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ABSTRACT

Linear control systems can be easily tuned usiagsatal tuning techniques such as the
Ziegler-Nichols and Cohen-Coon tuning formulae. Hiogal studies have found that
these conventional tuning methods result in antisfaatory control performance when
they are used for processes experiencing the negdestabilizing effects of strong
nonlinearities. It is for this reason that contpohctitioners often prefer to tune most
nonlinear systems using trial and error tuningntuitive tuning. A need therefore exists
for the development of a suitable tuning technitheg is applicable for a wide range of

control loops that do not respond satisfactorilg@aventional tuning.

Emerging technologies such as Swarm Intelligenteh@se been utilized to solve many
non-linear engineering problems. Particle Swarmir@pgation (PSO), developed by
Eberhart and Kennedy (1995), is a sub-field ofr&l was inspired by swarming patterns
occurring in nature such as flocking birds. It velserved that each individual exchanges
previous experience, hence knowledge of thest position”attained by an individual
becomes globally known. In the study, the problegmdentifying the PID controller
parameters is considered as an optimization prabkem attempt has been made to
determine the PID parameters employing the PSOniggl. A wide range of typical
process models commonly encountered in industnsésl to assess the efficacy of the
PSO methodology. Comparisons are made between 8@ fchnique and other

conventional methods using simulations aeal-timecontrol.
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Chapter 1

Introduction and Overview of the Study

1.1 Introduction

The PID controller is regarded as the workhorséhefprocess control industry (Pillay
and Govender, 2007). Its widespread use and umivacceptability is attributed to its
simple operating algorithm, the relative ease withich the controller effects can be
adjusted, the broad range of applications whehastreliably produced excellent control
performances, and the familiarity with which it perceived amongst researchers and
practitioners within the process control commuiiRylay and Govender, 2007). In spite
of its widespread use, one of its main short-comiisgthat there is no efficient tuning
method for this type of controller (Astrom and Hhggl, 1995). Given this brief
background, the main objective of this study isd&velop a tuning methodology that
would be universally applicable to a range of papprocesses that occur in the process

control industry.

1.2 Motivation for the study

Several tuning methods have been proposed fouthieg of process control loops, with
the most popular method being that of Ziegler archdls (1942). Other methods include
the methods of Cohen and Coon (1953), Astrom anggldad (1984), De Paor and
O’Malley (1989), Zhuang and Atherton (1993), Verdsitankar and Chidambaram
(1994), Poulin and Pomerleau (1996) and Haung dreh@1996). In spite of this large

range of tuning techniques, to date there stilhnee¢o be no general consensus as to
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which tuning method works best for most applicatifnptak, 1995). Some methods rely
heavily on experience, while others rely more orthm@atical considerations (Lipték,

1995).

The Ziegler-Nichols method (1942) is the method tmueferred by process control
practitioners and alternate methods are often pplied in practice because of the
reluctance of control personnel to learn new temies which they perceive as being
complicated, time consuming and laborious to im@etn(Pillay and Govender, 2007).
Also, some commonly used techniques do not pergutficiently well in the presence of
strong nonlinear characteristics within the contiwhnnel (Astrom and Hagglund, 2004,

Shinskey, 1994).

1.3 Focus of the study

This study proposes the development of a tuningnigcie that would be suitable for
optimizing the control of processes operating irsiagle-input-single-output (SISO)
process control loop. The SISO topology has belattsel for this study because it is the
most fundamental of control loops and the theometiged for this type of loop can be
easily extended to more complex loops. The rese&wchses on utilizing a soft-
computing strategy, namely the particle swarm ojgtiion (PSO) technique that was
first proposed by Kennedy and Eberhart (1995),nagmimization strategy to determine
optimal controller parameters for PID control atglvariants. The control performance
of loops tuned with the proposed PSO technique alélb be compared to that of loops

tuned using another soft-computing technique, nartied genetic algorithm (GA) plus



the methods mentioned previously in the discussioif®e GA was selected for

comparison with the PSO because both are populbtisad soft-computing techniques.

1.4 Objectives of the study

The objectives of the study are to:

i) Develop a PSO based PID tuning methodology fomaiping the control of SISO
process control loops.

i) Determine the efficacy of the proposed method bynmaring the control
performance of loops tuned with the PSO methodhab of loops tuned using the
GA and the other so-called conventional method<Ziefgler-Nichols (1942),
Cohen and Coon (1953), Astrom and Hagglund (1984)Paor and O’Malley
(1989), Venkatashankar and Chidambaram (1994) amdirPand Pomerleau

(1996).

