdifornia, 4™ Edition, ISBN 0-07-113544-8.

Wilson, L. B. and Clark, R.G. 1993. Compar ative Programming L anguages . Addison-
Wesley, 2" ed., ISBN 0-201-56885-3. p317.

Wigglesworth, J. and Lumby, P. 2000. Java ™ Programming Advanced Topics . Course
Technology: Thompson Learning, Canada, ISBN 0-7600-1098-6.

Y ourdon, E., Gane, C., Sarson, T. and Lister, T.R. 1979. L earning to Program in
Structured COBOL Parts1and 2., Prentice Hall, New Y ork, ISBN 0-13-527713-2.

112

APPENDIX A

L evels of Cohesion

Coincidental
Logica

Temporal
Procedural
Communicational

Sequential
Functional

Levels of Coupling

Content
Common
Externa
Control
Stamp
Data

I ndependence from other modules

Low

Low

Low
Medium
Medium
High
Very high

Coupling Attribute

High (or tight)
|

!
Low (or loose)

Desirability
Least desired

|
Most Desired

Desir ability

Least Desired

|
Most desired

APPENDIX A Pagelof 1

APPENDIX B Event driven program example, changing colors on the screen.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/***

*Simple demonstration of putting buttons in a panel. If you do
*not see the colored part of the window with text in it, use your
*mouse to increase the size of the window and it will appear.

***/

public class ColorPanel DemoTut6 extends JFrame implements ActionListener
{

public static final int WIDTH = 300;

public static final int HEIGHT = 200;

public static void main(String[] args)

{
ColorPanelDemoTut6 guiWithPanel = new ColorPanel DemoTut6();
guiWithPanel.setVisible(true);

}

public ColorPanelDemoTut6()

{
st Title("Color and Panel Demonstration™);
setSize(WIDTH, HEIGHT);
setBackground(Color.blue);
addWindowL istener(new WindowDestroyer());

Container newPane = getContentPane();

/I Create the panel to hold the six color buttons
/I Set the layout of the panel to gridLayout

JPanel buttonPanel = new JPanel();
buttonPanel .setL ayout(new GridLayout(3, 2));

Button redButton = new Button("Red");
redButton.setBackground(Col or.red);
redButton.addA ctionL istener(this);
buttonPanel .add(redButton);

Button greenButton = new Button("Green");
greenButton.setBackground(Color.green);
greenButton.addA ctionL istener(this);
buttonPanel .add(greenButton);

APPENDIX B Pagelof 3

Button pinkButton = new Button("Pink");
pinkButton.setBackground(Color.pink);
pinkButton.addA ctionListener(this);
buttonPanel .add(pinkButton);

Button yellowButton = new Button("Y ellow");
yellowButton.setBackground(Color.yellow);
yellowButton.addA ctionListener(this);
buttonPanel .add(yellowButton);

Button magentaButton = new Button("Magenta");
magentaB utton.setBackground(Col or.magenta);
magentaButton.addA ctionListener(this);
buttonPanel .add(magentaButton);

Button cyanButton = new Button("Cyan");
cyanButton.setBackground(Color.cyan);
cyanButton.addA ctionListener(this);
buttonPanel .add(cyanButton);

/I Add the panel to the top of the screen

newPane.setL ayout(new BorderLayout());
newPane.add(buttonPanel, "North™);

Button memoButton = new Button("Watch me change color");
memoButton.addA ctionL istener(this);
newPane.add(memoButton, " South");

public void actionPerformed(ActionEvent €)

{
Container newPane = getContentPane();

if (e.getActionCommand().equals("Red"))

{
newPane.setBackground(Color.red);

}
elseif (e.getActionCommand().equals("Green"))

{

newPane.setBackground(Color.green);

}
elseif (e.getActionCommand().equals("Pink"))

APPENDIX B Page2of 3

{
newPane.setBackground(Color.pink);

}
elseif (e.getActionCommand().equals("Y ellow"))

{

newPane.setBackground(Color.yellow);

}
elseif (e.getActionCommand().equals("Magenta'))

{

newPane.setBackground(Color.magenta);

}
elseif (e.getActionCommand().equals("Cyan"))

{

newPane.setBackground(Color.cyan);

}
}

APPENDIX B Page3of 3

APPENDIX C - Guess the number game.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/***

*The Guess a number game
***/
public class GuessNumber extends Frame implements ActionListener

, ltemListener

private Label messagel, message2, messages;
private TextField text2;

private int rNo;

private Button buttonl, button2;

private JCheckBox bold, italic;

private String s1, theText = "Watch me!";

public static final int WIDTH = 400;
public static final int HEIGHT = 300;

public static void main(String[] args)

{
GuessNumber guiGuessNumber = new GuessNumber();
guiGuessNumber.setVisible(true);

}

public GuessNumber()

{
setTitle(" Guess the number game');
setSize(WIDTH, HEIGHT);
setBackground(Color.cyan);
addWindowL istener(new WindowDestroyer());

setLayout(new GridLayout(3,1));
/l The third entry in the grid is for the background color

Panel descripPanel = new Panel();
descripPanel .setLayout(new BorderL ayout());

messagel = new Label ("l have a number between 1 and 1000");
message?2 = new Label("Can you guess my number?’);
message3 = new L abel ("Please enter your first guess:”);
descripPanel.add(messagel, "North");
descripPanel.add(message2, " Center");

descripPanel .add(messages, " South”);

APPENDIX C Page1 of

}

add(descripPandl);

Panel buttonPanel = new Panel();
buttonPanel .setLayout(new FlowLayout());

sl ="Start Game",

button1 = new Button(sl);
buttonl.addActionListener(this);
buttonPanel .add(buttonl);

button2 = new Button ("Am | right?");
button2.addA ctionL istener(this);
buttonPanel .add(button?2);

text2 = new TextField(10);
buttonPanel .add(text2);

bold = new JCheckBox("Bold"); /l this code is to test how a checkbox

bold.addItemListener(this); // works
italic = new JCheckBox("Italic");
italic.additemListener(this);

buttonPanel .add(bol d);

buttonPanel .add(italic);
add(buttonPanel);

[** Test for online help

Key in anumber of your choice

If you are close to the number
within 20, the screen will be red

If you are much lower than the number

the screen will be green

If you are much higher than the number

the screen will be orange

end of test */

APPENDIX C Page22of 4

public void actionPerformed(ActionEvent €)

{
if (e.getActionCommand().equals("Start Game™))

{
text2.setText("");
rNo = (int) (Math.random()* 1000 + 1);
buttonl.setVisible(false);
theText = "Y ou can start guessing now *“;
}
else
if (e.getActionCommand().equals("Am | right?"))
{ String s = text2.getText();
int val = Integer.parselnt(s);
int diff = Math.abs(val-rNo);
text2.setText("");
if(val <rNo)
{
setBackground(Color.green);
theText = "Too low";
message3 = new Label("Too low");
}
else if (va >rNo)
{
setBackground(Color.orange);
theText ="Too high";
}

else

{

setBackground(Color.cyan);
theText="YOU'VE GOT IT " +s;
text2.setText(s);
buttonl.setVisible(true);
}

if(diff < 20)
setBackground(Color.red);

repaint(); //force color and text change

}

public void itemStateChanged (ItemEvent €) // thisisfor a check box
{ Il event
if (e.getSource() ==bold)
if (e.getStateChange () == ItemEvent.SELECTED)
button2.setFont(new Font ("Serif", Font.BOLD , 12));

APPENDIX C Page3of 4

else
button2.setFont(new Font ("Serif", Font.PLAIN , 12));
if (e.getSource() ==italic)
if (e.getStateChange () == ItemEvent.SELECTED)
button2.setFont(new Font ("Serif", Font.ITALIC, 12));

else
button2.setFont(new Font ("Serif", Font.PLAIN , 12));
}
public void paint (Graphics g)
{
g.drawString(theText, 140, 280);
}

APPENDIX C Pagedof 4

APPENDIX D - MiniCalc, ademonstration of the NumberFormatException.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class MiniCalc extends JFrame implements ActionListener

{

public static final int WIDTH = 400;
public static final int HEIGHT = 300;

private JTextField theText, numberOne, numberTwo, numberAns,

private String helpMessage = "Enter a numeric value in Numberl and Number 2"
+"\n" +" and then select a numeric operation "
+ "\n the answer will then be displayed. \n";
private String theM essage = "Please enter Number 1, Number2 and select function.”;
private double n1, n2;

public MiniCalc()

{

setSize(WIDTH, HEIGHT);

addWindowL istener(new WindowDestroyer());
setTitle("Mini Calculator IW");

Container contentPane = getContentPane();
contentPane.setLayout(new BorderLayout());

JPanel textPanel = new JPanel();
textPanel .setBackground(Color.magenta);

theText = new JTextField(theM essage, 30);
theText.setBackground(Color.white);
theText.setEditable(false);

theText.setTool TipText("Y ou may not enter data here");

textPanel .add(theText);
contentPane.add(textPanel, BorderLayout. NORTH);

JPanel mainPand = new JPanel();
mainPanel .setBackground(Color.cyan);
mainPanel .setLayout(new GridLayout(4,1,5,10));

JPanel panelOne = new JPanel();

JLabel labelOne = new JLabel("Enter number 1");
numberOne = new JTextField(10);
numberOne.setEditable(true);

panel One.add(label One);

panel One.add(numberOne);

APPENDIX D Page 1 of

mainPanel.add(panel One);

JPanel panel Two = new JPanel();

JLabel label Two = new JLabel("Enter number 2");
numberTwo = new JTextField(10);
numberTwo.setEditable(true);

panel Two.add(label Two);

panel Two.add(numberTwo);

mainPanel .add(panel Two);

JPanel functionPanel = new JPanel();
functionPanel .setLayout(new GridLayout(1,5,5,10));

JButton bAdd = new JButton("+");
bAdd.addActionListener(this);
functionPanel .add(bAdd);

JButton bSub = new JButton("-");
bSub.addA ctionListener(this);
functionPanel .add(bSub);

JButton bMult = new JButton("X");
bMult.addA ctionListener(this);
functionPanel .add(bM ult);

JButton bDiv = new JButton("/");
bDiv.addA ctionListener(this);
functionPanel .add(bDiv);

JButton bClear = new JButton("Clear");
bClear.addActionListener(this);
functionPanel.add(bClear);

mainPanel .add(functionPanel);

JPanel panelAns = new JPanel();

JLabel 1abelAns = new JLabel ("Answer™);
numberAns = new JTextField(10);
numberAns.setEditable(false);

panel Ans.add(label Ans);

panel Ans.add(numberAns);
mainPanel.add(panel Ans);

contentPane.add(mainPanel, BorderLayout. CENTER);

JPanel buttonPanel = new JPanel();
buttonPanel .setBackground(Col or.blue);

APPENDIX D Page2of 4

buttonPanel .setLayout(new FlowLayout());

