
i

DURBAN UNIVERSITY OF TECHNOLOGY

A Comparative Study of Deep Learning Algorithms for Hate

Speech Detection on Twitter

By

Raymond Tapiwa Mutanga

21959486

A dissertation submitted in fulfilment of the requirement for the

 Master of Information and Communications Technology degree

Faculty of Accounting and Informatics, Department of Information

Technology, Postgraduate Studies

Supervisor: Dr. N. Naicker

Co-Supervisor: Prof. O.O. Olugbara

2021

ii

DECLARATION

I, Raymond T Mutanga, declare that:

(i) The research reported in this dissertation, except where otherwise indicated, is my

original research.

(ii) This dissertation has not been submitted for any degree or examination at any other

university.

(iii) This dissertation does not contain other persons’ data, pictures, graphs or other

information unless specifically acknowledged as being sourced from other persons.

(iv) This dissertation does not contain other persons’ writing unless specifically

acknowledged as being sourced from other researchers. Where other written sources

have been quoted, then:

• Their words have been re-written, but the general information attributed to them

has been referenced.

• Where their exact words have been used, their writing has been placed inside

quotation marks and referenced.

(v) This dissertation does not contain text, graphics or tables copied and pasted from the

Internet, unless specifically acknowledged, and the source being detailed in the

dissertation and in the Reference Section of this dissertation.

_

Signature: Name of Student

Date: 18 March 2021

Approved for final submission

Supervisor/Promoter

 Dr N Naicker (PhD) Date

29 October 2021

iii

ACKNOWLEDGEMENTS

I am immensely grateful to my supervisor, Dr N Naicker, whose mentorship on both

professional and personal levels was crucial to completing this work. I sincerely

appreciate all the valuable time he spent guiding my research work. I was fortunate to

work with such a kind and encouraging supervisor over the years.

Professor O Olugbara, my co-supervisor, deserves special mention for his insightful

and positive advice. Despite his busy schedule as the Executive Dean, he always created

time for guiding my research work. I was fortunate to learn from such a humble machine

learning genius.

I extend my gratitude to Dr Constance Israel and the Writing Studio for proofreading

and language editing services.

I am grateful to colleagues at the Durban University of Technology and the ICT and

Society Research group members for their support and motivation. The provision of

GPU clusters by Baba Geoff Mapiye is greatly appreciated. The material support and

motivation from my study partners, namely Kuda Zvareva, Fannie Ndlovu, Freedom

Khubisa, Sammy Frimpomg, Stera Mwamba, Kandolo KaMuzombo, Iponeng

Chimidza and Mayowa Sowofora, is gratefully acknowledged. I am grateful to the

Montlands Library staff for allowing me to use their facilities when the university

library was undergoing renovations.

The support from the Durban University of Technology in offering me admission to

pursue this degree is greatly appreciated. It indeed was a great experience undertaking

my postgraduate studies at such a renowned academic institution.

Lastly, I appreciate my family and friends for their unwavering support towards the

completion of my studies. Special mention goes to my mother Mrs A. Mutanga for her

encouragement and prayers.

“There is a fine line between free speech and hate speech. Free speech encourages debate

whereas hate speech incites violence.”

 Newton Lee

iv

DEDICATION

To my late father Mr. S Mutanga.

v

ABSTRACT

Hate speech is an undesirable phenomenon with severe psychological and physical

consequences. The emergence of mobile computing and Web 2.0 technologies has increasingly

facilitated the spread of hate speech. The speed, accessibility and anonymity afforded by these

tools present challenges in enforcing measures that minimise the spread of hate speech. The

continued dissemination of hate speech online has triggered the development of various

machine learning techniques for its automated detection. However, current approaches are

inadequate because of further challenges such as the use of domain-specific language and

language subtleties. Recent studies on automated hate speech detection have focused on the

use of deep learning as a possible solution to these challenges. Although some studies have

explored deep learning methods for hate speech detection, there are no studies that critically

compare and evaluate their performance.

This work investigates the use of deep learning algorithms as possible solutions to hate speech

detection on Twitter. Three taxonomic classes of deep learning algorithms, namely, Traditional

deep learning algorithms, Traditional algorithms with partial attention mechanism and

Transformer models, which are entirely based on the attention mechanism, are evaluated for

performance, using two publicly available corpora. One of the datasets contained 24 786 tweets

annotated into three different classes, while the other dataset contained 2300 tweets annotated

into two different classes. All tweets from the two datasets were first preprocessed to rid of

them of characters and words deemed irrelevant to the classification decision, for instance,

hashtags, stop words and punctuation marks. The preprocessed text was then transformed into

feature vectors which were used as input for deep learning algorithms explored in this study.

A series of experiments were performed to measure the performance of the deep learning

algorithms in hate speech detection. The algorithms were tested on a wide spectrum of tweets

containing different forms of hate speech. The efficacy of the deep learning algorithms was

objectively evaluated using six state-of-the-art statistical evaluation metrics: precision, F-

measure, recall, accuracy, Mathews correlation coefficient and area under the curve. The

results from this study indicate that variations in parameters do not impact the efficacy of deep

learning algorithms by the same proportions. The findings of this empirical study, therefore,

provide deep-learning practitioners with a better understanding of the adaptation of robust

deep-learning techniques for automated hate speech detection tasks.

vi

Table of Contents

DECLARATION... ii

ACKNOWLEDGEMENTS .. iii

DEDICATION.. iv

ABSTRACT ... v

Table of Contents ... vi

LIST OF TABLES .. x

LIST OF FIGURES ... xi

LIST OF ABBREVIATIONS ... xiii

LIST OF TERMS ... xiv

INTRODUCTION AND BACKGROUND TO THE STUDY .. 16

1.1 Introduction ... 16

1.2 Statement of the Problem .. 18

1.3 Research Aim and Objectives ... 19

1.4 Significance of the Study .. 20

1.5 Scope and Delimitations of the Study ... 20

1.6 Research Output .. 21

1.7 Structure of the Dissertation .. 21

1.8 Chapter Summary .. 22

 LITERATURE REVIEW ... 24

2.1 Introduction ... 24

2.2 Definitions of Hate Speech ... 25

2.3 Classical Deep Learning Approaches ... 26

2.3.1 Convolutional Neural Network ... 27

2.3.2 Recurrent Neural Network .. 28

2.3.3 The Long Short Term Memory (LSTM) ... 29

2.3.4 Gated Recurrent Unit (GRU) .. 30

2.3.5 The Multi-Layer Perceptron (MLP) .. 31

2.4 Attention-Based Deep Learning Algorithms... 32

2.4.1 Models with Attention Mechanism ... 32

2.5 Transformers ... 33

2.5.1 Architecture of the Transformer.. 34

2.5.2 Types of Transformers .. 35

2.5.3 BERT .. 36

vii

2.5.4 DistilBERT ... 36

2.5.5 RoBERTa .. 36

2.5.6 XLNeT .. 36

2.5.7 Transformers in Hate Speech Detection ... 37

2.6 Chapter Summary .. 38

 RESEARCH METHODOLOGY ... 40

3.1 Introduction ... 40

3.2 Datasets ... 40

3.2.1 The Hate Speech and Offensive Language (HSO) Dataset ... 40

3.2.2 Kaggle Dataset .. 41

3.3 Visualisation of Datasets ... 41

3.4 System Setting ... 42

3.5 Data Pre-processing... 43

3.5.1 Cleaning up of Tweets .. 43

3.5.2 Data Normalisation ... 44

3.5.3 Lower Casing .. 44

3.5.4 Stop Word Removal .. 44

3.5.5 Word Length ... 44

3.5.6 Removal of Null Values .. 45

3.6 Feature Representation for Traditional Deep Learning Algorithms 45

3.7 Tuning and Training for Traditional Deep Learning Algorithms 46

3.7.1 Minibatch Size .. 47

3.7.2 Number of Epochs and Number of Iterations ... 47

3.7.3 Learning Rate .. 47

3.7.4 Activation Function... 47

3.7.5 Loss Function .. 48

3.7.6 Regularization using Dropout ... 48

3.7.7 Optimisation Algorithm .. 48

3.7.8 Layers .. 48

3.7.9 Dataset Split .. 49

3.8 Implementation of the Attention Mechanism.. 50

3.8.1 Attention Layer ... 50

3.8.2 Post Attention Layer ... 50

3.9 Implementation of Transformer Algorithms ... 51

3.10 Metrics ... 54

viii

3.11 Chapter Summary .. 56

 PRESENTATION OF RESULTS AND DISCUSSION ... 58

4.1 Introduction ... 58

4.2 Analysis of Performance Evaluation ... 58

4.3 Training Process Visual Analysis ... 59

4.4 Quantitative Analysis of Deep Learning Algorithms .. 65

4.5 Effect of Train-Test Split on Performance .. 65

4.5.1 Effect of Train-Test Split Ratio on Accuracy ... 66

4.5.2 Effect of Train-Test Split Ratio on Precision .. 68

4.5.3 Effect of Train-Test Split on Recall .. 70

4.5.4 Effect of Train-Test Split Ratio on F-Measure Scores .. 71

4.5.5 Effect of Train-Test Split Ratio on Area under the Curve .. 73

4.5.6 Effect of Train-Test Split Ratio on MCC .. 75

4.6 Effect of Number of Layers on Performance .. 77

4.6.1 Effect of Number of Layers on Accuracy ... 78

4.6.2 Effect of Number of Layers on Precision Scores .. 79

4.6.3 Effect of Number of Layers on Recall Scores .. 81

4.6.4 Effect of Number of Layers on F-Measure ... 83

4.6.5 Effect of Number of Layers on AUC .. 85

4.6.6 Effect of Number of Layers on MCC ... 87

4.7 Effect of Optimiser on Performance ... 89

4.7.1 Effect of Optimiser on Accuracy .. 89

4.7.2 Effect of Optimiser on Precision ... 91

4.7.3 Effect of Optimiser on Recall ... 93

4.7.4 Effect of Optimiser on F-measure score ... 95

4.7.5 Effect of Optimiser on Area under the Curve ... 97

4.7.6 Effect of Optimiser on MCC ... 99

4.8 Chapter Summary .. 101

 SUMMARY, CONCLUSIONS AND IMPLICATIONS OF STUDY ... 103

5.1 Introduction ... 103

5.2 Summary of the Study ... 103

5.3 Conclusions ... 104

5.4 Contributions of the Study .. 107

5.5 Implications of the Study .. 108

ix

5.5.1 Implications for Research ... 108

5.5.2 Implications for Practice ... 108

5.6 Limitations and Future Work .. 108

5.7 Chapter Summary .. 109

 REFERENCES ... 110

ANNEXURE A: COVER PAGE OF TURN IT IN REPORT .. 123

ANNEXURE B: LANGUAGE PROFICIENCY CERTIFICATE ... 124

x

LIST OF TABLES

Table 3.1: Preprocessing Steps .. 45

Table 3.2: Parameter Settings used .. 49

Table 3.3: Hyperparameters for transformer methods ... 53

Table 4.1: Effect of train-test split ratio on accuracy ... 66

Table 4.2 Effect of train-test split ratio on precision ... 68

Table 4.3: Effect of train-test split ratio on recall .. 70

Table 4.4: Effect of the train-test split ratio on F-measure .. 72

Table 4.5: Effect of train-test split ratio on AUC .. 74

Table 4.6: Effect of train-test split ratio on MCC .. 76

Table 4.7: Effect of number of layers on accuracy scores ... 78

Table 4.8: Effect of number of layers on precision ... 80

Table 4.9: Effect of number of layers on recall ... 82

Table 4.10: Effect of number of layers on F-measure ... 84

Table 4.11: Effect of number of layers on AUC .. 86

Table 4.12: Effect of number of layers on MCC ... 88

Table 4.13: Effect of optimiser on accuracy .. 90

Table 4.14: Effect of optimiser on precision ... 92

Table 4.15: Effect of optimiser on recall ... 94

Table 4.16: Effect of optimiser on F-measure ... 96

Table 4.17: Effect of optimiser on AUC .. 98

Table 4.18: Effect of optimiser on MCC ... 100

xi

LIST OF FIGURES

Figure 2.1: Architecture of the transformer model ... 35

Figure 3.1: Dataset class distribution .. 42

Figure 3.2: Kaggle Dataset Class Distribution ... 42

Figure 3.3: Illustration of steps followed in hate speech detection using traditional deep

learning algorithms .. 49

Figure 3.4: Architecture of the bidirectional LSTM with attention for hate speech detection

in Twitter .. 51

Figure 3.5: Transformer architecture for hate speech detection ... 54

Figure 4.1: Training and Validation Graph for CNN ... 59

Figure 4.2: Training and Validation accuracy for MLP ... 60

Figure 4.3: Training and Validation accuracy Graph for RNN .. 60

Figure 4.4: Training and Validation accuracy for LSTM ... 61

Figure 4.5: Training and Validation accuracy for GRU ... 61

Figure 4.6: Training and Validation accuracy for RoBERTa ... 62

Figure 4.7: Training and Validation accuracy graph for DistilBERT 63

Figure 4.8: Training and validation accuracy graph for XLNET .. 63

Figure 4.9: Training and Validation accuracy graph for BERT ... 64

Figure 4.10: Illustration of the effect of the train-split ratio on accuracy 67

Figure 4.11: The effect of train-test split ratio on precision ... 69

Figure 4.12: The effect of train-test split ratio on recall ... 71

Figure 4.13: The effect of the train-test split ratio on F-measure .. 73

Figure 4.14: The effect of train-test split ratio on AUC ... 75

Figure 4.15: Illustration of the effect of train-test split ratio on MCC 77

Figure 4.16: The effect of the number of layers on accuracy ... 79

Figure 4.17: The effect of the number of layers on precision .. 81

Figure 4.18: The effect of the number of layers on recall .. 83

Figure 4.19: The effect of the number of layers on F-measure .. 85

Figure 4.20: The effect of number of layers on AUC ... 87

Figure 4.21: The effect of the number of layers on MCC .. 89

Figure 4.22: The effect of optimiser on accuracy ... 91

Figure 4.23: The effect of optimiser on precision... 93

Figure 4.24: The effect of optimiser on recall .. 95

Figure 4.25: The effect of optimiser on F-measure .. 97

xii

Figure 4.26: The effect of optimiser on AUC ... 99

Figure 4.27: The effect of optimiser on MCC .. 101

xiii

LIST OF ABBREVIATIONS

The following are the most important acronyms in the study:

AUC Area under the Curve

BERT Bidirectional Encoder Representations from Transformers

BPN Back Propagation

CCE Categorical Cross Entropy

CNN Convolutional Neural Network

DL Deep Learning

DISTILBERT Distilled BERT

FFNN Feed Forward Neural Networks

GRU Gated Recurrent Unit

HSO Hate Speech and Offensive Language

LSTM Long Short-Term Memory

MHA Multi-Headed Attention

MCC Mathews Correlation Coefficient

ML Machine Learning

MLM Masked Language Modelling

MLP Multi-Layer Perceptron

NLP Natural Language Processing

NSP Next Sentence Prediction

PLM Pretrained Language Models

POS Tagging Part of Speech Tagging

ROBERTA Robustly optimised BERT Approach

Seq2seq Sequence to Sequence

xiv

LIST OF TERMS

The following terms as related to the study are explained:

Hate Speech - Language that negatively stereotypes a particular group or individual on the

basis of characteristics such as sexuality, nationality, religious affiliation and race.

Social Media - Internet platforms which allow users to quickly access, generate and share

content with the public, such as Twitter and Facebook.

Natural Language Processing - An artificial intelligence division that allows machines to

comprehend human language.

Deep Learning - A machine learning technique designed imitate the function of the brain by

using a large number of hidden non-linear processing layers for feature extraction and

representation.

Attention - Part of a neural network that allows it to dynamically highlight relevant features

of the input data, for example, a sequence of textual elements in text processing.

Transformers - A feed-forward deep learning architecture based entirely on attention instead

of convolutions and recurrence, where the transformer is able to capture long-term sequential

data dependencies while allowing parallelization.

Machine Learning - A group of techniques that allows computers to learn from data without

being explicitly programmed.

Classical machine learning - A machine learning technique based on shallow models trained

on high dimensional sparse vectors, with methods depending on carefully selected features.

Feature Engineering - The process of combining text processing methods and domain

awareness for feature extraction.

Corpus - A large and structured set of machine-readable text that has been produced in a

natural communicative setting (plural is corpora).

Optimiser - Techniques for modifying a neural network's properties, for example, learning rate

and weights, to minimise losses, and to get results faster.

https://deepai.org/machine-learning-glossary-and-terms/machine-learning

15

 CHAPTER ONE

16

INTRODUCTION AND BACKGROUND TO THE STUDY

1.1 Introduction

Hate speech is a collective term for utterances or statements which disseminate, trigger,

encourage or justify hatred, segregation and violence against an individual or group of

individuals (Whillock and Slayden 1995). Typical forms of hate speech include racism,

tribalism, sexism, xenophobia and islamophobia. No single hate speech definition has been

unanimously accepted as the gold standard by the research community. However, various

researchers concur that it targets underprivileged persons in a way that may be deemed harmful

to them (MacAvaney et al. 2019). Hate speech promotes prejudice, which can undermine

people, sow seeds of discord between different societal groups and eventually lead to deeper

social cohesion problems (Pálmadóttir and Kalenikova 2018). Divisions in societal cohesion

and attacks on the egos of hate speech victims have the potential to fuel social unrest and hate

crimes (Bleich 2011). For example, hate speech fueled xenophobic attacks in the KwaZulu-

Natal province of South Africa, where seven immigrants died and approximately 5000 others

displaced between March 2015 and May 2015 (Aljazeera 2021).

In the past, the propagation of hate speech has been achieved mainly through the use of

traditional electronic and print media such as newspapers, radio and television. For example,

the holocaust, which resulted in mass killings of Jews, also had its roots in hate speech

propaganda, which was propagated using the technologies of those days. Furthermore, hate

speech leading to the Rwandan genocide in 1994 was spread through radio and print media

(Schabas 2000). Since then, communication technologies have evolved to include the Internet

and mobile devices, allowing rapid exchange of information.

 The emergence of Web 2.0 tools such as Twitter and Facebook have transformed

communication by allowing users in different parts of the world to seamlessly compile,

collaborate and share their content with others. Given the meteoric rise of user-generated

content on platforms such as Twitter, the volume of online hate speech is growing (Schmidt

and Wiegand 2017). Platforms such as Twitter enable users to instantaneously post different

kinds of messages in different formats such as text, images, videos and metadata, sometimes

in the form of emojis, mentions, emoticons, uniform resource locators and hashtags for social

media users to view, comment and share with other users (Kursuncu et al. 2019). Tweets are

generally rife with idioms, acronyms, phonemes, homophones and figures of speech like

onomatopoeia, which can complicate the understanding of hateful speech. Moreover, the

17

Twitter restrictions on the number of allowable characters encourage the usage of

unconventional and incomprehensible abbreviations, misspellings, grammatical errors and

slang terminologies.

Millions of tweets are generated daily, enabling the creation of datasets large enough for

analysis (Gaumont, Panahi and Chavalarias 2018). In 2017 alone, Twitter had 330 million

active users per month, and 157 million of the users were active daily, sharing approximately

500 million tweets each day (Kursuncu et al. 2019). It is projected that at least one-third of the

world population will be using social media by the end of 2021 (Pereira-Kohatsu et al. 2019).

The large volumes of harmful messages posted on Twitter necessitate the development of

techniques to curb their continued dissemination. To address this, some governments in the

developed world have instituted laws to prohibit hate speech in face-to-face conversations and

on the internet media (Davidson et al. 2017). Although such legislation acts as a deterrent, it

does not entirely stop determined individuals from posting content containing hate speech.

Besides the broader societal implications of hate speech, uncontrolled propagation also

negatively impacts the reputation of online host platforms such as Twitter and Facebook

(Yasseri and Vidgen 2019). In response to this challenge, organisations such as Facebook and

Twitter currently have employees dedicated to the task of manually deleting content perceived

to contain hate speech. In addition, Facebook and Twitter users are advised to label and report

content they deem unsuitable or harmful to society. However, such interventions are laborious

for human annotators, and they are also prone to subjective human judgement (Pitsilis,

Ramampiaro and Langseth 2018). These methods are stressful for human annotators, and they

have been linked to post-traumatic stress disorders (Miok et al. 2020). Critics have argued that

the use of human annotators is insufficient since the messages are only deleted after they have

been posted and possibly after the messages have inflicted harm already (Ullmann and Tomalin

2020). Hate speech may also be expressed in slang or other languages that the annotator may

not understand. There are 7117s distinct languages used for communicating verbally and in

written form (Ethnologue Languages of the world 2021). Given this high number of languages,

it is not practical for human annotators to understand all the languages used in social media.

Machine learning-based hate speech recognition models have been proposed in response to the

shortcomings of human annotators and legislation. Classical machine learning algorithms and

deep learning algorithms are the two taxonomic subclasses of machine learning algorithms.

18

Classical algorithms make use of handcrafted features, which consume much time and are

ordinarily insufficient (Young et al. 2018). As a result, classical algorithms fail to capture

semantic and syntactic representations of text effectively. Deep learning algorithms, on the

other hand, carry out end-to-end training, allowing the model to encode salient feature

representations. Deep Neural Networks have been proven to outperform classical models based

on n-gram features (Holmes and Jain 2006). Furthermore, deep learning algorithms such as

Recurrent Neural Networks (RNN) are capable of preserving sequential information over

periods of time, which allows easier integration of contextual information in text classification

tasks (Wang, Li and Xu 2018). Although context helps distinguish hate from non-hate texts, it

has largely been excluded from detection models (Gao and Huang 2017). Deep learning models

can capture complex data representations making them applicable to the identification of hate

speech, where the language used is highly ambiguous. However, no studies have focused on

objective comparative evaluations of deep learning algorithms, making it difficult to

understand the most appropriate algorithms in addressing the hate speech phenomenon in

online spaces (Fortuna and Nunes 2018b).

This work, therefore, was aimed at finding the best performing deep learning algorithm for

detecting hate speech. To achieve this, an experimental comparison of deep learning algorithms

for hate speech detection was carried out. Ten deep learning algorithms representing traditional

deep learning algorithms and recent transformer-based algorithms were selected for

investigation, namely, Convolutional Neural Network (CNN), Recurrent Neural Network

(RNN), Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), Multiplayer

Perceptron (MLP), Bidirectional Encoder Representations from Transformers (BERT),

Distilled Bidirectional Encoder Representations from Transformers (DistilBERT), Robustly

optimised Bidirectional Encoder Representations from Transformers approach (RoBERTa)

and XLNet.