1.5 Thesis overview

This document is arranged as follows:

Chapter oneggives an introduction and general overview of thelg. It focuses on the
research problem and motivation for the study.

Chapter twoprovides a brief outline on PID control and claakcontrol theory.

Chapter threehighlights typical process models that are commosmhcountered in
processes control loops. Typical nonlinear charesties commonly found in most
process control loops are reviewed and their effeatcontroller tuning and closed-loop

performance are also explored in this chapter.



Chapter fourreviews selected PID controller tuning algorithpneposed in the literature.
Chapter fivediscusses soft computing techniques such as ewparf computation (EC)
and compares the intrinsic characteristics of Gé’'that of the PSO.

Chapter sixdiscusses the PSO tuning approach.

Chapter sevemlescribes a simulation that study focuses on fieets of PSO parameter
variation.

Chapter eightlescribes a simulation study that compares theagrerformance of PSO
tuned systems to that of systems tuned using melbgiés proposed in the literature.
This chapter also compares the control performand@SO tuned systems to GA tuned
systems.

In Chapter nineghe PSO method is appliedfline to tune process control loops.

Chapter terdescribes theeal-timecontrol of a positional servo-mechanism.

Chapter eleversummarizes the findings of the study and providiesction for further

research that could be pursued in the field.

Appendix Aprovides the PSO source code used in all the ewpets.

Appendix Bgives details of the experiments conducted in @Gve

Appendix Cprovides the loop diagram associated with the ggeacontrol plant and
details all the experiments conducted for the PBOGA tuning methods.

Appendix Dpresents two conference papers and a draft joyayaér arising from the

work conducted in this study.



Chapter 2

Overview of PID Control

2.1 Introduction

The PID controller is by far the most commonly usedtroller strategy in the process
control industry (Astrom and Hagglund, 1995; Astrétal, 2004). Its widespread use is
attributed to its simple structure and robust penfnce over a wide range of operating
conditions (Gaing, 2004). PID control is implemehgés either stand-alone control, or on
DCS, SCADA and PLC control systems. The populaaityl widespread use of PID
control in the process control industry necesstate detailed discussion on the
fundamental theory that underpins this type ofekerm process control. The dynamics
associated with each control mode will also be uwlised and the advantages and

shortcomings associated with each type of contiblalgo be given.

2.2 Control Effects of Proportional, Integral and Derivative Action

2.2.1 Proportional control

Proportional control is defined as the control @ctihat occurs in direct proportion with
the system error. The output of a proportional ulgr varies proportionally to the

system error according to (2.1):

u,(t)=Ke() +b Equation (2.1)



With regards to (2.1)u (t) is the controller outpute(t) is the error,bis the controller

bias andK_ is the controller gain (referred to as the propori gain). Proportional

control action responds to only the present effor.a small value of proportional gain, a
large error yields a small corrective control atti©€onversely, a large proportional gain
will result in a small error and hence a large omnsignal. The controller bias is
necessary in order to ensure that a minimum coratctibn is always present in the

control loop.

The gain of a proportional controller is usuallysdebed in terms of its proportional band
(PB). The concept of the proportional band is inhdrit®@m pneumatic controller and is

defined as:

PB= Ki x100% Equation (2.2)

C

From (2.2), a large proportional gaif_ corresponds to a small proportional b&pi,

while a largePB implies a small gai{_. A pure P controller reduces error but does not

eliminate it (unless the process has naturallygiating properties). With pure P control
an offset between the actual and desired valuenailinally exist. This is illustrated as

follows:

Consider Figure 2.1:



R(s) Gp(s) Y(s)
e >
= 1 Output
ep Proportional Gain Plant (Process)

Figure 2.1: Proportional controller within a closed-loop feedbaontrol system

With regards to Fig. 2.1:

The closed-loop transfer function of this contrggtem is represented by (2.3):

Y(s) - KG,(9)
R(s) 1+K.G,(9)

Equation (2.3)

whereG (s)is the transfer function of the proceBgs)andY(s)represents the input and

output of the process, respectively and the ergmasE(S)is:

E(9 =)

= Equation (2.4
1+ KCGp(s) d (2:4)

The action of the proportional controller usualgsults in an offset i.e. the difference
between the desired output and the actual outpthieofystem for processes that do not
have any inherent integrating properties. Undesdlmnditions the steady-state error for

the control system can be calculated using the Vimlae theorem (2.5):



es(+) = |im [SE(s)] Equation (2.5)

For a unit step input:

. 1 1 . 1 1
= (10) “S['o'( 51+KCGp(S)J im (1+ KCGPSJ 1+KGs =

This indicates the presence of a steady state farag (s) # +» , which is the case for
systems with no inherent integrating propertieanti(2.6), the absolute value of the
steady-state error can be reduced by sufficienttyeiasind<.. However sinc&, affects
system stability and its dynamics, it will be liett by the stability constraints of the
overall control system. A high value &, may lead to oscillations and large overshoots

which could result in instability (See Figure 2.2).

