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ABSTRACT 
 

Linear control systems can be easily tuned using classical tuning techniques such as the 

Ziegler-Nichols and Cohen-Coon tuning formulae. Empirical studies have found that 

these conventional tuning methods result in an unsatisfactory control performance when 

they are used for processes experiencing the negative destabilizing effects of strong 

nonlinearities. It is for this reason that control practitioners often prefer to tune most 

nonlinear systems using trial and error tuning, or intuitive tuning. A need therefore exists 

for the development of a suitable tuning technique that is applicable for a wide range of 

control loops that do not respond satisfactorily to conventional tuning.  

 

Emerging technologies such as Swarm Intelligence (SI) have been utilized to solve many 

non-linear engineering problems. Particle Swarm Optimization (PSO), developed by 

Eberhart and Kennedy (1995), is a sub-field of SI and was inspired by swarming patterns 

occurring in nature such as flocking birds. It was observed that each individual exchanges 

previous experience, hence knowledge of the “best position” attained by an individual 

becomes globally known. In the study, the problem of identifying the PID controller 

parameters is considered as an optimization problem. An attempt has been made to 

determine the PID parameters employing the PSO technique. A wide range of typical 

process models commonly encountered in industry is used to assess the efficacy of the 

PSO methodology. Comparisons are made between the PSO technique and other 

conventional methods using simulations and real-time control.  
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Chapter 1 
 

Introduction and Overview of the Study 
 

1.1 Introduction 

The PID controller is regarded as the workhorse of the process control industry (Pillay 

and Govender, 2007). Its widespread use and universal acceptability is attributed to its 

simple operating algorithm, the relative ease with which the controller effects can be 

adjusted, the broad range of applications where it has reliably produced excellent control 

performances, and the familiarity with which it is perceived amongst researchers and 

practitioners within the process control community (Pillay and Govender, 2007). In spite 

of its widespread use, one of its main short-comings is that there is no efficient tuning 

method for this type of controller (Åström and Hägglund, 1995). Given this brief 

background, the main objective of this study is to develop a tuning methodology that 

would be universally applicable to a range of popular processes that occur in the process 

control industry.   

 

1.2 Motivation for the study 

Several tuning methods have been proposed for the tuning of process control loops, with 

the most popular method being that of Ziegler and Nichols (1942). Other methods include 

the methods of Cohen and Coon (1953), Åström and Hägglund (1984), De Paor and 

O’Malley (1989), Zhuang and Atherton (1993), Venkatashankar and Chidambaram 

(1994), Poulin and Pomerleau (1996) and Haung and Chen (1996). In spite of this large 

range of tuning techniques, to date there still seems to be no general consensus as to 
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which tuning method works best for most applications (Lipták, 1995). Some methods rely 

heavily on experience, while others rely more on mathematical considerations (Lipták, 

1995).  

 

The Ziegler-Nichols method (1942) is the method most preferred by process control 

practitioners and alternate methods are often not applied in practice because of the 

reluctance of control personnel to learn new techniques which they perceive as being 

complicated, time consuming and laborious to implement (Pillay and Govender, 2007). 

Also, some commonly used techniques do not perform sufficiently well in the presence of 

strong nonlinear characteristics within the control channel (Åström and Hägglund, 2004, 

Shinskey, 1994).  

 

1.3 Focus of the study 

This study proposes the development of a tuning technique that would be suitable for 

optimizing the control of processes operating in a single-input-single-output (SISO) 

process control loop. The SISO topology has been selected for this study because it is the 

most fundamental of control loops and the theory developed for this type of loop can be 

easily extended to more complex loops. The research focuses on utilizing a soft-

computing strategy, namely the particle swarm optimization (PSO) technique that was 

first proposed by Kennedy and Eberhart (1995), as an optimization strategy to determine 

optimal controller parameters for PID control and its variants. The control performance 

of loops tuned with the proposed PSO technique will also be compared to that of loops 

tuned using another soft-computing technique, namely the genetic algorithm (GA) plus 
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the methods mentioned previously in the discussions. The GA was selected for 

comparison with the PSO because both are population based soft-computing techniques. 

 

1.4 Objectives of the study 

The objectives of the study are to: 

i) Develop a PSO based PID tuning methodology for optimizing the control of SISO 

process control loops.  

ii)  Determine the efficacy of the proposed method by comparing the control 

performance of loops tuned with the PSO method to that of loops tuned using the 

GA and the other so-called conventional methods of Ziegler-Nichols (1942), 

Cohen and Coon (1953), Åström and Hägglund (1984), De Paor and O’Malley 

(1989), Venkatashankar and Chidambaram (1994) and Poulin and Pomerleau 

(1996).  

 

1.5 Thesis overview  

This document is arranged as follows: 

Chapter one gives an introduction and general overview of the study. It focuses on the 

research problem and motivation for the study.  

Chapter two provides a brief outline on PID control and classical control theory.  

Chapter three highlights typical process models that are commonly encountered in 

processes control loops. Typical nonlinear characteristics commonly found in most 

process control loops are reviewed and their effects on controller tuning and closed-loop 

performance are also explored in this chapter. 
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Chapter four reviews selected PID controller tuning algorithms proposed in the literature. 

Chapter five discusses soft computing techniques such as evolutionary computation (EC) 

and compares the intrinsic characteristics of GA’s to that of the PSO. 

Chapter six discusses the PSO tuning approach. 

Chapter seven describes a simulation that study focuses on the effects of PSO parameter 

variation. 

Chapter eight describes a simulation study that compares the control performance of PSO 

tuned systems to that of systems tuned using methodologies proposed in the literature. 

This chapter also compares the control performance of PSO tuned systems to GA tuned 

systems.  

In Chapter nine the PSO method is applied offline to tune process control loops.  

Chapter ten describes the real-time control of a positional servo-mechanism.  

Chapter eleven summarizes the findings of the study and provides direction for further 

research that could be pursued in the field. 

 

Appendix A provides the PSO source code used in all the experiments.  

Appendix B gives details of the experiments conducted in Chapter 9. 

Appendix C provides the loop diagram associated with the process control plant and 

details all the experiments conducted for the PSO and GA tuning methods.   

Appendix D presents two conference papers and a draft journal paper arising from the 

work conducted in this study. 
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Chapter 2 
 

Overview of PID Control 

2.1 Introduction 
 
The PID controller is by far the most commonly used controller strategy in the process 

control industry (Åström and Hägglund, 1995; Åström et al., 2004). Its widespread use is 

attributed to its simple structure and robust performance over a wide range of operating 

conditions (Gaing, 2004). PID control is implemented as either stand-alone control, or on 

DCS, SCADA and PLC control systems. The popularity and widespread use of PID 

control in the process control industry necessitates a detailed discussion on the 

fundamental theory that underpins this type of three-term process control. The dynamics 

associated with each control mode will also be discussed and the advantages and 

shortcomings associated with each type of control will also be given.   

 

2.2 Control Effects of Proportional, Integral and Derivative Action 

2.2.1 Proportional control  

Proportional control is defined as the control action that occurs in direct proportion with 

the system error. The output of a proportional controller varies proportionally to the 

system error according to (2.1): 

 

bteKtu cp += )()(    Equation (2.1) 
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With regards to (2.1), )(tu p is the controller output, )(te  is the error, b is the controller 

bias and cK  is the controller gain (referred to as the proportional gain). Proportional 

control action responds to only the present error. For a small value of proportional gain, a 

large error yields a small corrective control action. Conversely, a large proportional gain 

will result in a small error and hence a large control signal. The controller bias is 

necessary in order to ensure that a minimum control action is always present in the 

control loop.   

 

The gain of a proportional controller is usually described in terms of its proportional band 

(PB). The concept of the proportional band is inherited from pneumatic controller and is 

defined as: 

 

%100
1 ×=

cK
PB    Equation (2.2) 

 

From (2.2), a large proportional gain cK corresponds to a small proportional band PB, 

while a large PB implies a small gain cK . A pure P controller reduces error but does not 

eliminate it (unless the process has naturally integrating properties). With pure P control 

an offset between the actual and desired value will normally exist. This is illustrated as 

follows:  

 

Consider Figure 2.1: 
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Figure 2.1: Proportional controller within a closed-loop feedback control system 

 

With regards to Fig. 2.1:  

The closed-loop transfer function of this control system is represented by (2.3): 
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 where )(sG p
is the transfer function of the process, R(s) and Y(s) represents the input and 

output of the process, respectively and the error signal E(s) is: 
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The action of the proportional controller usually results in an offset i.e. the difference 

between the desired output and the actual output of the system for processes that do not 

have any inherent integrating properties. Under these conditions the steady-state error for 

the control system can be calculated using the final value theorem (2.5): 
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=+∞      Equation (2.5) 

 

For a unit step input: 
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 Equation (2.6) 

          

This indicates the presence of a steady state error for ±∞≠)(sG p
, which is the case for 

systems with no inherent integrating properties. From (2.6), the absolute value of the 

steady-state error can be reduced by sufficiently increasing cK .  However since cK  affects 

system stability and its dynamics, it will be limited by the stability constraints of the 

overall control system. A high value of cK  may lead to oscillations and large overshoots 

which could result in instability (See Figure 2.2).  

 

It is for this reason that proportional control is often combined with integral control in 

order to eliminate offset, while applying the smaller values of the gaincK . A typical 

example of system response using only proportional control is illustrated in Figure 2.2.  
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Figure 2.2: Control effect of varying P-action 

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2.2.2 Integral control (Reset control) 

Integral control is used in systems where proportional control alone is not capable of 

reducing the steady-state error within acceptable bounds. Its primary effect on a process 

control system is to permanently attempt to gradually eliminate the error. The action of 

the integral controller is based on the principle that the control action should exist as long 

as the error is different from zero, and it has the tendency to gradually reduce the error to 

zero. The integrator control signal (ui (t)) is proportional to the duration of the error and is 

given by: 
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With regards to (2.7): iT  is the integral time constant, cK  is the proportional gain, 

 Kc /Ti = Ki is the gain of the integral controller, )(te  is the instantaneous error signal and 

the limits it and 
ft represent the start and end of the error, respectively. The smaller the 

integral time constant, the more often the proportional control action is repeated, 
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therefore resulting in greater integral contribution toward the control signal. For a large 

integral time constant, the integral action is reduced. Integral control can be seen as 

continuously looking at the total past history of the error by continuously integrating the 

area under the error curve and reducing any offset. The greater the error signal the larger 

the correcting action from the integral controller will be.  

 

2.2.2.1 Integral action as automatic reset 

Integral action may be performed as a kind of automatic reset (see Figure 2.3) and is 

equivalent to permanently adjusting the bias of the proportional controller.  

 

Figure 2.3: Proportional controller with an integrator as automatic reset 

 

With regards to Figure 2.3, the control signal applied to the process is: 
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Substituting (2.9) into (2.8) yields: 
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where  )(. sE
s

K i and )(sEKc represents the control action of the integral and proportional 

controller on the error signal, respectively. 

 

Proportional action comes into effect immediately as an error different from zero occurs. 

If the proportional gain is sufficiently high it will drive the error closer to zero. Integral 

control accomplishes the same control effect as the proportional control but with an 

infinitely high gain. This results in the offset eliminating property of integral action 

which can be illustrated by applying the final value theorem to the control structure of 

Figure 2.3. With regards to Figure 2.3: 
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where 
s

K
KsG i

cc +=)(  and 
s

sR
1

)( = . From (2.12) the integral controller drives the 

error to zero:   
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0)( =+∞sse  indicates that the offset is zero and proves that integral action eliminates any 

offset. The control effects of integral action are illustrated in Figure 2.4. With regards to 

Figure 2.4, the proportional gain is kept constant ( 1=cK  ) and the integral time is 

adjusted to illustrate the effects of the integral time constant.  

 

 

Figure 2.4: Control effects of varying integral action 
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The integral time (Ti ) constant is varied within the range ∞= ,5,2,1[iT ]. The case when

∞=iT , corresponds to pure proportional control and is identical to K=1 in Figure 2.2, 

where the steady-state error is 50%. The steady-state error is removed when iT  has finite 

value. For large values of the integration time constant, the response gradually moves 

towards the setpoint. For small values of iT , the response is faster but oscillatory. 

 

2.2.2.2 Undesirable effects of Integral Control 

Although integral control is very useful for removing steady-state errors it is also 

responsible for sometimes introducing undesirable effects into the control loop in the 

form of  increase settling time, reduced stability and integral windup (Govender, 1997). A 

short explanation of each of these undesirable effects is discussed. 

 
Increased settling time: An increase of the closed-loop system settling time is usually 

caused by the increased oscillations as a consequence of the present integral action.  

 

Reduced stability: The presence of the integral action may lead to increased oscillations 

within the control loop. These oscillations generally have a tendency to move the system 

towards the boundary of instability. In some cases these oscillations will result in the loop 

becoming unstable. 

 
Integral windup: Integrator windup occurs when the integral controller calls for a control 

action that the process actuator cannot produce because of its saturated state. This so-

called integrator windup state results in severe overshoots in the controlled variable. 
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2.2.3 Derivative control (Rate or Pre-Act control) 

In linear proportional control the strength of the control action is directly proportional to 

the magnitude of the error signal and P-action becomes assertive only when a significant 

error has occurred. The integral controller performs corrective action for as long as an 

error is present but its gradual ramp shaped response means that significant time expires 

before it produces a sizeable control response. Both these control modes are incapable of 

responding to the rate of change of the error signal.  

 

D-control action positively enhances system closed-loop stability (Åström and Hägglund, 

1995). When operating in the forward path, the derivative controller responds to the rate 

at which system error changes according to (2.13a): 

 

dt

tde
K

dt

tde
TKtu ddcd

)()(
)( ==   Equation (2.13a) 

 

With regards to (2.13a): d
d

c K
T

K =  is the derivative gain, dT  denotes the derivative time 

constant and )(
)(

tDe
dt

tde =  is the rate of change of the error feedback signal. From 

(2.13a) and (2.13b) it is obvious that D-action is only present when the error is changing; 

for any static error the contribution of the D-controller will be zero. Derivative action on 

its own will therefore allow uncontrolled steady-state errors. It is for this reason that 

derivative control is usually combined with either P-control or PI control.  
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Another shortcoming of the D-controller is its sensitivity. The D-controller can be 

regarded as a high-pass filter that is sensitive to set-point changes and process noise when 

operating in the forward path (Lipták, 1995).  To reduce this sensitivity, it is quite 

common to find the D-controller operating in the feedback loop enabling it to act on the 

feedback signal according to (2.13b): 

 

)(
)()(

)( tDyK
dt

tdy
K

dt

tdy

T

K
tu dd

d

c
d ===   Equation (2.13b) 

 

With regards to (2.13b) 
���	�
�	 � ����� represents the rate of change of the feedback 

signal; all the other terms have the same meaning as was defined for (2.13a). 

 

2.2.3.1 D-Action as Predictive Control 

The control action of a PD-controller can be interpreted as a type of predictive control 

that is proportional to the predicted process error. The prediction is performed by 

extrapolating the error from the tangent to the error curve in Figure 2.5. PD controllers 

operate according to control law (2.14):  

 








 +=
dt

tde
TteKtu dcpd

)(
)()(   Equation (2.14) 

 

A Taylor series expansion of dTte +( ) gives: 
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dt

tde
TteTte dd

)(
)()( +≈+   Equation (2.15) 

 

The PD control signal is thus proportional to an estimate of the control error at time dT  

seconds ahead, where the estimate is obtained through linear extrapolation. 

 

From Figure 2.5, the longer the derivative time constant dT  is set, the further into the 

future the D-term will predict. Derivative action depends on the slope of the error, hence 

if the error is constant the derivative action has no effect. The effects of derivative action 

on control performance are illustrated in Figure 2.6. The controller proportional gain and 

integrating time constant are kept constant, 3=cK  and 2=iT , and the derivative time is 

varied according to Td = [0.1;0.7;4.5]. For dT = 0 we have a pure PI control. 

 

 

Figure 2.5: Interpretation of derivative action as predictive control  
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Figure 2.6: Simulation of a closed-loop system with PID control 








+
=

3)1(

1
)(

s
sGp  

 

From Figure 2.6, we observe that system response is oscillatory for low values for dT and 

highly damped for higher derivative time settings.  

 
2.3  PID Algorithms 

The transfer functions for PID algorithms are classified as follows: standard non-

interacting (2.16), series interacting (2.17) and parallel non-interacting PID (2.18).  

 

bsT
sT

K
sE

sU
d

i
c +++= ]

1
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)(

)(
   Equation (2.16) 

 

Most tuning methods are based on (2.16) (Lipták, 1995). 
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   Equation (2.18) 

 

With regards to (2.16) – (2.18): )(sU  represents the control signal; )(sE  is the error 

signal; cK  denotes the proportional gain; iT  and dT  refers to the integral and derivative 

time constants; b denotes the controller bias. The implementation strategy for (2.16), 

(2.17) and (2.18) is shown in Figure 2.7, Figure 2.8 and Figure 2.9. 

   

 

 

 

 

Figure 2.7: Non-interacting PID 

 

 

 

 

 

 

 

Figure 2.8: Interacting PID 
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Figure 2.9: Parallel non-interacting PID  

 

Historically, pneumatic controllers based on (2.17) were easier to build and tune (Åström 

and Hägglund, 1995).  Note that the interacting and non-interacting forms are different 

only when both integral and derivative control actions are used. (2.16) and (2.17) are 

equivalent when the controller is utilized for P, PI or PD control. It is evident that in the 

interacting controller the derivative time does influence the integral part, hence the 

reasoning that it is interacting. 

 

The representation for the parallel non-interacting PID controller is equivalent to the 

standard non-interacting controller with the exception that the parameters are expressed 

in a different form. The relationship between the standard and parallel type is given by  

kc = Kc, ki = Kc/Ti and kd = KcTd. The parallel structure has the advantage of often being 

useful in analytical calculations since the parameters appear linearly. The representation 

also has the added advantage of being preferred for pure P, I or D control by the selection 

of finite tuning parameters (Åström, 1995).  
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2.4 Performance evaluation criteria 

Quantification of system performance is achieved through a performance index. The 

performance selected depends on the process under consideration and is chosen such that 

emphasis is placed on specific aspects of system performance. Performances indices 

preferred by the control engineering discipline include the Integral Square-Error (ISE) 

index (2.19), Integral-of-Time multiplied by Square-Error (ITSE) index (2.20), Integral 

Absolute-Error (IAE) index (2.21) and the Integral-of-Time multiplied by Absolute-Error 

(ITAE) index (2.22). 

 

ISE Index: 

∫
∞

=
0

2 )( dtteISE     Equation (2.19) 

 

An optimal system is one which minimizes this integral. The upper limit ∞ may be 

replaced by T which is chosen sufficiently large such that )(te  for tT < is negligible and 

the integral reaches a steady-state. A characteristic of this performance index is that it 

penalizes large errors heavily and small errors lightly. A system designed by this criterion 

tends to show a rapid decrease in a large initial error. Hence the response is fast and 

oscillatory leading to a system that has poor relative stability (Ogata, 1970). 

 

ITSE Index: 

∫
∞

=
0

2 )( dttteITSE     Equation (2.20) 
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This criterion places little emphasis on initial errors and heavily penalizes errors 

occurring late in the transient response to a step input.  

 

IAE Index: 

 

∫
∞

=
0

)( dtteIAE     Equation (2.21) 

 

Systems based on this index penalize the control error.  

 

ITAE Index: 

 

∫
∞

=
0

)( dttetITAE     Equation (2.22) 

 

System’s designed using this criterion has small overshoots and well damped oscillations. 

Any large initial error to a step-response is penalized lightly whilst errors occurring later 

in the response are penalized heavily. The ITAE performance index is used in this study. 

A summary of the performance indices and their respective properties is shown in Table 

2.1. 
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Performance 

Index 
Equation Properties 

ISE ∫
∞

=
0

2 )( dtteISE  

Penalizes large control errors.  

Settling time longer than ITSE.  

Suitable for highly damped systems. 

ITSE ∫
∞

=
0

2 )( dttteITSE  
Penalizes long settling time and large control errors. 

Suitable for highly damped systems. 

IAE ∫
∞

=
0

)( dtteIAE  Penalizes control errors.  

ITAE ∫
∞

=
0

)( dttetITAE  Penalizes long settling time and control errors. 

 

Table 2.1: Summary of performance indices 

 

2.5 Summary and conclusion 

Typical PID algorithms that form the building blocks of controllers have been discussed. 

The control actions of proportional, integral and derivative terms and some of their 

adverse effects have also been reviewed. The proportional controller provides a 

corrective action that is proportional to the size of the error and also has an effect on the 

speed of a system’s response; integral control provides corrective action proportional to 

the time integral of the error and is present for the entire duration of the error; the 

derivative controller provides a corrective action proportional to the time derivative of the 

error signal and responds to the rate at which the error is changing. The effects of process 

dynamics on controller tuning are discussed in the next chapter. 
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Chapter 3 
 

Typical Process Control Models 

3.1 Introduction 

This chapter presents a discussion on the transfer function models of systems commonly 

encountered in process control. These plant models will be used to compare the control 

performance of loops tuned with the PSO versus that of loops tuned using methodologies 

proposed in the literature. The dynamics associated with each process model is also 

discussed.  

 

3.2 Dynamics associated with the selected process models 

The SISO control loop used in this study is given in Figure 3.1. The SISO configuration 

has been chosen because it forms the fundamental building block of all process control 

loops and the dynamics associated with it are universally applicable to configurations 

such as SIMO, MISO and MIMO control loops.  

