
Received: 19 December 2017 Revised: 29 April 2018 Accepted: 5 May 2018
RE S EARCH ART I C L E

DOI: 10.1002/dac.3720
Error performance of Uncoded Space Time Labelling
Diversity in spatially correlated Nakagami‐q channels
Sulaiman Saleem Patel | Tahmid Quazi | Hongjun Xu
School of Engineering, University of Kwa‐
Zulu Natal, Durban, South Africa

Correspondence
Sulaiman Saleem Patel, School of
Engineering, University of Kwa‐Zulu
Natal, Durban, South Africa.
Email: sulaiman.s.patel@gmail.com
Int J Commun Syst. 2018;31:e3720.
https://doi.org/10.1002/dac.3720
Summary

Greater spectral efficiency has recently been achieved for Uncoded Space Time

Labelling Diversity (USTLD) systems by increasing the number of antennas in

the transmit antenna array. However, due to constrained physical space in hard-

ware, the use of more antennas can lead to degradation in error performance

due to correlation. Thus, this paper studies the effects of spatial correlation on

the error performance of USTLD systems. The union bound approach, along

with the Kronecker correlation model, is used to derive an analytical expression

for the average bit error probability (ABEP) in the presence of Nakagami‐q

fading. This expression is validated by the results of Monte Carlo simulations,

which shows a tight fit in the high signal‐to‐noise ratio (SNR) region. The

degradation in error performance due to transmit and receive antenna

correlation is investigated independently. Results indicate that transmit antenna

correlation in the USTLD systems investigated (3×3 8PSK, 2×4 16PSK, 2×4

16QAM, and 2×4 64QAM) causes a greater degradation in error performance

than receive antenna correlation. It is also shown that 2×4 USTLD systems

are more susceptible to correlation than comparable space‐time block coded

systems for 8PSK, 16PSK, 16QAM, and 64QAM.
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1 | INTRODUCTION

The idea of labelling diversity was initially proposed by Huang and Ritcey1,2 for bit‐interleaved coded systems with
iterative decoding (BICSs‐ID), which was later expanded on by Krasicki.3,4 The use of convolutional coding in BICSs‐
ID incurs high detection complexity, resulting in higher latencies and increased power consumption. This motivated
for the subsequent application of labelling diversity to uncoded systems, such as decode‐and‐forward relay systems,5

multi‐packet data transmissions with automatic repeat requests,6,7 space‐time block coded (STBC) systems,8 STBC
systems with spatial modulation,9 and space time channel modulated STBC systems using radio frequency mirrors. 10

The focus of this paper is on the Uncoded Space Time Labelling Diversity (USTLD) systems proposed by Xu et al.8

USTLD systems achieve improved error performance compared with conventional multiple‐input, multiple‐output
(MIMO) systems as a result of 2 diversity mechanisms: labelling diversity and antenna diversity. Labelling diversity is
achieved by transmitting the same binary data over 2 time slots using symbols from 2 different constellation mappings.
The binary mappers are designed such that adjacent symbols in each constellation map are spaced further apart in
subsequent maps. This allows detection to be based on symbol pairs instead of individual symbols. In doing so, error
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performance is improved in a similar manner to conventional error correction codes,11 despite USTLD being an
uncoded system.

Antenna diversity is achieved by adopting a MIMO structure, which creates more signal paths between transmitter
and receiver, each of which experiences independent fading. Ideally, these signal paths are independent and identically
distributed (iid). The use of multiple signal paths leads to lower error rates when compared with a single path.11,12 The
original MIMO structure of USTLD8 describes a system with 2 transmit antennas and any arbitrary Nr receive antennas.
This 2×Nr structure, along with the use of 2 time slots to transmit the same binary information, closely resembles the
orthogonal STBC system proposed by Alamouti.13 Xu et al show that labelling diversity allows USTLD systems to
achieve better error performance than Alamouti STBC systems.

The 2×Nr USTLD model was recently extended to consider any arbitrary Nt transmit antennas by Patel et al.14 It
is noted that Nt×Nr USTLD systems are comparable to existing quasi‐orthogonal STBC (Q‐STBC) systems with more
than 2 transmit antennas. 15-17 The use of Nt>2 transmit antennas allows Q‐STBC systems to achieve more transmit
antenna diversity, improving error performance. However, Q‐STBC systems use more than 2 time slots to transmit
the same binary information. As a result, Q‐STBC systems experience higher latencies, decreased spectral efficiency
and increased processing overheads. Nt×Nr USTLD systems are not as affected by these challenges as they use only
2 time slots.