JButton exitButton = new JButton("Exit");
exitButton.addA ctionListener(this);

buttonPanel .add(exitButton);

JButton helpButton = new JButton("Help");
helpButton.addA ctionL istener(this);

buttonPanel .add(hel pButton);
contentPane.add(buttonPanel, BorderLayout. SOUTH);

}

public void actionPerformed(ActionEvent €)
{
String actionCommand = e.getActionCommand();
if (actionCommand.equals("+"))
{ convert();
numberAns.setText(Double.toString(nl+ n2));
}
elseif (actionCommand.equals("-"))
{ convert();
numberAns.setText(Double.toString(n1- n2));
}
elseif (actionCommand.equals("X"))
{ convert();
numberAns.setText(Double.toString(nl* n2));

}
elseif (actionCommand.equals("/"))

{
convert();
numberAns.setText(Double.toString(nl/ n2));
}
elseif (actionCommand.equas("Clear"))

{ numberOne.setText("");
numberTwo.setText("");
numberAns.setText("");
theText.setText(theM essage); }

else if (actionCommand.equals("Exit"))
System.exit(0);
elseif (actionCommand.equals("Help"))
JOptionPane.showM essageDial og(
null, helpM essage,"Help information”,
JOptionPane.NFORMATION_MESSAGE);
else
theText.setText("Error in memo interface™);
}

public static void main(String[] args)

APPENDIX D Page 3 of

{
MiniCalc guiMemo = new MiniCalc();
guiMemo.setVisible(true);

}
public void convert()
{
try
{
nl = Double.parseDouble(numberOne.getText());
}
catch (NumberFormatException €)
{
theText.setText("Number 1 must be numeric");
}
try
{
n2 = Double.parseDouble(numberTwo.getText());
}
catch (NumberFormatException e2)
{
theText.setText("Number 2 must be numeric");
}

APPENDIX D Page4of 4

APPENDIX E - JINDateConverter uses two programmer defined exception classes,
M onthExceptin and DayException. The use of the throws clause on the method header isaso
demonstrated.

/**
*

* File name: INDateConverter.java

*

* Converts numerical day/month/year format to a phabetic day month year.

* The date is also validated.

***/

public class INDateConverter
{
private static String input, s1, s2;//To be thrown away
private static int month, day, year;
private static int i, j;//month and day position of / separator
private static boolean validDay, validM onth;//Flag to convert or not
private static boolean isLeapYT;
private static char repeat;// Program do/while loop control
private static String[] monthName = {"January",
"February”,
"March",
"April",
"May",
"June’,
"duly”,
"August”,
" September”,
"October",
"November",
"December"};

public static void main(String[] args)

{
do // Repeat while user says'yes.

{
try
{

vaidMonth = false; // initialise boolean values for
vaidDay = false; // each execution of the loop
isLeapYr =fase

System.out.printin();

APPENDIX E Pagelof 7

System.out.println(" Enter the date (format dd/mm/yyyy)");
sl = Savitchin.readLing();
System.out.printin();

sl = sL.trim(); /I get rid of additional spaces

i = sLindexOf("/") + 1; // find the/ position

s2 =sl.substring(i); // and extract the day month year
] = s2.indexOf("/") + 1; // convert the strings to integers
day = Integer.valueOf(sl.substring(0, i-1)).intValue();
month = Integer.parsel nt(s1.substring(i, s1.length()-5));
year = Integer.parsel nt(s2.substring(j, j+4));

/I check for aleap year
isLeapYr = leap(year);

/I validate day
dayCheck();

[/l vaidate month
monthCheck();

if(validDay && vaidMonth)

{
System.out.printin();

System.out.printin("The dateis" + day + " " + monthName[month-1] + " " + year

}

dse

{
System.out.printin();

System.out.printin("The dateis invalid");

}
Hlend try block

catch(DayException €2)
{
System.out.printin();

System.out.println(e2.getM essage());
System.out.printin();

}

catch(MonthException el)

{
System.out.printin();

System.out.printin(el.getM essage());
System.out.printin();

APPENDIX E Page2of 7

}

System.out.printin();
System.out.printin("Again?y/n)");
repeat = Savitchln.readLineNonwhiteChar();

}while ((repeat =="y") || (repeat == "Y"));

}/end main

private static void monthCheck() throws MonthException
{
if(month < 0)
{
vaidMonth = false;
throw new MonthException
("Month format error: must be m/d with m from 1 to 12.");

}
elseif(month < 1 || month > 12)

{
vaidMonth = fase;

throw new M onthException(month);

}

dse //Vaid month
{

validMonth = true;
}

} 1/ end of monthCheck

private static boolean leap (int yr)
{ boolean leap = true;
if (yr%4!=0)
leap = fdsg;
else
if (yr% 100==0)
if (yr% 400==0)
leap = true;
ese
leap = false;
else
leap = true;
return leap;

}

private static void dayCheck() throws DayException
{

APPENDIX E Page3of 7

//Check for valid day
switch(month)
{
case 1:
case 3.
case 5:
case /.
case 8:
case 10:
case 12:
if(day <1 | day > 31)
{
vaidDay = false;
System.out.printin(*1 through 31 only, please.");
throw new DayException(month);
}

dse

{
vaidDay = true;

}
break;
case 4.
case 6:
case 9:
case 11:
if(day < 1| day > 30)
{
vaidDay = false;
System.out.printin(*1 through 30 only, please.");
throw new DayException(month);
}

else
{
validDay = true;
}
break;
case 2.
int noofdays = 28;
if (isLeapYr)
noofdays++;
if(day < 1 || day > noofdays)
{
vaidDay = false;
System.out.printin(*1 through 29 only, please.");
throw new DayException(month);
}

dse

APPENDIX E Page4of 7

{

vaidDay = true;
}
bresk;

default:

vaidDay = false;
System.out.printin("Invalid month in day-check.");
throw new

DayException("Impossible: Invalid month in day-check.");

}
}/lend dayCheck

}/end class

APPENDIX E Page5of 7

/**
*

* File name: MonthException.java

*

* Exception class that prints either a message passed by the caller

* or the default message that only 1 through 12 are legitimate

* numbers for a month.

***/

public class M onthException extends Exception

{
public M onthException()

{
}

public M onthException(int monthNumber)
{
super
(monthNumber + " isinvalid: month number must be from 1 to 12.");
}

public M onthException(String message)
{
super(message);
}
}

super(“Invalid input for month.");

APPENDIX E Page6of 7

/**
*

* File name: DayException.java

*

* Exception class that prints either a message passed by the caller

* or the default message that says the number of daysis out of range.

*

***/

public class DayException extends Exception

{
public DayException()

{
}

public DayException(int monthNumber)
{
super("Y ou have entered an invalid day for month number "
+ monthNumber);
}

public DayException(String message)
{
super(message);
}
}

super("Invalid entry for day.");

APPENDIX E Page7of 7

APPENDIX F - Guess the number game as an applet, followed by a small html file that runs
the applet.

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

/***

*The Guess a number game

***/

public class GuessNumberApplet extends Applet implements ActionListener
{

private Label messagel, message2, messages;

private TextField text2;

private int rNo;

private Button buttonl, button2;

private String s1, theText = "Watch me!";

/[*** The program code that is not required in the applet has been commented in order to
/I *** highlight the difference between a Java application and a Java applet.

/I public static final int WIDTH = 400;
/I public static final int HEIGHT = 300;

/I public static void main(String[] args)

I A

1l GuessNumber guiGuessNumber = new GuessNumber();
Il guiGuessNumber.setVisible(true);

I}

public void init()
{
Il setTitle(" Guess the number game™);
Il setSize(WIDTH, HEIGHT);
setBackground(Color.cyan);
Il addWindowL istener(new WindowDestroyer());

setLayout(new GridLayout(3,1));
/l The third entry in the grid is for the background color

Panel descripPanel = new Panel();
descripPanel .setLayout(new BorderL ayout());

messagel = new Label ("l have a number between 1 and 1000");

message?2 = new Label("Can you guess my number?');
message3 = new Label("Please enter your first guess:”);

APPENDIX F Pagelof 3

descripPanel.add(messagel, "North");
descripPanel.add(message2, " Center");
descripPanel .add(messages, " South”);

add(descripPandl);

Panel buttonPanel = new Panel();
buttonPanel .setLayout(new FlowLayout());

sl ="Start Game",

button1 = new Button(sl);
buttonl.addActionListener(this);
buttonPanel .add(buttonl);

button2 = new Button ("Am | right?");
button2.addA ctionL istener(this);
buttonPanel .add(button?2);

text2 = new TextField(10);
buttonPanel .add(text2);

add(buttonPanel);

public void actionPerformed(ActionEvent €)

{
if (e.getActionCommand().equals("Start Game™))

{
rNo = (int) (Math.random()* 1000 + 1);
buttonl.setVisible(false);
theText = "Y ou can start guessing now " ;
}
else
if (e.getActionCommand().equals("Am | right?"))
{ String s = text2.getText();
int val = Integer.parselnt(s);
int diff = Math.abs(val-rNo);
text2.setText("");
if(val <rNo)
{
setBackground(Color.green);
theText = "Too low";
message3 = new Label("Too low");
repaint();
}
else if (va >rNo)

APPENDIX F Page2of 3

{
setBackground(Color.orange);

theText ="Too high";
repaint();
}
ese{
setBackground(Color.cyan);
theText ="YOU'VE GOT IT " +s;
text2.setText(s);
buttonl.setVisible(true);
repaint();
}
if(diff <5){
setBackground(Color.red);
repaint();

repaint(); //force color and text change

}

public void paint (Graphics g)
{

}

g.drawString(theText, 40, 10);

GNum2.html - to view the applet through a browser, or using appletviewer

<HTML>

<HEAD>

<TITLE>

Guess the Number Game

</TITLE>

</HEAD>

<APPLET CODE="GuessNumberApplet.class’ WIDTH=400 HEIGHT=200>
</APPLET>

</HTML>

APPENDIX F Page3of 3

APPENDIX G - the GuessNumber.html file generated by javadoc.