 

 

 

 

 

 

Figure 3.1: SISO system with unity feedback 
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Typical real-world process models that have been selected for this study are listed in (3.1) 

to (3.4): 

A Stable First Order Plus Dead-Time Process (FOPDT): 

 

( )
)1(

exp
)(

+
−

=
sT

sLK
sG

p

pp
p     Equation (3.1) 

 

A Stable Second Order Plus Dead-Time Process (SOPDT): 

 

( )
2)1(

exp
)(

+
−

=
sT

sLK
sG

p

pp
p     Equation (3.2) 

 

A Stable Second Order Integrating Process with Dead-Time (SOIPDT): 

 

( )
)1(

exp
)(

+
−

=
sTs

sLK
sG

p

pp
p     Equation (3.3) 

 

A First Order Delayed Unstable Process (FODUP): 

 

( )
)1(

exp
)(

−
−

=
sT

sLK
sG

p

pp
p     Equation (3.4) 
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Equations (3.1)-(3.4) capture the typical dynamics that are present in most real-world 

process control systems, with the exception that the 
p

p

T

L
 ratios may vary (Åström et al., 

2004). Equation (3.2) characterizes systems that are rich in dynamics and include systems 

such as underdamped, critically damped and overdamped systems. These systems usually 

follow an “S-shape” closed-loop response.  

 

The 
p

p

T

L
 ratio, or controllability ratio, is used to characterize the difficulty or ease of 

controlling a process. Processes having small controllability ratios (i.e. 10 <≤
p

p

T

L
) are 

easier to control and the difficulty of controlling the system increases as the 

controllability ratio increases (Åström and Hägglund, 1995). Processes with 1≥
p

p

T

L
 

correspond to dead-time dominant processes that are difficult to control with 

conventional PID control (Åström, 1995). 

 

3.3 A brief overview of integrating processes (Self-Regulating Processes) 

Most real-world process control systems are characterized by offset or steady-state error 

which can arise from load friction, intrinsic steady state nonlinearities or uncertainties in 

modeling (Haung et al., 1996). If the forward branch of a feedback control system 

contains an integrator, the presence of an error will cause a rate of change of output until 

the error has been eliminated (Chen et al., 1996; Poulin and Pomerleau, 1996).  
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The dynamics of certain real-world process control systems are such that an inherent 

integrating control effect could naturally arise during normal operation of the plant. This 

“natural integrator” is purely error driven and will ensure that any steady-state error is 

driven to zero following either a setpoint change or disturbance. There is no static error to 

a setpoint change for pure proportional control. However this is not the case when 

nonzero mean disturbances act at the process input. Therefore in order to ensure that 

there will be no static error, a control with an integrator must be used (Poulin and 

Pomerleau, 1996).  

 

3.4 Problems experienced with tuning processes having unstable poles and dead-
time 
 
Processes having only right-hand poles are inherently unstable under open-loop 

conditions (Poulin and Pomerleau, 1996; Majhi and Atherton, 1999). The undesirable 

effects of dead-time will contribute towards the instability inherently present in systems 

of this nature. The tuning of these open-loop unstable processes having dead-time delay 

becomes more challenging than for stable processes (Poulin and Pomerleau, 1996). The 

Ziegler-Nichols (1942) and Cohen-Coon (1953) tuning techniques are unsuitable for 

tuning loops that have only unstable pole/s plus dead-times because: 

 

The open-loop step response of systems having unstable poles will be unbounded (Poulin 

and Pomerleau, 1996; Haung et al., 1996). The Ziegler-Nichols and Cohen-Coon open-

loop methods rely on a stable open-loop response for determining the controller’s tuning 

parameters. 
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The Ziegler-Nichols closed-loop method operates the control-loop within the marginally 

stable region (see Figure 3.2) when the critical gain tuning parameter is being 

determined. Coupled with this, the destabilizing effects of the system’s right-hand pole/s 

plus channel dead-time may drive the system’s response into its unstable region of 

operation following a disturbance input.  

 

Open-loop response trajectories of self-regulating, marginally stable and unstable 

processes are illustrated in Figure 3.2.  

With regards to Figure 3.2: 

Trajectory a: Open-loop stable response 

Trajectory b: Open-loop marginally stable process. Closed-loop control will push system 

response into the stable operating region.  

Trajectory c: Open-loop unstable process. With closed loop-control and properly tuned 

control, system response could be forced into the marginally stable or stable operating 

region. 

 

 

 

 

 

 

 

Figure 3.2: Response trajectories for self-regulating (stable), marginally stable 

and unstable processes 
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3.5 Performance limitations of PID controllers for unstable processes having 1>
p

p

T

L

The existence of right-hand pole/s in the open-loop transfer function of a process may 

lead to limitations in its closed-loop performance (Haung and Chen, 1996). Traditional 

methods using the sensitivity function )(sS  are used to express the limitations caused by 

the presence of right-hand poles.  

 

If the process has open-loop unstable poles, the response of the closed-loop system will 

overshoot the setpoint in all cases (Youla et al., 1976).  Closed-loop performance is also 

compromised when the combined effects of long dead-time and unstable pole/s are 

simultaneously present within the system’s control channel (Govender, 2003). Added to 

this, the ability of a control system to reject load disturbances will degrade if the process 

contains unstable pole/s (Huang and Chen, 1996). A well-tuned PI controller will 

stabilize a FODUP process if and only if the controllability ratio 1<
p

p

T

L
  (De Paor and O’ 

Malley, 1989, Venkatashankar and Chidambaram, 1994). For the PID controller the 

constraint is relaxed to 2<
p

p

T

L
 (Huang and Chen, 1996; Lee et al., 2000).  

 

3.5 Summary and conclusion 

This chapter has focused on typical processes and their respective dynamics. Some of the 

challenges experienced when tuning open-loop processes and processes having a high 

controllability ratio have also been mentioned. There is no universal tuning algorithm or 

tuning methodology that is suitable for all processes. This is evident by virtue of the fact 
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that following Ziegler and Nichols (1942), various researchers have proposed tuning 

approaches that are applicable to specific process types (Cohen-Coon, 1953; Åström and 

Hägglund, 1984; De Paor and O’Malley, 1989; Zhuang and Atherton, 1993; 

Venkatashankar and Chidambaram, 1994; Poulin and Pomerleau, 1996; Huang and Chen, 

1996). The next chapter discusses selected tuning methodologies applicable to this study. 
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Chapter 4 
 

PID Tuning  
4.1 Introduction 

The dynamical nature of process control loops leads to changes of operating conditions 

within the loop, and hence loop performance. Changes in system performance may be 

attributed to the presence of process nonlinearities within the control channel, process 

aging, production strategy changes, modifications to the properties of raw materials, and 

changes over equipment maintenance cycles (Pomerleau and Poulin, 1996). Given these 

dynamical conditions, loop tuning is necessary to ensure the continued satisfactory 

performance of the control loop.  

 

The goal of PID controller tuning is to determine parameters that meet closed loop 

system performance specifications, and the robust performance of the control loop over a 

wide range of operating conditions should also be ensured. Practically, it is often difficult 

to simultaneously achieve all of these desirable qualities. For example, if the PID 

controller is adjusted to provide better transient response to set point change, it usually 

results in a sluggish response when under disturbance conditions. On the other hand, if 

the control system is made robust to disturbance by choosing conservative values for the 

PID controller, it may result in a slow closed loop response to a setpoint change.  A 

number of tuning techniques that take into consideration the nature of the dynamics 

present within a process control loop have been proposed (see Ziegler and Nichols, 1942; 

Cohen and Coon, 1953; Åström and Hägglund, 1984; De Paor and O’Malley, 1989; 

Zhuang and Atherton, 1993; Venkatashankar and Chidambaram, 1994; Poulin and 
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Pomerleau, 1996; Huang and Chen, 1996). All these methods are based upon the 

dynamical behavior of the system under either open-loop or closed-loop conditions. 

These tuning methods are discussed in the following sections. 

  

4.2 Ziegler-Nichols Tuning 

The earliest known and most popular tuning methodology was proposed by Ziegler and 

Nichols (ZN) in 1942 (Åström and Hägglund, 2004). They proposed the closed-loop (or 

ultimate sensitivity) method and the open-loop (or process reaction curve) method. The 

ZN tuning rules has a serious shortcoming in that it uses insufficient process information 

to determine the tuning parameters (Åström and Hägglund, 2004). This disadvantage 

leads to system performances that have poor robustness (Åström and Hägglund, 2004). 

 

The Ziegler-Nichols tuning method is based on the determination of processes inherent 

characteristics such as the process gain (
pK ), process time constant (

pT ) and process 

dead time (
pL ). These characteristics are used to determine the controller tuning 

parameters. Although the Ziegler-Nichols methods attempt to yield optimum settings, the 

only criterion stated is that the response has a decay ratio of quarter (see Figure 4.1) 

(Ziegler and Nichols, 1942). This is viewed as a shortcoming because a controller tuned 

with this criterion may not be at its optimal setting (Lipták, 1995).  
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Figure 4.1: Response curve for quarter wave decay ratio 

 
 

4.2.1 ZN closed-loop tuning method (Ultimate gain and ultimate period method) 

The closed-loop tuning method proposed by ZN requires the determination of the 

ultimate gain and ultimate period. The method can be interpreted as a technique of 

positioning one point on the Nyquist curve (Åström, 1995). This can be achieved by 

adjusting the controller gain (cK ) till the system undergoes sustained oscillations (at the 

ultimate gain or critical gain), whilst maintaining the integral time constant (iT ) at 

infinity and the derivative time constant )( dT  at zero. Consider Figure 4.2:  the closed-

loop response is considered stable if there is no encirclement of the point )01( j+−  by 

the Nyquist plot (Figure 4.2a) of the system (Ogata, 1970). For a proportional gain  
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( cK ) = 2 the closed-loop response is stable and the Nyquist stability criterion is met 

(Figure 4.2b). For 8=cK , sustained oscillations are produced since there is an 

encirclement of the point )01( j+−  by the Nyquist locus (Figure 4.2c and Figure 4.2d). 

In both simulations, ∞=iT  and dT =0 is used with a change only in the proportional gain 

cK to move the process closer to the ultimate point. 

 

               Figure 4.2a     Figure 4.2b    

 

Figure 4.2c      Figure 4.2d 

Figure 4.2: Closed-loop step response of 3)1(

1
)(

+
=

s
sGp  with ]8,2[=cK , ∞=iT  and 

0=dT  
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A significant drawback of this closed-loop tuning method is that the ultimate gain has to 

be determined through trial and error and the system has to be driven to its stability 

limits. Another disadvantage is that when the process is unknown, the amplitudes of the 

undampened oscillations can become excessive when using trial and error to determine 

the ultimate gain of the system. This could lead to unsafe plant conditions.  The closed-

loop tuning rules for P, PI and PID control are given in Table 4.1. 

 
4.2.2 ZN open-loop tuning method (Process reaction curve method) 
 
This method is based on a registration of the open-loop step response of the system. From 

Figure 4.3, it can be seen that following a step change, the system’s S-shaped response is 

characterized by three parameters, namely the process static gain 
pK , the process time 

constant 
pT  and 

pL  . These parameters are used to determine the controller’s tuning 

parameters (see Table 4.2).  

 

Controller Kc Ti Td 

P 0.5 uK  ∞  0 

PI 0.4 uK  0.8 uP  0 

PID 0.6 uK  0.5 uP  0.125 uP  

 

Table 4.1:  Ziegler-Nichols closed-loop tuning parameter (Ziegler and Nichols, 1942) 
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Controller Kc Ti Td 

P 
pp

p

KL

T
 ∞  0 

PI 
pp

p

KL

T
9.0  pL33.3  0 

PID 
pp

p

KL

T
2.1  pL2  

pL5.0  

 

Table 4.2:  Ziegler-Nichols open-loop tuning parameter (Ziegler and Nichols, 1942) 

 

Figure 4.3: Open-loop process reaction curve for a step change 
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An advantage of the open-loop method is that it is faster and only requires a step change 

to be applied at the process input in order to determine extract the relevant data for 

determining the tuning parameters.  The method does however suffer from some serious 

drawbacks namely:  

i) The “S-shaped” process reaction curve and its inflection point are difficult to 

identify when the measurement is noisy and,  

ii)  A considerable amount of error can be introduced into the tuning calculations 

if the point of inflection is not determined accurately (Lipták, 1995).  

 

4.2.3 Assessing the efficacy of Ziegler-Nichols tuning rules for dead-time dominant 

process 

ZN tuning yields a poor closed-loop performance for dead-time dominant control loops 

(Åström, 1995; Shinskey, 1994; Majhi and Atherton, 1999).  To illustrate this point, 

consider the PID controller algorithm of (4.1) being used to control the process defined in 

(4.2) in a SISO control loop configuration.  
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For closed-loop tuning, 25.1=uK  and 7.15=uP . The parameters extrapolated from the 

systems open-loop response to a step input are: 1=pK , 3.3=pT  and 5=pL . Table 4.3 

shows the ZN open-loop and closed-loop tuning parameters. 

 

From Figure 4.4, both variants of the ZN tuning methodology methods results in a 

damped oscillating response. Also, the recovery from a load disturbance is slow since the 

integral action given by the Ziegler-Nichols method is weak. 

 

ZN tuning 

method 
K c T i Td 

Closed-loop 

tuning 
0.75 7.9 2 

Open-loop 

tuning 
0.8 10 2.5 

 

Table 4.3:  Ziegler-Nichols open-loop and closed-loop tuning parameters for 

3)1(

)5exp(
)(

+
−=

s

s
sGp  
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Figure 4.4: Step response using ZN open-loop and closed-loop tuning for a dead-

time dominant process 3)1(

)5exp(
)(

+
−=

s

s
sGp  

 

4.3 Cohen-Coon tuning (Open-loop tuning) 
 
The ZN method was designed for a process that cannot regulate itself. To account for 

self-regulation, Cohen-Coon (CC) introduced the self-regulation index or controllability 

ratio given by (4.3) (Cohen and Coon, 1953) 

 

p

p

T

L
=ε     Equation (4.3) 

 

With regards to (4.3), 
pL  refers to the process dead time and 

pT  denotes the process time 

constant. This method is based on a first-order-plus-dead-time (FOPDT) process models 

(4.4): 
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)1(

)exp(
)(

+
−

=
sT

sLK
sG

p

pp
p     Equation (4.4) 

 

A summary of the CC method is given in Table 4.4. 

 
 
4.3.1 Comparison between ZN and CC Tuning 

A fundamental difference between the ZN and CC methods is as follows: The ZN method 

associates the integral and derivative constants completely with the process dead-time, 

whereas the CC method adjusts the integral and derivative time constants according to 

the particular relationship between the process dead time and the process time constant. 

For both methods, the controller gain is a function of this relationship. Since processes 

having different controllability ratios experience different dynamic behaviors, the Cohen-

Coon method may perform better than the Ziegler-Nichols method (Lipták, 1995). For 

example, for dead-time dominant processes i.e. processes having a large controllability 

ratio, the derivative time constant tends towards zero according to the Cohen-Coon 

tuning formulae. This is reasonable since the derivative action should not be used when 

the process contains large process time lag (Åström and Hägglund, 2004, Hägglund, 

1992). The method does suffer from the decay ratio being too small. This results in 

closed-loop systems that are characterized by low damping and high sensitivity (Åström, 

1995). Furthermore, the tuning formula tends to produce a very oscillatory set-point 

change closed-loop response because it was derived to give a quarter wave decay ratio 

following a load disturbance response (Hang et al., 1991). 
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Controller Kc Ti Td 

P 






 +
ε
1

35.0
1

pK
 ∞  0 

PI 






 +
ε
9.0

083.0
1

pK
 

pT








+
+

ε
ε

2.21

31.03.3
 0 

PID 






 +
ε
35.1

25.0
1

pK
 

pT








+
+

ε
ε

61.01

46.05.2
 pT









+ ε19.01

7.3
 

 

Table 4.4: Cohen Coon tuning formula (Open-loop) 

 

4.4 Åström - Hägglund Gain and Phase Method (Closed-Loop Method) 

The tuning method proposed by Åström- Hägglund (1984) is based on the idea of moving 

the critical point on the process Nyquist curve to a given position. Åström and Hägglund 

suggested that this point be located at unity gain and at a phase of ( °−180mφ ) on the 

Nyquist plot, where mφ  denotes the desired phase margin and mA  represents the desired 

gain margin. The phase and gain margins of a control system are a measure of closeness 

of the polar plot of the system to the )01( j+−  point. For a system to be stable both the 

phase and gain margins must be positive. Negative margins indicate instability (Ogata, 

1970). For satisfactory performance, the phase margin should be between 30° and 60°, 

and the gain margin should be greater than 6 dB (Ogata, 1970). The Nyquist plots shown 

in Figures 4.5a and Figure 4.5b illustrate the phase margin and gain margin of a stable 

and unstable system, respectively. The phase margin is that amount of additional phase 

lag at the gain crossover frequency )( cω required to bring the system to the verge of 
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instability, where cω  is defined as the frequency at which )( jwG  (the magnitude of the 

open-loop transfer function) is unity. The phase margin ( mφ ) is 180° plus the phase angle 

φ  of the open-loop transfer function at the gain crossover frequency and is defined in 

(4.5): 

φφ +°=180m     Equation (4.5) 

 

 

 

 

 

 

 

 

Figure 4.5a: Nyquist plot of stable system showing gain and phase margins 

 

 

 

 

 

 

 

 

Figure 4.5b: Nyquist plot of unstable system showing gain and phase margins 
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The phase margin is positive for 0>mφ and negative for 0<mφ . For the system to be 

stable the phase margin must be positive. 

 

The gain margin is defined as the reciprocal of the magnitude )( jwG  at the frequency 

where the phase angle is -180°. Defining the phase crossover frequency (
pω ) to be the 

frequency at which the phase angle of the open-loop transfer function equals -180° gives: 

 

)(

1

p

m
jG

A
ω

=    Equation (4.6) 

 

The gain margin is positive if 1>mA  and negative if 1<mA . A positive gain margin 

indicates that the system is stable and a negative gain margin means that the system is 

unstable.  

 

A fundamental weakness in the ZN closed-loop method is that the method relies on trial 

and error adjustments to set the ultimate gain and ultimate period. To overcome this 

weakness, Åström-Hägglund (1984) proposed their gain and phase method for 

determining specific points on the Nyquist curve to assist in determining controller pre-

tuning parameters. Their approach is based on the use of a simple relay in series with the 

process (see Figure 4.6). When the switch is in position two, the PID controller is 

disconnected from the closed-loop and is replaced by the relay. This mode is generally 

considered a “pre-tuning” phase where specific dynamics of the process are determined 

in the closed-loop. 
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Figure 4.6: Relay feedback system 

 
 
When the control signal generated by the relay is a square wave, the corresponding 

process output is similar to a sinusoidal waveform with the process input )(sU  and 

process output )(sY  having opposite phase (Åström, 1995). From Fourier series 

expansion, the first harmonic of the relay output has amplitude given by 
π
d4  where d

represents the amplitude of the relay signal and ct  denotes the period of relay switching 

(Åström and Hägglund, 1984).  If the process output is y , then the ultimate gain is thus 

given as: 

 

y

d
Ku π

4=     Equation (4.7) 

This result also follows from the describing function approximation for an ideal relay:  

 

y

d
yN

π
4

)( =     Equation (4.8) 

 

  Relay 

      Process  + - 

 
R(s) 

 
E(s) 

 
       U(s) 

 
        Y(s)   PID 

Switch 

1 

2 



   - 44 -

For systems designed to perform within gain margin specifications, the proportional gain 

and derivative time constant is given by Equation (4.9) and Equation (4.10) respectively. 

 

m

u
c

A

K
K =     Equation (4.9) 

ic

d
T

T
2

1

ω
=     Equation (4.10) 

 

With reference to equation (4.9) and equation (4.10): mA  is the desired amplitude margin, 

uK  is the critical gain; the gain crossover frequency )( cω  is evaluated as: 

 

 
c

c t

πω 2=      Equation (4.11) 

 

The integration time iT  is arbitrarily chosen (Åström and Hägglund, 1984).  

Systems with a prescribed phase margin are obtained by: 

 

muc KK φcos=    Equation (4.12) 

 

di TT γ=     Equation (4.13) 

 

c

mm

dT
ω

φ
γ

φ

2

tan
4

tan 2++
=   Equation (4.14) 
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The proportional gain cK is defined once the ultimate gain uK is determined. The value 

4=γ  is commonly used to define the relationship between the integral iT  and the 

derivative dT  time constants (Åström and Hägglund, 1995). The method however, may 

not be suitable to tune PID controllers for processes with large time delay since this 

design may result in a very oscillatory closed loop response (Zhuang and Atherton, 

1993).  

 

4.5 Poulin-Pomerleau Tuning Method for Second-Order Integrating Process having 

Dead-Time (SOIPDT) - (Open-Loop Tuning) 

Poulin and Pomerleau (1996) proposed a graphical tuning method for integrating 

processes given by (4.15):  

 

)1(

)exp(
)(

+
−

=
sTs

sLK
sG

p

pp
p     Equation (4.15) 

 

Their method is based on the Nichol analysis of the open-loop frequency response of the 

process in series with the controller. With regards to Figure 4.7, the design goal is to 

position the system on the 3dB ellipse. This is achieved by adjusting the value of the 

proportional gain ( cK ) until the frequency response of the system rests on the stipulated 

point, which is also known as the maximum peak resonance ( rM ). The controller 

parameters are determined to satisfy the specification on the maximum peak resonance of 

the closed-loop system.  
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Figure 4.7: Typical open-loop frequency response for second-order integrating process 
with time delay in cascade with a PI controller 

 

The maximum peak resonance is determined graphically from Figure 4.8. From Figure 

4.8, the controller can be tuned for input load disturbance or output load disturbance. In 

order to determine the optimal rM , the 
p

p

T

L
 ratio must be known.  A disadvantage of this 

tuning method is that the operator requires the maximum peak resonance charts in order 

to tune the controller. Since this is a graphical technique, it may be difficult for the 

control practitioner to understand and implement this method (Lee et al., 2000). 
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Figure 4.8: Optimal rM , according to the ITAE criterion for SOIPDT process as a 

function of the 
p

p

T

L
 ratio 

 

From Figure 4.8, rM  is chosen such that the ITAE criterion is minimized for a step load 

disturbance at the output or the input of the process (Poulin and Pomerleau, 1996). Once 

the rM  is chosen, the maximum phase value is: 

 

π−











−=∠

r

r

M

MjwG
05.0

1.0
max 10

1
10arccos)(  Equation (4.16) 

 

The frequency maxw at which the phase maximum occurs is: 

 

)(

1
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ppi LTT
w

+
=     Equation (4.17) 
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The integral time constant that gives the desired )( maxjwG∠  is: 

 

2
max ))(2(

)(16

π+∠
+

=
jwG

LT
T pp

i    Equation (4.18) 

 

The point )( maxjwG is located on the right-most point of the ellipse as specified by rM . 