Conventional ideal analysis of MIMO systems, such as USTLD, assumes that signal paths are iid, and hence, the
channels are uncorrelated. However, in a real system, channels may experience spatial or temporal correlation. Tempo-
ral correlation arises when the system experiences deep fading.12,18 Spatial correlation results from the physical proxim-
ity of antennas and may be expressed as a function of the spacing between antennas and the wavelength of the
transmission carrier.19-21 Due to the inverse proportionality between wavelength and frequency, there is a greater like-
lihood of antenna correlation occurring at higher frequencies (such as the millimetre wave frequency spectrum that has
been studied for next‐generation MIMO systems.22) To this end, the study of USTLD in spatially correlated channels
provides insight into the degradation in error performance that may be expected when USTLD is applied to real sys-
tems, such as mobile ad hoc networks or satellite telecommunication. Temporal correlation is not studied in detail,
as the error performance of USTLD does not degrade in the presence of quasi‐static fading across both transmission
time slots. 8

The simplest case of correlated channel analysis is to consider a system with dual‐correlated receive antennas (i.e. 2
correlated receive antennas). In Fang et al,23 it is shown that identical, dual‐correlated channels may be modelled as
equivalent nonidentical, uncorrelated channels by applying an orthogonal transform. This technique was adapted in
a study of USTLD systems in dual‐correlated channels,24 which presents results for a 2×2 system assuming no transmit
antenna correlation. The same work24 also shows that, for dual‐correlated systems, the error performance of USTLD
deteriorates more rapidly as channel correlation increases when compared with conventional MIMO systems.

This paper extends the aforementioned study24 to the more general case of Nt×Nr USTLD systems in the presence of
antenna correlation, at either the transmit or receive sides, or both. To achieve this, the methods of analysis given in
Hedayet et al18 are adopted in this paper. By using the Kronecker model,25 Hedayet et al shows that the identical cor-
related channels of space‐time coded MIMO systems may be modelled as eigenvalue‐weighted, uncorrelated channels
for statistical analysis.18 This technique has previously been employed in the study of various other correlated MIMO
systems such as space‐time trellis coded systems,18 super‐orthogonal space‐time trellis coded systems,18 generalised
STBC systems,18 STBC spatial modulation systems,26 decode‐and‐forward based cooperative STBC spatial modulation
system,27 linear dispersion coded systems, 18 and diagonal‐algebraic space‐time coded systems.18 It is noted that other
correlation models have been proposed in literature, such as the nonseparable correlation model.28-31 These studies
indicate that the nonseparable model provides a better fit to measured data than the Kronecker model when analysing
channel capacity. However, the works of Tulino et al,29 Lin et al,32 and Moustakas et al33 show that the nonseparable
model reduces to the Kronecker model for systems that achieve antenna diversity, and hence, they are equivalent for
USTLD systems.

Previous studies of USTLD8,14,24 have all been conducted under the assumption of Rayleigh fading channels. The
Rayleigh fading model describes transmission paths where there is no strong line‐of‐sight path between the transmitter
and receiver.11,12 A more general model that better indicates the worst‐case performance of a MIMO system is the
Nakagami‐q fading model,34,35 which encompasses Rayleigh fading as a specific case. Literature shows that
Nakagami‐q provides a good fit for modelling signal propagation in satellite links subjected to strong ionospheric
scintillation. 12,36 To this end, a further contribution of this paper is that the error performance of USTLD is derived
for Nakagami‐q.
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In terms of notation, this paper represents vectors and matrices in boldface and scalars in italics. (·)T, (·)H, ·k k and
Ef·g represent the transpose, Hermitian operator, vector Frobenius norm, and statistical expectation, respectively. J0(z)
and I0(z) are the respective unmodified and modified zeroth‐order Bessel functions of the first kind, related by

J0ðzÞ ¼ I0 − jzð Þ, as indicated by Weisstein.37 a∼N �x; σ2Þ�
means that the random variable a follows a normal distribu-

tion with mean �x and variance σ2. The superscripts (·)I and (·)Q represent the in‐phase and quadrature components of
complex signals, respectively. The operator VfAg returns the eigenvalues of matrix A.
2 | SYSTEM MODEL