1.2 Statement of the Problem

In recent years, hate speech detection has received considerable interest from governments,

academics and social media companies (Banks 2010; Schmidt and Wiegand 2017; Brown

2018). However, current solutions to the problem of hate speech detection are inadequate

(Mondal, Silva and Benevenuto 2017; Fortuna and Nunes 2018b). To complement existing

automated solutions of hate speech detection, this study seeks to carry out an experimental

19

comparison of deep learning algorithms for hate speech detection. Deep learning has been

chosen ahead of classical machine learning due to its ability to handle unstructured input, its

ability to deal with sparse features (dimensionality) as well as its reduced need for handcrafted

features (Kowsari et al. 2019). Major deep learning algorithms that have been used in related

NLP tasks, namely, Convolutional Neural Networks, Recurrent Neural Networks, Long Short

Term Memory, Recursive Neural Networks and the Multilayer Perceptron, are experimentally

compared in this study. These algorithms have performed well in tasks such as Chunking and

Parts of Speech Tagging (Collobert et al. 2011).

There is no comparative evaluation of hate speech recognition algorithms in the extant

literature. A recent survey on the detection of hate speech also noted the absence of comparative

evaluation on hate speech detection as an area that needs to be addressed (Fortuna and Nunes

2018a). Therefore scope exists for the investigation proposed by this research topic.

Although traditional deep learning moⅾels have better predictive accuracy over classical

algorithms in hate speech detection, the length of the text sequences they can handle is limited

(Mhammedi et al. 2017). It is widely agreed that RNN algorithms such as LSTM have made

remarkable progress towards solving the long terⅿ dependencies challenge. However, research

has shown that the LSTM`s performance drops once the sequence exceeds thirty words

(Bahdanau, Cho and Bengio 2014). This limitation presents a huge challenge in hate speech

detection on Twitter, considering its recent increase of allowable words per tweet from 140 to

280 words. One of the major computational limitations suffered by traditional deep learning

algorithms such as the CNN and the RNN, is the sequential processing of text (Minaee et al.

2020). Sequential processing of text requires much time and therefore leads to longer inference

times. The transformer moⅾel, which is based entirely on attention, has demonstrated its ability

to deal with long sequences of textual data while maximising the availability of Graphical

Processing Units to make training faster through parallel processing (Vaswani et al. 2017).

These advantages necessitate the need to include transformer-based moⅾels for hate speech

recognition.

1.3 Research Aim and Objectives

The aim of this research is to investigate selected deep learning algorithms to determine the

algorithm most suited to detecting hate speech on Twitter.

20

To achieve this aim, the following research objectives [RO] were set:

[RO1]: To comprehensively review relevant publications based on deep learning.

[RO2]: To prepare datasets for building and evaluating deep learning hate speech

recognition models.

[RO3]: To experimentally evaluate the performance of deep learning algorithms on

imbalanced and balanced datasets.

[RO4]: To evaluate the performance of deep learning algorithms on binary and

multiclass datasets.

[RO5]: To evaluate the performance of deep learning algorithms in detecting

different forms of hate speech.

1.4 Significance of the Study

It is envisaged that this study will assist in minimising the spread of hate speech in online

spaces. More specifically, it will help in the following ways:

• It will help organisations that have an online presence to protect their images or

brands by preventing users from posting hate speech messages on their platforms.

• The proposed solution may be adopted by government security services such as the

police in tracking and apprehending people who disseminate hate speech.

• Policymakers may use the models to forecast the likelihood of hate crimes like

xenophobia.

1.5 Scope and Delimitations of the Study

This study is limited in scope as follows:

• This study is limited to publications in the English language only.

• Only Twitter text data was used in this study.

• Due to time constraints, only a limited number of algorithms could be explored.

• The data used for training the models was limited to 2 publicly available hate speech

datasets.

• Only deep learning techniques were explored in this study.

21

1.6 Research Output

This study will also lead to research products. It has already produced the following publication

in an academic journal accredited by the Department of Higher Education and Training: R.

Mutanga, N. Naicker, and O. Olugbara, “Hate Speech detection using Transformer Methods,”

International Journal of Advanced Computer Science and Applications, vol.11, no 9, 2020.

DOI: 10.14569/IJACSA.2020.0110972

1.7 Structure of the Dissertation

This study is presented in five chapters, which are arranged in the following manner:

Chapter One: Introduction and Background to the Study

The first chapter covers the background study of the research and clearly highlights the need

for automating the detection of hate speech in social media. Additionally, the identified

research problems which led to the research aim and objectives of the study are clearly

described in this chapter.

Chapter Two: Literature Review

 A comprehensive review of relevant publications on deep learning and the societal impact of

hate speech was carried out. The literature survey covers the general operation of each of the

deep learning algorithms in this study, their performance in hate speech detection based on

earlier studies, and their strengths and drawbacks.

Chapter Three: Research Methodology

 The step-by-step methodology carried out to accomplish the formulated study aims and

objectives in this research is described. The major steps involved include the acquisition and

preprocessing of the dataset, feature extraction and training using deep learning algorithms,

and evaluation of algorithms performance based on selected text classification metrics.

Chapter Four: Presentation of Results and Discussion

The chapter provides both qualitative and statistical metrics-based performance assessment and

comparison of the selected deep learning algorithms. The results are discussed extensively, and

key patterns in the results are noted, with possible explanations for the patterns.

Chapter Five: Summary, Conclusions and Implications of the Study

https://dx.doi.org/10.14569/IJACSA.2020.0110972

22

A summary of how each of the set objectives was met is presented. Additionally, the limitations

of the study are presented and explained. Thereafter, both the practical and the research

implications of the study are discussed. The chapter concludes with a discussion of open

research issues and recommendations for future research.

1.8 Chapter Summary

This chapter provides a comprehensive background of the problem being solved. It touches on

the societal impacts of hate speech and clearly outlines why this problem requires attention.

The statement of the problem explains, in brief, the research gap which this study seeks to

cover. The stated aims and objectives highlight at a high level the tasks or activities that were

carried out in addressing the identified research gap. The scope of the study denotes the limits

within which the study was conducted. Lastly, the dissertation synopsis lists the major chapters

that make up this study. The next chapter provides an extensive literature review of earlier

works as well as the direction this work has taken.

23

CHAPTER TWO

24

LITERATURE REVIEW

2.1 Introduction

Historically, text mining was primarily concerned with analysing documents or pieces of text-

based on identified topics only (Antai 2016). As the field evolved and the Internet became more

accessible, a new branch of text mining has emerged to include analysis and classification of

text messages expressed on social networks such as Twitter. There are various challenges in

the classification of subjective content because of language subtleties. Text posted on online

platforms is generally rife with idioms, acronyms, homophones and phonemes that may

complicate understanding and make the classification of text difficult. This is especially true

in the realm of hate speech, where people can express their hatred through idiomatic

expressions. For example, the English Idiom” kick the bucket” might refer to someone kicking

the bucket physically or to someone`s death. Furthermore, the use of sarcastic messages online

further complicates the comprehension of implicitly expressed hate speech. For instance, the

phrase “Degenerate Anifta rioter attacking black police get a proper response” is a negative

statement. However, it may be misinterpreted as a neutral statement by the classification

system. An effective system must have feature vectors capable of capturing meaning from

language. This can be very challenging since language is highly ambiguous and complex. Other

factors that make identifying hate speech difficult include the domain of an utterance, context,

author and targeted recipient (Schmidt and Wiegand 2017).

Due to the size of the Internet, automatic computer-based models have been proposed to tackle

subjectivity analysis tasks such as hate speech detection. Machine learning algorithms are the

gold standard solution to text classification problems such as hate speech detection. The

machine learning approaches are classified into classical machine learning and deep learning.

Classical machine learning is based on shallow models trained on high dimensional sparse

vectors. The discriminative capability of these methods depends on manually crafted features

that are often time-consuming and ineffective in capturing hidden patterns in data (Young et

al. 2018). Classical methods depend on the careful design and conversion of text data into

feature vectors used by algorithms such as Naïve Bayes (NB), Logistic Regression, Support

Vector Machine (SVM) and Random Forest (RF). Many researchers have explored classical

algorithms as a possible solution to the challenge of hate speech detection (Warner and

Hirschberg 2012; Mehdad and Tetreault 2016; Waseem 2016; Waseem and Hovy 2016; Gao

25

and Huang 2017). These studies employed manually engineered features, namely n-grams, bag

of words representation, comment embeddings and linguistic features.

Conversely, deep learning methods use several layers to learn hierarchical data representations.

This allows for multi-level automated feature representation learning. Traditional deep learning

approaches, particularly recurrent neural networks, have been the predominant techniques used

for text categorisation tasks such as hate speech detection. Text is viewed as a sequence of

words by Recurrent Neural Network (RNN)-based models, which are designed to capture

semantics from word dependencies. Nevertheless, the basic RNN model often underperforms

feedforward neural networks in text categorisation (Minaee et al. 2020). Long Short Term

Memory (LSTM) is the most popular variant of the RNN, which is specifically designed to

capture long-term dependencies. To recall values over time periods, the LSTM employs a

memory cell and three gates. This property allows the LSTM to solve the vanishing gradient

and exploding gradient problems inherent in the basic RNN. The shortcomings of the RNN

gave birth to the attention-based models based on the correlation of individual words within a

block of text. While attention-based models address some of the limitations of Recurrent

Neural Networks, they can only process text sequentially, thereby impacting processing time.

The latest transformer architecture allows parallel processing of input sequences while

capturing long term dependencies better than earlier techniques.

The next section discusses competing definitions of what constitutes hate speech, with the aim

of guiding dataset selection and the model building process. Subsequent sections of this chapter

discuss various studies that have been undertaken to address hate speech identification in social

media, specifically focusing on the aforementioned traditional deep learning approaches,

attention-based models and the latest pre-trained transformer models.

2.2 Definitions of Hate Speech

Researchers disagree on what constitutes hate speech, and these disagreements lead to

challenges in evaluating hate speech (MacAvaney et al. 2019). The annotation of hate speech

datasets can be strengthened by a common description of hate speech, leading to improved

models of hate speech detection. (Ross et al. 2017). However, there is no universally accepted

definition due to differences in social norms, subjective individual or group interpretation, as

well as context (Mossie and Wang 2020). Several academics and social media firms have

26

attempted to define hate speech with the aim of providing a framework for the creation of hate

speech detection techniques.

Davidson et al. (2017) define hate speech as “Language that is used to expresses hatred towards

a targeted group or is intended to be derogatory, to humiliate, or to insult members of a group”.

A study by de Gibert et al. (2018) defines hate speech as “a deliberate attack directed towards

a specific group of people motivated by aspects of the group’s identity”. A recent study on the

challenges and solutions of hate speech detection defines hate speech as “language that attacks

or diminishes, that incites violence or hate against groups, based on specific characteristics

such as physical appearance, religion, descent, national or ethnic origin, sexual orientation,

gender identity or other, and it can occur with different linguistic styles, even in subtle forms

or when humour is used.”

Social media organisations such as Yahoo, Facebook and Twitter established guidelines and

definitions of what constitutes hate speech on their respective platforms. These definitions are

used as the basis for deciding whether posted messages can be classified as hate speech or not.

For example, Facebook prohibits the posting of content that attacks users because of their

gender, religion, ethnicity, sexual orientation, race, religion and country of origin. YouTube

classifies as hate speech any “content that promotes segregation or humiliates an individual or

group of people on the basis of the individual’s or group’s race, ethnicity, or ethnic origin,

nationality, religion, disability, age, veteran status, sexual orientation, gender identity, or other

characteristic associated with systematic discrimination or marginalisation”.

2.3 Classical Deep Learning Approaches

The predominant deep learning algorithms in hate speech detection are Recurrent Neural

Networks (RNN), Convolutional Neural Networks (CNN), Multi-Layer Perceptron (MLP),

Long Short Term Memory (LSTM), and Gated Recurrent Units (GRU). This study explores

ten deep learning algorithms for hate speech detection. The selected algorithms include

traditional deep learning algorithms, attention enhanced deep learning algorithms and recent

transformer-based algorithms. The traditional algorithms explored in this study are Multi-

Layer Perceptron (MLP), Recurrent Neural Network, Gated Recurrent Unit (GRU), Long Short

Term Memory (LSTM), LSTM with attention, and Convolutional Neural Networks (CNN). In

the subsequent subsections, the researcher outlines the theory behind each of the traditional

27

deep learning algorithms, their advantages and disadvantages, as well as their application in

hate speech studies.

2.3.1 Convolutional Neural Network

A typical CNN structure comprises an input layer, pooling layer, convolutional layer, fully

connected layers and output layers. The pixel values of the algorithm’s input are contained in

the input layer. The output of neurons linked to local regions of the input is determined by the

convolutional layer, which calculates the scalar product between their weights and the area

linked to the input volume. An elementwise activation function is applied by the rectified linear

unit to the output of the activation produced by the preceding layer. The pooling layer

downsamples along with the spatial dimensionality of the given input, further reducing the

parameters in that activation. Class scores from the activations to be used for class allocation

are computed by the fully connected layers.

CNN was primarily developed for computer vision tasks (Litjens et al. 2017). However, their

use has been extended to text processing (Lai et al. 2015; Wadawadagi and Pagi 2020). The

CNN is regarded as an efficient feature extractor, specifically in the task of hate speech

recognition, where it effectively extracts characters and word combinations (Badjatiya et al.

2017; Gambäck and Sikdar 2017). CNN makes use of pooling to reduce output between layers

in the network. Convolution layers function as feature extractors, capturing local features by

limiting the hidden layers' input space to a local field. This is due to the capability of CNN to

handle local spatial correlation among neurons of neighbouring layers. This property is

particularly important for hate speeⅽh detection, where it is needed to identify predominant

local features for deciding the classes to which text messages belong.

 Deep CNNs have been explored for hate speech recognition and other task classification tasks

(Zhang, Zhao and LeCun 2015; Ordóñez and Roggen 2016; Gambäck and Sikdar 2017; Liu et

al. 2017). Gambäck and Sikdar (2017) investigated the use of CNN in conjunction with

word2vec features for hate speech detection, using a dataset by Waseem and Hovy (2016).

Their recall results surpassed results obtained by Waseem and Hovy (2016) in an earlier study

using the same dataset by 7.6 %. In their study, Elouali, Elberrichi and Elouali (2020) presented

a CNN-based hate speech detection model on a dataset containing seven different languages.

Their approach achieved a relatively high accuracy of 83%, despite the complexity that comes

with seven different languages in a single dataset. Alshaalan and Al-Khalifa (2020)

investigated the use of deep learning algorithms to detect hateful Saudi text on Twitter. The

28

CNN surpassed other methods explored in that study with an F-measure score of 79% and Area

Under the Curve (AUC) score of 89%. A common problem with using CNN for NLP tasks is

high dimensionality. The pooling technique can be employed to minimise the output

dimensionality while retaining the most salient information. Varying kernel sizes and

concatenating their outputs enables the detection of multiple size patterns. These patterns could

be phrases such as “I like” or “I hate”, and CNN will recognize those phrases in a sentence

regardless of their location. This makes CNN suitable for text classification tasks such as hate

speech detection.

2.3.2 Recurrent Neural Network

Recurrent Neural Networks(RNN), first proposed by McClelland, Rumelhart and Group (1986)

are feed-forward networks designed to handle sequential data such as speech and text (Saksesi,

Nasrun and Setianingsih 2018). Connections between nodes in the network create a guided

graph along a sequence of neural network blocks. The network operates by giving earlier data

points in a sequence higher weights. This property makes it effective for text, string, and

sequential data classification tasks (Kowsari et al. 2019).

Several studies have investigated the use of RNN in NLP tasks such as spam detection, fake

news categorisation and sentiment analysis (Duncan and Zhang 2015; Baktha and Tripathy

2017; Ren and Ji 2017; Ajao, Bhowmik and Zargari 2018; Al-Smadi et al. 2018; Bahad, Saxena

and Kamal 2019). Recent studies have investigated the use of Recurrent Neural Networks in

hate speech detection. In their research, Pitsilis, Ramampiaro and Langseth (2018) used an

ensemble of RNN to separate normal text from sexism and racism. Their method outperformed

earlier works on the same dataset, such as the work by Badjatiya et al. (2017) and Waseem

and Hovy (2016). A study by Saksesi, Nasrun and Setianingsih (2018) experimented with the

use of RNN to classify hate speech using different batch sizes and noted that the performance

of the RNN improved as the batch size increased. Generally, the RNN is regarded as being able

to capture long-term dependencies better than other traditional algorithms. Since the RNN

considers the information from earlier nodes in a network, it improves semantic analysis of

textual information (Zhang, Chen and Huang 2018; Kowsari et al. 2019). The RNN performs

sequential processing, hence it is capable of capturing the sequential nature of languages

(Young et al. 2018). Word meanings are derived from previous words in the same sentence,

for instance, in the difference in meaning between “kid” and “kid glove”. This is particularly

important in tasks like hate speech detection, where a statement should be classified as hateful

or neutral, depending on context rather than on word occurrence. RNNs are designed to model

29

these context interdependencies in language. Additionally, the RNN can model variable text

length, making it suitable for sequence moⅾelling tasks (Tang, Qin and Liu 2015). The RNN

also facilitates time distributed joint processing for tasks such as multilevel categorisation

(Chen et al. 2017). Despite its dominance and advantages, the RNN has a number of

limitations. It is only appropriate for small and fixed-length input sequences, since it is

susceptible to exponential increase or decrease of the gradient over lengthy sequences (Nair

and Hinton 2010; Pascanu, Mikolov and Bengio 2012; Kowsari et al. 2019). This limitation

presents a challenge for the detection of hateful text on Twitter since the maximum number of

allowable words per tweet has recently increased from 140 word to 280 words. Several studies

have proposed enhanced versions of RNN, such as LSTM and GRU, to address the

shortcomings associated with standard RNN. These techniques are discussed in other sections

of this study.

2.3.3 The Long Short Term Memory (LSTM)

The Long Short Terⅿ Memory (LSTM) is a gradient-based special variant of the RNN,

introduced by Hochreiter and Schmidhuber (1997), that is capable of moⅾelling ordered

sequential input such as textual data (Liu et al. 2017). The LSTM was specifically developed

to learn long term dependencies while addressing the vanishing and exploding gradient

problems prevalent in the vanilla version of the Recurrent Neural Network (Sak, Senior and

Beaufays 2014; Kowsari et al. 2017; Pouyanfar et al. 2018). The architecture of the RNN

allows information accumulation as the algorithⅿ operates, and it uses feedback to memorise

earlier cell states (Nowak, Taspinar and Scherer 2017). The critical elements of the LSTM cells

are the cell state, which is the state of the cell transferred to the succeeding steps in sequence;

the forget gate, which determines which information to omit, and the input gate, which

determines what should be forwarded to the subsequent activation.

The LSTM has been widely used in classification tasks such as fake news detection and spam

detection. Studies have investigated the use of LSTM for detecting hateful content with

considerable success (Kwok and Wang 2013; Gao and Huang 2017; Ahluwalia et al. 2018;

Pitsilis, Ramampiaro and Langseth 2018). (Pitsilis, Ramampiaro and Langseth 2018)

experimented with an LSTM- based ensemble to detect hate speeⅽh in Twitter using the dataset

provided by (Waseem and Hovy 2016). Their method outperformed state-of-the-art approaches

which used the same dataset. Furthermore, a recent study on word level and character level

moⅾelling proved that LSTM-based architectures outperform more recent moⅾels (Jain,

30

Sharma and Agarwal 2019). This further highlights the superiority of the LSTM on sequence-

based tasks such as automated detection of hate speech (Melis, Dyer and Blunsom 2017).

Language moⅾelling is one of the fundamental applications of recurrent network-based

algorithms, and many recent works have focused on optimising LSTMs for this task (Krueger

et al. 2016; Merity, Keskar and Socher 2017). Despite its advantages over other deep learning

algorithms, the LSTM requires substantial amounts of data to train and validate (Kowsari et al.

2019). The LSTM is also computationally expensive since it takes considerable time to train.

2.3.4 Gated Recurrent Unit (GRU)

The Gated Recurrent Unit (GRU) is a simplified version of the LSTM, which was introduced

by Cho et al. (2014). Like the LSTM, it aims to address the vanishing gradient shortcoming

inherent in the standard version of the Recurrent Neural network (Umar et al. 2019). In the

RNN, fewer computations are required to update its hidden state, making it easier to train than

the LSTM. The GRU comprises an input and output gate, while the LSTM comprises the input,

output and forget gates (Dey and Salemt 2017). The main difference between the GRU and

LSTM is that the GRU exposes the whole-cell state to other units, while the LSTM controls

how much of the cell state is revealed to other units.

The GRU gating equations are as follows:

Zt=δ(wz,[ht-1,xt])

Rt=δ(wr.[ht-1,xt])

Ht=tanh(W.[rt*ht-1,xt])

Ht=(1-zt)*(ht-1+zt?*ht),

Where zt, rt, w, xt, ht,tanh and represent the update gate, reset gate, weight, input vector, output

vector, hyperbolic tangent activation and sigmoid function, respectively.

The GRU has been proven to give good results in sequential tasks such as text classification

(Zulqarnain et al. 2020). Researchers have explored widely the use of GRUs in classification

tasks such as opinion mining and spam detection (Adamson and Turan 2015; Cheng et al. 2017;

Sung and Jeong 2018; Huang, Xie and Sun 2019; Poomka et al. 2019; Yang, Zuo and Cui

2019; Roy, Singh and Banerjee 2020), Several seminal works have explored the use of GRU

for hate speech detection in social media. However, only a few of those studies were based on

31

the English language. Patihullah and Winarko (2019) investigated the use of GRU and

word2vec features for hate speech detection in Indonesian Twitter textual data. The efficacy of

the GRU was compared against three benchmark methods, namely, Logistic Regression,

Random Forest and Naïve Bayes. The findings of the study indicate that a combination of GRU

and word2vec features gave the best accuracy of 93%. In their study, Zulqarnain et al. (2020)

proposed a combination of GRU and Support Vector Machine for the detection of hate speech

using a Chinese dataset. The GRU was used for model training, while the Support Vector

Machine was used as a replacement for the softmax output layer. Their proposed model

produced 95% accuracy surpassing the performance of benchmark methods used in the same

study, namely, Deep Auto Encoder Belief Networks and Bidirectional LSTM with a

convolutional layer. A study by Van Huynh et al. (2019) implemented a Bidirectional GRU-

LSTM-CNN classifier for hate speech detection using a Vietnamese language dataset. Their

method had a 71% F1 score and came fifth overall position in the VLSP shared task 2019.