The relationship between )( maxjwG  and rM  can be visualized on the Nichols chart as 

shown in Figure 4.7. The maximum gain of the system is given as: 

 

110

10
)(

1.0

05.0

max
−

=
r

r

M

M

jwG    Equation (4.19) 

 

The proportional gain that gives the desired )( maxjwG  is: 

 

1

)(

2
max

2

4
max

62
max max

+

+
=

wTK

wwTjwGT
K

ip

pi

c    Equation (4.20) 

 

The derivative time constant is: 

 

pd TT =      Equation (4.21) 
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4.6 De Paor-O’ Malley Tuning for First-Order Open-Loop Unstable Processes 

having Dead-Time (FODUP) 

For De Paor-O’ Malley tuning (1989), controller parameters are derived from a Nyquist 

analysis of the time delayed process of (4.22) having a single open-loop unstable pole  

( λ ): 

)(

)exp(
)(

λ−
−

=
s

sLK
sG pp

p    Equation (4.22) 

 

The Nyquist curve for (4.22) is illustrated in Figure 4.9. Asymptotic stability is obtained 

if and only if the plot encircles the point 












+−

0
1

j
KK pc

λ
 once in an anticlockwise direction 

(De Paor-O’ Malley, 1989). The design procedures are based upon the classical stability 

indices of gain and phase margin. The gain margin design does however require a 

numerical technique for solution of the design problem.   

 

 

 

 

 

 

 

 

 
Figure 4.9: Nyquist diagram for open-loop unstable process (Equation 4.22) 

 

Im  

Re 
)01( j+−  

mφ  














+−

0
1

j
KK pc

λ

 



   - 50 -

The P-controller parameter to ensure an optimal gain margin is given by (4.23) : 

 

( )[ ]
p

cc K
K

λδ 4/121+=     Equation (4.23) 

 

Where, cδ  denotes the smallest positive root and is determined by iterative algorithm 

(4.24): 

n
p

n L
δ

λ
δ 1

1 tan
1 −

+ =     Equation (4.24) 

 

From Figure 4.10, (4.24) converges to cδ  for any initial guess in the range 

pLλ
πδ

2
0 1 << . 

 

 

 

 

 

 

 

 

 

Figure 4.10: Iterative algorithm for determination of cδ  
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To ensure an optimal phase margin, the tuning parameter for the P-controller is 

determined from (4.25): 

 

pp

c
LK

K
λ

λ=       Equation (4.25) 

 

and the optimal phase margin is: 

 

( )( ) 2/1

2/1

1 1
1
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p
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L
λλ

λ
λ

φ −−








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

 −
= −    Equation (4.26) 

 

For PI control the P-control determined from (4.27): 
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and the integral term calculated from (4.28): 
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p
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T     Equation (4.28) 

 

Equations (4.27), (4.29) and (4.30) are used to determine the tuning parameters for three 

term control. 
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1
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













−
= λ

λλ
λ

ip

p
d
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L
T     Equation (4.30) 

 

De Paor-O’ Malley have derived their stability criterion for processes having control 

ratios of 1<
p

p

T

L
. The results of the controlled system tuned using the method is highly 

oscillatory with unacceptable overshoots even for 6.0=
p

p

T

L
 (Venkatashankar and 

Chidambaram, 1994). Their results on the controller gain ( cK ) and the integral time 

constant ( iT ) ratio reflect that for 7.0>
p

p

T

L
, the value for the integral time constant is 

very large.  Hence the integral action in a PI controller would be eliminated making it a 

simple proportional controller (Venkatashankar and Chidambaram, 1994). For unstable 

processes the proportional controller would result in an overshoot of 200% making it 

unsuitable for processes of this nature (Lee et al., 2000).  

 

4.7 Venkatashankar-Chidambaram Tuning Method for First-Order Open-Loop 

Unstable Processes Having Dead-Time (FODUP) 

Venkatashankar and Chidambaram (1994) derived approximate analytical tuning 

formulae based on the De Paor and O’ Malley method (1989). The method was 
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developed using P and PI controllers for FODUP processes of the type represented by 

(4.31): 

 

)1(

)exp(
)(

−
−

=
sT

sLK
sG

p

pp
p     Equation (4.31) 

 

The work proposed a method to only tune the P and PI controller and does not support 

tuning of the PID controller. This is viewed as a significant drawback since unstable 

processes controlled by a PID controller may provide better closed-loop performance in 

comparison to PI type (Anandanatarajan et al., 2006). In addition, stability analysis of the 

PI controller tuned using this method requires that the controllability ratio for the process 

model be less than 0.775 (Venkatashankar and Chidambaram, 1994).  

 

According to the Venkatashankar and Chidambaram method for PI controllers, the 

proportional control is bounded within the range 
maxmin ccc KKK << to ensure closed-loop 

stability for systems with controllability ratio of 775.0<
p

p

T

L
. For systems approaching 

25.0=
p

p

T

L
 

mincK  is determined from (4.32): 

 

[ ] 5.0221)98.0(
min cpc TK ω+=    Equation (4.32) 

 

where the gain crossover frequency ( )cω is defined as: 
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( )pp
c

LT −
= 2ω     Equation (4.33) 

 

For systems approaching ,775.0=
p

p

T

L
maxcK is calculated from (4.34) 

 

2/12

2/1222

]251[

]1)[5(
max α

αωα
+
+

= cp
c

T
K     Equation (4.34) 

where, α  is: 

 

( )βα pp
p

LT
L

−= 5
     Equation (4.34a) 

 

and β  is chosen according to (4.34b) and (4.34c): 

373.1=β  for  25.0<
p

p

T

L
   Equation (4.34b) 

953.0=β  for  75.025.0 <<
p

p

T

L
  Equation (4.34c) 

 

Systems with 775.0→
p

p

T

L
 results in 1→α  (Venkatashankar and Chidambaram, 1994). 

Ti is represented by: 

 

)(25 ppi LTT −=     Equation (4.35) 
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4.8 Summary and conclusion 

A summary of the tuning rules discussed in this chapter is given in Table 4.5(a) and 

Table 4.5(b). The Ziegler-Nichols tuning methods result in closed-loop systems with very 

poor damping, since it was intended for quarter wave damping. Ziegler-Nichols open-

loop tuning is only suitable for open-loop stable processes and the closed-loop method is 

applicable to processes that operate deep within the stable region under closed-loop 

conditions. Processes operating on the periphery of the stable region will be unsafe to 

tune using closed loop Ziegler-Nichols tuning. The method also results in poor tuning 

(Åström, 1995) and fine tuning is usually necessary to improve loop performance. In 

spite of these shortcomings, the method is still the most preferred by control practitioners. 

Its popularity is largely due to the fact that it was amongst the first tuning methods to be 

proposed, and compared to most other tuning techniques it is still the simplest to use. 

 

The ZN and AH methods are unsuitable for dead-time dominant processes (Åström, 

1995; Shinskey, 1994; Zhuang and Atherton, 1993). Other methods that were discussed 

are not often applied in practice because they are perceived as being complicated and 

time consuming to implement (Pillay and Govender, 2007). For these reasons the 

research proposes a simple stochastic methodology, based on the PSO computational 

algorithm, for determining PID tuning parameters. This is discussed in the next chapter.  
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Tuning 
rule Controller  K c T i Td Comments 

ZN 
(Closed-
loop) 

P 0.5 uK  ∞  0 

uK  

determined 
by trail and 
error 

ZN 
(Closed-
loop) 

PI 0.4 uK  0.8 uP  0 

uK  and uP  

determined 
by trail and 
error 

ZN 
(Closed-
loop) 

PID 0.6 uK  0.5 uP  0.125 uP  

uK  and uP  

determined 
by trail and 
error 

ZN 
(Open-
loop) 

P 
pp

p

KL

T
 ∞  0 

pK ,
pT  and 

pL determined 
by open-loop 
step response 

ZN 
(Open-
loop) 

PI 
pp

p

KL

T
9.0  pL33.3  0 

pK ,
pT  and 

pL determined 
by open-loop 
step response 

ZN 
(Open-
loop) 

PID 
pp

p

KL

T
2.1

 
pL2  pL5.0  

pK ,
pT  and 

pL determined 
by open-loop 
step response 

CC P 






 +
ε
1

35.0
1

pK
 ∞  0 

pK  and ε
determined 
by open-loop 
step response 

CC PI 






 +
ε
9.0

083.0
1

pK
 

pT








+
+

ε
ε

2.21

31.03.3
 0 

pK ,
pT  and ε

determined 
by open-loop 
step response 

CC PID 






 +
ε
35.1

25.0
1

pK
 

pT








+
+

ε
ε

61.01

46.05.2
 pT









+ ε19.01

7.3
 

pK ,
pT  and ε

determined 
by open-loop 
step response 

Table 4.5a: Summary of tuning rules 

 
Tuning Controller  K c T i Td Comments 
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rule 
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Chapter 5 
 

Evolutionary Computation and  

Swarm Intelligence Paradigms 
 

5.1 Introduction 

Evolutionary computation (EC) and Swarm Intelligence (SI) fall within the area of 

artificial intelligence (AI) (Engelbrecht, 2002). EC is founded upon the principles of 

biological evolution whilst SI techniques are inspired by swarm behavioral patterns 

occurring in nature (Kennedy et al., 2001). With the increase of computational power, AI 

has increasingly been used to solve complex linear and nonlinear control problems.  

 

This chapter provides an introduction to EC and focuses specifically on the PSO 

algorithm for providing an alternative approach to PID controller tuning. A comparison 

between the PSO and the GA is also included in the study due to the fact that both SI and 

GA’s are based upon a population of so called ‘intelligent agents’. 

 

5.2 Evolutionary Computation 

EC techniques are inspired by biological concepts such as population mutation, self-

organizing and survival of the fittest. They are regarded as general purpose stochastic 

search methods that simulate the process of natural selection and evolution in the 

biological world. There are four major evolutionary techniques namely:  
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5.2.1 Genetic Programming (GP): GP is used to search for the fittest program to solve a 

specific problem. Individuals are represented as trees and the focus is on the genetic 

composition of the individual. 

5.2.2 Evolutionary Programming (EP): EP is generally used to optimize real-valued 

continuous functions. EP uses selection and mutation operators and does not use the 

crossover operator. The focus is on the observed characteristics of the population. The 

selection operator is used to determine chromosomes (called parents) for mating in order 

to generate new chromosomes (called offspring.)   

5.2.3 Evolutionary Strategies (ES): ES is used to optimize real-valued continuous 

functions. ES incorporates selection, crossover and mutation operators. ES optimizes 

both the population and the optimisation process by evolving the strategy parameters 

(Omran, 2004). 

5.2.4 Genetic Algorithms (GA): The GA is a commonly used evolutionary algorithm and 

has been selected for comparison with the PSO in this thesis. PSO is similar to the GA in 

the sense that these two evolutionary heuristics are population-based search methods. The 

GA and its variants have been popular in academia and the industry mainly because of its 

intuitiveness, ease of implementation and its ability to solve highly non-linear, mixed 

integer optimization problems that are typical of complex engineering systems (Hassan et 

al., 2005). GA’s have also been successfully utilized to tune PID controllers (see 

Krohling and Rey, 2001).  

EC techniques involves the following steps:  

Step 1: Initialise a population of individuals where each individual represents a potential 

solution to the problem at hand. 
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Step 2: Apply a fitness function to evaluate the quality of each solution.  

Step 3: A selection process is applied during each iteration to form a new population. 

The selection process is biased toward the fitter individuals to ensure that they will be 

part of the new population. 

Step 4: Individuals are altered using evolutionary operators. The two most frequently 

used evolutionary operators are mutation and crossover:  

Mutation: Mutation introduces diversity to the population by introducing new genes into 

the genetic pool. During mutation individual agents undergo small random changes that 

lead to the generation of new individuals. This assists in reducing the possibility of agents 

being trapped within local optima.  

Crossover (or Recombination): This process is synonymous to mating. During crossover 

two individual agents combine to produce offspring. The main objective of crossover is 

to explore new areas within the search space. 

Step 5: The above-mentioned steps are repeated until the swarm converges on an optimal 

or sub-optimal solution.  

A brief overview of the above-mentioned evolutionary strategies is given in the following 

section. 

 
5.3 An Overview of Genetic Algorithms  

Genetic Algorithms (GA’s) are adaptive heuristic search algorithms that follow the 

Darwinian principle of “survival of the fittest”. They are based on the evolutionary ideas 

of natural selection and genetic inheritance. GA’s involve a population of individuals, 

referred to as chromosomes, and each chromosome consists of a string of cells called 

genes.  
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Chromosomes undergo selection in the presence of variation - inducing operators such as 

crossover and mutation. Crossover in GA’s occurs with a user specified probability 

called the “crossover probability” and is problem dependant. The mutation operator is 

considered to be a background operator that is mainly used to explore new areas within 

the search space and to add diversity to the population of chromosomes in order to 

prevent them from being trapped within a local optimum. Mutation is applied to the 

offspring chromosomes after crossover is performed.  

 

A selection operator selects chromosomes for mating in order to generate offspring. The 

selection process is usually biased toward fitter chromosomes. A so called fitness 

function is used to evaluate chromosomes and reproductive success varies with fitness. 

Examples of some well-known selection approaches are given below: 

Roulette wheel selection: Parent chromosomes are probabilistically selected, based on 

their fitness. The more fit the chromosome, the higher the probability that it may be 

chosen for mating.  

Rank selection: Roulette wheel selection suffers from the problem that highly fit 

individuals may dominate in the selection process. When one or a few chromosomes have 

a very high fitness level compared to the fitness of other chromosomes, the lesser fit 

chromosomes will have a very slim chance to be selected for mating. This will increase 

selection pressure, which will cause diversity to decrease rapidly, resulting in premature 

convergence. To reduce this problem, rank selection sorts the chromosomes according to 

their fitness. Base selection sorts chromosomes based on their rank order. 
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Tournament selection: In this more commonly used approach a set of chromosomes are 

randomly chosen (Goldberg, 1989). The fittest chromosomes from the set are then placed 

in a mating pool. This process is repeated until the mating pool contains a sufficient 

number of chromosomes to start the mating process. 

Elitism: In this approach the fittest chromosome, or a user-specified number of best 

chromosomes, is copied into the new population. The remaining chromosomes are then 

chosen using any selection operator. 

 

5.3.1 Premature convergence of Genetic Algorithms 

GA’s suffer from premature convergence (or stagnation) which occurs when poorly 

performing individuals attract the population. This attraction is caused by a poor 

initialization or through selection of an unsuitable local optimum. Convergence prevents 

further exploration of the search space and reduces search capabilities (Gaing, 2004). 

 

5.4 Swarm Intelligence 

Swarm Intelligence (SI) methods are based around the study of collective behavior in 

decentralized, self-organized systems. SI systems are typically made up of a population 

of simple agents interacting locally with one another and with their environment. 

Although there is no centralized control structure dictating how individual agents should 

behave, local interactions between such agents often lead to the emergence of a global 

behaviour. 

Two of the most successful SI techniques modeled on the behavior of natural systems are 

ant colony optimization (ACO) proposed by Dorigo and Gambardella (1997) and particle 
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swarm optimization (PSO) proposed by Kennedy and Eberhart (1995). Our research 

focuses on the PSO method and a detailed description of this method is provided in this 

chapter. For the sake of completeness a brief description of the ACO approach has also 

been included.  

 

5.4.1 Ant Colony Optimization 

In ACO artificial ants build solutions by traversing a problem space. Similar to real ants, 

they deposit artificial pheromone on the workspace in a manner that makes it possible for 

future ants to build better solutions. In real ant colonies the pheromone is used to find the 

shortest path to food. Using ACO, finite size colonies of artificial ants communicate with 

each other via artificial pheromones to find quality solutions to optimization problems. 

ACO has been applied to a wide range of optimization problems such as the traveling 

salesman problem, and routing and load balancing in packet switched networks (Dorigo 

and Gambardella, 1997). 

 

5.4.2 Background to Particle Swarm Optimization 

The PSO approach utilizes a population based stochastic optimization algorithm proposed 

by Eberhart and Kennedy (1995). It was inspired from the computer simulation of the 

social behaviour of bird flocking by Reynolds (1987). Reynolds used computer graphics 

to model complicated flocking behaviour of birds. He was mainly interested in simulating 

the flight patterns of birds for visual computer simulation purposes, observing that the 

flock appears to be under central control. Reynolds proceeded to model his flocks using 

three simple rules, namely collision avoidance, velocity matching and flock centering. 
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Using these rules Reynolds showed how the behaviour of each agent inside the flock can 

be modeled with simple vectors. This characteristic is one of the basic concepts of PSO.  

Boyd and Recharson (1985) examined the decision making process of human beings and 

developed the concept of individual learning and culture transmission. According to their 

examination, people utilize two important kinds of information in decision-making 

processes, namely: 

Their own experience: They have tried the choices and know which state has been better 

so far, and they know how good it was and 

Other people’s experiences: They have knowledge of how the other agents around them 

have performed. In other words, they know which choices their neighbours have found 

positive so far and how positive the best pattern of choice was. Each agent’s decisions is 

based upon his own experience and other people’s experience. This characteristic is 

another basic concept of PSO. 

 

Eberhart and Kennedy (1995) incorporated these ideas into the development of their PSO 

method and invented simple velocity and position algorithms that mimic natural swarm 

behaviour. In PSO, a set of randomly generated agents propagate in the design space 

towards the optimal solution over a number of iterations. Each agent has a memory of its 

best position and the swarm’s best solution.  

 

PSO is similar to EC techniques in a sense that both approaches are population-based and 

each individual is evaluated according to a specified fitness function. The major 

difference is that PSO is influenced by the simulation of social behaviour rather than the 
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survival of the fittest (Shi and Eberhart, 2001). Added to this, each individual benefits 

from its history and its interactions with its peers. PSO is also easy to implement and the 

fact that no gradient information is required makes it a good candidate for a wide variety 

of optimization problems (Kennedy et al., 2001). PSO has been successfully applied to 

solve a broad range of optimization problems ranging from Artificial Neural Network 

(ANN) training (Salerno, 1997) to reactive power and voltage control (Fukuyama et al., 

2000). The PSO method is also computationally less burdening in comparison to other 

EC techniques such as GA’s (Gaing, 2004). A discussion of the basic PSO algorithm is 

given in the following section. 

 

5.4.2.1 The basic PSO algorithm 

In a PSO system, a swarm of individuals (called particles or intelligent agents) fly 

through the search space. Each particle represents a candidate solution to the optimization 

problem. The position of a particle is influenced by the best position visited by itself (i.e. 

its own experience) and the position of the best particle in its entire population. The best 

position obtained is referred to as the global best particle. The performance of each 

particle (i.e. how close the particle is from the global optimum) is measured using a 

fitness function that varies depending on the optimization problem. 

  

Each particle traverses the XY  coordinate within a two-dimensional search space. Its 

velocity is expressed by vx and vy (the velocity along the X-axis and Y-axis, 

respectively). Modification of the particles position is realized by the position and 

velocity information (Kennedy et al., 2001). Each agent knows its best value obtained so 
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far in the search (pbest) and its XY position. This information is an analogy of the 

personal experiences of each agent. Individual particles also have knowledge about the 

best value achieved by the group (gbest) among pbest. Each agent uses information 

relating to: its current position (x,y), its current velocities (vx,vy), distance between its 

current position and its pbestand the distance between its current position and the 

groups gbestto modify its position.     

The velocity and position of each agent is modified according (5.1) and (5.2) respectively 

(Kennedy and Eberhart, 1995):  
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With regards to (5.1):  

k
iv   = current velocity of agent I at iteration k 

1+k
iv  = new velocity of agent i at iteration k , 

1c  = adjustable cognitive acceleration constants (self confidence), 

2c  = adjustable social acceleration constant (swarm confidence), 

2,1rand = random number between 0 and 1, 

k
is  = current position of agent i at iteration k , 

ipbest = personal best of agent i , 

gbest = global best of the population. 
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For (5.2): 

1+k
is  denotes the position of agent i at the next iteration 1+k , 

 

Figure 5.1 illustrates the concept of modification of a searching point during the PSO 

process (Eberhart and Kennedy, 1995). With regards to Figure 5.1, ks and 
1+ks  denote the 

current and modified search point, respectively; 
kv and 

1+kv respectively represent the 

current and modified velocity; pbestv and 
gbestv  represents the velocity based upon pbest 

and gbest, respectively. Each agent changes its current position using the integration of 

vectors as shown in Figure 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Concept of modification of a searching point by PSO  

(Kennedy and Eberhart, 1995) 
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A problem with the early version of the PSO algorithm as represented by (5.1) is that the 

system has a tendency to explode as oscillations become wider (Kennedy et al., 2001). 