2.1 | Transmission model

The system considers an Nt×Nr USTLD system as defined by Patel et al,14 where Nt≤Nr. For a 2m‐ary constellation,
every m bits from the data stream defines a codeword, or “label,” L. Thus, a bitstream of mNt information bits produces

a label vector with Nt entries, L ¼ L1 ⋯LNt½ �T. L is used to produce symbols that are transmitted across 2 time slots. To
achieve labelling diversity, the transmitted symbols in each time slot are selected from different binary mappers Ω1 and
Ω2. The vector of symbols transmitted in time slot k, where k∈ [1:2], is thus Ωk Lð Þ½ � ¼ Ωk L1ð Þ ⋯Ωk LNtð Þ½ �T. This work
focuses on quadrature amplitude modulated (QAM) and phase shift keyed (PSK) constellations, due to the existence of
binary mappers which achieve labelling diversity for these modulation schemes.6,8 The suboptimal binary mappers
proposed by Xu et al8 are used for 64QAM and all PSK constellations. For 16QAM, the mapping structure of Samra et al6

(illustrated in Figure 1) is used, as it is found to be optimal.6,8 All constellations are power‐normalised such that

Ef Ω1ðlÞj j2g ¼ Ef Ω2ðlÞj j2g ¼ 1 for all possible labels l∈ [0:2m− 1].
The received signal vector, r, during time slot k is thus given by

rk ¼
ffiffiffiffiffiffi
γ
Nt

r
Hk ΩkðLÞ½ � þ nk; k∈½1:2�; (1)

where γ represents the total average signal‐to‐noise ratio (SNR) of the transmission, assumed to be equally distributed

among the Nt transmit antennas. nk ¼ n1k ⋯nNrk

� �T
represents additive white Gaussian noise (AWGN) during time slot

k, which follows a complex normal distribution with zero mean and unit variance. Hk ¼ hð1Þ
k ⋯hðNtÞ

k

h i
represents the

correlated fading channels during time slot k, which are assumed to be frequency‐flat and may either be fast or quasi‐
static fading over the duration of the 2 time slots. Each vector hðaÞ

k ; a∈½1:Nt�; is a column with Nr entries. It is assumed
that the fading follows a Nakagami‐q amplitude distribution. The entry of Hk in column a and row b is denoted

hðaÞbk
¼ hðaÞbk

� �I
þ j hðaÞbk

� �Q
; a∈½1:Nr�; b∈½1:Nt�; k ¼ ½1:2�. The fading parameter q is the ratio of the standard deviations

of the quadrature to in‐phase components of each entry in Hk, as stated by Amol and Kaur,34 and lies in the range
0≤ q≤ 1. Romero‐Jerez and Lopez‐Martinez35 further indicate that q may also be viewed as an indication of the

correlation between hðaÞbk

� �I
and hðaÞbk

� �Q
. Each component of the elements in Hk may be modelled as Gaussian‐
FIGURE 1 16QAM binary constellation mapping. Key: Ω1/Ω2
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distributed random variables (RVs) such that hðaÞbk

� �I
∼N 0;

1
1þ q2

� 	
and hðaÞbk

� �Q
∼N 0;

q2

1þ q2

� 	
for all a∈ [1:Nr],

b∈ [1:Nt],k=[1:2].38 The probability density function (PDF) for the Nakagami‐q fading amplitude, x, which has zero
mean and unit variance is12

f xðxÞ ¼
x 1þ q2ð Þ

q
exp −

x2 1þ q2ð Þ2
4q2

 !
I0

x2ð1−q4Þ
4q2

� 	
: (2)

It may be observed that the bounds of q correspond to the respective cases of single‐sided Gaussian (SSG) (q=0) and
Rayleigh (q=1) amplitude distributions.12 Additionally, in (1), nk and Hk are assumed to have uniform phase
distribution.
2.2 | Correlation model

In this paper, the Kronecker correlation model25 is adopted to relate the correlated channel matrix in the kth time slot

(Hk) to an uncorrelated channel matrix in the same time slot ðH̆kÞ, as given in (3).