<IDOCTYPE HTML PUBLIC"-//W3C//DTD HTML 4.0
Frameset//EN""http://www.w3.0rg/TR/REC-html40/frameset.dtd">
<!--NewPage-->

<HTML>

<HEAD>

<!-- Generated by javadoc on Mon Feb 04 09:25:55 GM T+02:00 2002 -->
<TITLE>

: Class GuessNumber

</TITLE>

<LINK REL ="stylesheet" TY PE="text/css" HREF="stylesheet.css' TITLE="Style">
</HEAD>

<BODY BGCOLOR="white">

<l-- ========== START OF NAVBAR ========== >
<!-- -->
<TABLE BORDER="0" WIDTH="100%" CELLPADDING="1" CELLSPACING="0">
<TR>
<TD COLSPAN=2 BGCOLOR="#EEEEFF"' CLASS="NavBarCdl1">
<!-- -->
<TABLE BORDER="0" CELLPADDING="0" CELLSPACING="3">
<TR ALIGN="center" VALIGN="top">
<TD BGCOL OR="#FFFFFF' CLASS="NavBarCdll1Rev"> & nbsp;Class& nbsp;</TD>
<TD BGCOLOR="#EEEEFF' CLASS="NavBarCdlI1"> Tree& nbsp;</TD>
<TD BGCOLOR="#EEEEFF' CLASS="NavBarCdlI1"> Deprecated& nbsp;</TD>
<TD BGCOLOR="#EEEEFF' CLASS="NavBarCdlI1"> Index& nbsp;</TD>
<TD BGCOLOR="#EEEEFF' CLASS="NavBarCdlI1"> Help& nbsp;</TD>
</TR>
</TABLE>
</TD>
<TD ALIGN="right" VALIGN="top" ROWSPAN=3>

</TD>
</TR>

<TR>
<TD BGCOLOR="white" CLASS="NavBarCell2">

APPENDIX G Pagelof 12

& nbsp;PREV CLASS& nbsp;

 NEXT CLASS</TD>

<TD BGCOLOR="white" CLASS="NavBarCell2">
FRAMES

& nbsp;NO

FRAMES</TD>

</TR>

<TR>

<TD VALIGN="top" CLASS="NavBarCelI3">
SUMMARY : INNER& nbsp;|& nbsp;

FIEL D& nbsp;|& nbsp;CONSTR& nbsp;|& nbsp;METHOD</TD>

<TD VALIGN="top" CLASS="NavBarCell3">

DETAIL: FIEL D& nbsp;|& nbsp;CONSTR& nbsp;|& nbsp;METHOD</TD>

</TR>

</TABLE>

<l-- END OF NAVBAR ->

Class GuessNumber</H2>
<PRE>
javalang.Object

|

+--java.awt.Component

+--java.awt.Container

+--java.awt.Window

+--java.awt.Frame

|

+--GuessNumber
</PRE>
<DL>
<DT>All Implemented Interfaces. <DD>javax.accessibility.Accessible,
java.awt.event.ActionListener, java.util.EventListener, java.awt.image.lmageObserver,
java.awt.MenuContainer, java.io.Serializable</DD>
</DL>
<HR>
<DL>
<DT>public class GuessNumber<DT>extends java.awt.Frame<DT>implements

APPENDIX G Page?2of 12

java.awt.event.ActionListener</DL>

<pP>

The Guess a number game

<pP>

<DL>

<DT>See Also: <DD>Seriaized Form</DL>
<HR>

<!-- -->
<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%">
<TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor">

<TD>Inner classes inherited from class java.awt.Frame</TD>

</TR>

<TR BGCOLOR="white" CLASS="TableRowColor">
<TD><CODE>java.awt.Frame.AccessibleAWTFrame</CODE></TD>

</TR>

</TABLE>

& nbsp;<!-- -->
<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%">
<TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor">

<TD>Inner classes inherited from class java.awt.Window</TD>

</TR>

<TR BGCOLOR="white" CLASS="TableRowColor">
<TD><CODE>java.awt.Window.A ccessibleAWTWindow</CODE></TD>

</TR>

</TABLE>

& nbsp;<!-- -->
<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%">
<TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor">

<TD>Inner classes inherited from class java.awt.Container</TD>

</TR>

<TR BGCOLOR="white" CLASS="TableRowColor">
<TD><CODE>java.awt.Container.AccessibleAWTContainer</CODE></TD>

</TR>

</TABLE>

& nbsp;<!--
--><[A>

<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%">
<TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor">

<TD>Inner classes inherited from class java.awt.Component</TD>

</TR>

<TR BGCOLOR="white" CLASS="TableRowColor">

APPENDIX G Page3of 12

<TD><CODE>java.awt.Component.A ccessibleAWTComponent</CODE></TD>
</TR>

</TABLE>

& nbsp;

<I-- FIELD SUMMARY -->

<!-- -->

<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%'">
<TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor">

<TD COLSPAN=2>

Field Summary</TD>

</TR>

<TR BGCOLOR="white" CLASS="TableRowColor">

<TD ALIGN="right" VALIGN="top" WIDTH="1%">
<CODE>static& nbsp;int</CODE></TD>

<TD><CODE>HEIGHT</CODE>

& nbsp; & Nbsp; & nbsp; & nbsp; & Nbsp; & Nbsp; & nbsp; & nbsp; & Nbsp; & nbsp; & nbsp;</TD>
</TR>

<TR BGCOLOR="white" CLASS="TableRowColor">

<TD ALIGN="right" VALIGN="top" WIDTH="1%">
<CODE>static& nbsp;int</CODE></TD>

<TD><CODE>WIDTH</CODE>

& nbsp; & Nbsp; & nbsp; & nbsp; & Nbsp; & Nbsp; & nbsp; & nbsp; & Nbsp; & nbsp; & nbsp;</TD>
</TR>

</TABLE>

& nbsp;<!-- -->
<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%">
<TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor">

<TD>Fields inherited from class java.awt.Frame</TD>

</TR>

<TR BGCOLOR="white" CLASS="TableRowColor">
<TD><CODE>CROSSHAIR_CURSOR, DEFAULT_CURSOR, E RESIZE CURSOR,
HAND_ CURSOR, ICONIFIED, MOVE_CURSOR, N_RESIZE CURSOR,

NE RESIZE CURSOR, NORMAL, NW_RESIZE CURSOR, S RESIZE CURSOR,
SE RESIZE CURSOR, SW_RESIZE CURSOR, TEXT_CURSOR,
W_RESIZE_CURSOR, WAIT_CURSOR</CODE></TD>

</TR>

</TABLE>

& nbsp;<!-- -->
<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%">
<TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor">

APPENDIX G Page4 of 12

<TD>Fields inherited from class java.awt.Component</TD>

</TR>

<TR BGCOLOR="white" CLASS="TableRowColor">
<TD><CODE>BOTTOM_ALIGNMENT, CENTER_ALIGNMENT,
LEFT_ALIGNMENT, RIGHT_ALIGNMENT, TOP_ALIGNMENT</CODE></TD>
</TR>

</TABLE>

& nbsp;<!--
--><[A>

<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%">
<TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor">

<TD>Fields inherited from interface java.awt.image.lmageObserver</TD>
</TR>

<TR BGCOLOR="white" CLASS="TableRowColor">

<TD><CODE>ABORT, ALLBITS, ERROR, FRAMEBITS, PROPERTIES,
SOMEBITS</CODE></TD>

</TR>

</TABLE>

& nbsp;

<!-- -->

<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%">
<TR BGCOL OR="#CCCCFF"' CLASS="TableHeadingColor">

<TD COLSPAN=2>

Constructor Summary</TD>

</TR>

<TR BGCOLOR="white" CLASS="TableRowColor">

<TD><CODE>GuessNumber()</CODE>

& nbsp; & Nbsp; & nbsp; & nbsp; & Nbsp; & Nbsp; & nbsp; & nbsp; & Nbsp; & nbsp; & nbsp;</TD>
</TR>

</TABLE>

& nbsp;

<l-- ========== METHOD SUMMARY -->

<!-- -->

<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%">
<TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor">

<TD COLSPAN=2>

Method Summary</TD>

</TR>

<TR BGCOLOR="white" CLASS="TableRowColor">

<TD ALIGN="right" VALIGN="top" WIDTH="1%">

<CODE>& nbsp;void</CODE></TD>

APPENDIX G Page5of 12

<TD><CODE>actionPerform
ed(java.awt.event.ActionEvent& nbsp;e)</CODE>

& nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; Test for online help

Key in anumber of your choice

If you are close to the number
within 20, the screen will be red

If you are much lower than the number
the screen will be green

If you are much higher than the number
the screen will be orange

end of test</TD>

</TR>

<TR BGCOLOR="white" CLASS="TableRowColor">

<TD ALIGN="right" VALIGN="top" WIDTH="1%">
<CODE>static& nbsp;void</CODE></TD>

<TD><CODE>main(java.lang.String[] &
nbsp;args)</CODE>

& nbsp; & Nbsp; & nbsp; & nbsp; & Nbsp; & Nbsp; & nbsp; & nbsp; & Nbsp; & nbsp; & nbsp;</TD>
</TR>

<TR BGCOLOR="white" CLASS="TableRowColor">

<TD ALIGN="right" VALIGN="top" WIDTH="1%">

<CODE>& nbsp;void</CODE></TD>

<TD><CODE>paint(java.awt.Graphics
& nbsp;g)</CODE>

& nbsp; & Nbsp; & nbsp; & nbsp; & Nbsp; & Nbsp; & nbsp; & nbsp; & Nbsp; & nbsp; & nbsp;</TD>
</TR>

</TABLE>

& nbsp;<!-- -->
<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%">
<TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor">

<TD>Methods inherited from class java.awt.Frame</TD>

</TR>

<TR BGCOLOR="white" CLASS="TableRowColor">

APPENDIX G Page6 of 12

<TD><CODE>addNotify, finalize, getAccessibleContext, getCursorType, getFrames,
getlconlmage, getMenuBar, getState, getTitle, isResizable, paramString, remove,
removeNotify, setCursor, setlconlmage, setMenuBar, setResizable, setState,
setTitle</CODE></TD>

</TR>

</TABLE>

& nbsp;<!-- -->
<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%">
<TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor">

<TD>Methods inherited from class java.awt.Window</TD>

</TR>

<TR BGCOLOR="white" CLASS="TableRowColor">

<TD><CODE>addWindowL istener, applyResourceBundle, applyResourceBundle, dispose,
getFocusOwner, getGraphicsConfiguration, getlnputContext, getListeners, getL ocale,
getOwnedWindows, getOwner, getToolkit, getWarningString, hide, isShowing, pack,
postEvent, processEvent, processWindowEvent, removeWindowL istener, setCursor, show,
toBack, toFront</CODE></TD>

</TR>

</TABLE>

& nbsp;<!-- -->
<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%">
<TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor">

<TD>Methods inherited from class java.awt.Container</TD>

</TR>

<TR BGCOLOR="white" CLASS="TableRowColor">

<TD><CODE>add, add, add, add, add, addContainerListener, addimpl, countComponents,
deliverEvent, doLayout, findComponentAt, findComponentAt, getAlignmentX,
getAlignmentY, getComponent, getComponentAt, getComponentAt, getComponentCount,
getComponents, getlnsets, getL ayout, getM aximumSize, getMinimumSize,
getPreferredSize, insets, invalidate, isAncestorOf, layout, ligt, list, locate, minimumSize,
paintComponents, preferredSize, print, printComponents, processContainerEvent, remove,
remove, removeAll, removeContainerListener, setFont, setLayout, update, validate,
validateTree</CODE></TD>

</TR>

</TABLE>

& nbsp;<!-- -->
<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%">
<TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor">