To damp the velocity and limit uncontrollable oscillations of the particles, a method of 

limiting the velocity to a predetermined value with a maximum velocity parameter (maxV ) 

is incorporated into the system (Kennedy et al., 2001). The pseudo-code for limiting 

particle velocity is as follows (Kennedy et al., 2001):  

 

   If 
1+kv >Vmax then 

1+kv  = Vmax 

   Else if  
1+kv >-Vmax then 

1+kv  = -Vmax 

 

The effect of this code allows particles to oscillate within bounds with no tendency for 

the swarm to converge (Kennedy et al., 2001). The maxV parameter thus improves the 

resolution of the search and arbitrarily limits the velocities of each particle (Carlisle and 

Dozier, 2001).   

 

5.4.3 Variations to the PSO algorithm 
 
Variations to the conventional PSO algorithm of Eberhart and Kennedy (1995) to control 

convergence of the swarm have been proposed by Shi and Eberhart (1998) and Clerc 

(1999). The method proposed by Shi and Eberhart (1998) uses an “inertia weighting” 

function (see (5.3)) to control the swarm’s convergence.  
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With regards to (5.3): w = inertia weight, maxw  = initial inertia weight, minw  = final inertia 

weight, maxiter  = number of iterations and iter = current iteration. 

 

The inertia weight controls the impact of the previous velocities: a large inertia weight 

controls the impact of the previous velocity and a small inertia weight favors exploitation 

(Shi and Eberhart, 1998). Eberhart and Shi (1998) usually implemented the inertia 

weights ( maxw  and minw  ) so that it decreases over time. The effect of the time-decreasing 

coefficient is to narrow the search to induce a shift from an exploratory to an exploitative 

mode (Kennedy et al., 2001). The inertia weight is then multiplied by the current velocity 

component, to give: 
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All the meanings of the variables in (5.4) are the same as was defined for (5.1). Clerc’s 

method (1999) to control swarm convergence involves a system of “constricted 

coefficients” applied to various terms of the conventional swarm velocity algorithm (see 

(5.1)) proposed by Eberhart and Kennedy (1995).  This so called constriction factor 

approach proposed by Clerc (1999) controls the swarm convergence so that:  

- the swarm does not diverge in a real value region and 

- the swarm converges and searches region more efficiently. 

The modified velocity update equation (Clerc, 1999) is given in (5.5): 
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With regards to (5.5): χ  represents the constriction factor and is defined in (5.6): 
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Where the constant ϕ  is defined in (5.7): 

 

21 cc +=ϕ  , 4>ϕ     Equation (5.7) 

  

The meanings of all the other terms in (5.6) and (5.7) are the same as was previously 

defined for (5.1). The constriction factor results in convergence over time. Unlike the 

other EC techniques, the constriction factor approach to PSO ensures the convergence of 

the search procedures based on mathematical theory (Clerc, 1999).  The approach ensures 

that the amplitude of each agent’s oscillation decreases as it focuses on a previous best 

point (Clerc, 1999). Eberhart and Shi (2000) showed empirically that using both the 

constriction factor and velocity clamping parameter ( maxV ) generally improves both the 

performance and the convergence rate of the PSO. 

 

5.4.4 Steps in implementing the PSO method. 

Figure 5.2 illustrates the general flowchart for the PSO technique. The sequence can be 

described as follows: 

Step 1: Generation of initial conditions of each agent. 
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Initial searching points (0is ) and the velocities (0iv ) of each agent are usually generated 

randomly within the allowable range. The current searching point is set to pbestfor each 

agent. The best-evaluated value of pbest is set to gbestand the agent number with the 

best value is stored. 

Step 2: Evaluation of searching point of each agent.  

The objective function is calculated for each agent. If the value is better than the current 

pbest value of the agent, then pbest is replaced by the current value. If the best value of 

pbest is better than the current gbest, the gbest value is replaced by the best value and 

the agent number with the best value is stored. 

Step 3: Modification of each searching point. 

The current searching point of each agent is changed, using (5.3), (5.4) and (5.2) for the 

inertia weight approach. Equations (5.2), (5.5) and (5.6) is used for the constriction factor 

method. 

Step 4: Checking to exit condition. 

The terminating criterion is checked to determine whether it has been achieved. If the 

terminating criterion is not met then the process is repeated from Step 1, otherwise the 

algorithm is stopped. 
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Figure 5.2:   Steps in PSO (Eberhart and Kennedy, 1995) 
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5.4.5 Selection of the search method. 

The constriction factor approach of Clerc (1999) has been chosen over the Eberhart and 

Kennedy (1995) inertia weight technique for this research. This has been done because 

Clerc’s constriction method has the advantage of being able to recover from a shift to 

exploratory search back to the exploitative search. Another advantage is that the 

constriction method converges much faster than the inertia weight approach of Eberhart 

and Kennedy (1999), and when combined with velocity maximum ( maxV ) may perform 

well (Kennedy et al., 2001).  

 

5.4.6 Selection of termination method. 

A common terminating criterion is to define the maximum amount of iterations that the 

PSO can perform. Once the PSO reaches the preset maximum iterations the algorithm is 

automatically terminated according to the flowchart given in Figure 5.2. This terminating 

criterion has shown to yield poor results since it may produce sub-optimal performance 

due to premature termination. The stall-terminating criterion is therefore utilized in the 

study. With this approach, if the PSO algorithm stalls continually for any fixed period 

and the algorithm is then stopped. The fixed period is user defined and can be adjusted to 

suit a particular application. 

 

5.4.7 Factors affecting PSO performance 

The swarm’s size and velocity, plus the behavior of the swarm influence the performance 

of the PSO process. 
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i) Swarm size and Velocity: The number of particles in the swarm significantly 

affects the run-time of the algorithm, thus a balance between variety (more 

particles) and speed (less particles) must be sought. Another important factor 

in the convergence speed of the algorithm is the maximum velocity parameter 

( maxV ). This parameter limits the maximum jump that a particle can make in 

one step, thus a very large value for this parameter will result in oscillations. 

On the other hand, a very small value could cause the particle to become 

trapped within local minima. 

ii)  Swarm Behaviour: The behavior of the swarm is dictated by the summation of 

the behaviors of individual particles. Each particle ‘flies’ in the direction of a 

better solution, weighted by some random factor, maybe overshooting, or 

potentially finding an individual or global better position. The interaction 

between the particles in the swarm helps to prevent straying off, whilst 

keeping close to the optimal solution. This type of behaviour seems ideal 

when exploring a large search space, especially with a relatively large 

maximum velocity parameter (maxV ). Some particles will explore far beyond 

the current minimum, while the population still remembers the global best.  

 

5.5 Comparison between the GA and PSO 

Experiments conducted by Veeramachaneni et al. (2003) showed that the PSO method 

performed better than GA’s when applied on some continuous optimization problems. In 

addition, Eberhart and Shi (1998) compared the PSO to GA’s. Their results showed the 

following, namely: 
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i) PSO is generally faster, more robust and performs better than GA’s especially 

when the dimension of the problem increases and, 

ii)  PSO performance is insensitive to the population size (however, the 

population size should not be too small). Consequently, PSO with smaller 

swarm sizes perform comparably better than GA’s having larger populations. 

 

Although GA’s have been widely applied to many control systems, its natural genetic 

operators would still result in enormous computational efforts. Added to this, the 

premature convergence of GA’s degrades its performance and reduces its search 

capabilities (Gaing, 2004). On the other hand, the PSO technique can generate a high 

quality solution within shorter calculation times and more stable convergence 

characteristics than other stochastic methods (Eberhart and Shi, 1998).  

 

5.6 Summary and conclusion 

This chapter presented a brief overview of EC and SI techniques, with special emphasis 

on the GA and PSO approaches. The GA technique was chosen for comparison because it 

is similar to the PSO in the sense that they are both population-based computational 

approaches. Also, both the GA and the PSO approaches depend on information sharing 

amongst their population members to enhance their search processes using a combination 

of deterministic and probabilistic rules. The proposed tuning method using the PSO 

algorithm is discussed in the next chapter. 
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Chapter 6 

PSO Tuned PID Control 
6.1 Introduction 

This chapter discusses the implementation of the PSO tuning methodology as an 

optimization strategy to determine the optimal tuning parameters for SISO PID control 

loops.  

 

6.2 Description of the PSO tuning methodology 

Consider Figure 6.1 which represents a 3-dimensional search space being traversed by 

intelligent agent “w 1” . Each dimension’s space represents a potential optimal value for

cK , iT  and dT . The position of agent “w1”  determines the controller’s tuning parameters. 

Modification of an agent’s position is realized by responding to velocity and position 

information according to (5.1) and (5.2). For PI or PD control each agent is given an 

initial position within a 2-D search space; the same applies to PID control, but within a 3-

D search space.  

 

 

 

 

 

 

 

Figure 6.1: Position of swarm agent within a 3-D search space 
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6.2.1 Application of PSO for PID Tuning 

The algorithm proposed by Eberhart and Kennedy (1995) uses a 1-D approach for 

searching within the solution space. For this study the PSO algorithm will be applied to a 

2-D or 3-D solution space in search of optimal tuning parameters for PI, PD and PID 

control. 

 

Consider position is ,n. of the i-th particle as it traverses a n-dimensional search space: 

The previous best position for this i-th particle is recorded and represented as pbesti,n . 

The best performing particle among the swarm population is denoted as gbesti,n and the 

velocity of each particle within the n-th dimension is represented as 
niv , . The new 

velocity and position for each particle can be calculated from its current velocity and 

distance with (6.1) and (6.2), respectively: 
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With regards to (6.2) and (6.3): 

i = number of agents 1,2,….,p; 

n = dimension 1,2,3; 

)1(
,

+k
niv = velocity of agent ‘i ’ at iteration )1( +k  for  n-dimension; 

χ = constriction factor; 
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k
niv , = velocity of agent i at current iteration k  for n dimension; 

1c = cognitive acceleration constants (self confidence); 

2c = social acceleration constant (swarm confidence); 

2,1rand = random number between 0 and 1; 

nipbest ,  = personal best of agent i  for n dimension; 

nigbest ,  = global best of the population for n dimension; 

k
nis ,  = current position of agent i at iteration k  for n dimension; 

)1(
,

+k
nis = position of agent i  at iteration )1( +k  for n dimension and; 

p = number of particles in the population.  

For PI, PD and PID control n = 2, 3 respectively. All other variables have the same 

meanings as was described in Chapter 5.  

 

6.2.2 Position of the PSO algorithm within the selected control loop 

Figure 6.2 illustrates the position of the PSO tuning algorithm within the SISO system 

used in this study. The steps for PSO tuning were mentioned in Section 5.4.4. The 

velocity and positional algorithms, namely (6.1) and (6.2), define the search within the 

solution space. Following each iteration, the impact of each agents position within the 

search space is evaluated according to the ITAE cost function and the corresponding 

transient response specifications. The minimization of the ITAE performance index 

provides a global quantification of overall system performance. The PSO source code 

used for the tuning is given in Appendix A. 
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Figure 6.2: Positioning of the PSO optimization algorithm within a SISO system 

 

6.3 Statistical Evaluation of the Dynamical Behaviour of Intelligent Agents 

The mean value and standard deviation of the population’s position within the search 

space was calculated in order to evaluate the dynamical behavior and convergence 

characteristics of the intelligent particles. The mean value (6.3) is used to determine the 

accuracy of the algorithm, whilst the standard deviation (6.4) measures the convergence 

speed of the algorithm (Gaing, 2004).  
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With regards to (6.3) and 6.4): 

iw  is the agent’s performance index for a particular position, ‘p ’ represents the 
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6.4 Summary and conclusion  

The chapter has indicated the position of the PSO tuning algorithm in a SISO control 

loop. A particles specific position within the search space represents the tuning 

parameters of the controller and is evaluated according to the ITAE index. The statistical 

performance of the tuning approach is measured by determining the corresponding mean 

and standard deviation of an agent’s position as it traverses the solution space. The next 

chapter focuses on determining suitable parameters for the PSO algorithm. 
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Chapter 7 
 

Simulation Study of PSO Performance for  

Process Control 
 

7.1 Introduction 

Swarm particles display distinct behavioral characteristics, namely swarm convergence 

and particle explosion, as they traverse a system’s space searching for an optimal 

solution. Variations of the swarm’s behavior is achieved by adjusting four explicit 

parameters of the PSO algorithm, namely: cognitive acceleration (c1), social acceleration 

( 2c ), maximum velocity (Vmax), and swarm size (Ss ) (Kennedy et al., 2001). These four 

parameters are set at the beginning of each trial and remain constant throughout.  

 

PSO is a stochastic optimization technique. In view of this, swarm particles start their 

search for an optimal solution from any region within the system’s search space and, the 

solution reached upon convergence may not necessarily be optimal. For this reason a 

statistical validation of the PSO’s range of solutions is necessary to determine their 

accuracy. The following indices were used to evaluate the performance of the PSO 

method over ten trials, and also to provide useful insight into the behavior of the swarm 

for variations of c1, c2, Vmax  and Ss :  

Mean value of the ITAE index for the trial �������� 
Standard deviation of the ITAE index during the trial ������� 
Mean number of iterations utilized by the PSO to perform a search ����	
�� 
Mean time taken by the PSO algorithm to complete a search �����

� 
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7.2 Preliminaries to the evaluation of PSO performance 

The performance of the PSO tuning methodology for the selected process models is 

analyzed by running the algorithm for ten trials. The explicit parameters of the PSO 

algorithm were adjusted over the following ranges: 

Swarm Size                 =    


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
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
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Social Acceleration        =      
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
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
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05.2

1

 ; Ss = 20; Vmax = 1; c2 = 2.05

 
Table 7.1 shows the heuristically determined PSO parameters that were determined 

following empirical testing. Each parameter was kept constant whilst the others were  
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Swarm Parameter Value 

Swarm Size ( sS ) 

Maximum Velocity (Vmax) 

Cognitive Acceleration (c1) 

Social Acceleration (c2) 

20 

1 

2.05 

2.05 

 

Table 7.1: Empirically determined PSO parameters 

 

varied over the previously mentioned ranges. All the tests for the ten trials were 

conducted under the following conditions: Upper bound of initialization (u b) = 1; Lower  

bound of initialization (lb) = 0. The data extrapolated from the ten trials was used to 

determine the parameters for the PSO algorithm. The tests were conducted using the 

control loop shown in Figure 6.2. 

 

7.3 Process models used in the simulation tests 

The process models used in the simulation studies are shown in Table 7.2(a) to Table 

7.2(d). These models, and variants thereof, are representative of real world models 

encountered in most process control applications (Åström and Hägglund, 2004; Zhuang 

and Atherton, 1993).  
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 Model Lp/Tp 

Case 1 
)110(

)1(exp
)(

+
−=

s

s
sGp

 
0.1 

Case 2 
)1(

)1(exp
)(

+
−=

s

s
sGp

 
1 

Case 3 
)11.0(

)1(exp
)(

+
−=

s

s
sGp

 
10 

 

Table 7.2a: FOPDT models 

 

 

 Model Lp/Tp 

Case 4 2)110(

)1(exp
)(

+
−=

s

s
sGp

 
0.1 

Case 5 2)1(

)1(exp
)(

+
−=

s

s
sGp

 
1 

Case 6 2)11.0(

)1(exp
)(

+
−=

s

s
sGp

 
10 

 

Table 7.2b: SOPDT models 
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 Model Lp/Tp 

Case 7 
)19.0(

)2.0(exp
)(

+
−=
ss

s
sGp

 
0.06 

Case 8 
)15.0(

)5.0(exp
)(

+
−=
ss

s
sGp

 
0.5 

Case 9 
)11.0(

)9.0(exp
)(

+
−=
ss

s
sGp

 
4.5 

 

Table 7.2c: SOIPDT models 

 

 

 Model Lp/Tp 

Case 10 
)110(

)1(exp
)(

−
−=

s

s
sGp

 
0.1 

Case 11 
)12(

)1(exp
)(

−
−=

s

s
sGp

 
0.5 

Case 12 
)1(

)1(exp
)(

−
−=

s

s
sGp

 
1 

 

Table 7.2d: FODUP models 

 

 

7.4 Results of PSO parameter variation 

The results of the simulations for ten trials are illustrated in Figures 7.1 to Figure 7.4 and 

are referenced in Table 7.3.  
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PSO parameter being 

varied 
Case No. Figure Ref. No. 

Swarm Size ( sS ): 

2;5;10;20;40;50 

Case 1, Case 4, Case 7, Case 10 Figure 7.1(a) to Figure 7.1(d) 

Case 2, Case 5, Case 8, Case 11 Figure 7.1(e) to Figure 7.1(h) 

Case 3, Case 6, Case 9, Case 12 Figure 7.1(i) to Figure 7.1(l) 

Velocity Maximum ( maxV ): 

0.1;1;5;10 

Case 1, Case 4, Case 7, Case 10 Figure 7.2(a) to Figure 7.2(d) 

Case 2, Case 5, Case 8, Case 11 Figure 7.2(e) to Figure 7.2(h) 

Case 3, Case 6, Case 9, Case 12 Figure 7.2(i) to Figure 7.2(l) 

Cognitive Acceleration ( 1c ): 

1;2.05;3;4;5 

Case 1, Case 4, Case 7, Case 10 Figure 7.3(a) to Figure 7.3(d) 

Case 2, Case 5, Case 8, Case 11 Figure 7.3(e) to Figure 7.3(h) 

Case 3, Case 6, Case 9, Case 12 Figure 7.3(i) to Figure 7.3(l) 

Social Acceleration ( 2c ): 

1;2.05;3;4;5 

Case 1, Case 4, Case 7, Case 10 Figure 7.4(a) to Figure 7.4(d) 

Case 2, Case 5, Case 8, Case 11 Figure 7.4(e) to Figure 7.4(h) 

Case 3, Case 6, Case 9, Case 12 Figure 7.4(i) to Figure 7.4(l) 

 

Table 7.3: Figure references to show the effects of varying Ss, Vmax, 

c1 and c2 parameters for the selected processes 
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Figure 7.1: Adjustment of Swarm Size (2; 5; 10; 20; 40; 50)  

 

Figure 7.2: Adjustment of Velocity Maximum (0.1; 1; 5; 10)  
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Figure 7.3: Adjustment of Cognitive Acceleration (1; 2.05; 3; 4; 5)  

 

 

Figure 7.4: Adjustment of Social Acceleration (1; 2.05; 3; 4; 5)  
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7.5. Observing the effects of varying PSO parameters  

7.5.1 Variation in Swarm Size (See Figure 7.1) 

Swarm size > 20 agents:  

A marginal improvement was noted in the repeatability of the results but this was 

achieved at the cost of an increased computational burden. The number of iterations 

necessary before the large swarm convergences decreases again at the cost of higher 

computational burden. This is due to the fact that more agents find the optimal solution 

over a lesser number of iterations, albeit at the cost of additional computational time.  

 

Swarm size = 20 agents: 

A swarm size of twenty particles works well in all cases whereas a low population size 

(say two agents) produced poor results. This corresponds to the results of Eberhart and 

Kennedy (2001). Based upon these observations it was decided that a swarm size of 

twenty agents was ideal for yielding high quality solutions whilst consuming only 

minimal computational power.   

 

7.5.2 Variation of Velocity Maximum (See Figure 7.2) 

The PSO algorithm yields satisfactory results when Vmax = 1. Low values of Vmax (say 

Vmax = 0.1) yielded an unacceptable performance during most of the tests.  This can be 

attributed to the constraints placed on the particle’s motion trajectory, reducing its 

chances of moving into an ‘optimal solution’ region. Varying the maximum velocity 

from 1 to 10 resulted in no improvement in the PSO’s search since the constriction factor 
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comes into effect before the Vmax parameter has an opportunity to limit the particle’s 

velocity (Clerc, 1999). 

 

7.5.3 Variation of Social and Cognitive Acceleration Constants (See Figure 7.3 and 

Figure 7.4) 

The value for cognitive and social acceleration constants has a significant impact on the 

dynamic performance of the PSO algorithm. This is compounded by the use of Clerc’s 

constriction factor approach (1999) (see (5.4.3)), which inhibits particles oscillations as it 

focuses on a best point within the solution space. Observations of swarm behavior 

revealed that a constriction factor of 73.0=χ  with c1 + c2 = 4.1 produced the best 

results. Conversely, large magnitudes of c1 and c2 results in 73.0<χ and leads to a 

pronounced damping effect on particle movement. The unacceptable convergences of the 

algorithm are illustrated in the results when using high values for cognitive and social 

acceleration constants. For all cases, the value of 05.21 =c  and 05.22 =c  produced the 

best results. 

 

7.6 Summary and conclusion  

Experiments to analyze the effects of variations in PSO parameters for different process 

models have been described. Observations of the test results show that the optimal 

performance of the algorithm is limited to only certain values of the PSO parameters. 

These values work well for FOPDT, SOPDT, SOIPDT and FODUP process models over 

a range of controllability ratios. A comparison of the proposed method with the other 

tuning techniques that were discussed in the previous chapters follows next.  
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Chapter 8 
 

Simulation Studies to Compare the Performance of  

PSO vs. Other Tuning Techniques 
 

8.1 Introduction 

This chapter discusses the simulation experiments that were conducted to compare the 

control performance of a conventionally tuned PID controller to that of one tuned using 

the PSO method. The comparison is based upon the loop’s transient response 

characteristics and the ITAE performance index. The tuning techniques considered in this 

study includes the Ziegler-Nichols (1942), Cohen-Coon (1953), Åström-Hägglund 

(1984), De Paor-O’Malley (1989), Venkatashankar-Chidambaram (1994) and Poulin-

Pomerleau (1996) tuning methods. The PSO tuned control loop will also be compared to 

that of loops tuned with the GA algorithm for the following reasons, namely:  

i) The GA and the PSO are regarded as soft-computing techniques having strong 

roots in evolutionary computing, 

ii)  GA’s and the PSO display stochastic behavioral characteristics, 

iii)  Both methods are population based search techniques with the ability to 

handle arbitrary non-linear cost functions and, 

iv) PSO and GA’s do not require gradient information of the objective function 

being optimized. 
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8.2 Preliminaries to the experiments 

A SISO negative unity feedback control system, with the controller and process 

connected in cascade in the forward path of the control loop will be considered for all the 

experiments in this study. The control performance of each tuning method will be tested 

using the process models mentioned in Chapter 3. These process models are 

representative of typical processes found in most process control applications (Åström 

and Hägglund, 2004; Zhuang and Atherton, 1993).  