Hk ¼ C
1
2
rH̆k C

1
2
t

� �T
; k∈½1:2�; (3)

where Ct and Cr represent the respective antenna correlation matrices at the transmitter and receiver. The Nr×Nr

receive antenna correlation matrix is described by20

Cr ¼

1 ρð1;2Þr ⋯ ρð1;NrÞ
r

ρð2;1Þr 1 ⋯ ρð2;NrÞ
r

⋮ ⋮ ⋱ ⋮
ρðNr ;1Þ
r ⋯ ρðNr ;Nr−1Þ

r 1

2
66664

3
77775; (4)

where ρði; jÞr denotes the correlation coefficient between the ith and jth receive antennas. Nt×Nt matrix Ct is
similarly defined in terms of the correlation coefficients between the ith and jth transmit antennas, ρði; jÞt . Both
Ct and Cr are symmetrical matrices such that ρði; jÞt ¼ ρt

ð j;iÞ; i≠ j; i; j∈½1:Nt� and ρði; jÞr ¼ ρr
ð j;iÞ; i≠ j; i; j∈½1:Nr�. It is

noted that instances of complex correlation coefficients exist in literature, in which case ρði; jÞt ¼ �ρt
ð j;iÞ; i≠ j; i; j∈½1:Nt�

and ρði; jÞr ¼ �ρr
ð j;iÞ; i≠ j; i; j∈½1:Nr�, where �·ð Þ denotes the complex conjugate. However, in the context of only spatial

correlation, only the magnitude of the correlation coefficient is of interest. Hence, this work only considers real values
of ρt and ρr.

It is shown in other studies19-21 that the correlation coefficient between the ith and jth antennas in a linear array is
given by

ρði; jÞ ¼ J0
2π
λ
μði; jÞ

� 	
: (5)

Based on (5), for receive antennas with uniformly distributed angle of arrival, the correlation coefficient ρði; jÞr is
expressed in terms of receive antenna spacing μði; jÞr . Similarly, for transmit antennas with uniformly distributed angle
of transmission, ρði; jÞt is expressed in terms of μði; jÞt .

If antennas are not arranged linearly, alternate models to represent the correlation between antennas must be used.
Examples of such cases are when antennas are very closely spaced, which results in a constant correlation between all
antennas.39,40 If they are arranged nonlinearly, such that they are all equispaced in some sense, correlation between
antennas may be described by the exponential correlation model.39,41,42
2.3 | Detection

Maximum‐likelihood detection (MLD), assuming perfect channel state information, is used to estimate the transmitted

information label vector ~L according to (6).
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~L ¼ arg min
L̂∈ξ

∑
2

k¼1
rk−

ffiffiffiffiffiffi
γ
Nt

r
Hk½ΩkðL̂Þ�











2

; (6)

where ξ is the set of all 2mNt possible transmitted label vectors and L̂ is a candidate label vector from ξ.
3 | ERROR PERFORMANCE ANALYSIS

The union bound of the average bit error probability (ABEP) for an Nt×Nr USTLD system has previously been derived
under the assumption that only one received label is detected erroneously in the high SNR region.8,14 While the results
presented in previous works on USTLD systems8,14 validate this assumption, it cannot be used when the methods of
correlation analysis developed by Hedayet et al18 are applied. For this reason, this paper first derives the ABEP under
uncorrelated conditions for a Nakagami‐q fading channel using the same assumption as previous works.8,14 Thereafter,
the analysis is extended to the correlated case without this assumption. The expressions derived are valid for both fast
fading and quasi‐static fading.
3.1 | Uncorrelated Nakagami‐q error performance

When evaluating the uncorrelated ABEP of Nt×Nr USTLD systems, the assumption that only one received label is
detected erroneously in the high SNR region may be used.8,14

From Patel et al,14 the union bound of the ABEP is given by

PbðγÞ≤ ∑
2m−1

L¼0
PðLÞ ∑

2m−1

~L ¼ 0
~L≠ L

δðL; ~LÞ
m

P L→~LÞ:�
(7)

In (7), P(L)= 2−m is the uniformly distributed probability of label L being transmitted. δðL; ~LÞ and P L→~LÞ�
are,

respectively, the number of bit errors and the pairwise error probability (PEP) between L and estimated label ~L.
Given the assumption that only one symbol pair is incorrect, the conditional PEP (8) may be expressed in terms of

the Gaussian Q‐function ,43QðxÞ ¼ 1
π
R π

2
0 exp

x

2sin2ðyÞ

� 	
dy, and 4 chi‐squared RVs, ϕl,ϕ2,ϕ3, and ϕ4 as follows:

P L→~L H1;H2j� �
¼ P ∑

2

k¼1
rk−

ffiffiffiffiffiffi
γ
Nt

r
Hk½Ωkð~LÞ�











2

<∑
2

k¼1
nkk k2

 !
(8)

¼ Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ1 þ ϕ2 þ ϕ3 þ ϕ4

p� �
: (9)