<TD>Methods inherited from class java.awt.Component</TD>

</TR>

<TR BGCOLOR="white" CLASS="TableRowColor">

<TD><CODE>action, add, addComponentL istener, addFocusL istener,
addHierarchyBoundsListener, addHierarchyL istener, addInputM ethodL istener,
addK eyL istener, addM ouseL istener, addM ouseM otionL istener,

addPropertyChangeL istener, addPropertyChangeL istener, bounds, checklmage,
checklmage, coal esceEvents, contains, contains, createlmage, createlmage, disable,
disableEvents, dispatchEvent, enable, enable, enableEvents, enablel nputM ethods,

APPENDIX G Page7 of 12

firePropertyChange, getBackground, getBounds, getBounds, getColorModel,
getComponentOrientation, getCursor, getDropTarget, getFont, getFontM etrics,
getForeground, getGraphics, getHeight, getlnputM ethodRequests, getL ocation,

getL ocation, getL ocationOnScreen, getName, getParent, getPeer, getSize, getSize,
getTreeLock, getWidth, getX, getY, gotFocus, handleEvent, hasFocus, imageUpdate,
inside, isDisplayable, isDoubleBuffered, isEnabled, isFocusTraversable, isLightweight,
isOpague, isValid, isVisible, keyDown, keyUp, ligt, ligt, list, location, lostFocus,
mouseDown, mouseDrag, mouseEnter, mouseExit, mouseM ove, mouseUp, move,
nextFocus, paintAll, preparelmage, preparelmage, printAll, processComponentEvent,
processFocusEvent, processHierarchyBoundsEvent, processHierarchyEvent,

processl nputM ethodEvent, processk eyEvent, processM ouseEvent,

processM ouseM otionEvent, removeComponentL istener, removeFocusListener,
removeHierarchyBoundsL istener, removeHierarchyL istener, removel nputM ethodL istener,
removeK eyL istener, removeM ousel istener, removeM ouseM otionListener,
removePropertyChangeL istener, removePropertyChangeL istener, repaint, repaint, repaint,
repaint, requestFocus, reshape, resize, resize, setBackground, setBounds, setBounds,
setComponentOrientation, setDropTarget, setEnabled, setForeground, setL ocale,
setl ocation, setlocation, setName, setSize, setSize, setVisible, show, size, toString,
transferFocus</CODE></TD>

</TR>

</TABLE>

& nbsp;<!-- -->
<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%">
<TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor">
<TD>Methods inherited from class java.lang.Object</TD>

</TR>

<TR BGCOLOR="white" CLASS="TableRowColor">

<TD><CODE>clone, equals, getClass, hashCode, notify, notifyAll, wait, wait,
wait</CODE></TD>

</TR>

</TABLE>

& nbsp;<!--
--><[A>

<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%">
<TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor">
<TD>Methods inherited from interface java.awt.MenuContainer</TD>
</TR>

<TR BGCOLOR="white" CLASS="TableRowColor">

<TD><CODE>getFont, postEvent</CODE></TD>

</TR>

</TABLE>

& nbsp;

<p>

<l-- FIELD DETAIL -->

<!-- -->

APPENDIX G Page8of 12

<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%">
<TR BGCOLOR="#CCCCFF"' CLASS="TableHeadingColor">

<TD COLSPAN=1>

Field Detail</TD>

</TR>

</TABLE>

<!-- --><H3>
WIDTH</H3>

<PRE>

public static final int WIDTH</PRE>
<DL>

</DL>

<HR>

<!-- --><H3>
HEIGHT</H3>

<PRE>

public static final int HEIGHT</PRE>

<DL>

</DL>

<l-- ========= CONSTRUCTOR DETAIL ======== -->

<!-- -->

<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%">
<TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor">

<TD COLSPAN=1>

Constructor Detail</TD>

</TR>

</TABLE>

<!-- --><H3>
GuessNumber</H3>

<PRE>

public GuessNumber()</PRE>

<DL>

</DL>

<I-- METHOD DETAIL ==========-->

<!-- -->

<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%">
<TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor">

<TD COLSPAN=1>

Method Detail</TD>

</TR>

APPENDIX G Page9of 12

</TABLE>

<!-- --><H3>

main</H3>

<PRE>

public static void main(java.lang.String[]& nbsp;args)</PRE>
<DL>

<DD><DL>

</DL>

</DD>

</DL>

<HR>

<!-- --><H3>
actionPerformed</H3>

<PRE>

public void actionPerformed(java.awt.event.ActionEvent& nbsp;e)</PRE>
<DL>

<DD>Test for online help

Key in anumber of your choice

If you are close to the number
within 20, the screen will be red

If you are much lower than the number
the screen will be green

If you are much higher than the number
the screen will be orange

end of test<DD><DL >

<DT>Specified by: <DD><CODE>actionPerformed</CODE> in interface
<CODE>java.awt.event.ActionListener</CODE></DL >

</DD>

</DL>

<HR>

<!-- --><H3>
paint</H3>

<PRE>

public void paint(java.awt.Graphics& nbsp;g)</PRE>
<DL>

<DD><DL>
<DT>Overrides.<DD><CODE>paint</CODE> in class
<CODE>java.awt.Container</CODE></DL >

</DD>

APPENDIX G Pagel10of 12

<l-- ========= END OF CLASS DATA =========-->
<HR>
<l-- ========== START OF NAVBAR ========== >

<!-- -->
<TABLE BORDER="0" WIDTH="100%" CELLPADDING="1" CELLSPACING="0">
<TR>
<TD COLSPAN=2 BGCOLOR="#EEEEFF"' CLASS="NavBarCdl1">
<!-- -->
<TABLE BORDER="0" CELLPADDING="0" CELLSPACING="3">
<TR ALIGN="center" VALIGN="top">
<TD BGCOL OR="#FFFFFF' CLASS="NavBarCdll1Rev"> & nbsp;Class& nbsp;</TD>
<TD BGCOLOR="#EEEEFF' CLASS="NavBarCdlI1"> Tree& nbsp;</TD>
<TD BGCOLOR="#EEEEFF' CLASS="NavBarCdlI1"> Deprecated& nbsp;</TD>
<TD BGCOLOR="#EEEEFF' CLASS="NavBarCdlI1"> Index& nbsp;</TD>
<TD BGCOLOR="#EEEEFF' CLASS="NavBarCdlI1"> Help& nbsp;</TD>
</TR>
</TABLE>
</TD>
<TD ALIGN="right" VALIGN="top" ROWSPAN=3>

</TD>
</TR>

<TR>

<TD BGCOLOR="white" CLASS="NavBarCell2">

& nbsp;PREV CLASS& nbsp;

 NEXT CLASS</TD>

<TD BGCOLOR="white" CLASS="NavBarCell2">
FRAMES

& nbsp;NO

FRAMES</TD>

</TR>

<TR>

<TD VALIGN="top" CLASS="NavBarCelI3">
SUMMARY : INNER& nbsp;|& nbsp;

APPENDIX G Pagellof 12

FIEL D& nbsp;|& nbsp;CONSTR& nbsp;|& nbsp;METHOD</TD>

<TD VALIGN="top" CLASS="NavBarCelI3">
DETAIL: FIEL D& nbsp;|& nbsp;CONSTR& nbsp;|& nbsp;METHOD</TD>

</TR>

</TABLE>

<l-- END OF NAVBAR >

<HR>

</BODY >
</HTML>

APPENDIX G Pagel12of 12

APPENDIX H - Example Control Break Report, written in COBOL, from Mrs. C R White,
Department of Computer Studies, Technikon Natal.

IDENTIFICATION DIVISION.

PROGRAM-ID. DS1-EXAM-98.

AUTHOR. CRWHITE.

DATE-WRITTEN. 26 SEPTEMBER 1996 (modified 10 Sept '98).

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT SALES-FILE ASSIGN TO DISK
"O6ASS12.DAT"
ORGANIZATION ISLINE SEQUENTIAL.
SELECT REPORT-FILE ASSIGN TO PRINTER
"EXAM.RPT".

DATA DIVISION.
FILE SECTION.
FD SALESFILE
RECORD CONTAINS 80 CHARACTERS
DATA RECORD IS SALES-REC.
01 SALESREC.
02 DEPT-NUM-SR PIC 9(4).
02 PIC X.
02 TRANS-DATE-SR PIC 9(6).
02 PIC X.
02 AMOUNT-SR PIC 9(3)V99.
02 PIC X(63).

FD REPORT-FILE
RECORD CONTAINS 80 CHARACTERS
DATA RECORD IS REPORT-REC.

01 REPORT-REC PIC X(80).

WORKING-STORAGE SECTION.
01 HEADING-REC.
02 DATE-HR.
05 DAY-HR PIC 99.
05 MONTH-HR PIC 99.
05 YEAR-HR PIC 9999.
02 PIC X(14) VALUE SPACES.
02 PIC X(28)
VALUE "XYZ WHOLESALE SUPPLY COMPANY".

APPENDIX H Pagelof 7

02 PIC X(09) VALUE SPACES.

02 PIC X(05) VALUE "PAGE ".
02 PAGE-NUM-HR PIC Z9.
02 PIC X(12) VALUE SPACES.
01 COL-HEADING-REC.
02 PIC X(03) VALUE SPACES,
02 PIC X(08) VALUE "DEPT NUM".
02 PIC X(03) VALUE SPACES,
02 PIC X(10) VALUE "TRANS DATE".
02 PIC X(03) VALUE SPACES,
02 PIC X(12) VALUE "ORDER AMOUNT".
02 PIC X(41) VALUE SPACES,
01 DETAIL-LINE.
02 PIC X(05) VALUE SPACES.
02 DEPT-NUM-DL PIC9(4) BLANK WHEN ZERO.
02 PIC X(6) VALUE SPACES.
02 TRANS-DATE-DL PIC 99/99/99.
02 PIC X(7) VALUE SPACES.
02 AMOUNT-DL PIC $(3)9.99.
02 PIC X(43) VALUE SPACES,
01 DEPT-TOTALS.
02 PIC X(15) VALUE SPACES.
02 PIC X(30)

VALUE "TOTAL AMOUNT FOR DEPARTMENT: ".
02 DEPT-NUM-DT PIC 9999.
02 TOT-AMOUNT-DT PIC $(5)9.99.

02 PIC X(22) VALUE SPACES,
01 TOTAL-LINE.

02 PIC X(34) VALUE SPACES.

02 PIC X(15)

VALUE "COMPANY TOTAL: ".
02 TOT-AMOUNT-TL PIC $(6)9.99.
02 PIC X(22) VALUE SPACES.