 

The SISO control loop used for all the experiments described in this chapter is given in 

Figure 8.1. With regards to Figure 8.1: r(t) denotes the step input signal, disturbance 

input signal d(t) acts as an additive with the controller output signal u(t) such that the 

process input is governed by )()()( tdtutu proc += . The process output y(t) is fed back to 

the input of the controller to form the error signal e(t). The comparison between the PSO 

tuning methodology and other selected tuning methods is discussed in Experiments 8.1 to 

Experiment 8.8.   

 

For the PSO and the GA, the conditions under which the experiments were conducted are 

the same as for the simulation experiments discussed in Chapter 7, namely: Upper bound 

of initialization (ub) = 1, Lower bound of initialization (lb) = 0; termination is reached 

after 10 successive stalls of the algorithm. The PSO parameters used in the experiments 

are the same as those previously mentioned in Table 7.1 and these are repeated in Table 

8.1 for convenience. The parameters used for all the experiments using the GA is given in 
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Table 8.2. The tuning methodology used for the GA technique is similar in nature to the 

proposed PSO method. 

 

 

 

 

 

 

 

Figure 8.1: Process control loop used in the experiments 

 
Parameter Value 

Swarm Size (Ss) 

Maximum Velocity (Vmax) 

Cognitive Acceleration (c1) 

Social Acceleration (c2) 

20 

1 

2.05 

2.05 

 

Table 8.1: PSO parameters 

 

The GA parameters in Table 8.2 were kept constant for all the simulation experiments 

and follow standard implementations from the literature (Krohling and Rey, 2001). As a 

consequence of their stochastic nature, the PSO and the GA yields different controller 

parameter solutions for each trial. For this reason both optimization methods were each 

run for ten trials and the average values of these ten trials was then used as the controller 

tuning parameters. The details of the trial runs conducted for each experiment discussed 

)(td

)(tuproc

PSO/GA 

+ 
_ 

)(tr
 

)(te

 

)(ty
)(sU

cG  pG  + 

+ )(tu



   - 94 -

in this chapter is given in Appendix B1. All the simulation experiments were conducted 

using a standard Pentium 4 personal computer having 1 giga-byte of random access 

memory. 

 

Parameter Value/Type 

Population Size 

Selection Method 

Crossover Method 

Crossover Probability 

Mutation  Probability 

20 

Tournament 

Heuristic 

0.35 

0.02 

 

Table 8.2: GA parameter settings 
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8.3 Experiments 

This section discusses the simulation experiments that were conducted to compare the 

performance of the PSO tuning methodology to the selected tuning techniques discussed 

in Chapter 4. 

 

8.3.1 Experiment 8.1: Tuning of FOPDT process for optimal setpoint tracking  

8.3.2  Objective 

The objective of this experiment is to compare the control performance of a PSO tuned 

loop to a loop tuned using the GA, ZN and CC tuning methods. The ZN and CC have 

been included in this experiment because they were originally proposed for FOPDT 

processes (Ziegler and Nichols, 1942; Cohen and Coon, 1953). 

 

8.3.3  Methodology 

The FOPDT process used in this experiment is given in (8.1): 

)1(

)2.0(exp
)(

+
−=

s

s
sGp     Equation (8.1) 

The PID controller is tuned for setpoint tracking. 

 

8.3.4 Observations and analysis of results 

The PID tuning parameters and the dynamic closed-loop performance specifications are 

shown in Table 8.3.  Figure 8.2 shows the closed-loop responses for Experiment 8.1. 

With regards to Figure 8.2, the ZN and CC methods deliver marginally quicker rise time, 

but at the expense of larger overshoot and longer settling times. The CC method positions 

dominant poles that yield a quarter-wave amplitude decay ratio, resulting in oscillation 
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and an increased settling time. The GA tuned system delivers a sluggish response which 

is evident from the long rise time. Overall the PSO tuned controller delivers an improved 

response when compared to the other methods. 

Tuning 

Method 

PID Parameters 
Dynamic Performance 

Specifications 

Performance 

Index 

cK  iT  dT  rt  st (2%) (%)pM  ITAE 

ZN 6 0.4 0.1 0.1 5.4 78.4 17.6 

CC 7.02 0.46 0.07 0.1 8.4 93.1 35.3 

GA 0.94 0.67 0.11 1.3 5.4 5.1 17.5 

PSO 3.63 0.97 0.07 0.2 1.9 0.1 3.8 

 

Table 8.3: PID parameters and closed-loop response specifications for  

Experiment 8.1 








+
−=

)1(

)2.0exp(
)(

s

s
sGp  
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Figure 8.2: FOPDT system response for Experiment 8.1 

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Figure 8.3 shows the recorded results of the 10 trial runs for the PSO and GA methods for 

Experiment 8.1. It is evident from Figure 8.3 that the GA method provides a large level 

of variance of the PID parameters when compared to the PSO trials. Further analysis of 

the trial runs are provided in Table 8.4 and show that the PSO technique has better search 

capability than the GA method, and can also reach an optimal solution within a shorter 

time and fewer iterations. 
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Figure 8.3: PSO vs. GA - Exp. 8.1 results following 10 trials 
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GA PSO 

ITAE cK  iT  dT  Time(s) Iter ITAE cK  iT  dT  Time(s) Iter 

Mean���� 
(After 10 
trial runs) 

18.15 0.94 0.67 0.11 46.65 80 3.66 3.63 0.97 0.07 20.19 33 

Standard 
Deviation��� 

(After 10 
trials) 

1.19 0.05 0.08 0.1 15.26 26.8 0.02 0.07 0 0 2.07 3.98 

 

Table 8.4: PSO vs. GA – Exp. 8.1 statistical analysis following 10 trials
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On average the PSO required 20.19 seconds to perform a search whilst the GA took 

46.65 seconds to reach either a near optimal or an optimal solution. Furthermore, the PSO 

yields a higher quality solution with low variation on the ITAE and PID parameters for 

each trial run. The PSO algorithm required only 33 iterations to complete the task of 

finding the solution to the problem, while the GA method needed 80 iterations. Analysis 

of the standard deviation of the results indicates a higher variation in the PID parameters 

for the GA technique than the PSO method.  
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8.4  Experiment 8.2: Tuning of SOPDT process for optimal setpoint tracking  

 

8.4.1  Objective 

In this experiment the ZN closed-loop tuning and the Åström and Hägglund (AH) phase 

margin method will be compared to the PSO methodology for a SOPDT process model. 

The AH method has been chosen since it is suited for systems having small 
p

p

T

L
ratios. 

(Åström and Hägglund, 1984) The ZN method is also included in this experiment 

because of its popularity amongst control practitioners. 

 

8.4.2  Methodology for experiment 

The SOPDT model used in the experiment is given by (8.2): 

 

12

)5.0exp(
)(

2 ++
−=

ss

s
sGp     Equation (8.2) 

 

The ultimate gain uK  and ultimate period uP  of the SOPDT process are determined 

through trial and error. With regards to the Åström and Hägglund (AH) tuning method, a 

phase margin mφ  of 45° is used as the design criterion. In addition, a relationship of 

4=
d

i

T

T
 is selected since it is a common choice amongst control practitioners (Åström 

and Hägglund, 1995). The PSO and GA methods are run for 10 trials each. For the 

process model given by Equation (8.2), the ultimate gain and period is 7.4=uK and 

3.3=uP  , respectively.  
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8.4.3  Observations and analysis of results 

The PID tuning parameters and dynamic closed-loop performance specifications are 

shown in Table 8.5; the closed-loop responses are given in Figure 8.4. The ZN and AH 

methods delivers a response having large overshoot and marginally quicker rise time than 

the PSO method.  

 

The AH method also yields an oscillatory response with long settling time. The GA 

method gives a system with very long rise time and settling time as compared to the other 

tuning methods. From Table 8.5, we observe that the PSO method yields a system having 

minimal overshoot and a rapid settling time. The marginally longer rise time is offset by 

the system’s improved performance index over the other methods. 

 

Figure 8.5 and 8.6 illustrate the performance and dynamic characteristics of the PSO and 

GA methods for the first trial. With regards to Figure 8.5, the GA method demonstrates 

that it is susceptible to the problem of local minima for problems of this nature. The GA 

algorithm is trapped within the minima just after initialization. The PSO method on the 

other hand displays its capability of being resilient and robust in finding near optimal 

solutions very quickly and efficiently after its commencement. The optimal solution is 

reached within 32 iterations taking only 29.84 seconds to complete. 

 

Figure 8.6 illustrates the mean and standard deviation of the 20 individuals for each 

iteration of the PSO and GA. The evaluation value of each individual is compared to the 

other members of the populations using mean and standard deviation statistical 
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assessments following each iteration. As expected, the mean and standard deviation value 

of the entire population is initially large for both techniques during the start since they are 

randomly initialized between the upper and lower limits of the search space.  

 

Tuning 

Method 

PID Parameters 
Dynamic Performance 

Specifications 

Performance 

Index 

cK  iT  dT  rt  st (2%) (%)pM  ITAE 

ZN 2.82 1.65 0.41 0.7 5.4 34.6 30.2 

AH 3.13 2.5 0.63 0.4 7.1 33.6 33.8 

GA 0.87 0.95 0.91 2.1 13.2 16.9 84.4 

PSO 2.07 1.99 0.54 0.8 4.6 4.9 17.8 

 

Table 8.5: PID parameters and closed-loop response specifications for 

Experiment 8.2 







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12
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2 ss

s
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Figure 8.4: SOPDT system responses for Experiment 8.2 

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Figure 8.5: ITAE convergence for PSO vs. GA 

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Figure 8.6: Statistical analysis for PSO vs. GA 

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GA PSO 

ITAE cK  iT  dT  Time(s) Iter ITAE cK  iT  dT  Time(s) Iter 

Mean ���� 
(After 10 
trial runs) 

497.8 0.9 0.94 0.86 35 53 12.72 5.16 2.17 0.55 17.5 31 

Standard 
Deviation��� 

(After 10 
trial runs) 

303.7 0.34 0.22 0.07 17.4 29 0 0.02 0.03 0.01 2.99 5.4 

 

Table 8.6: Statistical analysis of the 10 trial runs for PSO vs. GA for 

Experiment 8.2  

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8.5  Experiment 8.3: Tuning of SOIPDT process for optimal setpoint tracking  

 

8.5.1  Objective 

The objective of this experiment is to compare the performance of the PSO tuning 

methodology to that of the Poulin and Pomerleau (PP) and GA method for a SOIPDT 

process model. The PP method has been chosen in this comparison study because it was 

developed for integrating processes.  

 

8.5.2  Methodology  

The SOIPDT model used in the experiment is given by: 

 

)1(

)2.0exp(
)(

+
−=
ss

s
sGp     Equation (8.3) 

 

The PID controller is tuned for optimal setpoint tracking. 

 

8.5.3  Observations and analysis of results 

The PID tuning parameters and closed-loop dynamic performance specifications are 

shown in Table 8.7 and Figure 8.7 respectively.  The PP tuning method delivers a 

response that has less overshoot than the PSO technique. The GA method produces a 

highly oscillatory system with excessive overshoots and undershoots. On the other hand, 

the PSO tuned PID provides a closed-loop system which delivers improvements in rise 

and settling time.  
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With regards to the statistical analysis given in Table 8.8, the PSO optimization algorithm 

required 31 iterations to find the solution within 17.5 seconds. The GA, on the other 

hand, required 53 iterations and required twice the amount of time to yield a solution for 

the same experiment.  

Tuning 

Method 

PID Parameters 
Dynamic Performance 

Specifications 

Performance 

Index 

cK  iT  dT  rt  st (2%) (%)pM  ITAE 

PP 0.54 7.09 0.86 2.5 19 17.8 196.3 

GA 0.9 0.94 0.86 0.9 40 73.7 996 

PSO 5.16 2.17 0.55 0.2 3.8 54.2 12.7 

 

Table 8.7: PID parameters and closed-loop response specifications for 

Experiment 8.3 



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Figure 8.7: SOIPDT system responses for Experiment 8.3 

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GA PSO 

ITAE cK  iT  dT  Time(s) Iter ITAE cK  iT  dT  Time(s) Iter 

Mean���� 
(After 10 
trial runs) 

497.8 0.9 0.94 0.86 35 53 12.72 5.16 2.17 0.55 17.5 31 

Standard 
Deviation��� 

(After 10 
trial runs) 

303.7 0.34 0.22 0.07 17.4 29 0 0.02 0.03 0.01 2.99 5.4 

 

Table 8.8: Statistical analysis of the 10 trial runs for PSO vs. GA for 

Experiment 8.3 

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8.6  Experiment 8.4: Tuning of FODUP process for optimal setpoint tracking  

 

8.6.1  Objective 

The objective of this experiment is to compare the PSO tuning to that of the methods of 

De Paor and O’Malley (DO) (1989) and Venkatashankar and Chidambaram (VC) (1994) 

for FODUP. These tuning methods have been chosen because they are based upon 

controller design for open-loop unstable processes. 

 

8.6.2  Methodology for experiment 

The FODUP model considered in the experiment is given by (8.4): 

 

)1(

)2.0exp(
)(

−
−=

s

s
sGp    Equation (8.4) 

 

A PI controller is utilized to control an open-loop unstable process and is tuned for 

optimal setpoint tracking. 

 

8.6.3  Observations and analysis of results 

The PI tuning parameters and dynamic closed-loop performance specifications are shown 

in Table 8.9 and Figure 8.8 respectively. Analyses of the results indicate that the tuning 

methods of DO provide oscillations and excessive overshoot.  Conversely, the method of 

VC delivers no oscillations but suffers severely from longer settling time, that are caused 

by the weak integral action provided by the tuning algorithm.  
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Tuning 

Method 

PID Parameters 
Dynamic Performance 

Specifications 

Performance 

Index 

cK  iT  dT  rt  st (2%) (%)pM  ITAE 

DO 1.7 1.35 0 0.3 17 122.7 197.5 

VC 2.4 19.6 0 0.4 33.1 58.5 953.7 

PSO 3.83 1.36 0 0.2 3.7 97.2 16.9 

 

Table 8.9: PI parameters and closed-loop response specifications for 

Experiment 8.4 

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Figure 8.8: FODUP system responses for Experiment 8.4 

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The GA tuned system is not shown in Figure 8.8 due to its unstable closed-loop response. 

Due to the premature convergence characteristic of the GA, the method was unable to 

find a suitable solution for closed loop stability. The PSO tuned PI controller generates a 

superior control performance in terms of improved rise time and settling time, with 

marginally larger overshoot than the VC method. 
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8.7 Experiment 8.5: Tuning of FOPDT processes for setpoint tracking and 
disturbance rejection. 
 

8.7.1 Objective 

The objective of this experiment is to demonstrate the effectiveness of the PSO method to 

tune the PID controller for setpoint tracking and disturbance rejection. The ZN, CC and 

GA tuning methodologies are chosen for comparison with the PSO technique. The ZN 

and CC methods have been chosen for this experiment since they have been design for 

load disturbance rejection. 

 

8.7.2  Methodology 

The FOPDT model considered in the experiment is given by (8.5):  

 

)1(

)2.0exp(
)(

+
−=

s

s
sGp    Equation (8.5) 

 

A unit step load disturbance )(td  is introduced into the process input at tdist=10 seconds. 

 

8.7.3  Observations and analysis of results 

The PID tuning parameters and dynamic closed-loop performance specifications are 

given in Table 8.10; Figure 8.9 shows the closed-loop response of the system following a 

step input and disturbance signal. From these results, the Ziegler-Nichols and Cohen-

Coon methods produce an oscillatory response with high overshoots and longer settling 

time following a setpoint change.  
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Tuning 

Method 

PID Parameters 
Dynamic Performance 

Specifications 

Performance 

Index 

cK  iT  dT  rt  st (2%) (%)pM  ITAE 

ZN 6 0.4 0.1 0.1 12 78.4 29.5 

CC 7.02 0.46 0.07 0.1 13.1 93.1 53.1 

GA 1.07 0.32 0.07 0.6 14.6 34.4 78.9 

PSO 4.92 0.40 0.07 0.1 10.8 50.7 15 

 

Table 8.10: PID parameters and closed-loop response specifications for 

Experiment 8.5 

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Figure 8.9: FOPDT system responses for setpoint tracking and disturbance rejection 

(Experiment 8.5) 

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ZN and the CC tuning results in oscillatory set-point tracking and a poor recovery from 

load disturbances. Using the GA and the PSO methodology, we can tune for improved 

servo tracking and regulatory control, albeit system recovery from disturbances takes 

longer for system’s tuned with the GA. 

 

The statistical evaluation of system performance for PSO and GA tuning is given in 

Table 8.11. These two methods were selected for this analysis because they are regarded 

as being computational based evolutionary algorithms. From Table 8.11:  

The GA method reaches a mean ITAE of 87.04 within 86 iterations whilst the PSO 

required 37 iterations for an ITAE of 14.99. In addition, the PSO method delivers tuning 

parameters that are more repeatable as is evident from the smaller standard deviations for 

all parameters considered in this analysis. 

 

 
GA PSO 

ITAE cK  iT  dT  Time(s) Iter ITAE cK  iT  dT  Time(s) Iter 

Mean���� 
(After 10 
trial runs) 

87.04 1.07 0.32 0.07 44.63 86 14.99 4.92 0.40 0.07 17.36 37 

Standard 
Deviation��� 

(After 10 
trials) 

3.77 0.20 0.03 0.07 10.36 17 0.01 0.01 0.01 0.00 3.64 8 

 

Table 8.11: Statistical analysis of the 10 trial runs for PSO and GA for 

Experiment 8.5 

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8.8 Experiment 8.6: Tuning of SOPDT processes for setpoint tracking and 
disturbance rejection. 
 

8.8.1 Objective 

The objective of this experiment is aimed at comparing the PSO tuning method to that of 

the ZN, AH and GA for setpoint tracking and disturbance rejection. These methods have 

been chosen for the reasons previously mentioned. 

 

8.8.2  Methodology 

The SOPDT model considered in the experiment is given by (8.6):  

 

12

)5.0exp(
)(

2 ++
−=

ss

s
sGp     Equation (8.6) 

 

A unit step load disturbance )(td  is introduced into the process input at tdist=10 seconds. 

 

8.8.3  Observations and analysis of results 

The PID tuning parameters and dynamic closed-loop performance specifications are 

given in Table 8.11; Figure 8.10 shows the closed-loop response of the system following 

a step input and disturbance signal. The PSO tuning method produces a high peak 

overshoot to setpoint change but delivers the best recovery to load disturbance. In 

contrast the GA gives a very sluggish response confirming that it may not be suited for 

processes of this nature. The ZN response is marginally slower compared to the AH and 

PSO methods but shows less sensitivity to load disturbance to that of the AH tuning. 
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Tuning 

Method 

PID Parameters 
Dynamic Performance 

Specifications 

Performance 

Index 

cK  iT  dT  rt  st (2%) (%)pM  ITAE 

ZN 2.82 1.65 0.41 0.7 13.8 34.6 101.8 

AH 3.13 2.5 0.63 0.4 17 33.6 137.7 

GA 1.1 0.77 0.83 8.9 19.4 35.2 293.9 

PSO 3.31 1.33 0.53 0.4 13.1 49 86.5 

 
Table 8.11: PID parameters and closed-loop response specifications for 

Experiment 8.6 

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Figure 8.10: SOPDT system responses for Experiment 8.6 

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8.9 Experiment 8.7: Tuning of SOIPDT processes for setpoint tracking and 
disturbance rejection. 
 

8.9.1  Objective 

The objective of this experiment is aimed at comparing the PSO tuning method to that of 

the PP and GA for setpoint tracking and disturbance rejection of SOIPDT process.   

 

8.9.2  Methodology 

The SOIPDT model considered in the experiment is given by (8.7):  

 

)(

)2.0exp(
)(

2 ss

s
sGp +

−=     Equation (8.7) 

 

A unit step load disturbance )(td  is introduced into the process input at tdist=20 seconds. 

 

8.9.3  Observations and analysis of results 

The PID tuning parameters and dynamic closed-loop performance specifications are 

given in Table 8.12; Figure 8.11 shows the closed-loop response of the system following 

a step input and disturbance signal. The GA tuning produces an unacceptable response as 

the system oscillates erratically to system input and load changes. The GA tuned response 

will eventually reach setpoint if given adequate time. The PP method gives a slow initial 

response and does not respond well to load disturbance since it results in a very high 

overshoot. The PSO tuning method outperforms the other methods in this experiment for 

all the performance specifications considered. 
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Tuning 

Method 

PID Parameters 
Dynamic Performance 

Specifications 

Performance 

Index 

cK  iT  dT  rt  st (2%) (%)pM  ITAE 

PP 0.58 5.91 0.83 2.2 37 142.5 2899 

GA 0.72 0.85 0.73 1.5 40 135.7 5201.8 

PSO 7.64 0.85 0.47 0.2 21.6 96.6 52.5 

 
Table 8.12: PID parameters and closed-loop response specifications for 

Experiment 8.7 

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Figure 8.11: SOIPDT system responses for Experiment 8.7 

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8.10 Experiment 8.8: Tuning of FODUP processes for setpoint tracking and 
disturbance rejection. 
 