Following the procedure given in the appendix of Xu et al,8 it may be shown that in a Nakagami‐q distribution, the
chi‐squared RVs are formed from Gaussian‐distributed RVs with zero mean and different variances related by the fading
parameter q.35 Each of the chi‐squared RVs has Nr degrees of freedom and may be defined by

ϕl ¼ ∑
Nr

p¼1
α2pl ; l∈½1:4�: (10)

The Gaussian RVs αpl follow normal distributions (as derived in the appendix, Section A) such that

αp1∼N 0;
γ d1ðL; ~LÞ
�� ��2

2Ntð1þ q2Þ

 !
(11)
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αp2∼N 0;
γq2 d1ðL; ~LÞ
�� ��2

2Ntð1þ q2Þ

 !
(12)

αp3∼N 0;
γ d2ðL; ~LÞ
�� ��2

2Ntð1þ q2Þ

 !
(13)

αp4∼N 0;
γq2 d2ðL; ~LÞ
�� ��2

2Ntð1þ q2Þ

 !
; (14)

where dkðL; ~LÞ, k∈ [1:2] is the difference between the symbols obtained by mapping L and ~L using mapper Ωk, as shown
in (15).

dkðL; ~LÞ ¼ ΩkðLÞ−Ωkð~LÞ; k∈½1:2� (15)

As in Xu et al,8 the final unconditional PEP is obtained by integrating (9) over the PDF of the underlying chi‐squared
RVs. Applying the trapezoidal approximation to this integral, as done in previous works8,14 produces the result

PðL→~LÞ≈ 1
4n

∏
2

k¼1
Mk

1
2
; dkðL; ~LÞ
�� ��2� 	
 �Nr

þ 1
2n

∑
n−1

m¼1
∏
2

k¼1
Mk

1

2sin2 mπ
2n

� �; dkðL; ~LÞ
�� ��2 !" #Nr

: (16)

In (16), n is an arbitrarily large integer that allows the trapezoidal approximation to converge to the integral result.
Mkðs; xÞ denotes the moment generating function (MGF) of the received signal amplitude during the kth time slot
k∈½1:2�ð Þ, as a function of dummy variables s and x. For a Nakagami‐q distribution, the MGF is given by12

Mkðs; xÞ ¼ 1þ sγx
Nt

þ sqγx
Ntð1þ q2Þ
� 	2

" #−1
2

: (17)

3.2 | Correlated Nakagami‐q error performance

To apply the method of correlated channel analysis used given in Hedayet et al,18 the union bound of the USTLD system
considered is obtained by considering all possible combinations of transmitted and detected label vectors. The union
bound is then modified from (7) to reflect that it is now dependent on the transmitted label vector L and the estimated

label vector ~L. The bound is given by

PbðγÞ≤ ∑
L∈ ξ

P Lð Þ ∑
~L∈ξ
L≠ ~L

δðL; ~LÞ
mNt

P L→ ~LÞ:�
(18)

Note that ξ is the set of all possible transmitted label vectors, as defined in Section 2.3. As in Section 3.1, δðL; ~LÞ is
the total number of bit errors between L and ~L.

In (18), the probability that label vector L was transmitted, P Lð Þ, is uniformly distributed, resulting in

PðLÞ ¼ 2−mNt : (19)

The PEP, P L→~LÞ�
, is defined in terms of label vectors, as opposed to scalar labels used in Section 3.1. The vector of

distances between the symbols defined by label vectors L and ~L on mapper Ωk is given in terms of (15) as follows:
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dk ¼
dkðL1; ~L1Þ

⋮
dkðLNt ; ~LNtÞ

2
64

3
75; k∈½1:2�: (20)

The nonzero eigenvalue of d·dH is analogous to the squared Euclidean distance dj j2 of the scalar case.
As shown in (3), the Kronecker correlation model shows that the correlated channel matrix during the kth time slot,

Hk,k∈ [1:2], may be expressed in terms of an artificial, uncorrelated channel matrix H̆k. By adopting this model and
applying the analysis techniques of Hedayet et al,18 the ABEP in correlated channels is found by using the result found
for uncorrelated channels and weighting the MGFs (17) in the PEP expression by the Nr eigenvalues of the receive
antenna correlation matrix (21). The squared Euclidean distances are replaced by the nonzero eigenvalue of the
squared‐distance weighted transmit antenna correlation matrix in each time slot (22). It is noted that in (22),

dk·d
H
k ·Ct has rank one and thus there is only one nonzero eigenvalue for each value of k,k∈ [1:2], as shown by Hedayet

et al.18 This would not be the case under the assumption that only one label is detected incorrectly in the high SNR
region, as used in Section 3.1, and hence, this assumption is inappropriate for the correlated channel analysis of USTLD
systems.