01 ACCUMULATED-TOTALS.

02 DEPT-TOTAL-WS PIC 9(5V99 VALUE ZERO.

02 COMPANY-TOTAL-WS PIC9(6)V99 VALUE ZERO.
01 CALCULATION-FIELDS.

02 PAGE-NUM-WS PIC99 VALUE 0L

02 DEPT-COUNT-WS PIC9 VALUE Q0.

01 DATE-WS.

APPENDIX H Page2of 7

02 YEAR-WS PIC 99.
02 MONTH-WS PIC 99.
02 DAY-WS PIC 99.

01 HOLD-DEPT-NUM PIC 9(4).

01 FLAGS.
02 DEPT-FLAG PIC XXX VALUE"YES".
88 FIRST-RECORD VALUE"YES'.
02 ARE-THERE-MORE-RECORDS PIC XXX VALUE"YES".
88 END-OF-FILE VALUE"NO".
88 MORE-RECORDS VALUE"YES'.

PROCEDURE DIVISION.

100-MAIN-MODULE.
PERFORM 200-INITIALIZE.
PERFORM 300-PROCESS-A-RECORD
UNTIL END-OF-FILE.
PERFORM 700-WRITE-TOTALS.
CLOSE SALES-FILE,
REPORT-FILE.
STOP RUN.

200-INITIALIZE.
OPEN INPUT SALES-FILE
OUTPUT REPORT-FILE.
PERFORM 400-READ-A-REC.
MOVE DEPT-NUM-SR TO HOLD-DEPT-NUM.
PERFORM 250-GET-DATE.
PERFORM 500-HEADING-RTN.

250-GET-DATE.
ACCEPT DATE-WS FROM DATE.
MOVE DAY-WSTO DAY-HR.
MOVE MONTH-WS TO MONTH-HR.
IFYEAR-WS< 97
ADD 2000 TO YEAR-WS GIVING YEAR-HR
ELSE
ADD 1900 TO YEAR-WS GIVING YEAR-HR.

300-PROCESS-A-RECORD.
PERFORM 350-DETAIL-LINE
UNTIL (END-OF-FILE)
OR (HOLD-DEPT-NUM NOT EQUAL TO DEPT-NUM-SR).

APPENDIX H Page3of 7

PERFORM 350-TOTAL-A-DEPARTMENT.

350-DETAIL-LINE.
ADD AMOUNT-SR TO DEPT-TOTAL-WS.
PERFORM 400-WRITE-DETAIL-LINE.
PERFORM 400-READ-A-REC.

350-TOTAL-A-DEPARTMENT.
ADD 1 TO DEPT-COUNT-WS.
ADD DEPT-TOTAL-WSTO COMPANY-TOTAL-WS.
MOVE DEPT-TOTAL-WSTO TOT-AMOUNT-DT.
WRITE REPORT-REC FROM DEPT-TOTALS
AFTER ADVANCING 2 LINES.
MOVE SPACES TO REPORT-REC.
WRITE REPORT-REC.
IF MORE-RECORDS
IF DEPT-COUNT-WS =2
PERFORM 500-HEADING-RTN
MOVE ZERO TO DEPT-COUNT-WS
END-IF
MOVE"YES' TO DEPT-FLAG
MOVE ZERO TO DEPT-TOTAL-WS
MOVE DEPT-NUM-SR TO HOLD-DEPT-NUM.

400-WRITE-DETAIL-LINE.
PERFORM 450-MOVE-DATA.
WRITE REPORT-REC FROM DETAIL-LINE.

400-READ-A-REC.
READ SALES-FILE
AT END MOVE "NO " TO ARE-THERE-MORE-RECORDS.

450-MOVE-DATA.
|F FIRST-RECORD
MOVE DEPT-NUM-SR TO DEPT-NUM-DL
MOVE"NO" TO DEPT-FLAG
ELSE MOVE ZEROS TO DEPT-NUM-DL.
MOVE TRANS-DATE-SR TO TRANS-DATE-DL.
MOVE AMOUNT-SR TO AMOUNT-DL.

500-HEADING-RTN.
MOVE PAGE-NUM-WS TO PAGE-NUM-HR.
IF PAGE-NUM-WS =01
WRITE REPORT-REC FROM HEADING-REC
ELSE WRITE REPORT-REC FROM HEADING-REC
AFTER ADVANCING PAGE.

APPENDIX H Page4of 7

ADD 1 TO PAGE-NUM-WS.
PERFORM 600-WRITE-COL-HEADING.

600-WRITE-COL-HEADING.
WRITE REPORT-REC FROM COL-HEADING-REC
AFTER ADVANCING 2 LINES.
WRITE REPORT-REC FROM SPACES.

700-WRITE-TOTALS.
PERFORM 750-MOVE-TOTALS.
WRITE REPORT-REC FROM TOTAL-LINE
AFTER ADVANCING 2 LINES.
MOVE SPACES TO REPORT-REC.
WRITE REPORT-REC AFTER 2.

750-MOVE-TOTALS.

MOVE COMPANY-TOTAL-WSTO TOT-AMOUNT-TL.

APPENDIX H Page5of 7

30/06/2002 XYZ WHOLESALE SUPPLY COMPANY PAGE 1
DEPT NUM TRANSDATE ORDER AMOUNT

1000 01/03/91 $100.00
01/03/91 $120.00
01/03/91 $30.00
01/04/91 $44.00
01/04/91 $5.90
01/05/91 $234.00

TOTAL AMOUNT FOR DEPARTMENT: $533.90
2000 01/03/91 $200.00
01/03/91 $234.00
01/04/91 $340.00

TOTAL AMOUNT FOR DEPARTMENT: $774.00

APPENDIX H Page6of 7

30/06/2002 XYZ WHOLESALE SUPPLY COMPANY PAGE 2
DEPT NUM TRANSDATE ORDER AMOUNT
3000 01/04/91 $200.00
01/04/91 $39.99
01/05/91 $44.00
TOTAL AMOUNT FOR DEPARTMENT: $283.99
4000 01/03/91 $50.00

TOTAL AMOUNT FOR DEPARTMENT: $50.00

COMPANY TOTAL: $1641.89

APPENDIX H Page7of 7

APPENDIX | - Java Data Class for the Control Break Report Program

/I SalesRecord.java

/I SalesRecord class for the Control BreakReport.
import java.io.*;

import javautil.*;

public class SalesRecord {
private String lineg;
private int departmentNumber;
private String saleDate;
private double saleAmount;

/I Read a sales record from the specified file

public void read(BufferedReader file) throws | OException
{

line = null;
line = filereadLing();
if (line!=null)

{
System.out.printin(line);

StringT okenizer fieldFinder = new StringTokenizer(line);
departmentNumber = Integer.parsel nt((fieldFinder.nextToken()).trim());
saleDate = fieldFinder.nextToken();

saleAmount = Doubl e.parseDoubl &((fieldFinder.nextToken()).trim()) / 100 ;

}
}

public void setLine(String In) { line=1n; }

public String getLine() { return line; }

public void setDepartmentNumber(int a) { departmentNumber = a; }
public int getDepartmentNumber() { return departmentNumber; }
public void setSaleDate(String d) { sdleDate =d; }

public String getSaleDate() { return saleDate; }

public void setSaleAmount(double a) { sdleAmount = a; }

public double getSaleAmount() { return saleAmount; }

APPENDIX | Pagelof 1

APPENDIX J- The Java Processing Class to create the control break report.

/I WriteSalesReport.java
/I This program through a Text file of sale recordsto print a control break report.

import java.io.*;

import java.util.*;
import javatext.NumberFormat;

public class WriteSal esReport
{

/I use the class SaesRecord to define the data, and access the records
private SalesRecord salesData;

private BufferedReader inputStream,;

private PrintWriter outputStream;

int holdDepartmentNumber;

Date toDay = new Date();

int pageNo = 0;

int deptCount = 0;

double deptTotal = 0;

double companyTotal = 0;

boolean firstRecord = true;

NumberFormat moneyFormat = NumberFormat.getCurrencylnstance (Locale.US));

public static void main(String args]])
{

WriteSalesReport rep = new WriteSal esReport();
rep.writeReport();
}

/* 100-MAIN-MODULE.
PERFORM 200-INITIALIZE.
PERFORM 300-PROCESS-A-RECORD

APPENDIX J Pagelof 9

UNTIL END-OF-FILE.
PERFORM 700-WRITE-TOTALS.
CLOSE SALES-FILE,

REPORT-FILE.
STOP RUN.
*/
public void writeReport()
{

salesData = new SalesRecord();
/I Open the text file, and report file
initialise();
try {

while (salesData.getLing() != null)
{
processReport();

}
companyTotals();

closeFiles();

}

catch(IOException €)

{
System.out.printin("Error reading from text file 96ASS12.DAT"),
}

}

* 200-INITIALIZE.
OPEN INPUT SALES-FILE
OUTPUT REPORT-FILE.
PERFORM 400-READ-A-REC.
MOVE DEPT-NUM-SR TO HOLD-DEPT-NUM.
PERFORM 250-GET-DATE.
PERFORM 500-HEADING-RTN.
*/

public void initialis()
{

APPENDIX J Page2of 9

try {

inputStream = new BufferedReader(new FileReader("96ASS12.DAT"));

outputStream = new PrintWriter(new FileOutputStream(* cbreport.txt™));
try {
salesData.read(inputStream);

holdDepartmentNumber = salesData.getDepartmentNumber();
printHeading();

}
catch(IOException €)
{
System.out.printin("Error reading from text file 96ASS12.DAT"),
}

}
catch(FileNotFoundException €)
{

System.out.printin(" Text file cannot be found - 96ASS12.DAT");
}

public void closeFiles()
{
try {
inputStream.close();
outputStream.close();

}
catch(IOException €)

{

System.out.printIn(" Files cannot be closed");
}

}
/*
300-PROCESS-A-RECORD.
PERFORM 350-DETAIL-LINE
UNTIL (END-OF-FILE)

OR (HOLD-DEPT-NUM NOT EQUAL TO DEPT-NUM-SR).
PERFORM 350-TOTAL-A-DEPARTMENT.
*/

public void processReport() throws |OException
{

while ((holdDepartmentNumber == salesData.getDepartmentNumber())
& & (salesData.getLing() '=null))
{

detail Line();

APPENDIX J Page3of 9

}
departmentTotal ();

}

I* 350-DETAIL-LINE.
ADD AMOUNT-SR TO DEPT-TOTAL-WS.
PERFORM 400-WRITE-DETAIL-LINE.
PERFORM 400-READ-A-REC.
*/
public void detailLine() throws |OException

{
deptTotal += salesData.getSaleAmount();
printDetailLine();
salesData.read(inputStream);

}

[* 500-HEADING-RTN.
MOVE PAGE-NUM-WS TO PAGE-NUM-HR.
IF PAGE-NUM-WS =01
WRITE REPORT-REC FROM HEADING-REC
ELSE WRITE REPORT-REC FROM HEADING-REC
AFTER ADVANCING PAGE.
ADD 1 TO PAGE-NUM-WS.
PERFORM 600-WRITE-COL-HEADING.
*/

public void printHeading()
{
pageNo++;
outputStream.printin("\f" + toDay.getDay() + "/" +(toDay.getMonth() + 1) + "/"+ (
toDay.getY ear() +1900)
+" "+ "XYZ WHOLESALE SUPPLY
COMPANY" +
" "+ "PAGE" +" "+ pageNo);
columnHeading();

}

I* 600-WRITE-COL-HEADING.
WRITE REPORT-REC FROM COL-HEADING-REC
AFTER ADVANCING 2 LINES.
WRITE REPORT-REC FROM SPACES.
*/

public void columnHeading()
{

outputStream.printin(" ");
outputStream.printin(" "+ "DEPT NUM"+" "+ "TRANS DATE"+" "+

APPENDIX J Page4of 9

"ORDER AMOUNT");
outputStream.printin(" ");

}

/*
250-GET-DATE.