8.10.1  Objective 

The objective of this experiment is aimed at comparing the PSO tuning method to that of 

the DO, VC and GA for setpoint tracking and disturbance rejection of FODUP process.   

 

8.10.2  Methodology 

The FODUP model considered in the experiment is given by (8.8):  

 

)1(

)2.0exp(
)(

−
−=

s

s
sGp     Equation (8.8) 

 

A unit step load disturbance )(td  is introduced into the process input at tdist=20 seconds. 

A PI controller is utilized to control an open-loop unstable process. 

 

8.10.3  Observations and analysis of results 

The PID tuning parameters and dynamic closed-loop performance specifications are 

given in Table 8.13; Figure 8.12 shows the closed-loop response of the system following 

a step input and disturbance signal. The GA tuning did not result in a stable system and is 

not chosen for this experiment. The VC tuned response was expected because of its high 

integral time constant and the DO gave an oscillatory response. Overall, the PSO yielded 

the best system recovery from load disturbance as is evident from its faster settling time 

shown in Table 8.12. 
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Tuning 

Method 

PID Parameters 
Dynamic Performance 

Specifications 

Performance 

Index 

cK  iT  dT  rt  st (2%) (%)pM  ITAE 

DO 1.7 1.35 0 0.3 33.7 122.7 774 

VC 2.4 19.6 0 0.4 40 58.5 2829 

PSO 4.41 1.23 0 0.2 22.3 108.9 80.9 

 
Table 8.12: PID parameters and closed-loop response specifications for 

Experiment 8.8 

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Figure 8.12: FODUP system responses for Experiment 8.8 

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8.11 Summary and conclusion 

This chapter has presented a comparative study of closed-loop system performance for 

FOPDT systems that were tuned using the proposed PSO methodology vs. ZN, CC and 

GA tuning. The dynamical performance of the PSO tuned system outperforms that of the 

same system tuned with ZN, CC and the GA for the following reasons: 

 

i) The ZN and CC methods provide only initial tuning parameters. Fine tuning 

for an improved response depends on the experience and intuition of the 

control practitioner. 

ii)  The PSO method does not suffer from premature convergence – this is not 

true for the GA. 

iii)  The high degree of stochasticity that the GA suffers from means that there is a 

strong possibility of the algorithm yielding poor results over a small number 

of iterations. Improvements in tuning performance can be achieved if the GA 

is run for a greater number of iterations – this comes at the cost of increased 

computational computation burden and process delays. 

iv) The GA depends on genetic operators. This implies that even weak solutions 

could contribute to the composition of future candidate solutions. 

v) GA’s operate according to a sharing mechanism during their evolutionary 

process whereby the previous solutions are potentially lost whilst the PSO 

relies on a memory based progression (Engelbrecht, 2002). This ability to 

‘remember’ its previous best solution means that the PSO can converge much 

faster than the GA on an optimal solution. 



   - 121 -

The subsequent chapters will discuss the application of the PSO tuning methodology 

on real-life systems. 
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Chapter 9 
 

Offline Tuning for Process Control 
 

9.1 Introduction 

This chapter describes tests that were conducted to assess the effectiveness of offline PSO 

tuning for process control. In this approach the transfer function of the process was 

determined and utilized for the PSO tuning using simulation. The P, I and D tuning 

parameters determined from the PSO tuning methodology was applied to a process plant 

that is housed in the instrumentation laboratory at the Durban University of Technology.  

The main variables under control are water flow, pump discharge pressure and tank level. 

 

9.2 Basic description of the Process Control Plant used in the study 

The plant used for this study is given in Figure 9.1.and its corresponding P&ID schematic 

is shown in Figure 9.2. The plant consists of a storage tank, process tank, feed water 

pump, control valve and pressure, level and flow transmitters. A feed-pump supplies 

water from the storage tank to the process tank. The pressure transmitter (PT03) and the 

flow meter (FT01), which is situated downstream of the pump, provides an indication of 

pump discharge pressure and volume of water moved by the pump. Control valve (CV01) 

is situated between the flow transmitter and the process tank to manipulate the flow and 

thus control the discharge pressure and the level of water in the process tank. Control of 

the water flow rate (FT01), line pressure (PT03) and process tank level (LT02) is 

achieved separately using control valve (CV01) during each control session. A current-to-



 

pressure (I/P) converter is used to provide correct signal interface to the control valve 

(CV01), which operates from 

 

 

Figure 9.1: 
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pressure (I/P) converter is used to provide correct signal interface to the control valve 

from a 4 bar air supply. 

Figure 9.1: Process plant used for the tests 
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Figure 9.2: P&ID of the plant under study 

 

9.3 Interfacing the plant to the PC based controllers  

The PID control algorithm was implemented on a standard Pentium 4 desktop PC. The 

PC is interfaced to the process control rig using an Advantech PCI-1710, 12-bit 

multifunction I/O card. The PCI-1710 I/O card is supported by MATLAB® 7.3, Real 

Time Workshop Toolbox version 6.3. The PCI-1710 card is capable of 12-bit A/D 

conversion with up to 100 kHz sampling rate. Electrical connection to each of the devices 

in the plant is illustrated in Figure 9.3.  
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Figure 9.3: Interface between plant and PC 

The interaction with the I/O card drivers was done within the MATLAB®  Simulink 

environment and the parameter dialog boxes provided in the Real-Time Workshop I/O 

library. The Simulink model of the control application is shown in Figure 9.4. The 

analogue I/O channels of the PCI-1710 card are represented by device driver blocks. The 

rate transition is inserted between the device driver blocks and the ‘standard’ Simulink 

blocks to ensure proper data transfer between blocks.  
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Figure 9.4: MATLAB® Simulink based PID controller for real-time control  

 

All the details of the control-loop for flow, level and pressure control are given in 

Appendix C1.1. 

 

9.4 Preliminaries for the real-time experiments 

The process models used in the experiments for the pressure, flow and level control loops 

are given in (9.1), (9.2) and (9.3) respectively. Models (9.1) – (9.3) were identified with 

the MATLAB® System Identification Tool Box, ver. 6.12. (9.1) - (9.3) were used to 

determine the tuning parameters by means of the ZN, CC, AH, PP, GA and PSO tuning 

methodologies.  
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Plant models (9.1), (9.2) and (9.3) were used to determine the tuning parameters for each 

respective control loop. These parameters were then applied to the actual process plant in 

order to determine the dynamical closed-loop performance of the plant. The PSO and GA 

methods were each run over ten trials. Details of these trials are provided in Appendix 

C2.1 to Appendix C2.3. The closed-loop performance for each tuning method was 

evaluated using its transient response characteristics and the ITAE performance index. 

 

9.5  Pressure control loop 

The controllability ratio for the pressure control system in (9.1) is 2.0=
p

p

T

L
. A PI 

controller was used because experimental results showed that the derivative action caused 

erratic movement of the control valve due to the presence of valve noise present within 

the control channel. The tuning parameters for PI control were obtained using ZN (open-

loop tuning), CC, GA and PSO tuning techniques and are shown in Table 9.1. 

 

Tuning 
Method 

PI Parameters 

cK  iT  

ZN 7.26 0.33 
CC 7.39 0.24 
GA 0.86 0.02 
PSO 4.53 0.43 

 

Table 9.1: Tuning parameters for the pressure control loop 
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The statistical analysis over the ten trials for PSO and GA tuning is given in Table 9.2. 

The reasons for choosing only these two methods were mentioned in Chapter 8.  

 

  
GA PSO 

ITAE cK  iT  dT  Time(s) Iter ITAE cK  iT  dT  Time(s) Iter 

Mean���� 
(After 10 
trial runs) 

30.79 0.86 0.02 0.00 35.26 52 2.41 4.53 0.43 0.00 8.27 20 

Standard 
Deviation��� 

(After 10 
trial runs) 

15.85 0.09 0.05 0.00 10.27 14 0.01 0.05 0.01 0.00 1.36 3 

 

Table 9.2: Statistical analysis over the 10 trials for PSO and GA for 

pressure control loop 








+
−=

)15.0(

)1.0exp(62.0
)(

s

s
sG

pressurep  

 

9.5.1 Results and observations 

From Table 9.2, the PSO tuned system displays a better performance than the GA by 

achieving a mean ITAE of 2.41 as opposed to 30.79 for the GA; also the PSO results are 

more repeatable as is evident from its small standard deviation of 0.01. The closed-loop 

step response for the different tuning methods is illustrated in Figure 9.5. For ease of 

viewing, the step responses for each of the tuning methods are show separately. The 

response specifications and performance index for the pressure control loop are given in 

Table 9.3.  

From Figure 9.5 and Table 9.3, the GA method yields a system with higher overshoot, 

longer settling and rise time in comparison to other methods. The closed-loop response 

for the ZN and CC methods are similar with the CC method yielding marginally higher 

overshoot and longer settling time. The PSO method delivers superior control 
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performance with improved dynamic performance specifications over the other tuning 

methods. 

 

 

Figure 9.5: Closed-loop step responses of the pressure control loop using ZN, CC, GA 

and PSO tuning parameters 








+
−=

)15.0(

)1.0exp(62.0
)(

s

s
sG

pressurep  

Tuning 
Method 

Dynamic Performance 
Specifications 

Performance Index 

rt  st (2%) (%)pM  ITAE 
GACCZN

PSO
ITAE

ITAE
,,  

ZN 0.5 48.8 1.6 293.9 0.63 
CC 0.5 49.1 3.7  442 0.42 
GA 0.7 49.8 5.8 1266.4 0.15 
PSO 0.5 21.6 0.9 186.2 - 

 

Table 9.3: Closed-loop performance of the pressure control loop using ZN, CC, GA and 
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9.6  Flow Control 

The controllability ratio for the flow process (9.2) is 75.22=
p

p

T

L
, making the system 

dead-time dominant. A PI controller was used in this experiment since derivative action 

is not recommended for dead-time dominant processes (Åström and Hägglund, 2004; 

Hägglund, 1992). Using (9.2), the PID tuning parameters are obtained by applying the  

ZN (closed-loop tuning), AH, GA and PSO tuning techniques. The ultimate gain (uK ) 

and ultimate period uP( ) of the process was heuristically determined. The closed-loop 

system under sustained oscillation is illustrated in Figure 9.6.   

 

Figure 9.6: Closed-loop step response of the flow control loop with 7=cK , ∞=iT  and 
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With regards to Figure 9.10, 7=uK  and 17=uP . A phase margin of o
m 60=φ  was used 

to determine the tuning parameters for the AH technique. The tuning parameters using 

the respective tuning methods are shown in Table 9.4. The statistical analysis of the ten 

trials for PSO and GA tuning is given in Table 9.5. The reasons for choosing only these 

two methods were mentioned in Chapter 8.  

 

Tuning 
Method 

PI Parameters 

cK  iT  
ZN 2.8 13.6 
AH 3.5 38.99 
GA 0.09 0.74 
PSO 0.85 5.03 

Table 9.4: Tuning parameters for the flow control loop 

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GA PSO 

ITAE cK  iT  dT  Time(s) Iter ITAE cK  iT  dT  Time(s) Iter 

Mean���� 
(After 10 

trial 
runs) 

2776 0.09 0.74 0.00 25.81 33.5 1013 0.85 5.03 0.00 24.74 36 

Standard 
Deviation��� 
(After 10 

trial 
runs) 

194.48 0.04 0.23 0.00 17.49 17.69 0.01 0.00 0.01 0.00 3.93 5.99 

 

Table 9.5: Statistical analysis of the 10 trial runs for PSO and GA for the flow control 

loop 

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9.6.1 Results and observations 

From Table 9.7, the PSO tuned system displays a better performance than the GA by 

achieving a mean ITAE of 1013; this is more than doubled (2776) for the GA; also the 

PSO results are more repeatable as is evident from its small standard deviation of 0.01. 

 

The closed-loop step responses of the PID controller to a step input under different tuning 

conditions are illustrated in Figure 9.7. The response specifications and performance 

index for the flow control loop is given in Table 9.8. From Figure 9.7 and Table 9.6, it is 

evident that both ZN and AH tuning results in an oscillatory response. This confirms that 

these methods are not suited for processes that are dead-time dominant. The GA tuned 

system is characterized by slow a rise time and a marginal improvement in overshoot. 

The delayed response and slow rise time is attributed to the weak proportional gain given 

by the GA method.  Overall the PSO method delivers the best performance as is evident 

from its ITAE performance index.  
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Figure 9.7: Closed-loop step responses of the flow control loop using ZN, AH, GA and 

PSO tuning parameters 

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ZN 22.5 - 109 39724.4 0.23 
AH 23.2 - 105 42596.6 0.21 
GA 31.2 93.3 15 11616 0.77 
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Table 9.6: Closed-loop performance of the flow control loop using ZN, AH, GA and 

PSO tuning methods 
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9.7  Level Control 

The controllability ratio for the level process model (9.3) is 2=
p

p

T

L
, hence the need for 

PI control for this dead-time dominant process. The PI tuning parameters for (9.3) are 

determined using P-P, GA and PSO tuning and are given in Table 9.7. The statistical 

analysis over ten trials for PSO and GA tuning is given in Table 9.8. The reasons for 

choosing only these two methods are the same as was mentioned in Chapter 8.  

 

Tuning 
Method 

PI Parameters 

cK  iT  

PP 7.03 17.29 
GA 0.06 0.94 
PSO 14.54 5.64 

 

Table 9.7: Tuning parameters for the level control 

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GA PSO 

ITAE cK  iT  dT  Time(s) Iter ITAE cK  iT  dT  Time(s) Iter 

Mean ���� 
(After 10 
trial runs) 

7228.5 0.06 0.94 0.00 27.45 30 6137.5 14.54 5.64 0.00 454.5 361 

Standard 
Deviation��� 
(After 10 
trial runs) 

16554.7 0.06 0.16 0.00 17.63 23 149.65 0.09 58.1 0.00 48.78 37.6 

 

Table 9.8: Statistical analysis of the 10 trial runs for PSO and GA for the level control 

loop 

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9.7.1 Results and observations 

From Table 9.10, the PSO tuned system displays a better performance than the GA by 

achieving a mean ITAE of 6137.5 as compared to 7228.5 for the GA; also the PSO 

results are more repeatable as is evident from its low small standard deviation of 149.65 

vs. 16554.7 for the GA. 

 

The closed-loop step responses of the PI controller tuned using the selected tuning 

methods are illustrated in Figure 9.18. The response specifications and performance 

index is given in Table 9.8. From Figure 9.18 and Table 9.9, the GA tuned response 

converges towards the stable region with unacceptable oscillation around the setpoint. 

The PP method produces a slower response with higher overshoot than the PSO tuned 

response. The PSO tuned system results in quicker settling time and smaller overshoot 

when compared to the PP and GA tuning methods. 
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Figure 9.8: Closed-loop step responses of the level control loop using PP, GA and PSO 

tuning parameters 

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PP 53.6 260 17 28056 0.69 
GA 41.5 - 55.3 210911 0.09 
PSO 36 114 7.5 19527 - 

 

Table 9.9: Closed-loop performance characteristics for level control loop using PP, GA 

and PSO tuning 
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9.8 Summary and conclusion 

The ZN, CC, AH, PP, GA and PSO tuning methods have been implemented on pressure, 

flow and level control loops and a comparison of the control performance using these 

methods has been completed. An analysis of the performance characteristics for all the 

control loops shows that the PSO method outperforms all the tuning techniques under 

consideration in this study as is evident from the performance characteristics mentioned 

in the previous discussions. The next chapter will examine the performance of the PSO 

algorithm for real-time servo system control. 
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Chapter 10 
 

Online Tuning for Real-Time Positional Control 
 

10.1 Introduction 

This chapter discusses the control performance of a servo positioning system tuned for 

optimal servo-tracking and regulatory control using the proposed PSO method. Two 

approaches of using the PSO tuning methodology were studied. The first approach made 

use of the system process model to determine the controller parameters offline using 

simulation. This is similar to the PSO tuning approach discussed in the previous chapter. 

In the second approach a model of the process is not required; rather the servo-

mechanism is controlled in real-time using the different PID parameters given by the 

PSO technique. Following each iteration, the PSO selects the best PID parameters based 

on minimizing the ITAE performance index. This is called the pre-tuning phase. This 

phase is terminated once the PSO algorithm converges on an optimal PID tuning 

parameter. In both approaches the control performance of the PSO tuned system was 

compared to other selected tuning techniques.  

 

10.2 Positioning servo-system  

The system under study is based on the Modular Servo Positioning Control System 

(MS150 MKII) from FEEDBACK INSTRUMENTS LTD. The main requirement for the 

position control system is for the motor to rotate an output shaft to the same angle as the 

input shaft. In this case the error signal e(t) is created by mounting a potentiometer onto 

the reference shaft and the motor shaft. The potentiometers are connected to equal but 
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opposite DC supplies and the voltages will cancel when each shaft is at the same position. 

Hence any misalignment between the two shafts will give an error signal proportional the 

angular displacement.  The error signal is used in a closed-loop strategy with a PID 

algorithm for positional control. The control architecture is implemented with the 

MATLAB® Real-Time Workshop environment in conjunction with the Advantech I/O 

(PCI 1710) card. The system is illustrated in Figure 10.1. 

 

 

 

Figure 10.1: Schematic of Servo control system 
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10.2.1 PID control structure used for the positional servo-system 

The objective of the control strategy is to ensure that the dynamical response of the 

system accurately tracks the setpoint and remains robust to disturbances. This is achieved 

by utilizing a one degree-of-freedom (1-DOF) PID controller implemented within 

MATLAB®. The algorithm for the PID controller used in this study is the standard non-

interacting PID algorithm: 

 

)
1

1()( sT
sT

KsG d
i

cc ++=    Equation (10.1) 

 

10.2.2 Positioning servo-system control loop  

The positioning system is actuated by means of an armature controlled DC motor with 

gear speed reduction. A schematic of the positioning servo-system is shown in Figure 

10.2. The following characteristics applicable to the armature DC motor and the load will 

be considered for this study: 

 

aR  = armature resistance, 

aL  = armature inductance, 

J   = moment of inertia of motor and load, 

f  = viscous friction coefficient of the motor and load, 

K   = motor torque constant, 

bK  = back emf constant, 

)(sθ = angular displacement, 
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)(sC  = angular displacement of motor shaft. 

 

 

 

 

 

Figure 10.2: Schematic of the positional servo-mechanism 

 

10.2.3 Model of the armature controlled DC motor and gear mechanism 

The feedback control loop of the positioning system is shown in Figure 10.3. With 

regards to Figure 10.3, when considering )(sU B  as input and )(sθ  as output of the 

system )(sG p
, the transfer function of the armature controlled DC motor is: 
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The motor gain and the time constants are given by Equations (10.3) and (10.4) 

respectively: 
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)( B

a
m KKRaf

JR
T

+
=     Equation (10.4) 

Substitution of Equation (10.3) into (10.4) yields the transfer function for the armature 

controller DC motor: 
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The transfer function for the gear mechanism is: 
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The lumped transfer function for the positional servo-mechanism is a second order 

integrating system with dead time: 
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Figure 10.3:  Feedback control loop for the positional servo-mechanism 
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Using the MATLAB® system identification toolbox the following transfer function of 

the servo positioning system was determined: 

 

)101.0(
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ss
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sGp     Equation (10.8) 

 

10.3 Evaluating PSO Performance for Offline Tuning   

ZN, PP, GA and PSO tuning parameters for the servo-system were obtained using the 

model (10.8) of the positioning control system. These parameters were then used for the 

real-time tests. The ZN and PP methods were chosen because of its widespread 

applicability to integrating process. Table 10.1 gives the tuning parameters given by the 

respective methods. The ultimate gain and ultimate period of the system was determined 

by trial and error. 

 

10.3.1 Observations and analyses of results 

10.3.1.1 Controller tuned for setpoint tracking 

The performance specifications for the system are given in Table 10.2 and the response 

of the system to setpoint changes are illustrated in Figure 10.4. 
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Tuning 
Method 

PID Parameters 

cK  iT  dT  

ZN 0.98 0.105 0.026 
PP 0.55 0.48 0.01 
GA 0.98 0.37 0.06 
PSO 0.81 5.38 0.05 

 

Table 10.1: PID parameters of the positional servo-mechanism for setpoint tracking 
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Tuning 
Method 

Dynamic Performance 
Specifications 

Performance Index 

rt  st  (%)pM  ITAE 
GAPPZN
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ITAE

ITAE
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ZN 0.08 0.8 94 5791 0.54 
PP 0.09 - 109 6620 0.47 
GA 0.08 1.18 75.5 4654 0.67 
PSO 0.15 0.47 5.6 3153 - 

 

Table 10.2: Closed-loop response specifications for setpoint tracking 
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Figure 10.4: Closed-loop setpoint response of the positional servo-mechanism using off-

line tuning 

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With regards to Table 10.2, it is evident that the PSO tuning method provides the best 

closed-loop performance in comparison to the other methods.  