ν1
⋮
νNr

2
64

3
75 ¼ VfCrg (21)

ηk ¼ Vfdk·d
H
k ·Ctg; ηk≠0; k∈½1:2� (22)

The final result for the PEP of an Nt×Nr USTLD system in correlated Nakagami‐q channels is thus

P L→~L
� �

≈
1
4n

∏
2

k¼1
∏
Nr

j¼1
Mk

1
2
; νjηk

� 	
þ 1

2n
∑
n−1

m¼1
∏
2

k¼1
∏
Nr

j¼1
Mk

1

2sin2 mπ
2n

� �; νjηk
0
B@

1
CA: (23)

The result for correlated PEP (23) is of a similar form to that of the uncorrelated PEP (16). The difference between these

2 expressions is that the second argument of MGFMk is the squared Euclidean distance dkðL; ~LÞ
�� ��2 for the uncorrelated

PEP, whereas it is the eigenvalue product νjηk for the correlated PEP.
It may be noted that uncorrelated USTLD systems may also be analysed using this approach. In the case of no trans-

mit antenna correlation, the matrix Ct is an Nt×Nt identity matrix. Similarly, for no receive antenna correlation, Cr is an
Nr×Nr identity matrix.
4 | RESULTS AND DISCUSSION

In this section, results are presented to investigate the effects of spatial correlation on Nt×Nr USTLD systems in
Nakagami‐q fading. The first set of results, given in Figure 2, verifies that the theoretical bound of the ABEP for
correlated Nt×Nr USTLD systems in the presence of Nakagami‐q fading (derived in Section 3) converges to simulated
results. Thereafter, the change in error performance as a result of fading parameter q is demonstrated in Figure 3.
USTLD systems are then studied under transmit and receive correlation independently to determine which causes
greater degradation of error performance, and the results are given in Figure 4. Finally, a comparison between USTLD
and conventional MIMO STBC Alamouti13 systems is presented in Figure 5, wherein the susceptibility of each system to
antenna correlation is determined. For all results produced, antennas are equidistantly spaced and arranged linearly at

both the transmitter and the receiver (that is, μði;iþ1Þ
t ¼ μð1;2Þt ¼ μt, i∈ [1:Nt− 1] and μð j; jþ1Þ

r ¼ μð1;2Þr ¼ μr , j∈ [1:Nr− 1])
and the correlation between them is determined by (5).



FIGURE 3 Effect of fading parameter q

at 20dB. USTLD, Uncoded Space Time

Labelling Diversity

FIGURE 2 Comparison of theoretical and simulated results. SNR, signal‐to‐noise ratio; USTLD, Uncoded Space Time Labelling Diversity
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In Figure 2A,B, simulations are shown for 16QAM and 16PSK USTLD systems under the conditions of (1) both
transmit and receive antenna correlation, (2) only transmit antenna correlation, (3) only receive antenna correlation,
and (4) uncorrelated transmit and receive antennas. To show that the ABEP is valid for other modulation orders and
antenna array sizes, results are also shown for 2×4 64QAM, 3×3 8PSK, and 3× 5 8PSK USTLD systems with both
transmit and receive antenna correlation (Figure 2C). The results show that the bound of the ABEP converge to Monte
Carlo simulation output in the high SNR region for all systems presented. The transmit antenna spacing μtð Þ, receive
antenna spacing μrð Þ, and fading parameter (q) used for each system are presented in Table 1.

Figure 3 shows the change in error performance of both correlated and uncorrelated USTLD systems across the
range of the Nakagami‐q fading parameter. The correlated results were produced using arbitrary transmit and receive
correlation parameters μt=0.21λ and μr=0.30λ. The results indicate that the error performance of USTLD in the pres-
ence of SSG fading (q=0) is significantly worse than in Rayleigh fading (q=1). In particular, 16QAM USTLD in SSG