ACCEPT DATE-WS FROM DATE.

MOVE DAY-WSTO DAY-HR.

MOVE MONTH-WS TO MONTH-HR.

IFYEAR-WS< 97

ADD 2000 TO YEAR-WS GIVING YEAR-HR

ELSE ADD 1900 TO YEAR-WS GIVING YEAR-HR.

*/

public void departmentTotal ()
{
deptCount++;
companyTotal += deptTotal;
outputStream.printin(" ");
outputStream.print(" "+"TOTAL AMOUNT FOR DEPARTMENT");
outputStream.printin(" "+ moneyFormat.format(deptTotal));
outputStream.printin();
outputStream.printin();
if ((salesData.getLing() !=null) && (deptCount==2))
{
printHeading();
deptCount = 0;
}
holdDepartmentNumber = salesData.getDepartmentNumber();
deptTotal = 0;
firstRecord = true;

}

* 350-TOTAL-A-DEPARTMENT.
ADD 1 TO DEPT-COUNT-WS.
ADD DEPT-TOTAL-WSTO COMPANY-TOTAL-WS.
MOVE DEPT-TOTAL-WSTO TOT-AMOUNT-DT.
WRITE REPORT-REC FROM DEPT-TOTALS
AFTER ADVANCING 2 LINES.
IF MORE-RECORDS
IF DEPT-COUNT-WS =2
PERFORM 500-HEADING-RTN
MOVE ZERO TO DEPT-COUNT-WS
END-IF
MOVE"YES' TO DEPT-FLAG

APPENDIX J Page5of 9

MOVE ZERO TO DEPT-TOTAL-WS
MOVE DEPT-NUM-SR TO HOLD-DEPT-NUM.

400-WRITE-DETAIL-LINE.
PERFORM 450-MOVE-DATA.
WRITE REPORT-REC FROM DETAIL-LINE.

*/
public void printDetailLine()
{
if (firstRecord)

{

outputStream.print(" " + salesData.getDepartmentNumber());

String salesDate = salesData.getSaleDate();

outputStream.print(" "+ salesDate.substring(0, 2) + "/);

outputStream.print(salesDate.substring(2, 4) + "/"+ salesDate.substring(4, 6));

outputStream.printin(" "+ moneyFormat.format(salesData.getSaleAmount()
));

firstRecord = false;

}

else

{

outputStream.print(" "+ ");

String salesDate = salesData.getSaleDate();

outputStream.print(" "+ salesDate.substring(0, 2) + "/);

outputStream.print(salesDate.substring(2, 4) + "/"+ salesDate.substring(4, 6));

outputStream.printin(" "+ moneyFormat.format(sal esData.getSaleA mount())
);

}

}

* 400-READ-A-REC.
READ SALES-FILE
AT END MOVE "NO " TO ARE-THERE-MORE-RECORDS.

450-MOVE-DATA.
IF FIRST-RECORD
MOVE DEPT-NUM-SR TO DEPT-NUM-DL
MOVE "NO" TO DEPT-FLAG
ELSE MOVE ZEROS TO DEPT-NUM-DL.
MOVE TRANS-DATE-SR TO TRANS-DATE-DL.
MOVE AMOUNT-SR TO AMOUNT-DL.
*/
public void companyTotas()
{
outputStream.printin(" ");
outputStream.print("COMPANY TOTAL ");
outputStream.printin(moneyFormat.format(companyTotal));

APPENDIX J Page6of 9

/*

*/

700-WRITE-TOTALS.
PERFORM 750-MOVE-TOTALS.
WRITE REPORT-REC FROM TOTAL-LINE
AFTER ADVANCING 2 LINES.
MOVE SPACES TO REPORT-REC.
WRITE REPORT-REC AFTER 2.
750-MOVE-TOTALS.
MOVE COMPANY-TOTAL-WSTO TOT-AMOUNT-TL.

APPENDIX J Page7of 9

10/6/2002 XYZ WHOLESALE SUPPLY COMPANY PAGE 1

DEPT NUM TRANSDATE ORDER AMOUNT

1000 01/03/91 $100.00
01/03/91 $120.00
01/03/91 $30.00
01/04/91 $44.00
01/04/91 $5.90
01/05/91 $234.00

TOTAL AMOUNT FOR DEPARTMENT $533.90

2000 01/03/91 $200.00
01/03/91 $234.00
01/04/91 $340.00

TOTAL AMOUNT FOR DEPARTMENT $774.00

APPENDIX J Page8of 9

10/6/2002 XYZ WHOLESALE SUPPLY COMPANY PAGE 2

DEPT NUM TRANSDATE ORDER AMOUNT

3000 01/04/91 $200.00
01/04/91 $39.99
01/05/91 $44.00

TOTAL AMOUNT FOR DEPARTMENT $283.99

4000 01/03/91 $50.00

TOTAL AMOUNT FOR DEPARTMENT $50.00

COMPANY TOTAL $1,641.89

APPENDIX J Page9of 9

APPENDIX K - COBOL program to create arelative file.

IDENTIFICATION DIVISION.
PROGRAM-ID. CREMP.
AUTHOR. JWING.

kkhkhkkkhkkhkkhkkhkkhkkhhkkhkhhkhkkhhkhkhhkhkkhhkkhhkhkhkhkhkhkhhkhkhhkhkhhkhkkhhkhkkhhkhkkhkhkkhkhkkhkkkkkk*x*x

* THISPROGRAM CREATESA RELATIVE EMPLOYEE FILE *

kkhkhkkkhkkhkkhkkhkkhkhhkkhkhhkhkkhhkhkkhhkhkkhhkhkkhhkhkhkhhkhkhhkhkhhkhkhhkhkkhhkhkkhhkhkkhkhkkhkhkkhkkkkkk**x

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT EMPFILE ASSIGN TO DISK "EMPMAST"
ORGANIZATION ISRELATIVE
ACCESS MODE IS SEQUENTIAL
RELATIVE KEY ISWSKEY.

DATA DIVISION.
FILE SECTION.

FD EMPFILE
RECORD CONTAINS 41 CHARACTERS
LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS"EMPMAST".

01 EMP-REC.
03 EMP-NO PIC 9(3).
03 EMP-FIRST-NAME PIC X(15).
03 EMP-LAST-NAME PIC X(15).
03 EMP-SALARY PIC 9(6)V99.

WORKING-STORAGE SECTION.
01 WSKEY PIC 9(3) VALUE ZEROS.

PROCEDURE DIVISION.

kkhkhkkkhkhkkhkkhkkhkkhhkkhkkhhkhkkhhkhkkhhkhkkhhkkhkhkkhkhkkhkhhkhkhhkhkhhkhkkhhkhkkhhkhkkhkhkkhkhkkhkhkkkkk**x

* THE PROGRAM'S MAIN OPERATIONS ARE CONTROLLED IN THIS *
* PARAGRAPH. *

kkhkhkkkhkkhkkhkhkkhkhhkkhkhhkhkkhhkhkhhkhkkhhkkhkhkkhkhkkhkhhkhkhhkhkhhkhkkhhkhkkhhkhkkhkhkkhkhkkhkhkkkkk*x*x

000-MAIN.
PERFORM 100-INIT.
PERFORM 200-PROC VARYING WS-KEY FROM 1BY 1 UNTIL

APPENDIX K Pagelof 2

WS-KEY > 100.
PERFORM 300-FINAL.
STOP RUN.

khkhkkkhkkhkkkhkkhkkhkkhhkkhkkhhkhkhhkhkkhhkhkkhhkkhhkkhkhhkhkhkhkhkhhkhkhhkhkkhhkhkkhhkhkkhkhkkhkhkkhkkkkkk*x*x

* THE FILES ARE OPENED AND ALL VARIABLESINITIALIZED IN *
* THE FOLLOWING PARAGRAPH. *

kkhkhkkkhkkkkhkkhkkhkhhkkhkhhkhkhhkhkhhkhkkhhkhkhhkhkhkhhkhkhhkhkhhkhkhhkhkkhhkhkkhhkhkkhkhkkhkhkkhkkkkkk*x*x

100-INIT.
OPEN OUTPUT EMPFILE.

kkhkhkkkhkkhkkhkkhkkhkhhkkhkhhkhkhhkhkkhhkhkhhkkhhkkhkhkhkhkhhkhkkhhkhkkhhkhkkhhkhkkhhkhkkhhkhkkhkhkkhkkkkkkkkkx*%

* THISPARAGRAPH PERFORMS THE WRITING OF NEW MASTER RECORDS.

kkhkhkkkhkkhkkhkkhkkhkkhkkhkhhkhkkhhkhkhhkhkhhkkhhkkhkhkkhkhhkhkkhhkhkhhkhkkhhkhkkhhkhkkhhkhkkhkhkkhkhkkkkkkkkx*%

200-PROC.
MOVE ZEROS TO EMP-NO, EMP-SALARY.
MOVE SPACES TO EMP-FIRST-NAME, EMP-LAST-NAME.
WRITE EMP-REC.

300-FINAL.
CLOSE EMPFILE.

APPENDIX K Page2of 2

APPENDIX L - COBOL program to add an Employee to the relative file.

IDENTIFICATION DIVISION.
PROGRAM-ID. ADDEMP.
AUTHOR. JWING.

kkhkhkkkhkkhkkhkkhkkhkkhhkkhkhhkhkkhhkhkhhkhkkhhkkhhkhkhkhkhkhkhhkhkhhkhkhhkhkkhhkhkkhhkhkkhkhkkhkhkkhkkkkkk*x*x
* THISPROGRAM ADDS RECORDS TO A RELATIVE EMPLOYEE FILE
*

kkhkhkkkhkkhkkhkhkkhkkhhkkhkhhkhkhhkhkhhkhkkhhkhkhkhkkhkhhkhkhhkhkhhkhkkhhkhkkhhkhkkhhkhkkhkhkkhkhkkhkkkkkk**x

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT EMPFILE ASSIGN TO DISK "EMPMAST"
ORGANIZATION ISRELATIVE
ACCESS MODE ISRANDOM
RELATIVE KEY ISWSKEY.
SELECT IN-FILE ASSIGN TO DISK "INFILE.txt"
ORGANIZATION ISLINE SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD IN-FILE

RECORD CONTAINS 41 CHARACTERS
LABEL RECORDS ARE OMITTED.