 

10.3.1.2 System tuned for disturbance rejection 

Table 10.3 gives the PID parameters for the respective tuning methods. The results of the 

experiment are given in Table 10.4 and the response of the system to setpoint change and 

load disturbance of the process are illustrated in Figure 10.5. 
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Tuning 
Method 

PID Parameters 

cK  iT  dT  

ZN 0.98 0.105 0.026 
PP 0.55 0.41 0.01 
GA 0.98 0.25 0.05 
PSO 1.24 0.21 0.05 

 

Table 10.3: PID parameters of the positional servo-mechanism for disturbance rejection. 
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Tuning 
Method 

Dynamic Performance 
Specifications 

Performance Index 

rt  st (2%) (%)pM  ITAE 
GAPPZN

PSO
ITAE

ITAE
,,

 

ZN 0.09 0.86 72.5 1093 0.87 
GA 0.08 0.85 72.4 1018 0.94 
PSO 0.08 0.76 72.5 961 - 

 

Table 10.4: Closed-loop response specifications for disturbance rejection 
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Figure 10.5: Closed-loop setpoint and disturbance response of the positional servo-

mechanism using off-line tuning 

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With regards to Table 10.4, the PP method resulted in an unstable performance and 

therefore is deemed unsuitable for tuning disturbance rejection loops of this type. The 

PSO tuned loop results are similar to those of the ZN and GA, but overall the PSO 

yielded an improved control performance as is evident from its superior performance 

index. 

 

10.4 Evaluating PSO performance using online PSO Tuning 

The PID control and PSO tuning algorithm was implemented online for real-time control. 

PID parameters were obtained during the pre-tuning phase. The online PSO tuning 
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method was compared to ZN, PP and GA tuning algorithms. Several tests were 

conducted in order to determine the minimum number of agents required for the PSO 

algorithm to be consistent upon convergence. The PSO parameters used in the tests are 

given Table 10.5. From initial tests it was observed that 1 agent resulted in poor 

performance of the PSO search and therefore does not form part of the evaluation. 

 

Swarm Size 2,3,4,5 
Maximum Velocity (Vmax) 1 
Cognitive Acceleration (c1) 2.05 
Social Acceleration (c2) 2.05 
Upper Bound Of Initialization (ub) 1 
Lower Bound Of Initialization (lb) 0 
Stall Limit- Termination Criterion 10 

 

Table 10.5: PSO parameters used in the test 

 

The swarm size was adjusted within the range given in Table 10.5 and the test was 

repeated for 4 trial runs. The results of the tests for the setpoint tracking tuning and 

disturbance rejection tuning are shown in Table 10.6 and Table 10.7 respectively. 

 

With regards to Table 10.6, the best ITAE performance index was found using 3 agents 

within 8.22 minutes. The standard deviation from the 4 trial runs indicate that the 

consistency of the PSO search improves with a higher number of agents. On the other 

hand, the time required for the ‘pre-tuning’ phase increases due to the increased 

computational burden. Table 10.7 displays a similar pattern to Table 10.6 – this indicates 

that for this application the best ITAE index was found using 5 agents and required 13.65 

to 13.8 minutes to search. 
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Table 10.6: Online PSO tuning for setpoint tracking tuning (4 trials) 

 

Table 10.7: Online PSO tuning for disturbance rejection tuning (4 trials) 

 

10.4.1 Observations and analysis of results 

10.4.1.1 System tuned for setpoint tracking 

The PID parameters obtained for the setpoint tracking tuning is shown in Table 10.8. 

Figure 10.6 shows the closed-loop responses for the different tuning methods. The ZN 

closed-loop method was used and the PP method was tuned for setpoint tracking. With 

regards to Figure 10.6, the PP delivers a system with a large overshoot which oscillates 

around the setpoint. This is due to a lower proportional gain and a low value for the 

derivative time constant. The ZN and GA tuned responses also suffer from high 

overshoot; however the settling time is improved when compared to the PP method. The 

Number 
of agents 

 

Best result obtained Standard Deviation from 4 trail 
runs 

Average 
Time 

(Minutes) ITAE cK  iT  dT  ITAE cK  iT  dT  

2 agents 1483.47 2.06 3.41 0.02 1660.18 1.06 2.17 0.21 5.51 
3 agents 1463.33 2.16 4.44 0.05 275.71 0.23 1.56 0.03 8.22 
4 agents 1479.90 2.13 4.56 0.05 73.79 0.17 0.13 0.00 11.03 
5 agents 1473.75 2.05 5.03 0.05 71.72 0.05 0.11 0.00 13.65 

Number 
of agents 

 

Best result obtained Standard Deviation from 4 trail 
runs 

Average 
Time 

(Minutes) ITAE cK  iT  dT  ITAE cK  iT  dT  

2 agents 1302.78 3.25 0.65 1.70 762.28 1.06 0.36 0.67 5.51 
3 agents 960.71 0.82 0.05 0.09 748.31 1.03 0.36 0.64 8.26 
4 agents 659.95 0.60 0.10 0.06 510.34 0.42 0.15 0.49 11.02 
5 agents 587.63 1.28 0.09 0.05 66.86 0.28 0.03 0.02 13.80 
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PSO tuned system provides a stable response with little overshoot and very quick settling 

time. This is largely due to the high integral time constant that the PSO tuning method 

has specified. 

 

Figure 10.6: Closed-loop setpoint response of the positional servo-mechanism.  

(On-line tuning) 

 

Table 10.8: PID settings and closed-loop response specifications for  

setpoint tracking only 
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Tuning 
Method 

PID Parameters Dynamic 
Performance 
Specifications 

Performance Index 

cK  iT  dT  
rt  st  (%)pM  ITAE 

AHPPZN

PSO
ITAE

ITAE
,,  

ZN 0.98 0.205 0.05 0.04 0.5 90.7 1721.6 0.86 
PP 0.55 0.48 0.01 0.04 10 121.4 3679.1 0.40 
GA 1.15 0.3 0.04 0.03 0.98 70.5 1653.6 0.89 
PSO 2.16 4.44 0.05 0.03 0.2 10.9 1484.8 - 
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10.4.1.2 System tuned for disturbance rejection 

The PID parameters obtained for the disturbance rejection tuning is shown in Table 10.9.  

Figure 10.7 shows the closed-loop responses for the different tuning methods. The PP 

tuned system results in large overshoot thereby confirming the results from the previous 

section in that it may not be suitable for tuning disturbance rejection loops of this type. In 

contrast, the PSO tuned system delivered an improved response to load disturbance, with 

improved settling times and percentage overshoot. 

 

Figure 10.7: Closed-loop disturbance rejection response of the positional servo-

mechanism. (On-line tuning) 

 
 
 

0 1 2 3 4 5 6 7 8 9 10
-2

0

2

4

6

8

10

time(s)

P
ro

ce
ss

 o
ut

pu
t

Real time closed loop response of the positional servomechanism (Disturbance rejection)

 

 

ZN

PP
GA

PSO



   - 152 -

 

Table 10.9: PID settings and closed-loop response specifications disturbance rejection 

and setpoint tracking 

 
With regards to the results presented in this section, the PSO method yields systems with 

superior closed-loop response for servo control and disturbance rejection in comparison 

to conventional approaches.  

 

10.5 Summary and conclusion 

This chapter has presented the real-time responses of a positional servo system that was 

tuned using off-line and then on-line tuning. For off-line tuning a process model was 

obtained using the MATLAB® model identification toolbox. This model was then used 

in the simulation studies to determine the tuning parameters for the different tuning 

methods under consideration. For on-line tuning the parameters for the GA and PSO 

approach were obtained directly off the live plant. For both tests it was found that the 

PSO method outperformed all other tuning methods. 

 

 

 

Tuning 
Method 

PID Parameters Dynamic 
Performance 
Specifications 

Performance Index 

cK  iT  dT  
rt  st  (%)pM  ITAE 

AHPPZN

PSO
ITAE

ITAE
,,

 

ZN 0.98 0.205 0.05 0.03 0.87 191 1362.6 0.75 
PP 0.55 0.41 0.01 0.03 10 387.4 3613.5 0.28 
GA 0.97 0.38 0.06 0.04 1.21 225 1438.9 0.71 
PSO 1.28 0.1 0.09 0.03 0.42 135.1 1017.1 - 
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Chapter 11 
 

 Summary of Study, Recommendations and Conclusion 
 

11.1 Introduction 

The study has focused on the application of the PSO computational algorithm for PID 

control loops. The objective has been to improve the performance of systems that 

experience a poor control behavior when tuned using conventional tuning methodologies. 

Process control models commonly found in plant process control systems was selected 

for the study in order to test the efficacy of the PSO tuning methodology. Control 

behavior of selected plant models was measured through the system’s transient response 

specifications to an input stimulus.  

 

Tests were conducted using several existing conventional tuning methodologies (see ZN, 

1942; CC; PP; AH; VC; DO) including the GA computational based algorithm. Each of 

these techniques was discussed in detail and their shortcomings in the chosen applications 

were also mentioned. For this study the ITAE performance index was chosen to evaluate 

the control performance of the process loops. The ITAE criterion penalizes large 

overshoots and minimizes long settling times – in our research it was heuristically found 

that the best control response is obtained by minimizing these two transient response 

criteria. 
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11.2 PSO Tuning 

PSO tuning is implemented offline and then online. For offline tuning, the plant model 

(first order system for pressure, second order system for flow, second order integrating 

system for level and positional control) is determined using the MATLAB® system 

identification toolbox, and tuning was then performed under simulated conditions within 

the MATLAB® Simulink environment. Offline tuning can be applied to tune a range of 

known process models. 

 

For online tuning, all testing was conducted in real-time on a servo-positioning system. 

Using the PSO method for online tuning realizes the following advantages: 

i) The presence of a process model is not required for determining the 

controller’s parameters,  

ii)  A minimal knowledge of the process under consideration is necessary when 

calculating the controller’s tuning parameters, 

iii)  No tuning formulae are used for determining the magnitudes of the 

controller’s adjustable parameters.  

 

However, the shortcoming of online tuning is that the tuning method is not applicable to 

processes having long time constants - this is so because processes of this nature usually 

require a considerable time for the pre-tuning phase to execute. Pre-tuning could also 

lead to an unstable control action for processes experiencing the strong negative effects 

of nonlinearities within the control channel. 
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11.3 Advantages of the PSO 

11.3.1 Improved Process Behaviour 

Our study has also shown that processes tuned using the PSO methodology is 

characterized by an improved control behavior for setpoint tracking and disturbance 

rejection. This is evident from the improved ITAE performance index when compared to 

the control performance obtained with using the traditional tuning methods and the GA.  

The reasons for this can be attributed to: 

i) PSO relies on a memory based progression, in which the previous 

solutions are remembered and is continually improved upon until 

convergence is reached, 

ii)  GA’s suffers from premature convergence since it relies on genetic 

operators that allow weak solutions to contribute to the composition of 

future candidate solutions, 

iii)  Traditional tuning methods require further fine tuning to improve control 

performance. 

 

11.3.2 Attractive features of PSO Based PID Tuning 

In this study the PSO algorithm was used as an alternative to finding suitable tuning 

parameters for a variety of processes. The PSO has several attractive features that make it 

an ideal candidate for the tuning of PID controllers, namely: 

 

i) Fast convergence: The PSO is influenced by the simulation of social 

behaviour rather than the survival of the fittest as in the GA. From the tests 
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discussed in Chapter 8, it was shown that each individual benefits from its 

history and its interactions with other agents within the population. This 

sharing of knowledge helps facilitates faster convergence to an optimal 

solution. 

 

ii)  Simple operating algorithm: The use of simple mathematical operators 

facilitates a faster computational time and makes the algorithm suitable for 

determining tuning parameters under high-speed dynamical conditions for 

processes that lend themselves to tuning of this nature, such as flow and 

pressure control. 

 
iii)  Efficient operating algorithm: From the tests that were conducted, it was 

shown that the PSO determined parameters provide the yielded the best 

control performance – this is evident from the low ITAE that was observed 

during the tests. 

 

iv) Repeatability: The PSO was compared to the GA evolutionary algorithm. 

Tuning parameters obtained with the PSO are consistent over a number of 

tuning sessions. This does not apply to the GA based tuning method. 

 

11.3.3 Fixed PSO Operating Parameters for Improved Repeatability 

The study has also presented experiments to analyze the effects of variations in PSO 

parameters for different process models. Observations of the results revealed that a fixed 

set of PSO parameters, namely a constriction factor of 73.0=χ , cognitive acceleration 
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c1=2.05,  social acceleration c2=2.05, velocity vmax = 1 and a swarm size of 20 agents 

produces repeatable results for all the processes considered for this study. Large 

magnitudes of c1 and c2 made the constriction factor 73.0<χ and damped particle 

movement within the search space (see Clerc, 1999). 

 

11.4  Recommendations for further research 

The study can be extended by using the ZN tuning in conjunction with the PSO tuning 

methodology for refining the ZN tuning parameters. In this approach the PSO tuning 

utilizes initial tuning parameters given by the ZN tuning method as a starting point to 

begin search. The effects of using hybrid PSO-GA optimization strategies may be 

considered. It may be advantageous to kill poor performing PSO particles in order to 

improve efficiency and search capability.  

 

11.5  Summary and conclusion 

Research was conducted to study the effects of using the PSO algorithm as a tool for PID 

tuning. From the results presented in the study it was shown that the PSO tuning yielded 

improved responses and can be applied to different process models encountered in the 

process control industry. 

 

 

 

 



   - 158 -

References 
 

[1] Anandanatarajan R., Chidambaram M. and Jayasingh T., “Limitations of a PI 

controller for a first-order nonlinear process with dead time”, ISA Transactions, Vol. 45, 

pp. 185-199, 2006 

 

[2] Åström K.J., “Automatic Tuning of PID Controller”, Instrument Society of 

America, Research Triangle Park, 1995 

 

[3] Åström K.J. and Hägglund T., “Automatic tuning of simple regulators with 

specification on phase and amplitude margins”, Automatica, Vol. 20, pp. 645-651, 1984 

 

[4] Åström K., and Hägglund T., “PID controllers: Theory, Design and Tuning”, ISA, 

Research Triangle Park, NC, 1995 

 

[5] Åström K., and Hägglund T., “Revisiting the Ziegler-Nichols Step Response 

method for PID control ”, Journal of Process Control, Vol. 14, pp. 635-650, 2004 

 

[6] Bonabeau E., Dorigo M. and Theraulaz T., “From Natural to Artificial Swarm 

Intelligence”, Oxford University Press, 1999 

 

[7] Boyd R. and Recharson P., “Culture and the Evolutionary Process”, University of 

Chicago Press, 1985 

 



   - 159 -

[8] Brown M., “The state of PID control in South Africa”, S.A Instrumentation and 

Control, pp. 131-136, 1994 

 

[9] Carlisle A. and Dozier G., “An Off-The-Shelf PSO”, In Proceedings of the PSO 

Workshop, pp 1-6, 2001 

 

[10] Cohen G.H. and Coon G.A., “Theoretical consideration of retarded control”, 

Trans. ASME, Vol. 75, pp. 827-834, 1953 

 

[11] Cooper J. D., “Practical Process Control Using Control Station 3.7”, Control 

Station LLC, 2004 

 

[12] Clerc M., “The Swarm and the queen: towards a deterministic and adaptive 

particle swarm optimization”, Proceedings of the Conference on Evolutionary 

Computation, pp. 1951-1957, 1999 

 

[13]  Dorigo M., Gambardella L.M., “Ant Colony System: A Cooperative Learning 

Approach to the Traveling Salesman Problem”, IEEE Transactions on Evolutionary 

Computation, pp.53-66, 1997 

 

[14] Eberhart R.C. and Shi Y., “Comparing Inertia Weights and Constriction Factors 

in Particle Swarm Optimization”, Proceedings of the Congress on Evolutionary 

Computation, pp 84-88, 2000 



   - 160 -

[15] Eberhart R.C. and Shi Y., “Comparison between genetic algorithms and particle 

swarm optimization”, IEEE Int. Conf. Evol. Comput., Anchorage, pp 611-616, 1998 

 

[16] Engelbrecht A.P., “Computational Intelligence”, John Wiley and Sons, 2002 

 

[17] Fukuyama Y., Naka S., Genji T. and Yura T., “A Particle Swarm Optimization for 

Reactive Power and Voltage Control Considering Voltage Security Assessment”, IEEE 

Transactions on Power Systems, Vol. 15, No. 4, 2000 

 

[18] Gaing Z.L., “A Particle Swarm Optimization approach for Optimum Design of 

PID controller in AVR System”, IEEE Transactions On Energy Conversion, Vol. 19, 

No.2, pp. 284-291, 2004 

 

[19] Goldberg D.E., “GA in search, optimization and machine learning”, Addison-

Wesley, 1989 

 

[20] Govender P., “Design of a non-linear analog PID controller”, Masters Thesis – 

Department of Electrical Engineering (Light Current) at Technikon Natal, 1997 

 

[21] Govender P., “Nonlinear Predictors in PID control: Controlling Processes having 

Dead-Time”, PhD Thesis – Department of Electrical Engineering (Light Current) at 

Durban Institute of Technology, 2003 

 



   - 161 -

[22]  Hassan R., Cohanim B., de Weck O. and Venter G., “A Comparison of Particle 

Swarm Optimization and the Genetic Algorithm”, Structural Dynamics & Materials 

Conference, American Institute of Aeronautics and Astronautics, pp. 1-13, 2005 

 

[23]  Hägglund T., “A Predictive PI Controller for Processes with Long Dead Times”, 

IEEE Control Systems, pp. 57-60, 1992 

 

[24] Hang C.C., Åström K. and Ho W.K., “Refinements of the Ziegler-Nichols tuning 

formula”, IEE Proceedings-D, Vol. 138, No. 2, pp. 111-118, 1991 

 

[25] Haung H.P. and Chen C.C., “Control-system synthesis for open-loop unstable 

process with time delay”, IEE Proc.-Control Theory Appl., Vol. 144, No. 4, pp. 334-345, 

1996 

 

[26]  Kennedy J. and Eberhart R., “Particle swarm optimization”, Proc. IEEE Int. Conf. 

Neural Networks, Vol. 4, Perth, Australia, pp. 1942-1948, 1995 

 

[27] Kennedy J., Russell R.C. and Shi Y., “Swarm Intelligence”, The Morgan 

Kaufmann Series in Evolutionary Computation, 2001 

 

[28]  Krohling R. A. and Rey J. P., “Design of optimal disturbance rejection PID 

controllers using genetic algorithm”, IEEE Trans. Evol. Computation, Vol. 5, pp. 78-82, 

2001 



   - 162 -

[29] Lee Y., Lee J. and Park S., “PID controller tuning for integrating and unstable 

processes with time delay”, Chemical Engineering Science, Vol. 55, pp. 3481-3493, 2000 

 

[30] Lipták, “Process Control”, Chilton Book Company, 1995 

 

[31] Liu G.P. and Daley S., “Optimal-tuning PID control for industrial systems”, 

Control Engineering Practice, Vol. 9, pp. 1185-1194, 2001 

 

[32] Majhi S. and Atherton D.P., “Modified Smith Predictor and controller for 

processes with time delay”, IEE Proc.-Control Theory Appl., Vol. 146, pp. 359-366, 1999 

 

[33] Ogata K., “Modern Control Engineering”, Englewood Cliffs, N.J., Prentice-Hall, 

1970 

 

[34] Omran M.G.M., “Particle swarm optimization methods for pattern recognition 

and image processing”, PhD Thesis – Department of Computer Science at University of 

Pretoria, 2005 

 

[35] Panda C.P., Yu C.C. and Huang H.P., “PID tuning rules for SOPDT systems: 

Review and some new results”, ISA Transactions, Vol. 43, pp. 283-295, 2004 

 

[36] Paor D.E. and O’Malley M., “Controllers of Ziegler-Nichols type for unstable 

process with time delay”, Int. J. Control, Vol. 49, pp. 1273-1284, 1989 



   - 163 -

[37] Pomerleau A. and Poulin E., “Manipulated variables based PI tuning and 

detection of poor settings: An industrial experience”, ISA Transactions, Vol. 43, pp. 445-

457, 2004 

 

[38] Pomerleau A., Poulin E., Desbiens A. and Hodouin D., “Development and 

Evaluation of an Auto-tuning and Adaptive PID Controller”, Automatica, Vol. 32, pp. 71-

82, 1996 

 

[39] Poulin E. and Pomerleau A., “PID tuning for integrating and unstable processes”, 

IEE Proc.-Control Theory Appl., Vol. 143, pp. 429-435, 1996 

 

[40] Pillay N. and Govender P., “A Particle Swarm Optimization Approach for Model 

Independent Tuning of PID Control Loop”, IEEE Africon 2007, IEEE Catalog: 

04CH37590C, ISBN: 0-7803-8606-X, 2007 

 

[41] Reynolds C., “Flocks, Herds and Schools: A Distributed Behavioral Model, 

Computer Graphics, Vol.21, No. 4, pp. 25-34, 1987 

 

[42] Srinivas D., “Autotuning of PID controllers”, Masters Thesis – IDP in Systems 

and Control Engineering at the India Institute of Technology, Mumbai, 2006 

[43] Salerno J., “Using the Particle Swarm Optimization Technique to Train a 

Recurrent Neural Model”, Proc. Of the 9th International Conference on Tools with 

Artificial Intelligence (ICTAI’97), 1997 



   - 164 -

[44] Shi Y. and Eberhart R.C., “A modified particle swarm optimizer”, Proceedings of 

the IEEE International Conference on Evolutionary Computation, pp 69-73, 1998 

 

[45] Shinskey F.G., “Process Control – Where have we been, where are we going? ”, 

Elektron, pp. 7-10, 1994 

 

[46] Van Der Bergh F., “An analysis of Particle Swarm Optimizers”, PhD Thesis – 

Faculty of Natural and Agricultural Science at the University of Pretoria, 2001 

 

[47] Veeramachaneni K., Peram T., Mohan C. and Osadciw L., “Optimization Using 

Particle Swarm with Near Neighbor Interactions”, Lecture Notes Computer Science, 

Springer Verlag, 2003 

 

[48] Venkatashankar V. and Chidambaram M., “Design of P and PI controllers for 

unstable process with time delay”, Int. J. Control, Vol. 60, pp. 1367-144, 1994 

 

[49] Walgama K.S., Ronnback S. and Sternby J., “Generalizations of conditioning 

technique for anti-windup compensators”, IEE Proceedings, Vol. 135, pp. 109-117, 1992 

 

[50] Youla D.C. and Bongiorno J.J.J. and Jabr H.A., “Modern Wiener-Hoppf design of 

optimal controller-part I: The single-input-single output case”, IEEE Transactions, Vol. 