FIGURE 4 Comparing the effects of

transmit and receive antenna correlation

at 15dB (q=0.2). USTLD, Uncoded Space

Time Labelling Diversity

FIGURE 5 Comparing the performance

of USTLD and Alamouti‐coded systems at

13dB (q= 0.7). USTLD, Uncoded Space

Time Labelling Diversity

TABLE 1 Simulation parameters for Figure 2

Modulation μt μr q

16PSK 0.15λ 0.70λ 0.4

16QAM 0.24λ 0.30λ 0.8

8PSK 0.25λ 0.75λ 0.9

64QAM 0.24λ 0.5λ 0.3

PATEL ET AL. 9 of 14
fading is 2 orders of magnitude worse than in Rayleigh fading. Similarly, 16PSK USTLD degrades by an order of
magnitude. It is also observed that the performance is approximately constant in the range 0.6≤ q≤1. Finally, it is noted
the results for correlated and uncorrelated systems follow the same trend. This may be attributed to the in‐phase and
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quadrature components of the fading having different variances, as specified in Section 2.1 For smaller values of q, the
power of the quadrature component is almost negligible. Hence, the power of the in‐phase component dominates the
total power of the fading coefficient. As q increases above 0.6, the powers of the in‐phase and quadrature components
become comparable; hence, further increases in q have a smaller effect on error performance.

The next set of results investigates the degradation in error performance of USTLD systems due to antenna
correlation, by considering transmit and receive antenna correlation independently. The results are presented in
Figure 4 for 3×3 8PSK, 2×4 16PSK, 2× 4 16QAM, and 2×4 64QAM USTLD systems at an SNR of γ=15dB with arbitrary
Nakagami‐q fading parameter q=0.2.

Intuitively, as the spacing between antennas increase, the correlation between them decreases. This may be confirmed
numerically by (5). As such, the gradient of the curves in Figure 4 indicates the rate at which error performance improves
as antenna correlation decreases. By observing the gradient of the curves in the range 0<μ≤ 0.4λ, it is found that transmit
antenna correlation causes a more severe degradation in error performance than receive antenna correlation in USTLD
systems. This concurs with the results shown in Figure 2A,B, where it is observed that there is a larger dB gap between
the uncorrelated and transmit antenna correlated systems than between the uncorrelated and receive antenna correlated
systems. The reason for transmit antenna correlation having a more dominant effect on performance may be explained
mathematically. From (22), it is observed that the transmit antenna correlation matrix Ct is weighted by the distance
vector product d·dH before being decomposed into its eigenvalues. By contrast, Cr undergoes eigenvalue decomposition
directly, as shown in (21). Thus, the eigenvalue product that governs the PEP of correlated USTLD systems (shown in
(23)) is more affected by the transmit antenna correlation matrix. A secondary observation is that all curves have a very
flat gradient in the region μ>0.4λ. This indicates that spacing antennas further than 0.4λ apart does not significantly
improve the robustness of USTLD systems to antenna correlation. Hence, 0.4λ is a theoretical optimal spacing for a linear
array of antennas used for USTLD systems, which balances correlation and small form factor.

These results provide a guideline for implementing USTLD systems: to reduce degradation in error performance due
to spatial correlation, it is more important to avoid correlation between transmit antennas than receive antennas. This
may be achieved by ensuring that transmit antennas are spaced further than 0.4λ apart.

The final set of results investigates the susceptibility of USTLD systems to spatial correlation when compared with
existing MIMO systems. To provide a fair comparison in terms of both spectral efficiency and antenna array sizes, the
USTLD systems are compared with traditional Alamouti STBC systems.13 Thus, the systems investigated in Figure 5,
and the curves associated with it, are constrained to onlyNt=2 transmit antennas. The results compare 2×4 systems with
both transmit and receive antenna correlation at SNR γ=13dB and with Nakagami‐q fading parameter q=0.7. The

spacing between all antennas at both the transmitter and the receiver are assumed equal (ie, μði;iþ1Þ
t ¼ μð j; jþ1Þ

r ¼ μ,
i∈ [1:Nt− 1],j∈ [1:Nr− 1]). From the findings of Figure 4, it is only necessary to consider antenna spacings in the range
0<μ≤ 0.4λ, as greater spacings have negligible impact on performance.