Mossie and Wang (2020) proposed a GRU-based hate speech detection model for Amharic

textual data on Facebook. Their approach produced the best AUC result of 98%, outperforming

other methods used in the same study. A few studies have also explored the use of GRU

networks for hate speech detection using English corpora (Zhang, Robinson and Tepper 2018;

Zhang and Luo 2019).

2.3.5 The Multi-Layer Perceptron (MLP)

The MLP is a series of interconnected layers of the perceptron. The first layer output is used

as the second layer input. This process is repeated for each of the remaining layers, with each

receiving input from the previous layer and supplying its output as input to the next layer in

the network before output reaches the last layer (output layer) (Singh and Husain 2014). The

layers between the input and output layers are known as hidden layers. MLP has adjustable

weights for training the system.

The MLP is a simple Neural network that acts as a universal function approximation (Singh

and Husain 2014). The MLP has been investigated with success to address classification tasks

from different domains such as audio processing (Zabidi et al. 2010), medical diagnosis (Nasir,

Mashor and Hassan 2013) and pattern classification (Hu 2010). According to literature, only a

few studies investigated the use of MLP for the task of hate speech detection. A recent study

by Putri et al. (2020) compared algorithms for the task of hate speech detection using a dataset

comprising 4302 Indonesian tweets related to race, ethnicity, religion and politics. The

Multinomial Naïve Bayes classifier outperformed the MLP overall, while the MLP had the best

32

result of 84,3% achieved using unigrams and SMOTE features. Silva and Roman (2020)

investigated the use of MLP with three hidden layers to detect hate speech in Portuguese tweets.

The MLP achieved an F-measure score of 85%, surpassing results from an earlier study by

Fortuna et al. (2019), in which the LSTM produced an F-measure score of 83% on the same

dataset. However, the MLP `s performance was achieved using unprocessed tweets. This

suggests that the performance of the MLP on hate speech detection may be improved by

preprocessing the data. The Multi-Layer Perceptron has several advantages, which include

computational efficiency, adaptive learning and simplicity (Wankhede 2014). Adaptive

learning may particularly be useful for the task of hate speech detection since it allows it to

learn based on given tasks. However, the number of layers in the MLP is manually set, and

failure to set the optimal number of layers may result in overfitting or underfitting. This

limitation calls for regularisation techniques like dropout, which are known to minimise

overfitting (Srivastava et al. 2014). Additionally, the MLP has slow convergence, and its local

minima can affect the training process.

2.4 Attention-Based Deep Learning Algorithms

The performance of deep learning techniques has been improved by techniques such as

attention and transformer moⅾelling (Vaswani et al. 2017; Devlin et al. 2018; Mozafari,

Nematbakhsh and Fatemi 2019). However, the use of these techniques for hate speech detection

is still limited. This technique was first introduced in 2015 (Bahdanau, Cho and Bengio 2014).

Attention is a deep learning technique that has been investigated with considerable success in

tasks such as opinion mining. Recent adaptations of the Attention mechanism have seen models

progress from RNNs to Self-Attention and the Transformer models (Devlin et al. 2018).

2.4.1 Models with Attention Mechanism

Recurrent Neural Networks have been the gold standard in text processing tasks such as hate

speech detection (Mutanga, Naicker and Olugbara 2020). While these techniques have

performed well by capturing long-term sequences as compared to earlier methods, they fail to

capture input sequences to arbitrary lengths. The LSTM, a special time of the RNN, was

designed to capture long-term sequences better than earlier methods. However, the vanilla

LSTM`s performance falls when the length of the sequence exceeds thirty words (Bahdanau,

Cho and Bengio 2014). The extension of Twitter`s number of allowable characters from 140

to 280 calls for techniques that may be able to capture long-range sequences. Consequently,

techniques such as attention have been explored to effectively derive meaning from long

sequences of text such as those found on Twitter texts. The attention mechanism handles and

33

quantifies the interdependence between the input and output elements and within the input

elements of a network. The attention mechanism ensures that the encoder codes task-specific

information by enabling the decoder to make reference to the input sequence. Additionally, the

decode is also conditioned on a context vector computed based on the hidden state sequence of

the input. For each input sequence, the bidirectional LSTM generates a series of annotations

((h1,….., hTx). Joining the forward and backward hidden states in the encoder results in the

veⅽtors h1,h2..htTx. The weights for the attention model are learned by a Feed-Forward Neural

Network, and the output word context vector is generated using the weighted sum of

annotations.

In NLP, the attention mechanism was first applied to the task of machine translation by

Bahdanau, Cho and Bengio (2014), where it achieved superior results compared to earlier

methods. Since then, it has been explored for other text processing tasks such as language

understanding, answering questions, and text classification (Sukhbaatar, Weston and Fergus

2015; Vinyals et al. 2015; Kumar et al. 2016; Shen et al. 2017; Liu and Guo 2019). A few

studies have incorporated the attention mechanisms in the detection of hateful content. Gao

and Huang (2017) used the LSTM with attention model to detect hate speech. Their LSTM

with attention model outperformed other baselines, including bidirectional LSTM by 3 to 4%

in F-measure score. Additionally, the authors also noted that the LSTM was effective in

detecting hate speech expressed implicitly compared to the other models. Santosh and Aravind

(2019) used a Hierarchical model with attention based on phonemic words to detect hate speech

in English-Hindi code-mixed textual data. Their results showed that the Hierarchical model

with attention significantly outperformed the Support Vector Machine. Some studies also used

the attention mechanism to enhance their models during data science competitions (De la Pena

Sarracén et al. 2018; Baruah, Barbhuiya and Dey 2019; Wang et al. 2019).

2.5 Transformers

Improvements to attention the mechanism have gradually moved models from partial attention

to Transformer models, which are based on full attention (Devlin et al. 2018). One major

challenge of using RNN for text classification is that it processes text in a sequential manner.

Despite the fact that CNNs are less sequential than RNNs, their computational cost to capture

relationships between words in a sentence grows as sentence length also increases in the same

manner as RNN. The transformers address this problem by applying self-attention for parallel

computation of each word in a document or sentence. Transformers consist of encoders and

decoders. Every encoder has a self-attention layer and a Feed Forward Neural Network. As

34

illustrated in Figure 2.1, the encoder`s input flows through the self-attention layer, which helps

the encoder to look at other words in the input sequence as it encodes a particular word. On the

other hand, the decoder has an attention layer between the Feed Forward Neural Network layer

and the Self Attention layer. This allows the decoder to focus on the salient parts of the input

sequence. Transformers allow for better parallel processing as compared RNNs and CNN,

which enables efficient training of models on large volumes of data using GPU clusters.

Transformers use much deeper network architectures and are pre-trained on vast corpora to

learn contextual text representations by predicting words conditioned on their context (Radford

et al. 2019). The transformer is increasingly becoming the preferred architecture for text

processing outperforming traditional deep learning algorithms in natural language

comprehension and natural language generation (Melis, Dyer and Blunsom 2017; Mutanga,

Naicker and Olugbara 2020). Pretrained word and sentence embeddings used with traditional

deep learning algorithms are capable of retaining the semantics of words used in sentences;

however, they lack context mutability (Mishev et al. 2020). To illustrate the importance of

context, we analyse the following two sentences that contain the word Springbok. “Springboks

had a great Rugby World Cup” and “Springboks are nearing extinction in South Africa”. In the

first sentence, the term Springbok refers to the South African National Rugby Team, while in

the second sentence, the same term refers to a wild animal. Nonetheless, the encoders would

generate the same encoding for the two words, irrespective of their contextual usage. This

traditional deep learning limitation necessitates the need for contextual embeddings.

2.5.1 Architecture of the Transformer

The transformer architecture performs sequence to sequence conversion using the encoder and

decoder. Sequence transduction using transformers is based on multi-headed self-attention

mechanisms only.

 Figure 2.1 shows the general architecture of the NLP transformer.

35

Figure 2.1: Architecture of the transformer model

 (Vaswani et al. 2017)

2.5.2 Types of Transformers

“Transformer Pre-trained Language Models (PLMs) can be grouped into two categories,

autoregressive and autoencoding PLMs. Several architectures of transformer models have been

successfully investigated for Natural Language processing tasks. In particular BERT has

outperformed earlier performance benchmarks in NLP tasks (Mikolov et al. 2013b; Devlin et

al. 2018). BERT uses vast unlabeled corpora to create pre-trained models whose parameters

are tunable to enhance efficiency. The success of BERT has inspired the development of

several algorithms based on BERT`s architecture. These models include RoBERTa, XLNet

and DistilBERT. (Mikolov et al. 2013b). RoBERTa is an enhanced version of BERT trained

on a larger dataset to maximise predictive accuracy, whereas DistilBERT is trained on a

streamlined version of BERT. XLNet. is a generalised autoregressive pretraining approach

that rebuilds original data from corrupted input.”

36

2.5.3 BERT

BERT is an autoregressive transformer model that leverages the vanilla transformer

architecture to produce an enhanced transformer model (Devlin et al. 2018; Sohangir et al.

2018). BERT employs the unsupervised learning technique to pre-train deep bidirectional

representations from vast unlabeled text corpora by using a masked language model (MLM)

and next sentence prediction (NSP). BERT addresses the limitations of earlier previous

language models by building a bidirectional masked language model capable of predicting

randomly masked words in the sentence, thereby enriching the contextual information of the

words.

2.5.4 DistilBERT

“DistilBERT is a streamlined variant of BERT that uses half the parameters of BERT while

retaining the performance of the full version of BERT in several NLP tasks (Sanh et al. 2019).

Streamlining of BERT is achieved by removal of the pooler and token type embeddings from

BERT`s architecture (Büyüköz, Hürriyetoğlu and Özgür 2020). Furthermore, the model only

uses half the number of layers used by BERT. The compact (student) model is trained to

replicate the entire output distribution of the more extensive (teacher) model or ensemble of

models. The compact model acquires the knowledge based on a distillation loss over the soft-

target probabilities of the teacher instead of training with a cross-entropy over the hard-targets

(one-hot encoding of the classes). The resultant model comprises 66 million parameters pre-

trained on the Toronto Book Corpus and the Wikipedia in an unsupervised manner.”

2.5.5 RoBERTa

The RoBERTa model is an enhanced version of BERT developed by the Facebook research

team in 2019 (Liu et al. 2019). The model was improved by pre-training the model on a dataset

tenfold the size of BERT using a different set of hyperparameters and an enhanced training

methodology. During the training epochs, RoBERTa also eliminates Next Sentence Prediction

(NSP) and introduces dynamic masking of words. These modifications and features outperform

BERT in a variety of NLP functions, including text categorisation (Mishev et al. 2020).

2.5.6 XLNeT

The XLNet. transformer model is a generalised autoregressive pretraining for language

understanding developed by Carnegie Mellon University and Google Brain in 2019 (Yang et

al. 2019). XLNet seeks to address the limitations of BERT with an architectural design for pre-

training. It utilises a generalised autoregressive model where the next token is determined by

http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding

37

all earlier tokens, thereby minimising corrupted input caused by word masking prevalent in

BERT. BERT`s shortcomings include disregarding the interdependency between masked

tokens since it assumes that they are jointly independent variables. XLNet, on the other hand,

takes these tokens into account during context construction and assumes that masked words

are mutually dependent. (Mishev et al. 2020). Furthermore, XLNet employs Permutation

Language Modeling (PLM), which maximises the log-likelihood of a sequence given all

possible permutations of words in a sentence. This means that XLNet uses tokens from

positions found on the left and the right sides of the token to enrich the contextual information

of each position.

2.5.7 Transformers in Hate Speech Detection

Some researchers have investigated the use of transformers for hate speech detection in social

media. However, most of the explored techniques are computationally expensive, and it is not

practical to run on devices with low computing power, such as handheld devices. Mozafari,

Nematbakhsh and Fatemi, 2019 implemented a transformer-based transfer learning approach.

They investigated BERT's effectiveness at capturing hate speech by using new CNN

optimisation techniques based on transfer learning. They achieved a 92% F1 score

outperforming earlier works (Waseem and Hovy 2016). In their study. MacAvaney et al.

(2019) optimised their BERT model to detect hate speech on Twitter. The authors criticise the

approach for its lack of interpretability, despite the fact that its results matched state of the art.

Mutanga, Naicker and Olugbara (2020) investigated the performance of deep learning

algorithms on a publicly available multiclass dataset with 24 783 tweets. The DistilBERT

algorithm produced the overall best results with an F1 score of 75% outperforming baseline

transformer and attention-based methods. The result also surpassed results achieved by another

study that used the same dataset (Davidson et al. 2017). Although the DistilBERT approach

outperformed other transformer-based approaches in that study, it has significantly fewer

parameters and layers as compared to other transformers. The superior performance of

DistilBERT could have been due to the chosen parameters. This, therefore, implies that the

performance of other transformer models may be improved by fine-tuning. In a SemVal

Competition, Liu, Li and Zou (2019) preprocessed textual data according to the language

behaviour on social media before fine-tuning Bidirectional Encoder Representation from

Trans-former (BERT) pre-trained by Google`s Artificial Intelligence Language team (Devlin

et al. 2018). They obtained an F1 score of 0.8286, outperforming other competitors in SubTask

A at SemVal 2019 competitions.

38

2.6 Chapter Summary

The chapter comprehensively reviewed relevant publications based on hate speech and deep

learning. This serves as a foundation for the work reported in this dissertation. This chapter

gives a detailed description of relevant topics directly related to the current study in five

sections, namely the introduction, definitions of hate speech, traditional deep neural techniques,

partial attention-based approaches, and full attention (transformer) approaches. Special

emphasis was on the different approaches proposed in the literature by identifying their

strengths and pitfalls. As described in the introductory part of this chapter, hate speech

detection remains a significant but complex challenge that triggered the development of several

hate speech detection algorithms to address the problem. From the review, it can be observed

that there is no single solution to the problem of hate speech dissemination, despite the

persistent efforts of researchers in this field. This inspired the researcher to experimentally

investigate and evaluate the performance of deep learning algorithms. The next chapter

explains the steps followed to accomplish the set research aim and objectives of this study.

Specifically, the researcher discusses the corpora, the hardware, the programming language

and the parameter settings for the methods which are the subject of this study.

39

CHAPTER THREE

40

RESEARCH METHODOLOGY

3.1 Introduction

This chapter details the steps taken to meet the set objectives. The systematic approach

employed in this study is known as experimentation. Firstly, the hate speech dataset acquisition

process is discussed. Thereafter, the preprocessing of the acquired datasets is clearly explained,

followed by a discussion of the selected feature representation method. Lastly, the training and

classification process of the selected deep artificial neural networks is described. The

subsequent sections elaborate on each of the methodological steps involved in this study.

3.2 Datasets

In Chapter Two of this study, the researcher mentioned that the performance of several

algorithms would be evaluated on more than one dataset. Essentially, a suitable method should

be able to perform optimally over diverse datasets to draw both qualitative and objective

conclusions. Therefore, in this study, the researcher chooses to explore two publicly available

hate speech data sets. Moreover, the selection of two different datasets would inject diversity

to avoid biased classification results. The datasets used in this study include the hate speech

and offensive language dataset and the Kaggle Twitter Hate Speech dataset. These datasets are

selected based on the following attributes:

1. They are public and easily accessible.

2. They cover all types of hate speech and, as such, can train models which can be used

to detect different kinds of hate speech.

3. They differ in size, allowing the analysis of the effect of dataset size in hate speech

detection models.

4. They include both binary and multiclass instances.

In this work, it was essential to consider the efficacy of algorithms on diverse data.

Consequently, the machine learning algorithms were applied to two datasets of significantly

different sizes, as discussed in the next section.

3.2.1 The Hate Speech and Offensive Language (HSO) Dataset

The multiclass hate speech and offensive language dataset originally created by Davidson et

al. (2017) was chosen for the experimental comparisons reported in this research because it

contains different types of hate speech, and it has a comparatively high number of instances.

41

The dataset, as well as the results achieved by Davidson et al. (2017), provides a platform to

measure improvements that could be achieved with the dataset and compare results, using

various deep learning-based models developed by researchers who used the same dataset. This

dataset had 24 783 Twitter text messages categorised and labelled into three classes: neutral

speech, offensive language and hate speech. 77.4% of the instances are labelled as neutral,

16.8% as offensive and 5.8% as hate. The tweets in the dataset were manually annotated by

Crowd Flower (CF) employees. The employees were asked to label each tweet as either

containing hate or not. In labelling the datasets, they were guided by the definition of Davidson

et al. (2017, p.512), which describes hate speech as "language that is used to expresses hatred

towards a targeted group or is intended to be derogatory, to humiliate, or to insult the members

of the group ". Annotators were advised not only to look at the presence of certain words in a

given tweet but also to consider the context surrounding words or phrases. A minimum of three

annotators was assigned to code each tweet. The intercoder-annotator agreements score

provided by Crowd Flower is 92%.

3.2.2 Kaggle Dataset

The original Kaggle dataset is made up of 8 778 neutral messages and 1 155 hate messages.

The dataset was grossly imbalanced. It was essential to measure the efficacy of the selected

deep learning algorithms on a smaller dataset. To enable the testing of algorithm performance

on smaller datasets, the dataset was reduced programmatically to 2 300 messages. The new

balanced dataset consisted of 1 150 hate messages and 1 150 neutral messages. The original

dataset is publicly available on the Kaggle site:

 https://www.kaggle.com/pandeyakshive97/datasets.

3.3 Visualisation of Datasets

Figure 3.1 and Figure 3.2 illustrate the distribution of the classes for each of the datasets used.

https://www.kaggle.com/pandeyakshive97/datasets

42

Figure 3.1 shows the Class distribution of the HSO dataset visualisation.

Figure 3.1: Dataset class distribution

As shown in Figure 3.1, the HSO dataset comprises 1 437 tweets labelled as hate tweets, 4 163

tweets labelled as offensive, and 19 182 tweets labelled as neutral.

Figure 3.2 shows the Class distribution of the Kaggle dataset visualisation.

Figure 3.2: Kaggle Dataset Class Distribution

As shown in Figure 3.2, the Kaggle dataset is well balanced, comprising 1 150 tweets labelled

as hate tweets and 1 150 tweets labelled as neutral.

3.4 System Setting

 Two publicly available annotated datasets from Twitter social media platform were used for

the experiments. This enabled us to evaluate our models based on the ground truth. All the

0

5000

10000

15000

20000

25000

Hate tweets Offensive Tweets Neutral Tweets

HSO class distribution

0

200

400

600

800

1000

1200

1400

Hate Tweets Neutral Tweets

Kaggle Dataset class distribution

43

algorithms examined in this study were coded in Python, a versatile programming language

with built-in machine learning libraries. The major libraries used in this work include Keras

with theano backend, Natural Language Toolkit (NLTK), Hugging face`s transformers, scikit

and matplotlib. Since Python is an open-source platform, its machine learning libraries

continue to evolve as new functionalities are being added by the programming community. The

experiments for traditional deep learning algorithms explored in this study were carried out on

a laptop with Ubuntu 16.10 Linux distro, 8GB Randoⅿ Access Memory and Core i7

CPU@1.6GHZ (8 CPUs),1.8GHz processor specifications. The experiments in this study

required a minimum of 5GB free disk space, and the available disk space was 80GB. The

experiments for transformer-based models were performed on a computer with Windows 10

operating system, GEO Force Graphical Processing Unit (GPU) and 64 GB RAM. The

Graphical Processing Unit was used to take advantage of the parallelisation capability of

Transformer algorithms explored in this study. The 64GB RAM also allows us to timeously

save the pretrained transformer models onto the computer`s local storage. This allows the

programs to access the pre-trained model locally rather than downloading it whenever it is

needed.

3.5 Data Pre-processing

Text preprocessing is an essential part of NLP tasks which transforms text into a form ready

for input into text classification algorithms. Due to the conversational nature of Twitter texts,

preprocessing was applied to convert the Tweets into a format that is more predictable and

analysable for the task of automated hate speech detection. Preprocessing also minimised

feature sparsity in the feature representations. Preprocessing is a proven technique for

improving the predictive capability of classifier algorithms (Uysal and Gunal 2014).

Furthermore, preprocessing reduces the computational resources needed by a classifier while

minimising the overall training time (Kadhim 2018). The processes involved in preprocessing

the tweets in the datasets include tweet cleaning, text normalisation, stop word removal and

removal of null values, as explained in the next section.

3.5.1 Cleaning up of Tweets

 This stage involved deleting URLs prefixed with "https:" and http://, tags (i.e., "@user") and

any text incompatible with the American National Standards Institute convention (ANSI). This

is because such URLs do not add any information that is relevant to the classification decision.

For example, if the tweeting history of the author is known, it might be useful in the

classification decision. However, since no history is given regarding the author, the inclusion

mailto:CPU@1.6GHZ

44

of tags is not useful. The cleaning up of tweets was achieved using a regular expression-based

string manipulation, coded using Python programming language version 3.7.

3.5.2 Data Normalisation

Twitter text data is generally noisy and is conversational in nature; therefore, it is necessary to

remove the noise and standardise the data before passing it through machine learning

algorithms. To mitigate twitter text noise and standardise input, the researcher applied state-of-

the-art lemmatisation and Stemming techniques using Python s Natural Language Toolkit

Library (NLTK). The Wordnet lemmatiser, which reduces words to their morphological root

forms, was used, thereby reducing the number of features. This was achieved by converting

words conveying the same meaning related to a single word; for example, the words go, going,

went, and gone are all reduced to the word go.

3.5.3 Lower Casing

All word tokens in the dataset were converted to lower case to avoid capitalised versions of

words being recognised as different features to lower case versions of the same word. For

instance, the terms Nigga and nigga would be regarded as entirely different features if words

are not converted to the same case. Switching words to the same case reduces feature space,

thereby improving the performance of the model.