01 IN-REC.
03 IN-EMP PIC 9(3).
03 FILLER PIC X(38).
FD EMPFILE

RECORD CONTAINS 41 CHARACTERS
LABEL RECORDS ARE STANDARD.

01 EMP-REC.
03 EMP-NO PIC 9(3).
03 FILLER PIC X(38).
WORKING-STORAGE SECTION.
01 WSKEY PIC 9(3).
01 WS-EOF PIC X VALUE "N".
88 EOF VALUE "Y".

APPENDIX L Pagelof 3

PROCEDURE DIVISION.

kkhkhkkkhkhkkkhkkhkkhkhhkkhkkhhkhkkhhkhkhhkhkkhhkhkkhhkhkhkhkhkhkhkhkhkhhkhkhhkhkkhhkhkkhhkhkkhkhkkhkhkkhkkkkkk**x

* THE PROGRAM'S MAIN OPERATIONS ARE CONTROLLED IN THIS *
* PARAGRAPH. *

kkhkhkkkhkhkkkhkkhkkhkkhhkkhkhhkhkkhhkhkkhhkhkkhhkkhkhkhkhhhkhkhhkhkhhkhkhhkhkkhhkhkkhhkhkkhkhkkhkhkkhkkkkkk**x

000-MAIN.
PERFORM 100-INIT.
PERFORM 200-PROCESS UNTIL EOF.
PERFORM 300-FINAL.
STOP RUN.

kkhkhkkkhkkhkkhkhkkhkkhhkkhkkhhkhkkhhkhkkhhkhkkhhkhkhhkhkkhkhhkhkhhkhkhhkhkhhkhkkhhkhkkhhkhkkhkhkkhkhkkhkhkkkkk*x*x

* THE FILES ARE OPENED

kkhkhkkkkhkkhkkhkkhkhhkkhkhhkhkkhhkhkkhhkhkkhhkkhkhkhkkhkhkkhkhhkhkhhkhkkhhkhkkhhkhkkhhkhkkhkhkkhkhkkhkkkkkk*x*x

100-INIT.
OPEN INPUT IN-FILE
[-O EMPFILE.
PERFORM 410-READ-IN-FILE.

kkhkhkkkhkhkkhkkhhkkhkkhhkkhkhhkhkkhhkhkkhhkhkhhkhkkhhkkhhkkhkhhkhkhhkhkkhhkhkkhhkhkkhhkhkkhhkhkkhkhkkhkkkkkkkkkx*%

* THISPARAGRAPH PERFORMS THE WRITING OF NEW MASTER RECORDS

kkhkhkkkhkhkkhkkhhkkhkhhkkhkhhkhkkhhkhkhhkhkhhkhkhhkkhkhkhkhkhhkhkhhkhkkhhkhkkhhkhkkhhkhkkhhkhkkhkhkkhkkkkkkkkkx*%

200-PROCESS.
PERFORM 420-READ-MAST.
IFEMP-NO =0
PERFORM 230-WRITE-MASTER
ELSE
DISPLAY "CANNOT ADD RECORD ALREADY EXISTS" EMP-NO.
PERFORM 410-READ-IN-FILE.

230-WRITE-MASTER.
REWRITE EMP-REC FROM IN-REC.

300-FINAL.

CLOSE IN-FILE
EMPFILE.

APPENDIX L Page2of 3

kkhkhkkkhkhkkhkkhkkhkhhkkhkhhkhkkhhkhkkhhkhkhhkkhhkkhkhkhkhkhhkhkhhkhkkhhkhkkhhkhkkhhkhkkhhkhkkhkhkkhkkkkkkkkkx*%

* THESE PARAGRAPHS CONTROL THE READING OF THE FILES*

kkhkhkkkhkhkkhkkhkkhkhhkkhkkhhkhkkhhkhkkhhkhkhhkhkhhkkhkhkhkhkhhkhkkhhkhkkhhkhkkhhkhkkhhkhkkhhkhkkhkhkkhkkkkkkkkkx*%

410-READ-IN-FILE.
READ IN-FILE
AT END MOVE "Y" TO WS-EOF.

420-READ-MAST.
MOVE IN-EMP TO WSKEY .
READ EMPFILE INVALID KEY
DISPLAY "CANNOT ACCESS MASTER RECORD." IN-EMP.

APPENDIX L Page3of 3

APPENDIX M - Java class to define the employee.

/l Record.java

/I Record class for the RandomA ccessFile programs.

/I Contains the object, and all associated input/output methods

Il Thisis effectively the IDC (Java Data Class)

/l The COBOL equivaentsthat are in this class, are the

/I record description, the OPEN statement, the CLOSE satatement,
/I adirect READ, a sequential READ, adirect WRITE,

/I and a sequential WRITE

import java.io.*;

public class Record {
private int employee;
private String lastName;
private String firstName;
private double salary;

private RandomA ccessFile employeeData;

public void openFile(String openMode) throws IOEXxception

{
/I Open thefile

employeeData = new RandomA ccessFile("employee.dat”, openMode);
}

public void closeFile() throws IOException

{
/I Close thefile

employeeData.close();
}

/I Read arecord from the specified RandomA ccessFile,

/I where the record number is supplied - adirect read
public void read(int empNo) throws |OException

{

employeeData.seek(
(long) (empNo -1) * Record.size());

employee =employeeData.readint();
char first[] = new char[15];

for (inti=0;i <first.length; i++)
firgt[i] =employeeData.readChar();

APPENDIX M Pagelof 4

firstName = new String(first);
char last[] = new char[15];

for (inti=0;i <lastlength; i++)
last] i] =employeeData.readChar();

lastName = new String(last);

salary = employeeData.readDoubl&();
}

/I Read arecord from the specified RandomA ccessFile,
/I where the record number is not supplied - a sequential read
public void read() throws | OException

{
employee =employeeData.readInt();
char first[] = new char[15];

for (inti=0;i <first.length; i++)
firgt[i] =employeeData.readChar();

firstName = new String(first);
char last[] = new char[15];

for (inti=0;i <lastlength; i++)
last] i] =employeeData.readChar();

lastName = new String(last);

salary = employeeData.readDoubl&();
}

/I Write arecord to the specified RandomA ccessFile,.
/I where the employee number is supplied - adirect write
public void write(int empNo) throws |OException

{

employeeData.seek(
(long) (empNo-1) * Record.siz&());

StringBuffer buf;

employeeDatawritel nt(employee);

APPENDIX M Page2of 4

if (firstName!=null)

buf = new StringBuffer(firstName);
else

buf = new StringBuffer(15);

buf .setLength(15);
employeeDatawriteChars(buf.toString());
if (lastName!=null)

buf = new StringBuffer(lastName);
else

buf = new StringBuffer(15);
buf .setLength(15);
employeeDatawriteChars(buf.toString());

employeeDatawriteDouble(salary);
}

/I Write arecord to the specified RandomA ccesskile,
/I where the employee number is not supplied - a sequential write
public void write() throws | OException

{

StringBuffer buf;
employeeData.writelnt(employee);
if (firstName!=null)

buf = new StringBuffer(firstName);
else

buf = new StringBuffer(15);
buf.setlength(15);
employeeDatawriteChars(buf.toString());
if (lastName!=null)

buf = new StringBuffer(lastName);
else

buf = new StringBuffer(15);
buf.setLength(15);

employeeData.writeChars(buf.toString());

APPENDIX M Page3of 4

employeeDatawriteDouble(salary);
}

public void setEmployee(int a) { employee=3a; }

public int getEmployee() { return employee; }

public void setFirstName(String f) { firstName =f; }
public String getFirstName() { return firstName; }

public void setLastName(String |) { lastName =1; }
public String getLastName() { return lastName; }

public void setSalary(double b) { salary = b; }

public double getSalary() { return saary; }

/I NOTE: This method contains a hard coded value for the

/I size of arecord of information.
public static int size() { return 72; }

APPENDIX M Page4of 4

APPENDIX N - Java class to create an empty random file of employees.

/I CreateRandomFilejava
/I This program creates a random access file sequentially
I/ by writing 100 empty records to disk.

import java.io.*;

public class CreateRandomFile {
private Record blank;

public CreateRandomFile&()
{

blank = new Record();

/I Open thefile
try
{
blank.openFile("rw");
}
catch(IOException e)
{
System.err.printin("File not opened properly\n" +
e.toString());
System.exit(1);
}

/I Write the records

try
{
for (inti=0;i<100;i++)

blank.write();

}

catch(IOException e)
{
System.err.printin("Cannot create empty records\n” +

e.toString());

System.exit(1);
}

APPENDIX N Pagelof 2

/I Close thefile
try
{
blank.closeFile();

}
catch(IOException e)

{

System.err.println("File not closed properly\n” +
e.toString());

System.exit(1);

}

}

public static void main(String args]])

{
CreateRandomFile accounts = new CreateRandomFile&();

}
}

APPENDIX N Page2of 2

APPENDIX O - Javaclassto write employee records to the random file, and the Java classto
display al employees.

/I WriteRandomFilejava

Il This program uses TextFields to get information from the
/I user at the keyboard and writes the information to a

/l random accessfile.

import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.JOptionPane;

public class WriteRandomFile extends Frame
implements ActionListener {

Il TextFields where user enters employee number, first name,

Il last name and salary.

private TextField employeeField, firstNameField,
lastNameField, sdaryField;

private Button enter, // send record to file
done; // quit program

/I Application other pieces
private Record data;
/I Constructor -- intialize the Frame

public WriteRandomFile&()
{

super("Write to random access file");

data = new Record();

try {
data.openFile("rw");
}

catch (IOException e)

{
System.err.printin(e.toString());

System.exit(1);
}

setSize(300, 150);
setLayout(new GridLayout(5, 2));

APPENDIX O Pagelof 7

/I create the components of the Frame
add(new Label("Employee Number"));
employeeField = new TextFied();

add(employeeField);

add(new Label("First Name"));
firstNameField = new TextField(20);
add(firstNameField);

add(new Label("Last Name"));
lastNameField = new TextField(20);
add(lastNameField);

add(new Label("Salary"));
sadlaryField = new TextField(20);
add(sadaryField);

enter = new Button("Enter");
enter.addActionListener(this);
add(enter);

done = new Button("Done");
done.addActionListener(this);
add(done);

setVisible(true);
}

public void addRecord()

{
int employeeNumber = 0;
Doubled;

if (! employeeField.getText().equas(™)) {

I/ output the values to the file
try {
employeeNumber =
Integer.parselnt(employeeField.getText());

if (employeeNumber > 0 & & employeeNumber <= 100)

{
data.setEmployee(employeeNumber);

data.setFirstName(firstNameField.getText());
data.setL astName(lastNameField.getText());
d = new Double (salaryField.getText());

APPENDIX O Page2of 7

data.setSalary(d.doubleVaue());
data.write(employeeNumber);