The results in Figure 5 show that the error performance of USTLD systems at high antenna correlation worse than
that of Alamouti STBC systems. This may be observed in the regions 0<μ≤ 0.2λ for the 8PSK and 16QAM systems,
0<μ≤ 0.13λ for 16PSK, and across the full range 0<μ≤ 0.4λ for 64QAM. This indicates that at high antenna
correlations, labelling diversity decreases the error performance of MIMO systems compared with existing systems.
Furthermore, USTLD systems are found to be more susceptible to antenna correlation as all curves show steeper
gradients than the comparable Alamouti systems. This is in agreement with the results of previous work,24 wherein
dual‐correlated USTLD systems are found to be more susceptible to antenna correlation than comparable conventional
MIMO systems.
5 | CONCLUSION

This paper presents an analysis of the performance of USTLD in the presence of spatial correlation. An expression for
the union bound of the ABEP is derived for the case of the Nakagami‐q fading model in both correlated and
uncorrelated channels. This expression is verified by the results of Monte Carlo simulations, which show convergence
in the high SNR region. The results presented also show the effect of the Nakagami‐q fading parameter on error
performance: as the fading parameter decreases, so does error performance. In particular, the 16‐ary modulation
schemes show performance degradation of 2 orders of magnitude.

It is further concluded that transmit antenna correlation has a greater impact on degrading the error performance of
USTLD systems than receive antenna correlation. Results indicate that, for linear antenna arrangements, there is a
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threshold spacing of 0.4λ, after which greater antenna spacings do not improve the robustness towards spatial
correlation. This provides a valuable practical guideline for implementing USTLD systems. Future work may consider
determining the optimal antenna spacings of USTLD systems with nonlinear antenna configurations.

Finally, it is found that 2×4 USTLD systems are more susceptible to spatial correlation than comparable MIMO
Alamouti STBC systems. It is found that labelling diversity decreases the error performance of MIMO systems at high
antenna correlations when compared with the existing Alamouti STBC system. Another open problem for future work
is to study the effects of correlation on the capacity of USTLD systems.
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APPENDIX A

DETAILS OF UNCORRELATED NAKAGAMI‐Q DERIVATION

To show that the PEP may be expressed in terms of 4 chi‐squared RVs, as stated in Section 3.1, the inequality for the
conditional PEP (8) is first modified to produce (A1). The notation used assumes without loss of generality that the label

Li,i∈ [1:Nt], was detected erroneously. Thus,Hk

�
½ΩkðLÞ�−½Ωkð~LÞ�

�
¼ hðiÞ

k

�
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�
¼ hðiÞ

k dk, where the abridged

notation dk ¼ dkðLi; ~LiÞ and dkðL; ~LÞ is given in (15).
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The summed terms on the lesser side of the inequality may be written in terms of in‐phase and quadrature
components as follows:
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In (A2), g ¼ ∑2
k¼1∑

Nr
p¼1gpk and the Gaussian RVs gpk ; k∈½1:2�; p∈½1:Nr�; are given by
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and have mean E gpk

n o
¼ 0 and variance
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n o
¼ 2

ffiffiffiffiffiffi
γ
Nt

r
hðiÞpk

� �I
dIk

� 	2

þ 2

ffiffiffiffiffiffi
γ
Nt

r
hðiÞpk

� �Q
dQk

� 	2

þ2

ffiffiffiffiffiffi
γ
Nt

r
hðiÞpk

� �I
dQk

� 	2

þ 2

ffiffiffiffiffiffi
γ
Nt

r
hðiÞpk

� �Q
dIk

� 	2

¼ 2

ffiffiffiffiffiffi
γ
Nt

r
hðiÞk dk

����
����
2

:

(A4)

Thus, the distribution of the Gaussian RV g is given by g∼N 0; σ2g
� �

; k∈½1:2�, and σ2g ¼ 2∑2
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produces the same result as Xu et al,8 and so (A1) may be expressed as follows:
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Using the intermediate steps of (A2), the argument of the Q‐function in (A5) is squared to produce (A6).

1
2
∑
2

k¼1

ffiffiffiffiffiffi
γ
Nt

r
hðiÞ
k dk











2

¼ γ
2Nt

∑
2

k¼1
∑
Nr

p¼1
hðiÞpk

� �I
dIk

� 	2

þ hðiÞpk

� �Q
dQk

� 	2
"

þ hðiÞpk

� �I
dQk

� 	2

þ hðiÞpk

� �Q
dIk

� 	2
#

¼ γ
2Nt

∑
2

k¼1
∑
Nr

p¼1
hðiÞpk

� �I� 	2

dkj j2 þ hðiÞpk

� �Q� 	2

dkj j2
" #

:

(A6)

Since both the in‐phase and quadrature components of fading follow Gaussian distributions, the Q‐function in (A5)
is expressed using the results of (A6) as follows:
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where the Gaussian RVs αp1 ; αp2 ; αp3 and αp4 ; p∈½1:Nr�; are defined by
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and have the distributions given in (11) to (14).