3.5.4 Stop Word Removal

Stop words refers to word tokens that do not carry important meaning, and their presence or

absence is deemed not to influence the meaning of tweets. For example, in the tweet "Muslims

are a disgusting group", the removal of Stop-words "are" and "a" will not change the overall

sentiment of the statement. In this work, stop words were removed using Natural Language

Toolkit (NLTK), a python libraries suite designed for natural language processing. A standard

list of English words from NLTK was removed from the dataset before processing.

3.5.5 Word Length

Words with less than three characters were removed from the dataset. Short words generally

contain no meaning; therefore, their removal does not change the overall meaning of tweets;

for example, the words "be" and "is" are generally used to connect ideas in language. A custom

python programmed method to delete these words was used for this task.

http://www.nltk.org/
http://www.nltk.org/

45

3.5.6 Removal of Null Values

All rows containing null values in the tweet column were removed using a built-in pandas

library in the Python programming language. This process was performed to eliminate

programming bugs associated with null values.

Table 3.1 shows an example of text transformation during the preprocessing stage.

Table 3.1: Preprocessing Steps

Action Expected output

 Preliminary stage:

Read a tweet from the dataset

“!!! RT @mayasolovely: As a woman,

you shouldn't complain about cleaning up

your house. & as a man, you should

always take the trash out...”

Step 1: remove unwanted text patterns

from text such as special characters,

hashtags, user tags, etc.

RT As a woman you shouldn t complain

about…

Step 2: removing short words (less than

three characters)

woman shouldn complain about cleaning

your house

Step 3: tokenisation and stemming woman, shouldn, complain, about, clean,

your house

3.6 Feature Representation for Traditional Deep Learning Algorithms

Maⅽhine learning algorithms accept features in numerical form only. Therefore, it was

necessary to convert word features into a numerical format for input into classifier algorithms.

Conversion of word features into numerical form can be achieved using different techniques

such as word eⅿbedding s and the Bag of Words approach. Traditional feature representation

methods such as the Bag of Words (BOW) approach suffer from several disadvantages as

compared to word eⅿbedding s. For example, the lack of word order leads to loss of contextual

meaning of words, thereby negatively impacting the quality of feature representation (Le and

Mikolov 2014). Additionally, the BOW approach uses sparse representations, which lead to

high dimensionality (Yogarajan et al. 2020).

46

Word embeddings have been shown to be effective in capturing contextual similarities, and

because of reduced feature space, they are particularly computationally efficient in processing

NLP tasks (Young et al. 2018). Moreover, the dimensionality of word embeddings can be

varied according to the problem being solved. Smaller dimensionality is more appropriate for

syntactic tasks such as Named entity recognition (Melamud et al. 2016). On the other hand, a

larger dimensionality is appropriate for tasks dependent on semantics, such as sentiment

analysis and hate speeⅽh detection (Ruder, Ghaffari and Breslin 2016). The deep learning

algorithms evaluated in this study use word embedding feature vectors as input for training.

Keras deep learning library with theano backend was used to code the models. Keras is a

wrapper to TensorFlow, a deep learning library that allows the use of a few lines of code. The

algorithms used in this study belong to the many-to-one architecture, implying that they are

trained on several input sequences to predict one output. In this study, the Keras embedding

layer was used, which was initialised with generated weights that learn an embedding for the

vocabulary in the training dataset. The Keras embedding layer was implemented as part of a

deep learning model where the embedding was learned along with the model itself for each

algorithm. Since the input data must be integer encoded, each word is represented by a unique

integer. This data preparation step was performed using Keras` built-in tokeniser. The

embedding layer is the network's first hidden layer, and it has three important arguments,

namely:

• Input dimension: The vocabulary size of the dataset is defined by this integer. The

vocabulary size would be 10 if the data is integer encoded with values ranging from 0

to 9.

• Output dimension: This is the vector space size in which words were embedded with.

It determines the size of each word's output vector in this layer. Different values

between 16 and 100 were experimented with to find the optimal figure for the task.

• Input length: This is the length of the input sequences used to specify any Keras

model’s input layer. If all of the input documents contain 1000 sentences, for example,

the input length will be 1000.

3.7 Tuning and Training for Traditional Deep Learning Algorithms

Tuning deep neural networks can be challenging. Careful selection of parameters in neural

networks can be the difference between superior and inferior performance (Reimers and

Gurevych 2017). Poorly selected hyperparameters may lead to poor learning by algorithms.

47

The next section presents the steps taken into consideration while tuning and training the

selected traditional deep learning algorithms.

3.7.1 Minibatch Size

A minibatch is a collection of instances from a training dataset, used at a time to calculate the

gradients and parameter updates. It is crucial to maintain the minibatch size bigger than one to

maximize parallelisation. The algorithms were tested with minibatch sizes of 16, 32, 64 and

128. Initially, a minibatch size of 16 was used. The output of the networks was monitored for

various minibatch sizes before deciding on size (64), which produced the best results for all of

the experiments.

3.7.2 Number of Epochs and Number of Iterations

An epoch is a complete pass of the whole dataset during training (Brownlee 2018). On the other

hand, iteration refers to the number of parameter updates in a row per minibatch. Multiple

epochs and one iteration were employed for training the network. Deciding on a suitable

number of epochs to use is important, as using too few epochs may not allow the algorithm

sufficient time to learn appropriate parameters, whereas too many epochs can result in

overfitting. In the experiments of this study, 10 epochs across all algorithms were used.

3.7.3 Learning Rate

Learning rate determines the step size at every iteration as it progresses towards a minimum

loss function. A poor learning rate may lead to slow network learning. A network`s learning

rate is usually determined by the training as well as the network architecture. For comparison

purposes in this work, the researcher used a learning rate of 0,1 with early stopping.

3.7.4 Activation Function

In deep learning, the activation function is responsible for converting the activation level of a

neuron into an output signal (Karlik and Olgac 2011). The activation function is dependent on

the layer type. Functions such as tanh, sigmoid are susceptible to the vanishing gradient

problem, thereby negatively affecting the learning process in deep neural networks. For the

hidden (non-output) layers, ‘rectified linear Unit (relu) activation functions are often preferred

since they are less susceptible to vanishing gradient as compared to the aforementioned

activation functions. The activation functions for the output largely depends on the kind of

output expected from the network. Since the researcher was using a binary and a multiclass

datasets classification problem, the softmax and the Rectified Linear Unit (RELU) activation

functions were used.

48

3.7.5 Loss Function

Deep neural networks employ loss functions at each layer, which can be used for pre-training

to learn more relevant weights. The loss function aids the classification decision when used in

the output layer. The loss function to be used is essentially determined by the purpose of the

neural network. In our network, the researcher used the binary cross-entropy loss function for

the Kaggle dataset, whereas the categorical cross-entropy was employed for the multiclass

HSO dataset.

3.7.6 Regularization using Dropout

Dropout is a regularisation technique meant to help models prevent overfitting by improving

the moⅾel's generalisation capability. In this research, the effect of varying dropout values

between 0,1 and 0,9 was investigated. The dropout technique is the gold standard regularisation

technique in NLP tasks (Srivastava et al. 2014). The optimal value for dropout was 0,5. Other

researchers in NLP have also found a dropout of 0.5 to be the most optimal (Kim 2014).

3.7.7 Optimisation Algorithm

In this work, the default optimiser for the algorithms was Adam. The use of Adam as the default

optimiser was inspired by its widespread use and success in related tasks (Ruder 2016).

Additionally, the effect of rmsprop and adagrad were evaluated. To complement the

optimisers` automatic internal learning rate tuning, the " Reduce Learning rate on Plateau"

approach was implemented, where a learning rate was manually set until convergence. Reduce

Learning rate on the plateau was set with validation loss as the monitor. The Reduce Learning

rate on the plateau was configured with a factor of 0.6, verbose of 1 and patience of 1.

3.7.8 Layers

Choosing the appropriate type of layer connection was essential to keep the gradient significant

enough to allow the weight to update its value. In this study, the researcher used the dense

connection for the layers between the input and output. Dense connections add direct

connections from each layer to all subsequent layers as opposed to the successive addition of

layers (Gao and Huang 2017). The choice of the dense layer was inspired by its recent success

in Natural Language Processing tasks (Ruder 2016). The effect of varying the number of layers

on algorithm performance was also explored. The number of dense layers was varied from 3

to 7 for every algorithm.

49

3.7.9 Dataset Split

The default train-test split ratio was set at 80:20. Additionally, the impact of varying the train-

test split ratio was further explored by investigating the 70:30 train-test split ratio.

Table 3.2 summarises the parameter settings used in this study.

Table 3.2: Parameter Settings used

Parameter
Embedding

Parameters
Epochs Layers Train/Test

split

Activation

Function

Optimiser Loss

Function

Setting Input Length:

2000

Input

Dimension:

200

Output

Dimension:

16

20 3, 5

and 7

Default:

80:20,

Variation:

70:30

Relu and

Sigmoid

Default:

Adam

Variations

(RMsProp

and

Adagrad)

Binary

cross-

entropy

Categorical

Cross-

Entropy

Figure 3.3 illustrates the major steps followed in implementing each of the deep learning

algorithms.

Figure 3.3: Illustration of steps followed in hate speech detection using traditional deep learning

algorithms

50

Figure 3.3 illustrates the general architecture of the traditional deep learning hate speech

detection models explored in this study. The complete pipeline of the processes at each stage

is shown. At the initial stage, tweets from the datasets are preprocessed. This is followed by

feature extraction, which is performed automatically by the hate deep learning algorithm.

Lastly, the model is trained and evaluated using the training and testing proportions of the

dataset, respectively.

3.8 Implementation of the Attention Mechanism

The attention mechanism was implemented in conjunction with the Bidirectional LSTM at the

word level. At every phase t, the Bidirectional -LSTM receives as input word vector containing

semantic and syntactic information, known as word embedding (Mikolov et al. 2013a).

Thereafter, an attention layer was applied over each hidden state hˆ t. The model’s attention

weights are learned through the joining past hidden state of the Post-Attention LSTM (Pos-Att-

LSTM and the current hidden state of the Bidirectional LSTM. The Post-Att-LSTM network

detects the presence or absence of hate within a text.

The bidirectional LSTM operates basically the same way as the vanilla LSTM, but the

processing of the incoming text is from both the left and right as opposed to one way. The

Bidirectional-LSTM was investigated with the aim of capturing long-range and backwards

dependencies based on its success in earlier studies (De la Pena Sarracén et al. 2018; Ren, Wan

and Ren 2018; Do et al. 2019). Two fundamental building blocks of the attention-based LSTM

for hate speech detection are the attention layer and the Post attention Layer.

3.8.1 Attention Layer

The attention mechanism allows the Bidirectional LSTM to decide parts of the tweet on which

the model should focus. The model learns what to focus on based on the input tweet and what

it will have produced to date. The goal of the attention layer is to get a context vector capable

of capturing salient information and input it to the subsequent level (De la Pena Sarracén et al.

2018).

3.8.2 Post Attention Layer

The Post-Attention-LSTM is responsible for assigning tweets to either the hate or neutral

category. At each time step, the network receives the context vector, propagated until the final

51

hidden state. This veⅽtor is text representation which is used in the final softmax layer as

follows:

 yˆ = softmax(Xg ∗ sTx + zg) where Xg and zg are the parameters for the softmax layer.

 For the loss function, the researcher used cross-entropy, which is denoted as:

L = − X n yn ∗ log(ˆyn),

Where yn is the correct classification of the n-th tweet.

The full architecture of the bidirectional LSTM with attention used in this study is summarised

in Figure 3.4. As Illustrated, the model includes the bidirectional LSTM layer, the attention

layer and the post attention layer.

Figure 3.4: Architecture of the bidirectional LSTM with attention for hate speech detection in Twitter

3.9 Implementation of Transformer Algorithms

Transformers mirror the standard text classification, which includes preprocessing the text,

model training and predictions on unseen data. The transformer methods are selected in this

study due to their built-in self-attention feature, which facilitates the capture of long-terⅿ

dependencies while enabling parallel processing of input features. The capture of long-terⅿ

52

dependencies enables anaphora resolution, which has been identified as a major limitation

encountered when classifying subjective text (Cambria et al. 2017). Nevertheless, the majority

of transformers are resource-intensive, making them less applicable in environments with

scarce resources (Sajjad et al. 2020). Given this background, in this study, full transformer

methods were investigated alongside transformer methods that have been streamlined and

customized for resource-constrained environments, for example, DistilBERT, which is a

streamlined version of the BERT architecture. Other transformer methods explored in this

study are RoBERT, XLNet, and BERT.

3.9.1 Pretraining Transformer Models

Through transformers, pre-existing models built on very large datasets can be customised for

different tasks classification tasks. This minimises the cost of training a new deep learning

model every time. Additionally, the datasets on which the transformer models are trained meet

industry-accepted standards, and we are assured of a model that has been vetted for quality.

Transformers are trained in an unsupervised manner on corpora such as the English Wikipedia

and the Toronto book Corpus. After Pre-training, the model the researcher customised each

transformer model to the task of hate speech detection using the parameters discussed in

Section 3.9.2 of this study.

3.9.2 Parameter Tuning of Transformer Moⅾels

The tuning of hyperparameters is a fundamental phase when customising pre-trained models

to given assignments. As outlined in Table 3.3, the hate speech detection model was improved

by tweaking the parameters of each transformer method during the training session. The same

optimal hyperparameter values were configured for the number of epochs, early stopping

patience, batch size and sequence length. To match Twitter's cap of 280 characters per tweet,

the maximum sequence length parameter was set at 280 characters. The optimum number of

epochs in our experiments was set at four. Additionally, overfitting was minimised through the

use of early stopping method. The early stopping patience parameter was configured at 4,

implying that training is interrupted as soon as there is no further reduction of validation loss

for four epochs. The evaluation batch size specifies the number of instances that can be

processed simultaneously. The researcher configured the evaluation batch size at 256 since it

was the maximum batch size compatible with the computer`s processor.

The other hyperparameters used for each of the transformers were summarised in Table 3.3.

53

Table 3.3: Hyperparameters for transformer methods

Hyperparameters Method

 BERT RoBERT XLNET DistilBERT

Learning rate 4e-5

4e-2

4e-3

4e-5

Epochs 4 4 4 4

Sequence length 280 280 280 280

Evaluation batch size 256 256 256 256

Training batch size 256 256 256 256

Gradient accumulation

steps

1 2 2 0

Early stopping patience 4 4 4 4

After parameter tuning, the hate speech detection experiments using transformer methods was

concluded by evaluation of the trained models. The performance of the transformer models

was objectively measured and analysed using well known statistical metrics, as discussed in

Section 3.10 of this study. The complete pipeline of hate speech detection using transformer

methods is illustrated in Figure 3.5, showing that the dataset was first divided into training and

testing parts. A pretrained transformer model was customised or fine-tuned for the hate speech

detection task using the training component or part of the dataset. After fine-tuning the model

for hate speech detection, it was evaluated using state of the art metrics. The evaluation was

based on test data which was 20% or 30% of the full dataset, depending on the train-test split

ratio used. The evaluation metrics used in this study were accuracy, precision, recall, F-

measure, area under the curve (AUC) and Mathews Correlation Coefficient (MCC).

Figure 3.5 shows the architecture of the transformer-based model hate speech detection models

explored in this study.

54

Twitter Data

Hyperparameter

Fine Tuning

Pretrained

Model

Evaluation20% of dataset

80% of dataset

Dataset Train/

test split

Figure 3.5: Transformer architecture for hate speech detection

3.10 Metrics

Evaluation metrics were used to measure the quality and performance of machine learning

models. Evaluating machine learning models or algorithms are crucial for any study because

they present an objective way of assessing model performance. In the literature, there is no

consensus on the best evaluation metrics for classification problems. Performance evaluation

of hate speech detection algorithms has largely been based on classic metrics such as precision,

recall and F-measure (Badjatiya et al. 2017; Gambäck and Sikdar 2017; Park and Fung 2017;

Zhang, Robinson and Tepper 2018; Charitidis et al. 2020). In this study, the Mathews

correlation coefficient metric, a contingency matrix method of calculating the Pearson product-

moment correlation coefficient, was also included (Powers 2020). The MCC is less affected by

imbalanced datasets compared to more popular metrics such as accuracy, which overstate the

model’s performance (Sokolova, Japkowicz and Szpakowicz 2006; Gu, Zhu and Cai 2009;

Akosa 2017). However, the evaluation was based on widely used metrics, which are accuracy,

precision, recall, F-measure and area under the curve. Accuracy, precision, recall and F-

measure can be calculated from values of the confusion matrix, which are True Positives (TP),

True Negatives (TN), False Positives (FP) and False Negatives.TP represents actual positives

predicted as positive, TN represents Actual Negatives that are predicted correctly as Negative,

55

FP represents actual negatives that are wrongly predicted as positives, and FN represents actual

positives that are wrongly predicted as negatives.

The general formula for accuracy is
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (Kowsari et al. 2019).

In this study, accuracy represents the proportion of the number of tweets correctly detected to

the total number of tweets in the dataset.

The general formula for recall is
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (Grandini, Bagli and Visani 2020).

Recall is expressed as the proportion of the number of hate tweets correctly detected to the

number of tweets in the hate speech class.

The general formula for precision is
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (Grandini, Bagli and Visani 2020).

Precision denotes the extent to which a model can be trusted when it predicts an instance in the

dataset as being positive (Grandini, Bagli and Visani 2020). In this study, precision is the

proportion of the number of hate tweets correctly detected to the total number of hate tweets.

The general formula for F-measure is 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (Kowsari et al. 2019).

F-measure-Score is the harmonic mean measure that seeks a balance between recall and

precision (Grandini, Bagli and Visani 2020).

The general formula for MCC is
𝑇𝑃.𝑇𝑁−𝐹𝑃.𝐹𝑁

√(𝑇𝑃+𝐹𝑃).(𝑇𝑃+𝐹𝑁).(𝑇𝑁+𝐹𝑃).(𝑇𝑁+𝐹𝑁)

Area under the curve is created by plotting the true positive rate against the false-positive rate.

AUC indicates the extent to which positive and negative classes are well in regard to the

decision index (Kowsari et al. 2019).

For an objective analysis of algorithm performance, it was essential to use this combination of

metrics together since the weaknesses of an evaluation metric may be addressed by another

evaluation. For example, accuracy may not be a useful evaluation metric for highly imbalanced

data as it does not specify performance per class. On the other hand, precision and recall show

class-specific performance.

56

3.11 Chapter Summary

This chapter outlined the steps in sequence taken to achieve the second, third and fourth

objectives of this research study. The chapter discusses in detail the implementation of the deep

learning algorithms for detecting hateful speech. The first phase of the chapter covered the

acquisition of the training datasets. The datasets explored in this study contain carefully

selected Twitter messages of a maximum of 280 characters as per Twitter restrictions policy.

This was followed by data preprocessing, feature representation and algorithmic

implementation of the classical deep learning algorithms, attention-based deep learning

algorithms and transformer algorithms. RMsProp, adagrad and adam optimisation algorithms

were tested in several experiments to find the best performing algorithm. All these processes

were crucial for achieving the principal contribution of this research work. The next chapter

covers the evaluation experiments, experimental results and their analysis.

57

CHAPTER FOUR

58

PRESENTATION OF RESULTS AND DISCUSSION

4.1 Introduction

This chapter presents the evaluation experiments, the experimental results and their

corresponding analysis to accomplish the third objective of this study, which aimed at

objectively measuring the performance of deep learning algorithms for detecting hate speech.

The first section of this chapter begins with an analysis of the performance evaluation process.

This is followed by the visual analysis of the training process for the datasets explored in this

work. The following section presents the quantitative analysis of the binary classification

results. In the quantitative analysis section, the six statistical evaluation metrics used in this

study and their mathematical representations are presented. Next is the quantitative results

obtained from each of the evaluation metrics and their respective interpretations.

4.2 Analysis of Performance Evaluation

The universal problem in the development of any text classification algorithm, which is

achievable through experimentations, is a comprehensive measure of its accuracy to validate

that one algorithm is better than the other. Moreover, if a given text classification algorithm is

better than its counterparts, will it be consistent under varying parameters and other factors?

These questions are hereby addressed by using the following procedures in the experiments:

• More than one dataset with various forms of hate speech was used to observe the

behaviour of a classification algorithm to ensure its consistency across the hate speech

datasets.

• Both qualitative and quantitative evaluation techniques were adopted to cater for the

weaknesses of relying on one evaluation technique.

• Evaluation of model behaviour during the training phase is of vital importance since it

was a good measure for validation to determine whether a model was underfitting or

overfitting.

• During the quantitative evaluation, a minimum number of six evaluation metrics was

used to ensure that the overall performance of a classification algorithm is significant

to an extent.

59

4.3 Training Process Visual Analysis

A learning curve’s shape reflects the behaviour of a machine learning model. It indicates

properties such as how representative the dataset is and the parameter tuning required to

improve learning, classification performance or both.

There are three typical dynamics that may be deduced from observing learning curves:

Underfit, Overfit and Good Fit (Brownlee 2021). Overfitting occurs when a machine learning

model learns the training dataset too well, including the statistical noise and random variations

in the training dataset (James et al. 2013). Underfitting occurs when a model fails to achieve a

sufficiently low error rate on training data (Bengio, Goodfellow and Courville 2017). The target

of any learning algorithm is a perfect fit, and it exists between an overfit and an underfit model.

(Brownlee 2021). For visual analysis of the training process, algorithms were explored using

the bigger dataset. The relationship between training and validation accuracy gave a good idea

about model training behaviour.

Training and Validation accuracy Graphs for datasets for deep learning algorithms used in this

study are shown in the next section. The training and validation graphs were generated from

the Hate Speech and Offensive Language dataset only.

Figure 4.1 shows the training and validation accuracy for CNN over eight epochs.

Figure 4.1: Training and Validation Graph for CNN

It can be observed from Figure 4.1 that training accuracy is consistently higher than validation

accuracy throughout the epochs shown. From the first epoch to the eighth epoch, training

accuracy consistently increased from 87% to 94%, while validation accuracy fluctuated

between 85% and 86%. This trend clearly shows that the CNN model was failing to capture

60

the discriminative features from the dataset. This led to overfitting, as evidenced by the

continuous drop in performance on unseen data.

Figure 4.2 shows the training and validation accuracy graph for the MLP method. Throughout

the eight epochs, the training accuracy is greater than the validation accuracy. The gap between

the training and validation accuracy progressively increases with each epoch. This indicates

the model’s failure to learn the salient features distinguishing hate speech from neutral speech

through experience.