21, pp. 3-13, 1976 

 



   - 165 -

[51]  Zhuang M. and Atherton D.P., “Automatic tuning of optimum PID controllers”, 

IEE Proceedings-D, Vol. 140, No.3, pp. 216-224, 1993 

 

[52] Ziegler J.G. and Nichols N.B., “Optimum settings for automatic controllers”, 

Trans. ASME, Vol. 65, pp. 433-444, 1942 

 

 

 

 

 

  



   - 166 -

Appendix A 
 

A1.  PSO source code (MATLAB® m-file). 
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Appendix B 
 

B1. Trial runs for PSO and GA tuning for Chapter 8. 

B1.1. Experiment 8.1: Tuning for setpoint tracking of FOPDT process model: 

   ������ � exp � 0.2���� $ 1� & 

 

PSO tuning method 
Trial ITAE Kc Ti Td Time(s) Iterations 

1 3.66 3.63 0.97 0.07 20.14 32 
2 3.65 3.63 0.97 0.07 19.80 31 
3 3.72 3.41 0.97 0.06 20.60 33 
4 3.65 3.63 0.97 0.07 24.74 43 
5 3.65 3.63 0.97 0.07 21.10 37 
6 3.65 3.63 0.97 0.07 20.24 35 
7 3.66 3.61 0.97 0.07 17.25 30 
8 3.66 3.62 0.97 0.07 18.18 31 
9 3.65 3.63 0.97 0.07 20.75 36 
10 3.66 3.63 0.96 0.07 18.25 31 
       �� 3.66 3.63 0.97 0.07 20.19 32.50 � 0.02 0.07 0.00 0.00 2.07 3.98 

 

 

GA tuning method 
Trial ITAE Kc Ti Td Time(s) Iterations 

1 18.69 0.98 0.60 0.28 40.64 67 
2 16.89 0.95 0.67 0.07 59.10 101 
3 17.01 0.98 0.72 0.12 55.90 95 
4 18.38 0.98 0.57 0.23 21.56 36 
5 16.58 0.93 0.70 0.01 58.60 101 
6 18.34 0.88 0.67 0.10 50.00 86 
7 17.96 0.86 0.70 0.03 58.40 101 
8 19.60 0.85 0.54 0.13 43.30 74 
9 19.36 0.94 0.58 0.29 26.55 44 
10 16.16 0.97 0.77 0.04 22.79 38 
       �� 18.15 0.94 0.67 0.11 46.65 80.00 � 1.19 0.05 0.08 0.10 15.26 26.79 
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B1.2. Experiment 8.2: Tuning for setpoint tracking of SOPDT process model:  

   ������ � exp � 0.5����( $ 2� $ 1�& 

 

PSO tuning method 
Trial ITAE Kc Ti Td Time(s) Iterations 

1 17.79 2.06 1.98 0.54 29.84 32 
2 17.79 2.05 1.99 0.54 16.82 28 
3 17.79 2.06 1.98 0.54 15.50 26 
4 17.79 2.06 1.98 0.54 20.01 31 
5 17.79 2.07 1.98 0.54 14.80 25 
6 17.79 2.07 1.99 0.54 13.72 23 
7 17.79 2.06 1.98 0.54 14.07 24 
8 17.79 2.07 2.00 0.54 15.12 24 
9 17.79 2.07 1.99 0.53 20.48 35 
10 17.79 2.07 1.99 0.54 18.29 31 
       �� 17.79 2.07 1.99 0.54 16.16 27 � 0.00 0.01 0.01 0.00 4.83 4.12 

 

 

 

 

GA tuning method 
Trial ITAE Kc Ti Td Time(s) Iterations 

1 88.31 0.86 0.91 0.89 26.34 40 
2 80.06 0.94 0.95 0.92 31.80 48 
3 85.11 0.83 0.97 0.90 56.90 87 
4 88.69 0.79 0.95 0.93 65.40 101 
5 86.99 0.87 0.92 0.92 37.86 58 
6 76.71 0.97 0.98 0.83 65.84 101 
7 100.90 0.52 0.97 0.43 40.00 60 
8 89.66 0.88 0.89 0.93 34.53 53 
9 81.60 0.87 0.98 0.95 36.42 56 
10 86.50 0.93 0.92 0.73 31.02 44 
       �� 86.75 0.87 0.95 0.91 37.14 57 � 6.57 0.13 0.03 0.16 14.58 22.92 
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B1.3. Experiment 8.3: Tuning for setpoint tracking of SOIPDT process model: 

������ � exp � 0.2s���� $ 1� & 

 

PSO tuning method 
Trial ITAE Kc Ti Td Time(s) Iterations 

1 12.72 5.15 2.17 0.56 22.39 40 
2 12.72 5.15 2.17 0.55 16.53 29 
3 12.72 5.14 2.18 0.56 21.18 37 
4 12.73 5.16 2.09 0.55 14.96 26 
5 12.72 5.17 2.17 0.55 17.87 31 
6 12.72 5.13 2.18 0.56 19.90 35 
7 12.72 5.19 2.16 0.55 17.11 30 
8 12.72 5.16 2.18 0.55 15.58 27 
9 12.73 5.14 2.13 0.56 22.91 40 
10 12.72 5.17 2.15 0.55 15.40 27 
       �� 12.72 5.16 2.17 0.55 17.49 30.50 � 0.00 0.02 0.03 0.01 2.99 5.39 

 

 

 

GA tuning method 
Trial ITAE Kc Ti Td Time(s) Iterations 

1 452.60 0.94 0.97 0.81 34.20 48 
2 414.20 0.94 0.97 0.85 62.50 99 
3 560.60 0.93 0.92 0.77 21.43 34 
4 403.10 0.87 0.99 0.91 47.92 75 
5 543.00 0.83 0.96 0.80 30.00 48 
6 1142.00 0.23 0.91 0.94 23.06 37 
7 578.20 0.92 0.82 0.92 63.37 103 
8 396.80 0.95 0.97 0.86 62.05 101 
9 875.90 0.94 0.26 0.75 21.37 34 
10 1153 0.84 0.88 0.88 35.80 58 
       �� 497.80 0.90 0.94 0.86 35.00 53 � 303.74 0.34 0.22 0.07 17.42 28.50 
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B1.4. Experiment 8.4: Tuning for setpoint tracking of FODUP process model: 

������ � exp � 0.2����  1� & 

 

PSO tuning method 
Trial ITAE Kc Ti Td Time(s) Iterations 

1 16.93 3.83 1.36 0.00 19.90 32 
2 16.93 3.82 1.36 0.00 14.98 24 
3 16.93 3.83 1.36 0.00 13.70 22 
4 16.93 3.83 1.36 0.00 16.57 27 
5 16.93 3.84 1.36 0.00 13.46 22 
6 16.93 3.82 1.35 0.00 24.09 40 
7 16.93 3.83 1.35 0.00 16.31 26 
8 16.93 3.83 1.37 0.00 13.81 22 
9 16.93 3.82 1.36 0.00 13.44 22 
10 16.93 3.83 1.36 0.00 14.10 23 
       �� 16.93 3.83 1.36 0.00 14.54 23.50 � 0.00 0.01 0.01 0.00 3.48 5.87 

 

 

 

GA tuning method 
Trail ITAE Kc Ti Td Time(s) Iterations 

1 12190.00 0.98 0.85 0.00 27.83 30 
2 11690.00 0.98 0.86 0.00 39.93 58 
3 9744.00 1.02 0.98 0.00 21.79 30 
4 21940.00 0.92 0.84 0.00 25.75 36 
5 11370.00 0.98 0.87 0.00 23.04 33 
6 24550.00 0.91 0.80 0.00 45.47 66 
7 10830.00 0.99 0.85 0.00 56.97 83 
8 23260.00 0.95 0.55 0.00 21.83 30 
9 21210.00 0.95 0.59 0.00 22.40 31 
10 12470.00 0.97 0.97 0.00 31.11 45 
       �� 12330.00 0.97 0.85 0.00 26.79 34.50 � 5972.52 0.03 0.14 0.00 12.04 18.69 
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B1.5. Experiment 8.5 – Tuning for setpoint tracking and disturbance rejection of FOPDT 

process model:    *����� � +,- �./.(0�
�012� 3 

 

PSO tuning method 
Trial ITAE Kc Ti Td Time(s) Iterations 

1 14.98 4.92 0.40 0.07 15.98 34 
2 14.98 4.93 0.40 0.07 17.30 37 
3 14.98 4.93 0.40 0.07 19.96 43 
4 15.00 4.90 0.39 0.07 18.52 40 
5 15.00 4.90 0.39 0.07 18.43 40 
6 14.99 4.91 0.40 0.07 14.45 31 
7 15.02 4.90 0.38 0.08 9.59 20 
8 14.98 4.93 0.40 0.07 23.22 50 
9 14.99 4.92 0.40 0.07 16.73 36 
10 14.98 4.93 0.40 0.07 19.44 42 
       �� 14.99 4.92 0.40 0.07 17.36 37 � 0.01 0.01 0.01 0.00 3.64 8 

 

 

 

 

GA tuning method 
Trial ITAE Kc Ti Td Time(s) Iterations 

1 83.83 1.23 0.31 0.04 63.59 110 
2 88.55 0.92 0.335 0.08 52.7 101 
3 85.77 0.96 0.3 0.2 38.107 75 
4 83.66 1.28 0.31 0.01 52.38 104 
5 90.49 0.9 0.31 0.02 31.92 63 
6 89.47 0.92 0.29 0.1 33.9 66 
7 82.76 1.35 0.35 0.01 51.96 101 
8 93.61 0.85 0.34 0.04 43.05 84 
9 82.83 1.31 0.37 0.06 34.32 68 
10 89.41 0.93 0.31 0.18 44.37 88 
       �� 87.04 1.07 0.32 0.07 44.63 86 � 83.83 1.23 0.31 0.04 63.59 110 
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B1.6. Experiment 8.6: Tuning for setpoint tracking and disturbance rejection of SOPDT 

process model:     *����� � +,- �./.40�
�051(012� 3 

 

PSO tuning method 
Trial ITAE Kc Ti Td Time(s) Iterations 

1 87.03 3.39 1.26 0.56 11.37 17 
2 86.51 3.33 1.31 0.54 21.68 34 
3 86.48 3.30 1.33 0.53 21.97 34 
4 86.49 3.31 1.33 0.53 17.85 28 
5 86.47 3.30 1.33 0.53 27.20 43 
6 86.47 3.29 1.34 0.53 26.58 42 
7 86.47 3.29 1.34 0.53 22.16 35 
8 86.47 3.29 1.34 0.53 26.84 42 
9 86.49 3.29 1.34 0.52 15.14 23 
10 86.47 3.29 1.34 0.53 26.30 41 
       �� 86.54 3.31 1.33 0.53 21.71 33.90 � 0.17 0.03 0.03 0.01 5.44 8.85 

 

 

 

GA tuning method 
Trial ITAE Kc Ti Td Time(s) Iterations 

1 228 0.85 0.73 0.88 42.96 70 
2 199 1.25 0.3 0.59 34.1 59 
3 220 0.9 0.77 0.85 60.4 102 
4 223 0.85 0.69 0.91 50.45 88 
5 272.4 1.36 0.78 0.88 34.87 54 
6 275 1.42 0.87 0.94 66.9 107 
7 278 1.45 0.91 0.92 59.1 101 
8 324 0.91 0.78 0.63 40.5 69 
9 266.2 1.23 0.95 0.84 59.24 101 
10 312 0.75 0.87 0.85 21.53 36 
       �� 259.76 1.1 0.77 0.83 47.01 78.7 � 41.17 0.27 0.18 0.12 14.55 24.53 
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B1.7. Experiment 8.7: Tuning for setpoint tracking and disturbance rejection of SOIPDT 

process model:     *����� � +,- �./.(0�
0�012� 3 

 

PSO tuning method 
Trial ITAE Kc Ti Td Time(s) Iterations 

1 52.19 7.64 0.87 0.46 24.86 45 
2 52.19 7.62 0.86 0.46 28.36 51 
3 52.21 7.62 0.86 0.46 16.80 30 
4 52.30 7.70 0.82 0.48 24.98 45 
5 52.19 7.63 0.86 0.46 21.62 39 
6 52.20 7.63 0.87 0.46 17.73 32 
7 52.30 7.71 0.81 0.48 19.54 35 
8 52.19 7.63 0.86 0.46 25.48 46 
9 52.19 7.63 0.86 0.46 28.09 51 
10 52.19 7.64 0.86 0.46 19.43 35 
       �� 52.22 7.64 0.85 0.47 22.69 41 � 0.05 0.03 0.02 0.01 4.22 8 

 

 

 

 

GA tuning method 
Trial ITAE Kc Ti Td Time(s) Iterations 

1 3073 0.29 0.86 0.41 29.38 53 
2 1112 0.88 0.79 0.76 40.35 73 
3 1868 0.84 0.82 0.62 25.17 47 
4 3121 0.28 0.75 0.82 23.43 42 
5 3121 0.28 0.75 0.82 23.42 42 
6 1320 0.81 0.87 0.59 36.9 66 
7 1437 1.23 0.81 0.88 21.93 39 
8 1569 1.10 0.8 0.72 39.2 38 
9 2347 0.81 0.76 0.72 25.7 46 
10 3133 0.71 1.32 0.94 55.69 101 
       �� 2210.10 0.72 0.85 0.73 32.10 55 � 843.17 0.34 0.17 0.16 10.78 20 

 
 

 



   - 174 -

B1.8. Experiment 8.8: Tuning for setpoint tracking and disturbance rejection of FODUP 

process model:     *����� � +,- �./.(0�
�0.2� 3 

 

PSO tuning method 
Trial ITAE Kc Ti Td Time(s) Iterations 

1 80.92 4.37 1.24 0 15.70 27 
2 80.92 4.41 1.24 0 10.90 18 
3 80.91 4.41 1.24 0 14.63 25 
4 80.89 4.42 1.23 0 20.61 36 
5 80.89 4.42 1.23 0 20.31 35 
6 80.93 4.35 1.23 0 10.58 18 
7 80.90 4.41 1.23 0 15.63 27 
8 80.90 4.42 1.23 0 17.17 30 
9 80.89 4.42 1.23 0 17.91 31 
10 80.90 4.42 1.23 0 12.43 21 
       �� 80.91 4.41 1.23 0.00 15.59 27 � 0.01 0.03 0.00 0.00 3.55 6 

 

 

 

 

GA tuning method 
Trial ITAE Kc Ti Td Time(s) Iterations 

1 16205 0.86 0.8 0 23.31 37 
2 16670 1.2 1.03 0 55.49 101 
3 11264 0.82 0.78 0 41 77 
4 15227 0.92 0.93 0 55.11 101 
5 16051 0.94 0.87 0 38.63 71 
6 10243 1.34 0.95 0 41.27 76 
7 16367 0.93 0.89 0 30.4 60 
8 17275 0.87 0.64 0 22.67 41 
9 11149 0.96 0.9 0 60.6 112 
10 15332 0.91 0.73 0 23.5 43 
       �� 14578.30 0.98 0.85 0.00 39.20 72 � 2628.69 0.16 0.12 0.00 14.27 27 
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Appendix C 
 

C1.  Process Control Rig Loop Schematics. 
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C2. Trial runs for PSO and GA tuning for Chapter 9 

C2.1 Pressure control loop:     *����� � /.6(+,- �./.20�
�/.4012� 3 

 

GA tuning method 

Trial ITAE Kc Ti Td Time(s) Iterations 

1 33.00 0.93 0.02 0.00 51.27 40 

2 27.97 0.93 0.02 0.00 38.79 62 

3 22.07 0.81 0.01 0.00 43.65 70 

4 34.30 0.94 0.07 0.00 21.58 34 

5 64.40 0.77 0.19 0.00 21.60 34 

6 22.18 0.67 0.01 0.00 41.60 67 

7 58.40 0.77 0.06 0.00 21.80 35 

8 25.37 0.94 0.02 0.00 34.37 55 

9 54.30 0.88 0.06 0.00 30.10 48 

10 28.57 0.84 0.02 0.00 36.14 58 

       

�� 30.79 0.86 0.02 0.00 35.26 52 

� 15.85 0.09 0.05 0.00 10.27 14 
 
 

PSO tuning method 

Trial ITAE Kc Ti Td Time(s) Iterations 

1 2.41 4.53 0.42 0.00 8.47 20 

2 2.41 4.59 0.43 0.00 8.46 20 

3 2.41 4.61 0.43 0.00 8.07 19 

4 2.4 4.49 0.42 0.00 9.32 22 

5 2.4 4.52 0.43 0.00 11.35 27 

6 2.4 4.50 0.42 0.00 10.49 25 

7 2.41 4.57 0.43 0.00 7.74 18 

8 2.4 4.49 0.42 0.00 7.30 17 

9 2.4 4.51 0.43 0.00 7.34 17 

10 2.41 4.61 0.44 0.00 7.72 18 

       

�� 2.41 4.53 0.43 0.00 8.27 20 

� 0.01 0.05 0.01 0.00 1.36 3 
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C.2.2 Flow control loop:     *����� � /.4+,- �.6.40�
�2.(70518.4012�3 

 

GA tuning method 

Trial ITAE Kc Ti Td Time(s) Iterations 
1 3015.00 0.04 0.30 0.00 63.53 52.00 

2 2764.00 0.08 0.72 0.00 28.28 34.00 

3 2763.00 0.08 0.73 0.00 26.25 34.00 

4 2788.00 0.08 0.72 0.00 23.90 30.00 

5 2744.00 0.09 0.75 0.00 25.36 33.00 

6 3112.00 0.15 0.95 0.00 21.63 28.00 

7 3042.00 0.04 0.36 0.00 21.70 28.00 

8 3214.00 0.16 0.94 0.00 64.00 85.00 

9 2746.00 0.10 0.82 0.00 21.60 28.00 

10 2638.00 0.11 0.96 0.00 50.00 38.08 

       

�� 2776.00 0.09 0.74 0.00 25.81 33.50 

� 194.48 0.04 0.23 0.00 17.49 17.69 
 
 
 

PSO tuning method 

Trial ITAE Kc Ti Td Time(s) Iterations 
1 1013.00 0.85 5.04 0.00 24.90 36.00 

2 1013.00 0.85 5.03 0.00 23.93 35.00 

3 1013.00 0.85 5.02 0.00 22.61 33.00 

4 1013.00 0.85 5.03 0.00 24.57 36.00 

5 1013.00 0.85 5.03 0.00 25.43 37.00 

6 1013.02 0.86 5.04 0.00 18.53 27.00 

7 1013.00 0.85 5.03 0.00 21.12 31.00 

8 1013.00 0.85 5.03 0.00 29.01 43.00 

9 1013.00 0.85 5.02 0.00 32.37 48.00 

10 1013.00 0.85 5.02 0.00 27.18 40.00 

       

�� 1013.00 0.85 5.03 0.00 24.74 36.00 

� 0.01 0.00 0.01 0.00 3.93 5.99 
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C.2.3 Level control loop     *����� � /./(+,- �.80�
0�/.96012� 3 

 
 

GA tuning method 

Trial ITAE Kc Ti Td Time(s) Iterations 
1 7825.00 0.11 0.76 0.00 30.40 25.00 

2 29100.00 0.18 0.95 0.00 22.90 29.00 

3 2228.00 0.01 0.96 0.00 70.06 90.00 

4 1176.00 0.06 0.50 0.00 21.40 27.00 

5 45680.00 0.17 0.82 0.00 21.50 27.00 

6 39470.00 0.13 0.68 0.00 21.40 27.00 

7 5069.00 0.03 0.93 0.00 62.00 80.00 

8 7735.00 0.05 0.99 0.00 32.88 42.00 

9 6722.00 0.04 0.98 0.00 37.58 48.00 

10 4898.00 0.03 0.98 0.00 24.49 31.00 

       

�� 7228.50 0.06 0.94 0.00 27.45 30.00 

� 16554.76 0.06 0.16 0.00 17.63 23.65 
 
 
 

PSO tuning method 

Trial  ITAE Kc Ti Td Time(s) Iterations 

1 6137.50 14.54 5.65 0.00 455.50 361.00 

2 6137.48 14.54 5.64 0.00 454.50 361.00 

3 6138.32 14.34 5.62 0.00 354.50 283.00 

4 6137.49 14.54 5.64 0.00 454.50 361.00 

5 6478.20 14.41 5.65 0.00 399.39 314.00 

6 6136.29 14.54 5.64 0.00 453.50 362.00 

7 6138.22 14.34 5.63 0.00 352.50 282.00 

8 6136.49 14.55 5.64 0.00 454.50 361.00 

9 6137.49 14.54 5.64 0.00 456.50 363.00 

10 6505.79 14.41 5.71 0.00 502.18 393.00 

       

�� 6137.50 14.54 5.64 0.00 454.50 361.00 

� 149.65 0.09 58.09 0.00 48.78 37.57 
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Appendix D 
 

D1. Derived publications. 
 

D1.1  “A Particle Swarm Optimization Approach for Model Independent Tuning of PID 
Control Loop,” IEEE Africon 2007, IEEE Catalog: 04CH37590C, ISBN: 0-7803-
8606-X, 2007 

 

D1.2 “Particle Swarm Optimization of PID Control for Servo-System Positioning,” 
Proceedings of the Tenth IASTED International Conference on Control and 
Applications, pp.148-153, 2008 

 

D1.3 Draft Journal Paper 
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