/I clear the TextFields
employeeField.setText(");
firstNameField.setText(™");
lastNameField.setText(""");
salaryField.setText(");

}

dse

{
JOptionPane.showM essageDial og(

null, "Employee number must be less than 100\n"+
"Please re-enter the data\n"+
"No record was created”) ;
}
}
catch (NumberFormatException nfe)
{
System.err.printin(
"Y ou must enter an integer employee number");
}

catch (IOExceptionio)
{
System.err.println(
"Error during write to file\n" +
l0.toString() + " ; mployee Number" + employeeNumber);
System.exit(1);
}
}
}

public void actionPerformed(ActionEvent e)

{
addRecord();

if (e.getSource() == done)
{
try
{
data.closeFile&();

}
catch (IOExceptionio)

{
System.err.printin("File not closed properly\n” +

APPENDIX O Page3of 7

i0.toString());

}
System.exit(0);

}
}

Il Instantiate a WriteRandomFile object and start the program
public static void main(String argy])

{
new WriteRandomFile();

}

APPENDIX O Page4of 7

/I This program reads a random access file sequentially and
/I displays the contents one record at atime in text fields.

import java.io.*;

import java.awt.*;

import java.awt.event.*;

import java.text.Decimal Format;

public class ReadRandomFile extends Frame
implements ActionListener {

Il TextFields to display employee number, first name,

Il last name and salary.

private TextField employeeField, firstNameField,
lastNameField, sdaryField;

private Button next, // get next record in file
done; // quit program

/I Application other pieces
private Record data;

/I Constructor -- initialize the Frame
public ReadRandomFile()

{
super("Read Employee File");

data = new Record();

/I Open thefile

try

{
data.openFile("r");

}

catch (I0Exception) {
System.err.printIn(e.toString());
System.exit(1);

}

setSize(300, 150);
setLayout(new GridLayout(5, 2));

/I create the components of the Frame
add(new Label("Employee Number"));
employeeField = new TextFied();
employeeField.setEditable(fase);

APPENDIX O Page5of 7

add(employeseFied);

add(new Label("First Name"));
firstNameField = new TextField(20);
firstNameField.setEditable(false);
add(firstNameField);

add(new Label("Last Name"));
lastNameField = new TextField(20);
lastNameField.setEditable(false);
add(lastNameField);

add(new Label("Salary"));
sadlaryField = new TextField(20);
sdaryField.setEditable(false);
add(sadaryField);

next = new Button("Next");
next.addActionListener(this);
add(next);

done = new Button("Done");
done.addActionListener(this);
add(done);

setVisible(true);
}

public void actionPerformed(ActionEvent e)

{
if (e.getSource() == next)
readRecord();
else

{
endProcess();

}

}

public void readRecord()

{
DecimalFormat twoDigits = new Decimal Format("0.00");

/ read arecord and display

try {
do {
data.read();

APPENDIX O Page6of 7

} while (data.getEmployee() == 0);
/' loop through the read until an active record is found

employeeField.setText(

String.valueOf (data.getEmployeg()));
firstNameField.setText(data.getFirstName());
lastNameField.setText(data.getL astName());
salaryField.setText(String.valueOf(

twoDigits.format(data.getSalary())));
}

/I An eof exception is an expected exception that will occur
/I a the end of the datafile.
catch (EOFException eof)

{
endProcess();

}
catch (IOException e) {

System.err.println("Error during read from file\n" +

e.toString());
System.exit(1);
}
}
private void endProcess()
{
try
{
data.closeFile();
System.exit(0);
}
catch (IOException e)
{
System.err.printin("Error closing file\n" +
e.toString());
System.exit(1);
}
}

Il Instantiate a ReadRandomFile object and start the program
public static void main(String argy])

{
new ReadRandomFile();

}

APPENDIX O Page7of 7

APPENDIX P- A COBOL subroutine, validates a seven digit number, for avalid modulus 11
check digit .

IDENTIFICATION DIVISION.
PROGRAM-ID. CHKDIG.
*
* THIS PROGRAM IS A SUBROUTINE THAT ACCEPTS A SEVEN DIGIT
* NUMBER
* AND A FLAG FIELD. THIS SUBROUTINE CHECKS USING MODULUS-11
* TO SEE IF THE CHECK DIGIT IS CORRECT, AND THEREFORE THAT THE
* NUMBER HAS BEEN ENTERED CORRECTLY . IF THE NUMBER IS CORRECT,
* THE FLAG IS SET TO"Y". IF THE NUMBER IS INCORRECT, THE FLAG
* |ISSET TO"N".
*
AUTHOR. J. WING.
INSTALLATION. TECHNIKON NATAL.
DATE-WRITTEN. 27/4/87.
DATE-COMPILED.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-PC.
OBJECT-COMPUTER. IBM-PC.

DATA DIVISION.
FILE SECTION.

WORKING-STORAGE SECTION.
01 WS-CALC-FIELDS.
05 PROD-D1 PIC 999.
05 PROD-D2 PIC 999.
05 PROD-D3 PIC 999.
05 PROD-D4 PIC 999.
05 PROD-D5 PIC 999.
05 PROD-D6 PIC 999.
05 PROD-D7 PIC 999.
01 WS-ANSWERS.
05 WSTOTAL PIC9(5).
05 WS-ANS PIC 9(5).
05 WS-REM PIC 9.

LINKAGE SECTION.
01 LK-STU-NO.
05 LK-D1 PICO.
05 LK-D2 PICO.
05 LK-D3 PICO.
05 LK-D4 PICO.

APPENDIX P Pagelof 2

05 LK-D5 PICO.

05 LK-D6 PICO.

05 LK-D7 PICO.
01 LK-FLAG PIC X.

PROCEDURE DIVISION
USING LK-STU-NO LK-FLAG.

A-100-MAINLINE.
MOVE"Y" TO LK-FLAG.
PERFORM B-100-CALC-CHKDIG.
PERFORM B-200-SET-FLAG.

A-200-EXIT.
EXIT PROGRAM.

B-100-CALC-CHKDIG.
MULTIPLY LK-D7 BY 1 GIVING PROD-D?7.
MULTIPLY LK-D6 BY 2 GIVING PROD-D6.
MULTIPLY LK-D5BY 3 GIVING PROD-D5.
MULTIPLY LK-D4 BY 4 GIVING PROD-DA4.
MULTIPLY LK-D3BY 5 GIVING PROD-D3.
MULTIPLY LK-D2BY 6 GIVING PROD-D2.
MULTIPLY LK-D1BY 7 GIVING PROD-D1.
ADD PROD-D1 PROD-D2 PROD-D3 PROD-D4 PROD-D5 PROD-D6
PROD-D7 GIVING WS- TOTAL.
DIVIDEWSTOTAL BY 11 GIVING WSANS
REMAINDER WS-REM.

*

* IF THE REMAINDER ISZERO THEN THE CHECK DIGIT ISVALID.

*

B-200-SET-FLAG.
IF WS-REM = ZEROS
MOVE"Y" TO LK-FLAG
ELSE
MOVE"N" TO LK-FLAG.

APPENDIX P Page2of 2

APPENDIX Q- A COBOL main program, to demonstrate calling a subroutine.

IDENTIFICATION DIVISION.
PROGRAM-ID. MAINPR.

* THISIS A MAIN PROGRAM THAT CALLS A SUBROUTINE TO CHECK
* WETHER A CHECK DIGIT IS CORRECT. THE SUBROUTINE USES

* MODULUS-11 TO SEE IF THE CHECK DIGIT IS CORRECT.

* |F THE NUMBER IS CORRECT, THE FLAG ISSET TO"Y".

* |F THE NUMBER IS INCORRECT, THE FLAG IS SET TO "N".
AUTHOR. J. WING.

INSTALLATION. TECHNIKON NATAL.

DATE-WRITTEN. 08/06/1997.

DATE-COMPILED.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-PC.

OBJECT-COMPUTER. 1BM-PC.

DATA DIVISION.

FILE SECTION.

WORKING-STORAGE SECTION.

01 WS-STU-NO PIC 9(7).

01 WSFLAG PICX.

PROCEDURE DIVISION.

A-100-MAINLINE.
MOVE 6213457 TO WS-STU-NO.
PERFORM B-100-PROCESS.
MOVE 8725187 TO WS-STU-NO.
PERFORM B-100-PROCESS.
MOVE 8710074 TO WS-STU-NO.
PERFORM B-100-PROCESS.
STOP RUN.

B-100-PROCESS.
PERFORM C-100-CALL.
PERFORM C-200-DISPLAY .

C-100-CALL.
CALL "CHKDIG" USING WS-STU-NO, WS-FLAG.

C-200-DISPLAY .
IFWSFLAG="Y"
DISPLAY "STUDENT NUMBER " WS-STU-NO " ISVALID"
ELSE
DISPLAY "STUDENT NUMBER " WS-STU-NO " ISNOT VALID".

APPENDIX Q Pagelof 1

APPENDIX R - A JavaClassthat can be used to validate a number according to the modulus-
11 check digit method.

public class CheckDigit
{

private String studentNumber;
/I Constructor

CheckDigit (String sNo)

{
studentNumber = sNoj;
}
public boolean isvalid()
{
int weight = studentNumber.length();
int sum = 0;
for (inti = 0; i<=((studentNumber.length() -1)) ; i++)
{
sum += (Integer.parsel nt(studentNumber.substring(i, i+1)) * weight);
weight = weight - 1,
}
if ((sum% 11)==0)
return true;
else
return false;
}

APPENDIX R Pagelof 1

APPENDIX S- A Javaclass to demonstrate the use of the class CheckDigit.

public class DemoCheckDigit
{

CheckDigit vaNo;

public static void main (String[] args)

{
DemoCheckDigit testSubroutine = new DemoCheckDigit();
String stNum;

stNum = "6213457";
testSubroutine.call AndPrint(stNum);

stNum = "8725187";
testSubroutine.call AndPrint(stNum);

stNum = "8710674";
testSubroutine.call AndPrint(stNum);

stNum = "8403201";
testSubroutine.call AndPrint(stNum);

}

public void call AndPrint(String stNum)
{
vaNo = new CheckDigit(stNum);
if (valNo.isvalid())
System.out.println(" Student number "+ stNum + " isvalid ");
else
System.out.printin(" Student number "+ stNum + " isNOT valid");

APPENDIX S Page1 of

APPENDIX T - OO COBOL program structure.

CLASSID. Class-name INHERITS Class-name.
ENVIRONMENT DIVISION........
DATA DIVISION.
WORKING-STORAGE SECTION.
(The datafor class, global to all methodsin the class)
PROCEDURE DIVISION.
METHOD-ID. M ethod-name.
DATA DIVISION.
LINKAGE SECTION.
(The data that islocal to the method)
PROCEDURE DIVISION USING parameters passed to the method,
RETURNING data returned from the method.

END METHOD Method-name.

(There may be any number of methods)

APPENDIX T Page 1 of

APPENDIX T Page2of 1

	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