Figure 4.3 depicts the training and validation accuracy graph for the MLP method. We can

observe that after the first epoch, validation accuracy remains fluctuates around 87% while

61

training accuracy continues to rise. The gap between the training and validation accuracy

gradually increases with each epoch, indicating overfitting.

From Figure 4.4, we observe that both training and validation accuracy steadily increase from

the first epoch until the sixth epoch. This steady increase indicates that the LSTM can learn

from its experience during training. This may be attributed to the model’s inherent capability

to handle sequential data such as text. After the 6th epoch, training and validation accuracy

continue to improve, albeit at a slower rate as compared to the period between the first and the

sixth epoch.

62

It can be observed from Figure 4.5 that training accuracy is consistently higher than validation

accuracy. As a matter of fact, from the second epoch onwards, validation accuracy continues

to decrease while training accuracy increased with each successive epoch. This clearly shows

that the GRU model was overfitting as its performance on unseen data kept dropping.

Figure 4.6 illustrates the training and validation accuracy for the RoBERTa algorithⅿ. The

validation accuracy is marginally above the training accuracy from the first epoch to the fourth

epoch, indicating model underfitting during the early epochs. However, as training progressed,

training accuracy increased at a faster rate than validation accuracy, surpassing the validation

accuracy on the fifth epoch. From the 6th epoch until the eighth epoch, the gap between the

validation and training accuracy is negligible, indicating a stable model. The stability is

attributed to the fact that RoBERTa is optimised for robustness and performance since it is

trained on corpora which is ten times larger than BERT.

.

63

Figure 4.7 depicts the training and validation accuracy for the DistilBERT algorithm. From the

first epoch to the third epoch, the validation accuracy is higher than the training accuracy,

indicating model underfitting during the early epochs. However, as training progressed, the

gap between training and validation accuracy increasingly reduced until the third epoch, when

training accuracy surpassed validation accuracy. As weights continued to be updated, the

optimal performance was achieved in the fourth epoch. Thereafter the model started overfitting.

64

Figure 4.8 depicts the training and validation curves for the XLNet algorithm over eight epochs.

After the third epoch, training accuracy continued to increase steadily, while validation

accuracy fluctuated around 98,5%. However, the gap between the training and validation curve

is negligible, suggesting that the XLNet model managed to learn the salient features of hate

speech in the dataset to make accurate predictions on unseen data. After the eighth epoch,

validation accuracy increases slightly, further confirming that the model is close to a good fit.

Figure 4.9 shows the training and validation accuracy plot for the BERT algorithms. During

the early phases of training, the training accuracy is higher than validation accuracy, indicating

underfitting. As training progresses, the model updates weights to improve performance. From

the fifth epoch, the model starts to overfit, and the optimal performance is achieved at the

seventh epoch when the gap between the training and validation accuracy is minimal.

Figures 4.1, 4.2, 4.3, 4.4, 4.5, 4.6,4.7, 4.8 and 4.9 present a visual comparison of the training

curves for each of the deep learning algorithms explored in this study. These graphs clearly

show the correlation between the training accuracy and validation accuracy for each of the

algorithms. The graphs show that for traditional deep learning algorithms, as the number of

epochs increases, the difference between the training and validation accuracy also increases.

This suggests that the algorithms could be overfitting. In particular, the MLP shows a marked

difference between training and validation accuracy from as early as the third epoch. On the

other hand, on observing graphs of transformer algorithms, it can be noted that the difference

65

between training and validation is maintained at roughly the same value, indicating that the

algorithms are close to a good fit on training data. In particular, XLNet shows good training

performance as the gap between training and validation is very small from the first epoch until

the eighth epoch. A closer inspection of traditional deep learning algorithms graphs shows that

RNN based algorithms such as LSTM and GRU make more robust models compared to other

deep learning algorithms. On traditional deep learning algorithms, the LSTM has the best fit,

while MLP has the worst fit.

4.4 Quantitative Analysis of Deep Learning Algorithms

In this section, the statistical values used to assess the performance of the deep learning

algorithms are presented and interpreted. A total of ten deep learning algorithms were evaluated

using the evaluation metrics discussed next.

4.4.1 Evaluation Metrics

There are several ways to quantitatively measure the agreement between the final classification

result and ground truth as labelled in the dataset. The main objective of a classification

algorithm was to classify textual data into predefined categories accurately. The performance

of each of the algorithms investigated in this study needed to be proven for quality using

suitable evaluation metrics. In this study, to measure the quality of the results of the various

deep learning algorithm, a total number of six universally agreed, standard, and easy-to-

understand statistical evaluation metrics, namely precision, recall, F-measure, accuracy,

Mathews correlation coefficient and area under the curve (AUC) were used to objectively

assess the classification performance of the algorithms. It should be noted that the MCC metric

was used to assess the performance of the deep learning algorithms on the Kaggle binary

dataset only. This is because the MCC metric was designed to measure the quality of binary

classifications only. Comprehensive descriptions and methods of computation for these metrics

are discussed in Chapter Three of this study,

4.5 Effect of Train-Test Split on Performance

This section investigated the effect of varying the proportion of data used for training the

algorithms on the algorithm performance in this study. The experiment compares using 70%

training data against using 80% training data for both the Kaggle and the HSO datasets. Six

state-of-the-art metrics, namely accuracy, precision, recall, F- measure, area under the curve

and Mathews correlation coefficient, were used to assess the impact of proportion data size on

performance.

66

4.5.1 Effect of Train-Test Split Ratio on Accuracy

Table 4.1 shows the accuracy results of the algorithms investigated in this work recorded while

varying train-test split ratio.

Table 4.1: Effect of train-test split ratio on accuracy

Method HSO Kaggle

70/30 80/20 70/30 80/20

CNN 87 87,4 87,3 90,4

RNN 88,5 89,1 88,6 91,2

MLP 86,4 86,7 86,9 87,5

GRU 88,7 89,2 88,9 91

LSTM 88,9 91,2 85 91,8

LSTM with

Attention

88,6 91 89,5 92

BERT 89 90 90 90

RoBERTa 90 91 90 92

XLNET 90 91 92 93

DistilBERT 91 92 93 93,5

Table 4.1 shows that for both the HSO dataset and the Kaggle dataset, the overall accuracy

scores of all traditional deep learning algorithms improves significantly as the train-test split

ratio increases. For instance, the performance of the convolutional neural network algorithm

improved when the proportion of training data was increased from 70% to 80% on the HSO

dataset. The performance further confirms the literature position by (Kowsari et al. 2019) that

deep learning algorithms perform well with bigger datasets or training sets. From Table 4.1, it

can also be observed that traditional deep learning algorithms recorded better accuracy scores

on the smaller Kaggle dataset as compared to the bigger HSO dataset. This trend is due to the

fact that the Kaggle dataset is more balanced than the HSO dataset; therefore, this allows the

67

algorithms to learn patterns from both datasets equally. The differences in performance of the

transformer algorithms between the bigger HSO dataset and the smaller Kaggle dataset are

negligible. This is attributable to the fact that transformer algorithms are based on pre-trained

models. Therefore, they learn general English corpora features instead of features from the

actual hate speech datasets explored in this study. This may also be due to dataset

characteristics such as the proportion of code-mixed words. It can be observed that when using

the 80:20 train-test split ratio, the overall performance of all traditional deep learning

algorithms improved by an average of 1,6% in response to changing the dataset from HSO to

Kaggle. Figure 4.10 depicts the impact of the train-test split ratio on accuracy.

Figure 4.2: Illustration of the effect of the train-split ratio on accuracy

Figure 4.10 graphically illustrates the effect of the train-test split ratio on accuracy. It can be

observed that the effect of dataset training size on transformer algorithm performance was

negligible. Only small differences can be noted between the 80:20 train-test split ratio and the

70:30 train-test split ratio on both datasets. This trend is due to the fact that transformer

algorithms are pretrained on general English corpora and are only fine-tuned for a given task.

This means that they are not affected by dataset size and are therefore suitable for both large

and small amounts of data. Figure 4.10 shows that other traditional deep learning algorithms

had higher accuracy scores on the 80:20 dataset train-test split ratio as compared to the 70:30

train-test split ratio. This trend is attributable to the high number of training instances in the

0
10
20
30
40
50
60
70
80
90

100

70/30 80/20 70/30 80/20

HSO Kaggle

Effect of train-test split ratio on accuracy

CNN RNN MLP

GRU LSTM LSTM with Attention

BERT RoBERTa XLNET

DistilBERT

68

80:20 train-test split ratio, which allows the algorithm to learn more patterns from the datasets,

thereby producing a better model.

4.5.2 Effect of Train-Test Split Ratio on Precision

Table 4.2 displays the precision results of the algorithms investigated in this study under

different train-test split ratios.

Table 4.2 Effect of train-test split ratio on precision

Algorithm HSO Kaggle

70/30 80/20 70/30 80/20

CNN 83 87,2 84,3 88,4

RNN 85,5 90 86,5 90,2

MLP 76,4 81 77,3 82

GRU 85,6 88,3 86 89

LSTM 86,4 90,4 87,4 90,8

LSTM with

attention

88 91 88 91,9

BERT 88,7 91,2 89 89,8

RoBERTa 89 90,9 90,9 90

XLNET 93 95 93 94

DistilBERT 92 95 94 95

Table 4.2 shows the precision scores for all algorithms under the 70:30 and the 80:20 train-

test split ratio. The overall precision scores improve as the training proportion of the dataset

is increased from 70:30 to 80:20 train-test split ratio. Precision for all algorithms improved

by 3,2% and 2,5% on the HSO and Kaggle dataset, respectively. A similar relationship can

be observed on the test and split table, where the 80:20 train-test split ratio gives better

69

precision results for all algorithms across both datasets. The difference in the rate of

precision improvement is attributed to the fact that deep learning algorithms perform better

with bigger datasets.

Figure 4.11 depicts the effect of the train-test split ratio on precision scores. It can be observed

that generally, algorithms performed better using the 80:20 train-test split ratio as compared to

the 70:30 train-test split ratio. This trend substantiates the literature position by Kowsari et al.

(2019) that the performance of machine learning algorithms is directly proportional to the

amount of training data. However, increasing the training size only had a negligible effect on

the performance of transformer-based algorithms. This is because transformer algorithms learn

patterns from general English Corpora instead of the training datasets. Another pattern that can

be observed from the figure is that algorithms performed generally better on the HSO dataset

in comparison to the Kaggle dataset. This is because larger datasets have a greater number of

training instances than smaller datasets. The high number of training instances allows the

algorithms to learn the salient features necessary for classification. Training examples in the

80:20 train-test split ratio allow the algorithm to learn more patterns from the datasets, thereby

producing a better model.

70

4.5.3 Effect of Train-Test Split on Recall

Table 4.3 shows the recall results of algorithms investigated in this study while varying the

train-test split ratio.

Table 4.3: Effect of train-test split ratio on recall

Algorithm HSO Kaggle

70/30 80/20 70/30 80/20

CNN 83,2 87,4 78,3 81,9

RNN 86,5 89,8 84,5 86,7

MLP 77,4 81,2 71,3 69,7

GRU 85,6 86,3 81,2 83,4

LSTM 88,4 90,4 83,0 84,6

LSTM with attention 89,4 90,2 90,2 91

BERT 92,4 92,6 92,8 93

RoBERTa 92,6 93 92,8 93,6

XLNET 93,8 94 94 94,7

DistilBERT 94 97,5 95 96,4

From Table 4.3, it can be observed that the 80:20 train-test split ratio offers better recall

performance as compared to the 70:30 train-test split ratio. The CNN gained the highest 3,6 %

recall points from increasing the training test set by 10% on the Kaggle dataset. However, the

performance of the MLP on the same dataset dropped by 0,6%. The reduction in performance

of the MLP indicates that it may have failed to extract predictive features from the additional

data. Recall for all algorithms was increased by an average of 2,8% on the bigger HSO dataset

and 1.6% on the smaller dataset.

.

71

Figure 4.12 presents the impact of the proportion of training data on recall scores. It can be

observed that the 80:20 train-test split ratio gave a better performance in comparison to the

70:30 train-test split ratio. For example, the recall score of the CNN algorithm rose from 83,2

% to 87,4% when the training data was increased by 10% on the HSO dataset. It can also be

observed that transformer algorithms consistently outperformed other algorithms regardless of

the train-test split ratio used. This finding substantiates previous findings by Mutanga, Naicker

and Olugbara (2020) who also observed similar patterns. This is attributed to the fact that

transformer algorithms are pretrained on large English corpora, making them suitable for

different tasks when required.

4.5.4 Effect of Train-Test Split Ratio on F-Measure Scores

Table 4.4 shows the F-measure results of the algorithms investigated in this work recorded

while varying train-test split ratio.

72

Table 4.4: Effect of the train-test split ratio on F-measure

Method HSO Kaggle

70/30 80/20 70/30 80/20

CNN 83,1 87,3 77,8 82,1

RNN 86 89,9 84 86,4

MLP 76,9 81,1 70,8 69,7

GRU 85,6 87,3 80,6 82,4

LSTM 87,4 90,4 82,5 82,4

LSTM with

attention

88,4 89 89 90

BERT 90,6 90,8 90,7 91

RoBERTa 91 93 92 92,2

XLNET 92,8 94 92,8 92,9

DistilBERT 93 94 92,8 93

The F-measure score is a harmonic mean of precision and recall, making it a more objective

metric compared to most metrics used in text classification tasks. Although accuracy is the

most popular classification metric, it can be primarily contributed by a large number of True

Negatives, which may not be relevant for practical applications, whereas False Negatives and

False Positives usually have negative implications that may need to be avoided. This is

particularly true in the domain of hate speech detection, where misclassifying hate as non-hate

is of concern more than the categorisation of neutral tweets as hate speech. Information from

Table 4.4 reveals that the F-measure score is positively affected by an increase in a dataset's

training proportion. All the algorithms perform consistently better with the 80:20 train-test split

ratio as compared to the 70:30 train-test split ratio. The CNN and the MLP produced the most

73

significant improvement as a result of a 10% increase in training data. The MLP and CNN

gained 4,2% on the HSO dataset as a result of the increase in training data,

Figure 4.13 graphically illustrates the effect of the train-test split ratio on F-measure.

Figure 4.3: The effect of the train-test split ratio on F-measure

Figure 4.13 presents, in pictorial form, the effect of varying training dataset: testing dataset

ratio on F-measure score. We can observe that all traditional deep learning algorithms

performed better using the 80:20 train-test split ratio as compared to the 70:30 train-test split

ratio. Additionally, one can observe that traditional algorithms performed consistently better

on the HSO dataset in comparison to the Kaggle Dataset. This is attributable to a higher number

of training examples which allow the algorithms to learn sufficient relevant patterns for the

eventual classification task. On the other hand, the performance transformer algorithms

fluctuated around the same levels regardless of dataset size or train-test split ratio.

4.5.5 Effect of Train-Test Split Ratio on Area under the Curve

Table 4.5 shows the AUC results of the algorithms investigated in this work recorded while

varying the train-test split ratio.

74

Table 4.5: Effect of train-test split ratio on AUC

Method HSO Kaggle

70/30 80/20 70/30 80/20

CNN 92 93,1 84 88,4

RNN 95,2 96,7 88,5 99,2

MLP 85,4 87,3 81,3 85

GRU 92,6 93,3 89,9 90,2

LSTM 96,4 97,1 95,0 94,8

LSTM with

attention

96,4 96,8 94,5 92

BERT 96,4 96,8 96,4 97

RoBERTa 96,5 96,4 96,6 96,7

XLNET 96,7 96,4 96,7 96,5

DistilBERT 97 97,3 97,4 97,5

Table 4.5 reflects the impact of varying the proportion of the training data on the AUC score

for all datasets and algorithms. It can be observed that the AUC score is directly affected by an

increase in training data. All the algorithms recorded increases in AUC after increasing the

training set by 10%. However, transformer algorithms recorded a negligible improvement in

AUC of 0,7% increase on the bigger HSO dataset. This confirms the literature position that

transformer methods may be practical to use when training data is limited as compared to other

deep learning algorithms (Antoun, Baly and Hajj 2020). On the other hand, RNN produced the

most significant improvement as a result of dataset size increase, gaining 10,7% when it moved

from 88,5% to 99.2% on the smaller Kaggle dataset.

Figure 4.14 graphically depicts the effect of the train-test split ratio on AUC scores for all

algorithms.

75

Figure 4.14 graphically depicts the impact of the train-test split ratio on AUC scores. It can be

observed that generally, algorithms performed better using the 80:20 train-test split ratio as

compared to the 70:30 train-test split ratio. For example, the AUC score of the RNN algorithm

rose by more than 10% when the training set was increased by only 10%. Nevertheless,

increasing the training size had a negligible effect on the performance of transformer-based

algorithms. This is because transformer algorithms learn patterns from general English Corpora

such as the Toronto Book Corpus instead of the training datasets. Figure 4.14 displays a clear

trend where the LSTM with attention algorithm outperformed other traditional deep learning

algorithms. This may be due to the algorithm’s attention mechanism, which allows it to capture

context, which is a salient characteristic of hate speech detection.

4.5.6 Effect of Train-Test Split Ratio on MCC

Table 4.6 shows MCC results for the algorithms investigated in this study recorded while

varying train-test split ratio.

76

Table 4.6: Effect of train-test split ratio on MCC

Method Kaggle

70/30 80/20

CNN 76 81,4

RNN 83,8 86,6

MLP 73,1 75

GRU 80,9 83

LSTM 83,2 87,6

LSTM with

Attention

87,7 89,4

BERT 89 90

RoBERTa 88 89

XLNET 91 91,4

DistilBERT 91,6 93,2

Table 4.6 details the MCC scores for all algorithms based on the two-class dataset only

computed from the overall test tweets. The table clearly shows that transformer methods

outperformed other deep learning algorithms investigated in this work. Performance for all

traditional deep learning algorithms improved when the training set was increased from 70%

to 80%. This is because the selected algorithms had more data to learn the discriminative

features from. However, the difference in MCC scores between the 70:30 train-test split ratio

and the 80:20 train-test split ratio is negligible for transformer-based algorithms. This is

because pretrained transformer models do not learn discriminative features from the dataset

but from pretrained corpora such as Wikipedia and Toronto book corpus.

Figure 4.15 graphically illustrates the effect of the train-test split ratio on MCC.

77

Figure 4.15 graphically depicts the effect of the train-test split ratio on MCC. It can be observed

that the impact of dataset training size on transformer algorithm performance was negligible.

Only small differences can be noted between the 80:20 train-test split ratio and the 70:30 train-

test split ratio on the Kaggle Dataset. In particular, the XLNET. algorithm’s score only changed

by 0,4 % accuracy when the training set was increased from 70% to 80%. This trend confirms

the literature position by Mutanga, Naicker and Olugbara (2020) that the impact on

performance of training data size on pretrained transformer models is negligible. Figure 4.15

shows that other traditional deep learning algorithms had higher accuracy scores on the 80:20

dataset train-test split ratio compared to the 70:30 train-test split ratio. This trend is attributable

to the high number of training instances in the 80:20 train-test split ratio, which allows the

algorithm to learn more patterns from the datasets, thereby producing a better model.

4.6 Effect of Number of Layers on Performance

This section investigated the effect of varying the number of dense layers on the

performance of deep learning algorithms explored in this study. The experiment looked

at how using three dense layers, five dense layers, and seven dense layers affected each

of the ten algorithms examined in this analysis. The effect of varying the number of layers

78

was evaluated based on six state-of-the-art metrics: accuracy, precision, recall, F-measure,

AUC, and Mathews correlation coefficient.

4.6.1 Effect of Number of Layers on Accuracy

Table 4.7 shows the accuracy results of the algorithms investigated in this work recorded while

varying the number of layers.

Table 4.7: Effect of number of layers on accuracy scores

Method HSO Kaggle

3 layers 5 layers 7 layers 3 layers 5 layers 7 layers

CNN 88,6 89,3 89 89 88 89

RNN 89,9 91 91,2 90 91,2 92

MLP 79,9 79,7 79,8 75,3 75 75,4

GRU 89.8 91,4 91 88 91 90

LSTM 91,2 91,4 92.1 87 89,2 90

LSTM with

attention

91 89 92 89 91 91

BERT 91 92 92 94 93 93

RoBERTa 92 93 92 92 93 94

XLNET 92 94 94 94 93 95

DistilBERT 95 93 95 94 94 95

We observe from Table 4.7 that the performances of the accuracy scores of the majority of

algorithms that the addition of layers has a positive impact on accuracy. Nevertheless, an

increase in the number of layers beyond five leads to insignificant increases and, in some cases,

a slight drop in performance. For instance, the addition of 2 more layers from 5 to 7 layers led

to a decrease in the accuracy score of CNN and the MLP. Only the DistilBERT had its accuracy

score falling when the number of layers were increased from three to five layers.

79

Figure 4.16 graphically depicts the effect of the number of layers on accuracy.

Figure 4.4: The effect of the number of layers on accuracy

Figure 4.16 shows the impact of the number of layers on the accuracy score for all algorithms

across the two datasets used in this study. Increasing the number of layers improves the

efficiency of most algorithms, as seen in the graph. However, a further increase of layers

beyond five leads to either negligible increases or a reduction in the accuracy scores of the

algorithms. One important trend to note is that, although scores from both datasets improved

with the addition of layers, accuracy scores for the HSO dataset increased with a bigger margin

compared to the Kaggle dataset. This is because the HSO dataset is a multiclass dataset, hence

it is more complex and therefore requires more layers for the algorithms to learn the salient

features.

4.6.2 Effect of Number of Layers on Precision Scores

Table 4.8 shows precision results for algorithms investigated in this work recorded while

varying the number of layers.

0
10
20
30
40
50
60
70
80
90

100

Effect of number of layers on accuracy

HSO 3 layers HSO 5 layers HSO 7 layers

Kaggle 3 layers Kaggle 5 layers Kaggle 7 layers

80

Table 4.8: Effect of number of layers on precision

Method HSO Kaggle

3 layers 5 layers 7 layers 3 layers 5 layers 7 layers

CNN 84,6 82,3 80, 74 74,6 55

RNN 85,9 87 88,2 84,8 85,2 88,1

MLP 73,9 74,7 73,4 70,3 71 70,4

GRU 87,8 87,8 87,9 82,4 84,2 85,7

LSTM 88,2 92,4 92.5 87,2 89,2 91.0

LSTM with

attention

89 88 88 90 89 89

RoBERTa 90 92 90 91 90 91

DistilBERT 91 89 90 92 90 91

BERT 94 95 94 95 94 95

XLNET 95 95 94 95 96 95

 The effect of the number of layers is illustrated in Table 4.8. We note that the performance of

most algorithms does not improve significantly after the 5th layer. In fact, the MLP and CNN’s

precision scores actually dropped after the addition of the 7th layer. For instance, the

performance of CNN drops from 74,6% to 55% on the Kaggle dataset in response to an increase

in layers from 5 to 7.

Figure 4.17 depicts the effect of the number of layers on precision.

81

Figure 4.5: The effect of the number of layers on precision

 Figure 4.17 shows the effect of the number of layers on the precision score for all algorithms

across the two datasets used in this study. The graph clearly illustrates that performance

increased with the addition of dense layers. However, the precision of CNN dropped drastically

when the layers were increased from five to seven. This may have been caused by the model

having become too complex given the training and validation datasets used in the researcher`s

experiments.

4.6.3 Effect of Number of Layers on Recall Scores

Table 4.9 shows the recall results of the algorithms investigated in this work recorded while

varying the number of layers.

0
10
20
30
40
50
60
70
80
90

100

Effect of number of layers on precision

HSO 3 layers HSO 5 layers HSO 7 layers

Kaggle 3 layers Kaggle 5 layers Kaggle 7 layers

82

Table 4.9: Effect of number of layers on recall

Method HSO Kaggle

3 layers 5 layers 7 layers 3 layers 5 layers 7 layers

CNN 85,6 84,3 82,0 74 74,8 75,0

RNN 86,9 86,0 87,2 83,8 84,2 86,1

MLP 73,7 74,8 73,6 70,6 71,2 71,4

GRU 87,6 87,8 88,9 82,4 84,4 85,2

LSTM 88,3 92,3 92,7 87,8 89,4 92,3

LSTM with

attention

92,8 92 92 92,7 92,7 92,6

RoBERTa 93,7 93 93 92,8 92,7 92,6

DistilBERT 94 93,6 94 93,4 93,2 93,4

BERT 94 93 94 93,9 93 92,7

XLNET 97 97,5 96 97 96 96

From Table 4.9, it can be observed that there is no distinct pattern or correlation between

performance and the number of layers that may be drawn from the recall scores of all

algorithms. For instance, an increase in layers from three to five using RNN led to a decrease

in performance from 86,9% to 86%. Further addition of number of layers resulted in a 1,2 %

improvement in the recall score of the RNN. The performance of other algorithms such as CNN

and RoBERTa was also fluctuating as the number of layers was changed.

Figure 4.18 shows a graphical representation of the effect of the number of layers on recall.

83

Figure 4.6: The effect of the number of layers on recall

Figure 4.18 illustrates the impact of varying the number of layers on the recall score for all

algorithms across the two datasets used in this study. From the graph, we can see that the

recall score fluctuated with the addition of dense layers. The optimal number of layers for

each algorithm is not easily recognisable by observing the graph. Therefore, no distinct

pattern or correlation between the number of layers and recall scores can be deduced from

the findings of the experiments.

4.6.4 Effect of Number of Layers on F-Measure

Table 4.10 shows the F-measure results of the algorithms investigated in this work while

varying the number of layers.

0
10
20
30
40
50
60
70
80
90

100

Effect of number of layers on recall

HSO 3 layers HSO 5 layers HSO 7 layers

Kaggle 3 layers Kaggle 5 layers Kaggle 7 layers

84

Table 4.10: Effect of number of layers on F-measure

Method HSO Kaggle

3 layers 5 layers 7 layers 3 layers 5 layers 7 layers

CNN 86 83,3 81 74 74,7 63,5

RNN 86,4 86,5 87,7 84,3 84,7 87,1

MLP 73,8 74,7 73,5 70,4 71,1 70,9

GRU 87,7 87,8 88,4 82,4 84,3 85,4

LSTM 88,2 92,3 92,6 87,5 89,3 91,6

LSTM with attention 93 93 91 92 91 90

RoBERTa 93 92,9 93,1 93 93 92,8

DistilBERT 93,8 93,5 93,2 93,9 93,8 93,7

BERT 94 94 93 94,3 94,2 94,3

XLNET 94 94 94,4 94,4 94,5 94,3

It can also be observed from Table 4.10 that no distinct correlation or pattern can be deduced

from the results. There is no significant positive or negative impact of the number of layers on

the F-measure score. The F-measure scores fluctuate as the number of layers increased.

 Figure 4.19 shows a graphical representation of the effect of the number of layers on F-

measure.

85

Figure 4.7: The effect of the number of layers on F-measure

Figure 4.19 presents the impact of varying the number of layers on the F-measure score for

all algorithms across the two datasets investigated in this study. From the graph, we can see

that the F-measure score for methods investigated in this work fluctuated with the addition

of dense layers. Therefore, no distinct correlation can be deduced between the F measure

score and the number of layers. This lack of correlation calls for further research in finding

the optimal number of layers for the best F- Measure score.

4.6.5 Effect of Number of Layers on AUC

Table 4.11 displays the AUC results of the algorithms investigated in this work recorded while

varying the number of layers.

0
10
20
30
40
50
60
70
80
90

100

Effect of number of layers on F-measure

HSO 3 layers HSO 5 layers HSO 7 layers

Kaggle 3 layers Kaggle 5 layers Kaggle 7 layers

86

Table 4.11: Effect of number of layers on AUC

Method HSO Kaggle

3 layers 5 layers 7 layers 3 layers 5 layers 7 layers

CNN 88,7 90,3 93,0 79 79,6 79,8

RNN 93,9 93,8 93,2 86,5 86,2 90,6

MLP 79,9 79,7 79,8 81,3 88 82,4

GRU 89,8 90,4 90 87,4 81,2 88,7

LSTM 91,2 91,4 91,8 87 89,2 92

LSTM with

attention

93,4 93,2 93 88 87,9 88

RoBERTa 95,2 95,3 95 95,4 95,5 95,1

DistilBERT 95,2 95,1 95,3 95,6 95,7 96

BERT 95,7 95 95,6 96 96,3 95,5

XLNET 96 95 96 96,6 95,7 96,5

Table 4.11 shows that AUC scores fluctuate as the number of hidden layers is increased. In

particular, RNN based algorithms such as simple RNN, GRU, LSTM and LSTM with attention.

For instance, GRU’s AUC increased by 0,6% in response to the increase in layers from 3 to 5

layers. When the number of layers was further increased to 7, the AUC score decreased by

0,4% on the HSO dataset. On the Kaggle Dataset, the AUC score for MLP decreased by 0.3%

after increasing the number of layers from 3 to 5. Further increase in the number of layers to 7

led to an increase of 4.4%on the AUC score.

Figure 4.20 shows a graphical representation of the effect of the number of layers on AUC.

87

Figure 4.8: The effect of number of layers on AUC

Figure 4.20 illustrates the impact of varying the number of layers on the AUC score for all

algorithms across the two datasets explored in this study. From the graph, we observe that the

F-measure score for algorithms investigated in this work fluctuated with the addition of dense

layers. In particular, RNN based algorithms such as GRU and LSTM displayed the highest

instability levels as their AUC scores fluctuated. No correlation between the number of dense

layers and AUC scores can be deduced from the graph. Therefore, it is difficult to ascertain the

optimal number of layers for each of the algorithms explored in this study.

4.6.6 Effect of Number of Layers on MCC

Table 4.12 shows the MCC results of the algorithms investigated in this work recorded while

varying the number of layers.

0
10
20
30
40
50
60
70
80
90

100

Effect of number of layers on AUC

HSO 3 layers HSO 5 layers HSO 7 layers

Kaggle 3 layers Kaggle 5 layers Kaggle 7 layers

88

Table 4.12: Effect of number of layers on MCC

Method Kaggle Dataset

3 layers 5 layers 7 layers

CNN 87 86 87,6

RNN 88 89,4 90

MLP 73,5 73 73,4

GRU 86 89,2 87,9

LSTM 85,2 87,1 88,2

LSTM with attention 89 90 89,8

BERT 92 91,2 91,3

RoBERTa 90 91,2 92,3

XLNET 92,2 91,5 92,8

DistilBERT 92 92,4 93

Table 4.12 show the relationship between the number of dense layers and algorithm

performance. No distinct pattern or correlation can be obtained from varying the number of

dense layers. For example, when the number of layers was increased from three to five, the

performance of XLNET improved, but when the number of layers was increased to seven, the

performance decreased. When the number of layers was increased from three to five to seven,

only RoBERTa and BERT showed modest improvements in efficiency.

Figure 4.21 shows a graphical representation of the effect of the number of layers on MCC.

89

Figure 4.9: The effect of the number of layers on MCC

Figure 4.21 presents results on the impact of varying the number of layers on the MCC score

for all algorithms on the Kaggle Dataset. From the graph, it can be observed that the MCC

scores for the majority of the algorithm fluctuated as more layers were added. Nevertheless,

the MCC score of the BERT and RoBERTa algorithms increased gradually with the addition

of layers. The consistent performance of BERT and RoBERTa is because they are built on the

same basic architecture as propounded by Liu et al (2019).

4.7 Effect of Optimiser on Performance

This section looked at the impact of different optimisers on the efficacy of deep learning

algorithms. The experiment investigated the impact of using three different optimisers, namely,

adam optimiser, adagrad optimiser and rmsprop optimiser, on each of the ten algorithms

explored in this study. The impact of changing the layer count was assessed using six cutting-

edge metrics: accuracy, precision, recall, F-measure, AUC, and Mathews correlation

coefficient.

4.7.1 Effect of Optimiser on Accuracy

Table 4.13 shows the accuracy results of the algorithms investigated in this work recorded

while varying optimisers.

0
10
20
30
40
50
60
70
80
90

100

3 layers 5 layers 7 layers

Kaggle Dataset

Effect of number of layers on MCC

CNN RNN MLP

GRU LSTM LSTM with attention

BERT RoBERTa XLNET

DistilBERT

90

Table 4.13: Effect of optimiser on accuracy

Method HSO Kaggle

Adam adagrad rmsprop adam adagrad rmsprop

CNN 88,7 89,2 89,1 89,3 88,7 89,2

RNN 90,6 90 90,1 88,7 89,2 87,6

MLP 80,9 79,7 79,9 76,3 75 75,4

GRU 91,8 89,4 91 90,4 89,2 88,6

LSTM 92,2 91,4 91,1 90,1 89,2 90,0

LSTM with

attention

92 91 90 92 92 91,6

BERT 92,6 92 91 93,6 93 92,5

RoBERTa 93 92 91 94 93 92,5

XLNET 93 92,6 92 94 93,6 92

DistilBERT 94 93 92,8 95 94 93,6

It can be noticed from Table 4.13 that the use of the adam optimiser produced superior accuracy

scores as compared to other optimisers, performing in the majority of algorithms. The adam

optimiser only failed to produce the best results using the CNN. The rmsprop produced the

overall second-best accuracy score ahead of the adagrad, which produced the least accuracy

scores. Adam optimiser’s superior performance can be attributed to its ability to combine

moment term for update of weight parameter and the sum of squared gradients to scale current

gradients for weight updates (Ruder 2016).

Figure 4.22 illustrates the effect of optimiser on accuracy.

91

Figure 4.10: The effect of optimiser on accuracy

 Figure 4.22 shows the performance of deep learning algorithms under different optimisers.

The adam optimiser gave the best accuracy score on both datasets for all algorithms. The

rmsprop optimiser gave the second-best accuracy scores, and the adagrad optimiser gave the

lowest accuracy scores. This trend clearly shows that the adam optimiser is better suited to

sequence-based tasks such as Natural Language Processing compared to rmsprop and adagrad.

This trend further validates the findings by Mutanga, Naicker and Olugbara (2020), where the

adam optimiser produced the best accuracy scores. Figure 4.22 shows a clear trend where the

adam optimiser consistently gave higher accuracy scores on the HSO dataset as compared to

the Kaggle dataset. This may be attributed to having more training examples in the HSO

dataset.

4.7.2 Effect of Optimiser on Precision

Table 4.14 shows the precision results of the algorithms investigated in this work recorded

while varying optimisers.

0

10

20

30

40

50

60

70

80

90

100

adam Adagrad rmsprop Adam adagrad rmsprop

HSO Kaggle

Effect of optimiser on accuracy

92

Table 4.14: Effect of optimiser on precision

Method HSO Kaggle

Adam adagrad rmsprop adam adagrad rmsprop

CNN 86,7 86,7 86,1 79.3 78,7 79,2

RNN 89,6 88 89,2 88,7 86,2 85,6

MLP 78,6 76 78,2 72,3 72 72,1

GRU 90,6 90,4 90,6 86,4 84,2 85,6

LSTM 91,2 90,3 90,89 89,1 88,2 88,7

LSTM with

attention

90 90,1 90 90 90,4 89,7

BERT 91 91 88 91 90,7 90

RoBERTa 92,4 92 91,8 92 92 90

XLNET 93 93,6 92,8 93 92 92

DistilBERT 94 89 93 94 93 92

Table 4.14 shows the impact of different optimisation algorithms on precision. It is noted that

the adam optimiser performed consistently superior to other algorithms, which are rmsprop and

adagrad. Adam had an average precision score of 88.6 per cent ahead of adagrad and rmsprop,

which had 87.8% and. 87.7% respectively across all datasets. It should be, however, noted that

the effect of changing optimisation algorithms did not have a significant impact on the Multi-

Layer Perceptron algorithm, suggesting that its performance may be improved by varying other

parameters.

Figure 4.23 depicts the effect of optimiser on precision.

93

Figure 4.11: The effect of optimiser on precision

Figure 4.23 presents the impact of different optimisers on precision score under three different

optimisers. The adam optimiser achieved the best score on both datasets. The adam optimiser

also performed consistently higher across all ten algorithms on the larger HSO dataset as

compared to the Kaggle Dataset. This trend may be attributable to having more training

examples in the larger dataset. The differences in performance when using the adagrad and the

rmsprop optimisers, are negligible, as shown in Figure 4.23. A closer look at the performance

of the MLP shows that changing optimisation algorithms did not have a significant impact on

the Multi-Layer Perceptron algorithm, suggesting that its performance may be improved by

varying other parameters.

4.7.3 Effect of Optimiser on Recall

Table 4.15 shows the recall results of the algorithms investigated in this work recorded while

varying optimisers.

0
10
20
30
40
50
60
70
80
90

100

adam Adagrad rmsprop Adam adagrad rmsprop

HSO Kaggle

Effect of optimiser on precision

CNN RNN MLP

GRU LSTM LSTM with attention

BERT RoBERTa XLNET

DistilBERT

94

Table 4.15: Effect of optimiser on recall

Method HSO Kaggle

Adam adagrad rmsprop adam adagrad rmsprop

CNN 85,7 85,7 86,1 79,3 78,7 79,2

RNN 89,6 88,0 89,2 88,7 86,2 85,6

MLP 78,6 76 78,2 72,3 72 72,1

GRU 90,6 90,4 90,55 86,4 84,2 85,6

LSTM 91,2 90,3 90,89 89,1 88,2 88,7

LSTM with

attention

91 91,1 91 91 91,4 90,8

BERT 92 92 89 92 91,7 91

RoBERTa 93,4 93 92,8 93 93 91

XLNET 94 94,6 93,7 94 93 93

DistilBERT 95 90 94 95 94 93

It can be noticed from Table 4.15 that the use of the adam optimiser produced superior recall

scores as compared to other optimisers explored in this study, performing in best in nine of the

ten algorithms. The adam optimiser only failed to produce the best results using the LSTM

with attention. The rmsprop produced the overall second-best recall score ahead of the adagrad,

which produced the least accuracy scores. Adam recorded an average of 90,2 % on the HSO

dataset, while rmsprop had an average score of 89,1% on the HSO dataset. Adam’s superior

performance can be due to its capability to combine moment term for the update of weight

parameter and the sum of squared gradients to scale current gradients for weight updates (Ruder

2016).

Figure 4.24 displays a graphical representation of the effect of optimiser on recall.

95

Figure 4.12: The effect of optimiser on recall

Figure 4.24 provides a pictorial illustration of the effect of optimiser on recall score. It is

apparent that the best result was obtained using the adam optimiser on both datasets. On the

HSO dataset, it can be observed that nine of the ten algorithms had a recall score above 84%.

Only the MLP scored below 80%. The RMS prop had the second-best performance after adam.

However, on closer inspection, it can be noted that the difference between the performance of

the adagrad and rmsprop was negligible. This minor difference calls for fine-tuning of

parameters such as learning rate, early stopping patience and Network dropout to improve

performance.

4.7.4 Effect of Optimiser on F-measure scores

Table 4.16 shows the F-measure results of the algorithms investigated in this work recorded

while varying optimisers.

0
10
20
30
40
50
60
70
80
90

100

adam Adagrad rmsprop Adam adagrad rmsprop

HSO Kaggle

Effect of optimiser on recall

CNN RNN MLP

GRU LSTM LSTM with attention

BERT RoBERTa XLNET

DistilBERT

96

Table 4.16: Effect of optimiser on F-measure

Method HSO Kaggle

Adam adagrad rmsprop adam adagrad Rmsprop

CNN 87,8 86,7 86,1 79,3 78,7 79,2

RNN 89,6 88 89,2 88,7 86,2 85,6

MLP 78,6 76 78,2 72,3 72, 72,0

GRU 90,6 90,4 90,55 86,6 84,4 85,6

LSTM 91,3 90,3 90,9 89,1 88,1 88,7

LSTM with

attention

91,7 91,6 91,2 90 89 89,4

BERT 92,5 92,4 92,4 92 91 90

RoBERTa 92,9 92,6 92,5 93 92,8 92,7

XLNET 93 92,9 92,7 93,5 93 92,8

DistilBERT 93,8 93,2 93 94 93,6 93

 From Table 4.16, we observe that the adam optimisation algorithm consistently outperforms

other optimisation techniques investigated in this work. The best result was produced by the

LSTM while using the adam optimiser. This indicates the LSTM’s suitability for hate speech

detection where false negatives and should be minimised. It is interesting to note that

transformer models outperformed other deep learning algorithms under varying conditions.

LSTM with attention had the second-best performance after the transformer models,

consistently outperforming other traditional deep learning algorithms. It can be concluded that

the superior result of the LSTM with attention over traditional algorithms is due to LSTM with

attention’s ability to capture more context through long term dependencies.

Figure 4.25 shows a graphical representation of the effect of optimiser on F-measure.

97

Figure 4.13: The effect of optimiser on F-measure

Figure 4.25 depicts the influence of optimiser on the F- Measure score. It is apparent that the

best result was obtained using the adam optimiser. On the HSO dataset, it can be observed that

seven of the ten algorithms gave an F measure score above the 90% line. Only the MLP scored

below 80%. This may be attributed to other factors, such as the fewer number of layers within

the MLP thereby leading to inferior discriminative capabilities. This is particularly true for

highly unstructured and complex problems such as classification of subjective text.

4.7.5 Effect of Optimiser on Area under the Curve

Table 4.17 shows AUC results for the algorithms investigated in this work recorded while

varying optimisers.

0
10
20
30
40
50
60
70
80
90

100

adam Adagrad rmsprop Adam adagrad rmsprop

HSO Kaggle

Effect of optimiser on F-measure

CNN RNN MLP

GRU LSTM LSTM with attention

BERT RoBERTa XLNET

DistilBERT

98

Table 4.17: Effect of optimiser on AUC

Method HSO Kaggle

adam adagrad rmsprop adam adagrad rmsprop

CNN 89,7 89,2 89,4 79,3 78,7 79,2

RNN 91,8 89,9 91,1 89,7 87,2 89,8

MLP 81 81 76 78 75 75,6

GRU 97,8 90,4 93 89,4 88,2 85,6

LSTM 91,2 91,4 92,1 90,1 89,2 90,0

LSTM with attention 92,2 92,1 92 92 91 89

BERT 93,8 93 92,6 94 94,1 94

RoBERTa 95,1 95 94,7 95,8 95,6 95

XLNET 95,2 95 94,8 95,9 95,6 95

DistilBERT 95,4 94,8 94,6 95,7 94,9 95

Table 4.17 displays the experimental results of varying the optimisation algorithm for each of

the algorithms. It can be seen from the table that the adam optimiser consistently outperforms

other optimisers. Adam optimiser produced the highest average AUC score of 92,3 % and 90

% on the HSO and Kaggle datasets, respectively. There were very small differences in the AUC

scores of rmsprop and adagrad. On the HSO dataset, adagrad recorded 92%, while rmsprop

recorded an average score of 91%. On the Kaggle dataset, adagrad recorded an AUC score of

89%, while rmsprop also recorded 89%. Expectedly transformer methods outperformed other

deep learning algorithms explored in this study. DistilBERT produced the highest AUC score

of 97,5%, which was achieved using 7 dense layers on the smaller HSO dataset.

Figure 4.26 shows a graphical representation of the effect of optimiser on AUC.

99

Figure 4.14: The effect of optimiser on AUC

Figure 4.26 shows the effect of varying the optimiser on the AUC score for all the deep learning

methods investigated in this work. It is noted that the adam optimiser gave the best AUC score

on both datasets for all algorithms. It is apparent that the DistilBERT algorithm gave the best

AUC score of close to 100 % achieved under the HSO dataset. The rmsprop optimiser gave the

second-best AUC scores after the adam optimiser, while the adagrad optimiser gave the least

accuracy scores. The superior performance of the adam optimiser in hate speech detection is

consistent with its success in related NLP tasks (Ruder 2016). Transformer-based moⅾels gave

higher AUC scores as compared to other methods investigated in this work.

4.7.6 Effect of Optimiser on MCC

Table 4.18 shows the MCC results of the algorithms investigated in this study recorded while

varying optimisers.

0
10
20
30
40
50
60
70
80
90

100

adam Adagrad rmsprop Adam adagrad Rmsprop

HSO Kaggle

Effect of optimiser on AUC

CNN RNN MLP GRU

LSTM LSTM with attention BERT RoBERTa

XLNET DistilBERT

100

Table 4.18: Effect of optimiser on MCC

Method Kaggle

adam Adagrad rmsprop

CNN 87,3 86,7 87,2

RNN 86,7 87,2 85,6

MLP 74,4 73 73,4

GRU 88,4 87,1 86,7

LSTM 88,1 87,2 88,1

LSTM with attention 90 90,2 89,5

BERT 91,5 91,2 90,4

RoBERTa 92 91,1 90,6

XLNET 92,2 91,7 90,1

DistilBERT 93 92,2 91,4

Table 4.18 demonstrates that the algorithms achieved their best performance using the adam

optimiser while they performed worst using the adagrad optimiser. The worst performing

algorithm was MLP, which achieved an MCC score of 73% using adagrad. On the other hand,

DistilBERT had the best MCC score of 93% achieved using the adam optimiser.

Figure 4.15 shows a graphical representation of the effect of optimiser on MCC.

101

Figure 4.15: The effect of optimiser on MCC

Figure 4.27 provides a pictorial Illustration of the effect of optimiser on the MCC score. It is

apparent that the best result was obtained using the adam optimiser on both datasets. The

DistilBERT algorithm gave the best MCC score, while the MLP gave the least MCC score.

The poor performance of the MLP may be due to the complexity of the dataset, as it is known

that the MLP struggles with complex datasets. The superior performance of the DistilBERT

may be due to its ability to generalise different instances of hate speech since it is pretrained

on general corpora.

4.8 Chapter Summary

This chapter covered the empirical evaluation of ten cutting edge deep learning algorithms for

detecting hateful text messages. To systematically evaluate the efficacy of each algorithm, six

metrics were used under different parameters and settings, such as the number of layers, train-

test split ratio as well as different optimisation algorithms. Two publicly available datasets were

used in the experiments. The evaluation methods quantitatively express the extent to which the

algorithms are capable of detecting text-based hate speech. The experiments conducted point

to a high correlation between the ground truth text labels and the binary classification results

produced by all the algorithms. The computed scores across the six evaluation metrics scored

relatively high values across the data sets.

0
10
20
30
40
50
60
70
80
90

100

Adam adagrad rmsprop

Kaggle

Effect of optimiser on MCC

CNN RNN MLP

GRU LSTM LSTM with attention

BERT RoBERTa XLNET

DistilBERT

102

CHAPTER FIVE

103

SUMMARY, CONCLUSIONS AND IMPLICATIONS OF STUDY

5.1 Introduction

This chapter concludes the dissertation and provides valuable insights into current and future

research in the same area. Firstly, the summary of the study gives a brief overview of each of

the five chapters making up this study. Thereafter, the dissertation revisits each of the study`s

objectives and further explains how each of the objectives was accomplished. The contributions

of the study section highlight the significant contributions this study is making to the body of

knowledge. The next section highlights the implications of the study to both the research

community and practice. The limitations and future work section state the restrictions and

scope of this study and propose possible directions for future work. The chapter concludes with

a summary, which gives a brief overview of the chapter.

5.2 Summary of the Study

In this study, ten deep learning algorithms were experimentally evaluated for their efficacy in

automatically detecting hate speech. The study`s overarching aim was to investigate and

evaluate the efficacy of deep learning algorithms in detecting hate speech on Twitter.

Chapter One provided a background to the societal effects of hate speech and clearly explained

why this phenomenon requires automated solutions. The statement of the problem briefly

outlined the research gap which this report seeks to fill. Furthermore, the aims and objectives

of this study were clearly highlighted. The limits within which the study was conducted were

also explained in the scope of the study section of the first chapter.

Chapter Two reviewed relevant publications based on the societal impact of hate speech and

the application of deep learning algorithms for detecting hateful speech. The first section of

this chapter clearly outlined the adverse effects of hate speech on society. Practical examples

were cited, and the inadequacy of manual human annotators for this task was explained. The

need for automated hate speech detection methods was justified. Literature based on deep

learning for hate speech detection was comprehensively surveyed, and ten deep learning

algorithms were selected for experimental comparisons. The absence of an experiment-based

comparative analysis was identified as a research gap based on the literature surveyed. The ten

chosen algorithms for comparative evaluation were: Recurrent Neural Networks, Long Short

Terⅿ Memory, Gated Recurrent Unit, MultiLayer Perceptron, Convolutional Neural Network,

RoBERTa, XLNET., BERT and DistilBERT. The selection of machine learning methods

104

included classical deep learning algorithms, deep learning with partial attention and

transformer algorithms which are based on full attention.

Chapter Three covered the methodological steps followed in setting up and carrying out the

experiments. The datasets used in this study were presented. A Python-based function was

developed to preprocess the datasets by removing less predictive words and characters from

the tweets. The preprocessing phase aimed to improve algorithm performance by reducing the

feature space of the dataset. The word embedding feature representation method, which was

used to convert text into feature vectors by deep learning, was presented and explained, along

with the experimental setup for training and evaluating the selected deep learning algorithms.

In particular, the parameter settings for the experiments were specified. The experiments were

carried out while varying optimisation algorithms, the number of dense layers and the

proportion of the training data.

Chapter Four of this study covered the presentation and discussion of the experimental results.

Firstly, training and validation accuracy graphs were presented and analysed. Secondly, the

impact of number parameters such as layers, optimisation algorithms and the proportion of

training data on model performance was presented and analysed. Six state-of-the-art

performance metrics, accuracy, precision, recall, F-measure, area under the curve and Mathews

correlation coefficient, were used to objectively evaluate each of the selected algorithms.

Results were presented in tabular and graphic form for all the algorithms under different

conditions.

Chapter Five concludes the dissertation by firstly presenting an overview of the work carried

out in the study. This is followed by a discussion of the extent to which set objectives were

met. Major contributions of the dissertation to the body of knowledge are articulated.

Furthermore, the implications of the study to both future research and practice are outlined.

Limitations of the study and possible directions for future work conclude the chapter.

5.3 Conclusions

This dissertation investigated hate speech detection as a text classification task. A

comprehensive review of the research work was presented. Despite concerted efforts from

researchers, hate speech propagation remains an important problem that is yet unsolved. The

work reported in this study has experimentally investigated ten deep learning algorithms for

105

hate speech detection in Twitter text. A comprehensive literature survey unearthed state of the

art in deep learning and hate speech. In particular, the inclusion of transformer-based models

in this study was motivated by their success in other text classification tasks, as reported in the

literature. Twitter-specific preprocessing was applied to the data to reduce the feature space

and training time for each of the models. During training parameters such as optimisation

algorithms, the number of dense layers and the proportion of training data were varied to

determine their impact on performance. Our findings show that different algorithms respond

differently to the same parameter tuning. The algorithms were tested on two benchmark data

sets to measure their accuracy, effectiveness and validate their performance. Results from this

study are comparable to and even outperform other existing state-of-the-art hate speech

detection models. Moreover, the performance of the newer deep learning techniques such as

attention has indeed shown that the methods can be feasible in live environments where

resources may be constrained.

In order to tackle the identified research issues, the following research objectives were

formulated:

[RO1]: To comprehensively review relevant publications based on deep learning.

[RO2]: To prepare datasets for building and evaluating deep learning hate speech

recognition models.

[RO3]: To experimentally evaluate the performance of deep learning algorithms on

imbalanced and balanced datasets.

[RO4]: To evaluate the performance of deep learning algorithms on binary and

multiclass datasets.

[RO5]: To evaluate the performance of deep learning algorithms in detecting

different forms of hate speech.

To address the first objective [RO 1], an extensive review of relevant publications based on the

societal impact of hate speech and the application of deep learning methods to address hate

speech was conducted. The first section of Chapter Two clearly outlined the adverse effects of

hate speech on society. Practical examples were cited, and the inadequacy of manual human

annotators for this task was explained. The need for automated hate speech detection methods

was clearly justified. Literature based on deep learning for hate speech detection was

comprehensively surveyed, and ten deep learning algorithms were selected for experimental

106

comparisons. The absence of an experiment-based comparative analysis was identified as a

research gap based on the literature surveyed. The ten chosen algorithms for comparative

evaluation were: Recurrent Neural Networks, Long Short Term Memory, Gated Recurrent

Unit, MultiLayer Perceptron, Convolutional Neural Network, RoBERTa, XLNET., BERT and

DistilBERT.

To address the second objective [RO 2], the development of a preprocessing method for textual

Twitter hate speech data was presented in Chapter Three of this study. The proposed Twitter

preprocessing program was implemented, taking into consideration the conversational nature

of Twitter data. A python-based function was developed to remove characters and words that

may be considered less predictive in determining tweet classes. Firstly, the Twitter handles

(@user were removed from all tweets in the dataset. After that, a function to remove

punctuation marks and special characters was applied to the dataset. Python s Natural Language

Toolkit library was then used to identify and remove stop words within the datasets. Lastly,

stemming and tokenisation were applied to the datasets. All of these steps aimed to improve

algorithm performance by reducing the feature space of the dataset.

To meet the third objective [RO 3] of this study, two datasets were selected for use in this

study`s experiments. The first dataset was highly imbalanced, with only 5,8% of the instances

in the dataset representing the hate class while the rest of the tweets were either neutral or

offensive. The second dataset was well balanced as it contained 1 150 hate speech instances 1

150 neutral instances. The same experiments explained in Chapter Three of this work were

conducted on both datasets to get an objective assessment of the effect of class imbalance.

 The fourth objective, [RO 4], was achieved by selecting and experimenting with two datasets

with different number of classes. The HSO dataset contained three classes labelled as hate

speech, neutral speech, and offensive speech. Both datasets were exposed to the same

conditions during experimentation.

To accomplish the fifth objective, [RO 5] of this study, multiple experiments were done to

assess the efficacy of the deep learning algorithms selected for investigation in this study. Both

qualitative and quantitative methods were used to provide an exhaustive evaluation of the deep

learning algorithms. During the training process, graphs outlining the algorithms' learning

curve were plotted to show visual clues of properties like dimensionality. Six state-of-the-art

metrics, namely, area under the curve, precision, recall, accuracy, F-measure and MCC, were

used for quantitative evaluation and comparison of deep learning algorithms performance. The

107

experiments were conducted under different conditions. In particular, different train-test split

ratios, optimisers, and the number of dense layers were investigated to determine their effect

on the algorithms' overall performance. To get an objective assessment of algorithm

performance, two datasets of significantly different sizes were used in the experiments. The

HSO dataset contained 24 784 tweets labelled into three classes, while the Kaggle dataset

contained 2 300 tweets labelled into two classes. The researcher managed to determine the

effect of dataset size on the efficiency of deep learning algorithms due to the availability of two

datasets of significantly different sizes.

5.4 Contributions of the Study

The study aimed to empirically evaluate the efficacy of deep learning methods in detecting hate

speech. This dissertation has investigated the hate speech detection problem by carrying out an

experimental comparison of ten selected deep learning algorithms on Twitter data. An

explanation of the key contributions made in this study is given next.

Despite significant progress in the detection of hate speech on social media, to the best of the

researcher’s knowledge, no prior study has considered experimentally evaluating deep learning

methods, which was accomplished in this work. Most importantly, the idea of carrying out a

deep learning comparative study was inspired by the growing availability of large, annotated

datasets. Earlier studies were limited due to the lack of large datasets with sufficient training

examples for learning by deep learning algorithms. Results from this study provide a guideline

on which algorithms are the best in addressing the problem of hate speech dissemination.

Pretrained transformer models have achieved state of the art results in Natural Language

Processing tasks. Nevertheless, to the best of the researcher's knowledge, no work had proposed

the use of pre-trained models for detecting hateful speech in the English Language. In this

study, the inclusion of pretrained transformer-based models represented a new paradigm in

automated hate speech detection. Since transformers are trained in general English corpora and

fine-tuned to suit the task of hate speech detection, they allow the development of models with

better generalisation capabilities as compared to models trained on specific hate speech

datasets. Furthermore, streamlined transformer models such as DistilBERT are ideal for use in

environments where computing power is limited since they are computationally inexpensive.

108

5.5 Implications of the Study

The implications of this study are presented in two broad categories, implications for research

and implications for practice.

5.5.1 Implications for Research

Researchers need to actively harvest multimodal data as it constitutes a significant proportion

of user-generated content on social media. This will enable them to include such data in future

datasets, allowing the development of models capable of capturing hate speech expressed in

video or image formats.

5.5.2 Implications for Practice

Social media has become a popular advertising platform for various organisations. Many

organisations have Twitter handles and Facebook pages which they use to market their products

as well as communicate with current and prospective customers. However, some users abuse

these platforms by posting harmful content, which affects the user experience of other

customers. Organisations might mitigate this phenomenon by adopting automatic machine

learning-based models to detect and delete harmful content on their platforms.

5.6 Limitations and Future Work

This section presents an evaluation of the work presented in this study. The limitations of this

study and envisaged future work are highlighted. Some of the challenges and concerns

highlighted in this section may not be directly linked to the objectives of this study, but their

significance in the automated detection of hate speech and text classification should be noted.

Despite significant research progress in hate speech detection, the need to improve the efficacy

of future models still exists. The researcher presents possible research recommendations for

further improvements based on this study.

Because of inadequate resources and time, only ten deep learning algorithms were

experimentally evaluated for the task of hate speech detection. Deep learning is a growing area,

and there are many deep learning algorithms that can be explored for text classification tasks,

such as hate speech detection. Recently, algorithms such as Spiking Networks and Deep Belief

Networks have been investigated for pattern recognition tasks. A more extensive experiment-

based comparative study which includes Deep Belief Networks and Spiking Networks, could

lead to more useful findings.

109

This research was restricted to Twitter text only. It should, however, be noted that hate speech

on Twitter may also be conveyed via videos and images. For instance, one can upload a

xenophobic video without being detected by a model trained on a text dataset. Such a challenge

necessitates the inclusion of images and videos in future datasets. The development of models

capable of capturing both textual and non-textual could improve hate speech detection.

 Due to time constraints, only one feature representation method was used for all traditional

deep learning algorithms in this work. In future, there is a need to examine the impact of

varying feature representation methods for detecting hate speech using deep learning

algorithms. Feature representation has a direct impact on properties such as dimensionality.

Hence it may also affect performance.

The majority of freely accessible hate speech datasets are in English. It is vital that datasets for

other widely spoken languages like Mandarin and Swahili are developed. This will help to

detect hate speech expressed in other languages.

Hate speech may be expressed in more than one language, particularly in Africa, where most

people mix their native language with either French or English. The development of

multilingual datasets will help to capture hate speech expressed in more than one language.

From the experiments carried out, it was observed that different deep learning algorithms

respond differently to changes in parameters. This makes it very difficult to come up with a

totally objective assessment of the performance of deep learning algorithms. In the future, there

is a need to develop a universal framework for the objective evaluation of deep learning

algorithms.

5.7 Chapter Summary

The chapter offered a comprehensive overview of how each of this study’s objectives was met.

The formulation of the research problem, literature review, study experiments and analysis of

results were summarised. Hate speech detection remains an active research problem that

requires concerted effort from industry and academia. The chapter concluded with the

limitations of the research and points the way to future work in this research area.

110

REFERENCES
 Adamson, A. and Turan, V. D. 2015. Opinion Tagging Using Deep Recurrent Nets with

GRUs. Available: https://cs224d.stanford.edu/reports/AdamsonAlex.pdf (Accessed 20

January 2021).

Ahluwalia, R., Soni, H., Callow, E., Nascimento, A. and De Cock, M. 2018. Detecting hate

speech against women in english tweets. EVALITA Evaluation of NLP and Speech Tools for

Italian, 12: 194-199.

Ajao, O., Bhowmik, D. and Zargari, S. 2018. Fake news identification on twitter with hybrid

cnn and rnn models. In: Proceedings of the 9th International Conference on Social Media

and Society. Copenhagen, Denmark, 226-230. Available:

https://doi.org/10.1145/3217804.3217917 (Accessed 22 January 2021).

Akosa, J. 2017. Predictive accuracy: A misleading performance measure for highly

imbalanced data. In: Proceedings of SAS Global Forum. 2-5.

Al-Smadi, M., Qawasmeh, O., Al-Ayyoub, M., Jararweh, Y. and Gupta, B. 2018. Deep

Recurrent neural network vs. support vector machine for aspect-based sentiment analysis of

Arabic hotels’ reviews. Journal of Computational Science, 27: 386-393.

Aljazeera. 2021. What caused xenophonic attacks in South Africa. Available:

https://www.aljazeera.com/news/2016/4/6/what-caused-the-xenophobic-attacks-in-south-

africa (Accessed 14/01/21).

Alshaalan, R. and Al-Khalifa, H. 2020. Hate Speech Detection in Saudi Twittersphere: A

Deep Learning Approach. In: Proceedings of Proceedings of the Fifth Arabic Natural

Language Processing Workshop. 12-23.

Antai, R. 2016. A New Hybrid Approach to Sentiment Classification. University of Essex.

Antoun, W., Baly, F. and Hajj, H. 2020. AraBERT: Transformer-based model for Arabic

language understanding. arXiv preprint arXiv:2003.00104.

Badjatiya, P., Gupta, S., Gupta, M. and Varma, V. 2017. Deep learning for hate speech

detection in tweets. In: Proceedings of Proceedings of the 26th International Conference on

World Wide Web Companion. 759-760.

Bahad, P., Saxena, P. and Kamal, R. 2019. Fake News Detection using Bi-directional LSTM-

Recurrent Neural Network. Procedia Computer Science, 165: 74-82.

https://cs224d.stanford.edu/reports/AdamsonAlex.pdf
https://doi.org/10.1145/3217804.3217917
https://www.aljazeera.com/news/2016/4/6/what-caused-the-xenophobic-attacks-in-south-africa
https://www.aljazeera.com/news/2016/4/6/what-caused-the-xenophobic-attacks-in-south-africa

111

Bahdanau, D., Cho, K. and Bengio, Y. 2014. Neural machine translation by jointly learning

to align and translate. arXiv preprint arXiv:1409.0473.

Baktha, K. and Tripathy, B. 2017. Investigation of recurrent neural networks in the field of

sentiment analysis. In: Proceedings of 2017 International Conference on Communication

and Signal Processing (ICCSP). IEEE, 2047-2050.

Banks, J. 2010. Regulating hate speech online. International Review of Law, Computers &

Technology, 24 (3): 233-239.

Baruah, A., Barbhuiya, F. and Dey, K. 2019. ABARUAH at SemEval-2019 Task 5: Bi-

directional LSTM for Hate Speech Detection. In: Proceedings of Proceedings of the 13th

International Workshop on Semantic Evaluation. 371-376.

Bengio, Y., Goodfellow, I. and Courville, A. 2017. Deep learning. Available:

https://www.researchgate.net/publication/320703571_Ian_Goodfellow_Yoshua_Bengio_and

_Aaron_Courville_Deep_learning_The_MIT_Press_2016_800_pp_ISBN_0262035618

(Accessed 21 January 2021).

Bleich, E. 2011. The rise of hate speech and hate crime laws in liberal democracies. Journal

of Ethnic and Migration Studies, 37 (6): 917-934.

Brown, A. 2018. What is so special about online (as compared to offline) hate speech?

Ethnicities, 18 (3): 297-326.

Brownlee, J. 2018. What is the difference between a batch and an epoch in a neural network?

Machine Learning Mastery (Blog). Available:

https://machinelearningmastery.com/difference-between-a-batch-and-an-

epoch/#:~:text=batches%20and%20epochs.-

,What%20Is%20the%20Difference%20Between%20Batch%20and%20Epoch%3F,passes%2

0through%20the%20training%20dataset. (Accessed 18 December 2020).

Brownlee, J. 2021. How to use Learning Curves to Diagnose Machine Learning Model

Performance. Available: https://machinelearningmastery.com/learning-curves-for-

diagnosing-machine-learning-model-performance/ (Accessed 22 January 2021).

Büyüköz, B., Hürriyetoğlu, A. and Özgür, A. 2020. Analyzing ELMo and DistilBERT on

Socio-political News Classification. In: Proceedings of Proceedings of the Workshop on

Automated Extraction of Socio-political Events from News 2020. 9-18.

Cambria, E., Poria, S., Gelbukh, A. and Thelwall, M. 2017. Sentiment analysis is a big

suitcase. IEEE Intelligent Systems, 32 (6): 74-80.

https://www.researchgate.net/publication/320703571_Ian_Goodfellow_Yoshua_Bengio_and_Aaron_Courville_Deep_learning_The_MIT_Press_2016_800_pp_ISBN_0262035618
https://www.researchgate.net/publication/320703571_Ian_Goodfellow_Yoshua_Bengio_and_Aaron_Courville_Deep_learning_The_MIT_Press_2016_800_pp_ISBN_0262035618
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/#:~:text=batches%20and%20epochs.-,What%20Is%20the%20Difference%20Between%20Batch%20and%20Epoch%3F,passes%20through%20the%20training%20dataset
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/#:~:text=batches%20and%20epochs.-,What%20Is%20the%20Difference%20Between%20Batch%20and%20Epoch%3F,passes%20through%20the%20training%20dataset
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/#:~:text=batches%20and%20epochs.-,What%20Is%20the%20Difference%20Between%20Batch%20and%20Epoch%3F,passes%20through%20the%20training%20dataset
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/#:~:text=batches%20and%20epochs.-,What%20Is%20the%20Difference%20Between%20Batch%20and%20Epoch%3F,passes%20through%20the%20training%20dataset
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

112

Charitidis, P., Doropoulos, S., Vologiannidis, S., Papastergiou, I. and Karakeva, S. 2020.

Towards countering hate speech against journalists on social media. Online Social Networks

and Media, 17: 100071.

Chen, G., Ye, D., Xing, Z., Chen, J. and Cambria, E. 2017. Ensemble application of

convolutional and recurrent neural networks for multi-label text categorization. In:

Proceedings of 2017 International Joint Conference on Neural Networks (IJCNN). IEEE,

2377-2383.

Cheng, J., Li, P., Zhang, X., Ding, Z. and Wang, H. 2017. CNN-based sequence labeling for

fine-grained opinion mining of microblogs. In: Proceedings of Pacific-Asia Conference on

Knowledge Discovery and Data Mining. Springer, 94-103.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H. and

Bengio, Y. 2014. Learning phrase representations using RNN encoder-decoder for statistical

machine translation. arXiv preprint arXiv:1406.1078.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K. and Kuksa, P. 2011.

Natural language processing (almost) from scratch. Journal of machine learning research, 12

(Aug): 2493-2537.

Davidson, T., Warmsley, D., Macy, M. and Weber, I. 2017. Automated hate speech detection

and the problem of offensive language. In: Proceedings of Eleventh international AAAI

conference on web and social media.

De la Pena Sarracén, G. L., Pons, R. G., Cuza, C. E. M. and Rosso, P. 2018. Hate speech

detection using attention-based LSTM. EVALITA Evaluation of NLP and Speech Tools for

Italian, 12: 235.

Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. 2018. Bert: Pre-training of deep

bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Dey, R. and Salemt, F. M. 2017. Gate-variants of gated recurrent unit (GRU) neural

networks. In: Proceedings of 2017 IEEE 60th International Midwest Symposium On Circuits

and Systems (MWSCAS). IEEE, 1597-1600.

Do, H. T.-T., Huynh, H. D., Van Nguyen, K., Nguyen, N. L.-T. and Nguyen, A. G.-T. 2019.

Hate speech detection on vietnamese social media text using the bidirectional-lstm model.

arXiv preprint arXiv:1911.03648.

113

Duncan, B. and Zhang, Y. 2015. Neural networks for sentiment analysis on Twitter. In:

Proceedings of 2015 IEEE 14th International Conference on Cognitive Informatics &

Cognitive Computing (ICCI* CC). IEEE, 275-278.

Elouali, A., Elberrichi, Z. and Elouali, N. 2020. Hate Speech Detection on Multilingual

Twitter Using Convolutional Neural Networks. Revue d'Intelligence Artificielle, 34 (1): 81-

88.

Ethnologue Languages of the world. 2021. Available: https://www.ethnologue.com/

(Accessed 10/01/21).

Fortuna, P., da Silva, J. R., Wanner, L. and Nunes, S. 2019. A hierarchically-labeled

portuguese hate speech dataset. In: Proceedings of Proceedings of the Third Workshop on

Abusive Language Online. 94-104.

Fortuna, P. and Nunes, S. 2018a. A survey on automatic detection of hate speech in text.

ACM Computing Surveys (CSUR), 51 (4): 85.

Fortuna, P. and Nunes, S. 2018b. A survey on automatic detection of hate speech in text.

ACM Computing Surveys (CSUR), 51 (4): 1-30.

Gambäck, B. and Sikdar, U. K. 2017. Using convolutional neural networks to classify hate-

speech. In: Proceedings of Proceedings of the first workshop on Abusive Language Online.

85-90.

Gao, L. and Huang, R. 2017. Detecting online hate speech using context aware models. arXiv

preprint arXiv:1710.07395.

Gaumont, N., Panahi, M. and Chavalarias, D. 2018. Reconstruction of the socio-semantic

dynamics of political activist Twitter networks—Method and application to the 2017 French

presidential election. PLoS One, 13 (9).

Grandini, M., Bagli, E. and Visani, G. 2020. Metrics for Multi-Class Classification: An

Overview. arXiv preprint arXiv:2008.05756.

Gu, Q., Zhu, L. and Cai, Z. 2009. Evaluation measures of the classification performance of

imbalanced data sets. In: Proceedings of International Symposium on Intelligence

Computation and Applications. Springer, 461-471.

Hochreiter, S. and Schmidhuber, J. 1997. Long short-term memory. Neural computation, 9

(8): 1735-1780.

https://www.ethnologue.com/

114

Holmes, D. E. and Jain, L. C. 2006. Innovations in machine learning. Springer.

Hu, Y.-C. 2010. Pattern classification by multi-layer perceptron using fuzzy integral-based

activation function. Applied Soft Computing, 10 (3): 813-819.

Huang, P., Xie, X. and Sun, S. 2019. Multi-view Opinion Mining with Deep Learning.

Neural Processing Letters, 50 (2): 1451-1463.

Jain, G., Sharma, M. and Agarwal, B. 2019. Optimizing semantic LSTM for spam detection.

International Journal of Information Technology, 11 (2): 239-250.

James, G., Witten, D., Hastie, T. and Tibshirani, R. 2013. An introduction to statistical

learning. Springer.

Kadhim, A. I. 2018. An Evaluation of Preprocessing Techniques for Text Classification.

International Journal of Computer Science and Information Security (IJCSIS), 16 (6).

Karlik, B. and Olgac, A. V. 2011. Performance analysis of various activation functions in

generalized MLP architectures of neural networks. International Journal of Artificial

Intelligence and Expert Systems, 1 (4): 111-122.

Kim, Y. 2014. Convolutional neural networks for sentence classification. arXiv preprint

arXiv:1408.5882.

Kowsari, K., Brown, D. E., Heidarysafa, M., Meimandi, K. J., Gerber, M. S. and Barnes, L.

E. 2017. Hdltex: Hierarchical deep learning for text classification. In: Proceedings of 2017

16th IEEE international conference on machine learning and applications (ICMLA). IEEE,

364-371.

Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L. and Brown, D.

2019. Text classification algorithms: A survey. Information, 10 (4): 150.

Krueger, D., Maharaj, T., Kramár, J., Pezeshki, M., Ballas, N., Ke, N. R., Goyal, A., Bengio,

Y., Courville, A. and Pal, C. 2016. Zoneout: Regularizing rnns by randomly preserving

hidden activations. arXiv preprint arXiv:1606.01305.

Kumar, A., Irsoy, O., Ondruska, P., Iyyer, M., Bradbury, J., Gulrajani, I., Zhong, V., Paulus,

R. and Socher, R. 2016. Ask me anything: Dynamic memory networks for natural language

processing. In: Proceedings of International conference on machine learning. 1378-1387.

115

Kursuncu, U., Gaur, M., Lokala, U., Thirunarayan, K., Sheth, A. and Arpinar, I. B. 2019.

Predictive analysis on Twitter: Techniques and applications. In: Emerging research

challenges and opportunities in computational social network analysis and mining. Springer,

67-104.

Kwok, I. and Wang, Y. 2013. Locate the hate: Detecting tweets against blacks. In:

Proceedings of Twenty-Seventh AAAI Conference On Artificial Intelligence.

Lai, S., Xu, L., Liu, K. and Zhao, J. 2015. Recurrent convolutional neural networks for text

classification. In: Proceedings of Twenty-ninth AAAI Conference on Artificial Intelligence.

Le, Q. and Mikolov, T. 2014. Distributed representations of sentences and documents. In:

Proceedings of International conference on machine learning. 1188-1196.

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., Van Der

Laak, J. A., Van Ginneken, B. and Sánchez, C. I. 2017. A survey on deep learning in medical

image analysis. Medical image analysis, 42: 60-88.

Liu, G. and Guo, J. 2019. Bidirectional LSTM with attention mechanism and convolutional

layer for text classification. Neurocomputing, 337: 325-338.

Liu, P., Li, W. and Zou, L. 2019. NULI at SemEval-2019 Task 6: transfer learning for

offensive language detection using bidirectional transformers. In: Proceedings of

Proceedings of the 13th International Workshop on Semantic Evaluation. 87-91.

Liu, Q., Zhou, F., Hang, R. and Yuan, X. 2017. Bidirectional-convolutional LSTM based

spectral-spatial feature learning for hyperspectral image classification. Remote Sensing, 9

(12): 1330.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L.

and Stoyanov, V. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv

preprint arXiv:1907.11692.

MacAvaney, S., Yao, H.-R., Yang, E., Russell, K., Goharian, N. and Frieder, O. 2019. Hate

speech detection: Challenges and solutions. PLoS One, 14 (8).

McClelland, J. L., Rumelhart, D. E. and Group, P. R. 1986. Parallel distributed processing.

Explorations in the Microstructure of Cognition, 2: 216-271.

Mehdad, Y. and Tetreault, J. 2016. Do characters abuse more than words? In: Proceedings of

Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and

Dialogue. 299-303.

116

Melamud, O., McClosky, D., Patwardhan, S. and Bansal, M. 2016. The role of context types

and dimensionality in learning word embeddings. arXiv preprint arXiv:1601.00893.

Melis, G., Dyer, C. and Blunsom, P. 2017. On the state of the art of evaluation in neural

language models. arXiv preprint arXiv:1707.05589.

Merity, S., Keskar, N. S. and Socher, R. 2017. Regularizing and optimizing LSTM language

models. arXiv preprint arXiv:1708.02182.

Mhammedi, Z., Hellicar, A., Rahman, A. and Bailey, J. 2017. Efficient orthogonal

parametrisation of recurrent neural networks using householder reflections. In: Proceedings

of International Conference on Machine Learning. PMLR, 2401-2409.

Mikolov, T., Chen, K., Corrado, G. and Dean, J. 2013a. Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Dean, J., Le, Q., Strohmann, T. and Baecchi, C. 2013b. Learning representations

of text using neural networks. In: Proceedings of NIPS Deep Learning Workshop. 1-31.

Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M. and Gao, J. 2020.

Deep learning based text classification: A comprehensive review. arXiv preprint

arXiv:2004.03705.

Miok, K., Skrlj, B., Zaharie, D. and Robnik-Sikonja, M. 2020. To ban or not to ban: Bayesian

attention networks for reliable hate speech detection. arXiv preprint arXiv:2007.05304.

Mishev, K., Gjorgjevikj, A., Vodenska, I., Chitkushev, L. T. and Trajanov, D. 2020.

Evaluation of Sentiment Analysis in Finance: From Lexicons to Transformers. IEEE Access,

8: 131662-131682.

Mondal, M., Silva, L. A. and Benevenuto, F. 2017. A measurement study of hate speech in

social media. In: Proceedings of Proceedings of the 28th ACM conference on Hypertext and

Social Media. 85-94.

Mossie, Z. and Wang, J.-H. 2020. Vulnerable community identification using hate speech

detection on social media. Information Processing & Management, 57 (3): 102087.

Mozafari, J., Nematbakhsh, M. and Fatemi, A. 2019. Attention-based Pairwise Multi-

Perspective Convolutional Neural Network for Answer Selection in Question Answering.

arXiv preprint arXiv:1909.01059.

117

Mutanga, R., Tapiwa, Naicker, N. and Olugbara, O. 2020. Hate Speech detection using

Transformer Methods. International Journal of Advanced Computer Science and

Applications, 11 (9).

Nair, V. and Hinton, G. E. 2010. Rectified linear units improve restricted boltzmann

machines. In: Proceedings of ICML.

Nasir, A. A., Mashor, M. Y. and Hassan, R. 2013. Classification of acute leukaemia cells

using multilayer perceptron and simplified fuzzy ARTMAP neural networks. The

International Arab Journal of Information Technology, 10 (4).

Nowak, J., Taspinar, A. and Scherer, R. 2017. LSTM recurrent neural networks for short text

and sentiment classification. In: Proceedings of International Conference on Artificial

Intelligence and Soft Computing. Springer, 553-562.

Ordóñez, F. J. and Roggen, D. 2016. Deep convolutional and lstm recurrent neural networks

for multimodal wearable activity recognition. Sensors, 16 (1): 115.

Pálmadóttir, J. and Kalenikova, I. 2018. Hate speech an overview and recommendations for

combating it. Icelandic Human Rights Centre: 1-27.

Park, J. H. and Fung, P. 2017. One-step and two-step classification for abusive language

detection on twitter. arXiv preprint arXiv:1706.01206.

Pascanu, R., Mikolov, T. and Bengio, Y. 2012. Understanding the exploding gradient

problem. CoRR, abs/1211.5063, 2: 417.

Patihullah, J. and Winarko, E. 2019. Hate speech detection for indonesia tweets using word

embedding and gated recurrent unit. IJCCS (Indonesian Journal of Computing and

Cybernetics Systems), 13 (1): 43-52.

Pereira-Kohatsu, J. C., Quijano-Sánchez, L., Liberatore, F. and Camacho-Collados, M. 2019.

Detecting and Monitoring Hate Speech in Twitter. Sensors, 19 (21): 4654.

Pitsilis, G. K., Ramampiaro, H. and Langseth, H. 2018. Effective hate-speech detection in

Twitter data using recurrent neural networks. Applied Intelligence, 48 (12): 4730-4742.

Poomka, P., Pongsena, W., Kerdprasop, N. and Kerdprasop, K. 2019. SMS Spam Detection

Based on Long Short-Term Memory and Gated Recurrent Unit. International Journal of

Future Computer and Communication, 8 (1).

118

Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., Shyu, M.-L., Chen, S.-C.

and Iyengar, S. 2018. A survey on deep learning: Algorithms, techniques, and applications.

ACM Computing Surveys (CSUR), 51 (5): 1-36.

Powers, D. M. 2020. Evaluation: from precision, recall and F-measure to ROC,

informedness, markedness and correlation. arXiv preprint arXiv:2010.16061.

Putri, T., Sriadhi, S., Sari, R., Rahmadani, R. and Hutahaean, H. 2020. A comparison of

classification algorithms for hate speech detection. In: Proceedings of IOP Conference

Series: Materials Science and Engineering. IOP Publishing, 032006.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. and Sutskever, I. 2019. Language

models are unsupervised multitask learners. OpenAI Blog, 1 (8): 9.

Reimers, N. and Gurevych, I. 2017. Optimal hyperparameters for deep lstm-networks for

sequence labeling tasks. arXiv preprint arXiv:1707.06799.

Ren, H., Wan, J. and Ren, Y. 2018. Emotion detection in cross-lingual text based on

bidirectional LSTM. In: Proceedings of International Conference on Security with Intelligent

Computing and Big-data Services. Springer, 838-845.

Ren, Y. and Ji, D. 2017. Neural networks for deceptive opinion spam detection: An empirical

study. Information Sciences, 385: 213-224.

Ross, B., Rist, M., Carbonell, G., Cabrera, B., Kurowsky, N. and Wojatzki, M. 2017.

Measuring the reliability of hate speech annotations: The case of the european refugee crisis.

arXiv preprint arXiv:1701.08118.

Roy, P. K., Singh, J. P. and Banerjee, S. 2020. Deep learning to filter SMS Spam. Future

Generation Computer Systems, 102: 524-533.

Ruder, S. 2016. An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747.

Ruder, S., Ghaffari, P. and Breslin, J. G. 2016. A hierarchical model of reviews for aspect-

based sentiment analysis. arXiv preprint arXiv:1609.02745.

Sajjad, H., Dalvi, F., Durrani, N. and Nakov, P. 2020. Poor Man's BERT: Smaller and Faster

Transformer Models. arXiv preprint arXiv:2004.03844.

119

Sak, H., Senior, A. and Beaufays, F. 2014. Long short-term memory based recurrent neural

network architectures for large vocabulary speech recognition. arXiv preprint

arXiv:1402.1128.

Saksesi, A. S., Nasrun, M. and Setianingsih, C. 2018. Analysis Text of Hate Speech

Detection Using Recurrent Neural Network. In: Proceedings of 2018 International

Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC).

IEEE, 242-248.

Sanh, V., Debut, L., Chaumond, J. and Wolf, T. 2019. DistilBERT, a distilled version of

BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

Santosh, T. and Aravind, K. 2019. Hate speech detection in hindi-english code-mixed social

media text. In: Proceedings of the ACM India Joint International Conference on Data

Science and Management of Data. 310-313.

Schabas, W. A. 2000. Hate speech in Rwanda: The road to genocide. McGill LJ, 46: 141.

Schmidt, A. and Wiegand, M. 2017. A survey on hate speech detection using natural

language processing. In: Proceedings of Proceedings of the Fifth International Workshop on

Natural Language Processing for Social Media. 1-10.

Shen, T., Zhou, T., Long, G., Jiang, J., Pan, S. and Zhang, C. 2017. Disan: Directional self-

attention network for rnn/cnn-free language understanding. arXiv preprint arXiv:1709.04696.

Silva, A. and Roman, N. 2020. Hate Speech Detection in Portuguese with Naïve Bayes,

SVM, MLP and Logistic Regression. In: Proceedings of Anais do XVII Encontro Nacional

de Inteligência Artificial e Computacional. SBC, 1-12.

Singh, P. K. and Husain, M. S. 2014. Methodological study of opinion mining and sentiment

analysis techniques. International Journal on Soft Computing, 5 (1): 11.

Sohangir, S., Wang, D., Pomeranets, A. and Khoshgoftaar, T. M. 2018. Big Data: Deep

Learning for financial sentiment analysis. Journal of Big Data, 5 (1): 3.

Sokolova, M., Japkowicz, N. and Szpakowicz, S. 2006. Beyond accuracy, F-score and ROC:

a family of discriminant measures for performance evaluation. In: Proceedings of

Australasian joint conference on artificial intelligence. Springer, 1015-1021.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. 2014.

Dropout: a simple way to prevent neural networks from overfitting. The journal of machine

learning research, 15 (1): 1929-1958.

120

Sukhbaatar, S., Weston, J. and Fergus, R. 2015. End-to-end memory networks. In:

Proceedings of Advances in neural information processing systems. 2440-2448.

Sung, D.-K. and Jeong, Y.-S. 2018. Political Opinion Mining from Article Comments using

Deep Learning. 한국컴퓨터정보학회논문지, 23 (1): 9-15.

Tang, D., Qin, B. and Liu, T. 2015. Document modeling with gated recurrent neural network

for sentiment classification. In: Proceedings of Proceedings of the 2015 Conference On

Empirical Methods In Natural Language Processing. 1422-1432.

Ullmann, S. and Tomalin, M. 2020. Quarantining online hate speech: technical and ethical

perspectives. Ethics and Information Technology, 22 (1): 69-80.

Umar, A., Sulaimon, A. B., Muhammad, B. A., Olawale, S. A., Department of Computer

Science, F. U. o. T. M. N. and Department of Cyber Security Science, F. U. o. T. M. N. 2019.

Comparative Study Of Various Machine Learning Algorithms For Tweet Classification. i-

manager's Journal on Computer Science, 6 (4): 12.

Uysal, A. K. and Gunal, S. 2014. The impact of preprocessing on text classification.

Information Processing & Management, 50 (1): 104-112.

Van Huynh, T., Nguyen, V. D., Van Nguyen, K., Nguyen, N. L.-T. and Nguyen, A. G.-T.

2019. Hate Speech Detection on Vietnamese Social Media Text using the Bi-GRU-LSTM-

CNN Model. arXiv preprint arXiv:1911.03644.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł. and

Polosukhin, I. 2017. Attention is all you need. In: Proceedings of Advances in neural

information processing systems. 5998-6008.

Vinyals, O., Kaiser, Ł., Koo, T., Petrov, S., Sutskever, I. and Hinton, G. 2015. Grammar as a

foreign language. In: Proceedings of Advances in neural information processing systems.

2773-2781.

Wadawadagi, R. and Pagi, V. 2020. Sentiment analysis with deep neural networks:

comparative study and performance assessment. Artificial Intelligence Review.

Wang, B., Ding, Y., Liu, S. and Zhou, X. 2019. YNU_Wb at HASOC 2019: Ordered

Neurons LSTM with Attention for Identifying Hate Speech and Offensive Language. In:

Proceedings of FIRE (Working Notes). 191-198.

121

Wang, X., Li, Y. and Xu, P. 2018. A hybrid BLSTM-C neural network proposed for chinese

text classification. In: Proceedings of 2018 Sixth International Conference on Advanced

Cloud and Big Data (CBD). IEEE, 311-315.

Wankhede, S. B. 2014. Analytical study of neural network techniques: SOM, MLP and

classifier-a survey. IOSR Journal of Computer Engineering, 16 (3): 86-92.

Warner, W. and Hirschberg, J. 2012. Detecting hate speech on the world wide web. In:

Proceedings of Proceedings of the second workshop on language in social media. 19-26.

Waseem, Z. 2016. Are you a racist or am i seeing things? annotator influence on hate speech

detection on twitter. In: Proceedings of Proceedings of the first workshop on NLP and

computational social science. 138-142.

Waseem, Z. and Hovy, D. 2016. Hateful symbols or hateful people? predictive features for

hate speech detection on twitter. In: Proceedings of Proceedings of the NAACL student

research workshop. 88-93.

Whillock, R. K. and Slayden, D. 1995. Hate speech. 2455 Teller Road, Thousand Oaks, CA

91320: SAGE Publications.

Yang, W., Zuo, W. and Cui, B. 2019. Detecting malicious urls via a keyword-based

convolutional gated-recurrent-unit neural network. IEEE Access, 7: 29891-29900.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R. and Le, Q. V. 2019. Xlnet:

Generalized autoregressive pretraining for language understanding. In: Proceedings of

Advances in neural information processing systems. 5753-5763.

Yasseri, T. and Vidgen, B. 2019. Detecting weak and strong Islamophobic hate speech on

social media. Journal of Information Technology and Politics, 17 (1).

Yogarajan, V., Gouk, H., Smith, T., Mayo, M. and Pfahringer, B. 2020. Comparing High

Dimensional Word Embeddings Trained on Medical Text to Bag-of-Words for Predicting

Medical Codes. In: Proceedings of Asian Conference on Intelligent Information and

Database Systems. Springer, 97-108.

Young, T., Hazarika, D., Poria, S. and Cambria, E. 2018. Recent trends in deep learning

based natural language processing. ieee Computational intelligenCe magazine, 13 (3): 55-75.

Zabidi, A., Khuan, L. Y., Mansor, W., Yassin, I. M. and Sahak, R. 2010. Classification of

infant cries with asphyxia using multilayer perceptron neural network. In: Proceedings of

122

2010 Second International Conference on Computer Engineering and Applications. IEEE,

204-208.

Zhang, X., Chen, F. and Huang, R. 2018. A combination of RNN and CNN for attention-

based relation classification. Procedia computer science, 131: 911-917.

Zhang, X., Zhao, J. and LeCun, Y. 2015. Character-level convolutional networks for text

classification. In: Proceedings of Advances in neural information processing systems. 649-

657.

Zhang, Z. and Luo, L. 2019. Hate speech detection: A solved problem? The challenging case

of long tail on twitter. Semantic Web, 10 (5): 925-945.

Zhang, Z., Robinson, D. and Tepper, J. 2018. Detecting hate speech on twitter using a

convolution-gru based deep neural network. In: Proceedings of European semantic web

conference. Springer, 745-760.

Zulqarnain, M., Ghazali, R., Hassim, Y. M. M. and Rehan, M. 2020. Text classification based

on gated recurrent unit combines with support vector machine. International Journal of

Electrical & Computer Engineering (2088-8708), 10.

123

ANNEXURE A: COVER PAGE OF TURN IT IN REPORT

124

ANNEXURE B: LANGUAGE PROFICIENCY CERTIFICATE