It is for this reason that proportional controlaien combined with integral control in

order to eliminate offset, while applying the srealvalues of the gaid,. A typical

example of system response using only proportiooatrol is illustrated in Figure 2.2.



Closed loop step response of Gp(s)=1/((s+1)%)

14 T T T T

Ke=5
12— Setpoint / -
/ Ke=2
1

0.8 —

ss Output

0.6 —

0.4 —

0.2- —

Figure 2.2: Control effect of varying P-actiopr(s) = ﬁj
s

2.2.2 Integral control (Reset control)

Integral control is used in systems where propodicacontrol alone is not capable of
reducing the steady-state error within acceptablentls. Its primary effect on a process
control system is to permanently attempt to grdgieiminate the error. The action of

the integral controller is based on the principlattthe control action should exist as long
as the error is different from zero, and it hastédrelency to gradually reduce the error to
zero. The integrator control signail (t)) is proportional to the duration of the error and is

given by:

u(t) = i—j: e(t) dt = KJ: e(t) dt Equation (2.7)

With regards to (2.7)T, is the integral time constani, is the proportional gain,
K:/T; = Kj is the gain of the integral controlles(t) is the instantaneous error signal and
the limits t;and t, represent the start and end of the error, respdgtiThe smaller the

integral time constant, the more often the propa#l control action is repeated,



therefore resulting in greater integral contribnttoward the control signal. For a large
integral time constant, the integral action is @l Integral control can be seen as
continuously looking at the total past history loé terror by continuously integrating the
area under the error curve and reducing any offed.greater the error signal the larger

the correcting action from the integral controliéll be.

2.2.2.1 Integral action as automatic reset
Integral action may be performed as a kind of aatirreset (see Figure 2.3) and is

equivalent to permanently adjusting the bias oftegportional controller.

- TTORNS 1 ]

R(s) § E(s) Upi(s) o Gp(s) MON
» >

Output

St
ep Proportional Gain Plant (Process)

Ui(s) 1
Ti.stl
Integral Gain

Y(s)

Figure 2.3: Proportional controller with an integrator as audbicreset

With regards to Figure 2.3, the control signal &apto the process is:

U, (s) = K.E(s) +U,(s) Equation (2.8)
and

U pi (S)

U.(s) =
©=7i

Equation (2.9)
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Substituting (2.9) into (2.8) yields:

U9 =KE@ + 2D oy (g - 2o
Pi ‘ 1+Ts "7 1+Ts

=K_E(s)

1 -
U pi (S)[l_ mj = KCE(S)

Upi(s)[l”is— : j: K.E(9

1+Ts 1+Ts
—Upi(s) :Kc —1+Tis :&+—Kc iS:&+KC:ﬁ+KC
E(s) Ts Ts Ts Ts S
and
— Ki H
U,(s) = ?+KC E(s) Equation (2.10)

where ﬁ E(s)and K_E(s) represents the control action of the integral amp@rtional
Q

<

controller on the error signal, respectively.

Proportional action comes into effect immediatedyaa error different from zero occurs.
If the proportional gain is sufficiently high it Wvidrive the error closer to zero. Integral
control accomplishes the same control effect asptieportional control but with an
infinitely high gain. This results in the offsetirinating property of integral action
which can be illustrated by applying the final \altheorem to the control structure of

Figure 2.3. With regards to Figure 2.3:

E(9 =)

= Equation (2.11)
1+ G, (9)G.(9)
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where G_(s) = K_ + K, and R(s) =

S

. From (2.12) the integral controller drives the

tn |

error to zero:

SRS DO SO SR s _
ess(+°°)-L'E“o[SE(S)]"s'5n°{s s 1+Gp(s)Gc<s)} Q%{SHKCHKJGASJ i

Equation (2.12)

e, (+») =0 indicates that the offset is zero and provesititagral action eliminates any
offset. The control effects of integral action dhestrated in Figure 2.4. With regards to
Figure 2.4, the proportional gain is kept constélit =1 ) and the integral time is

adjusted to illustrate the effects of the integirake constant.

Closed loop step response of Gp(s):ﬂ((s+1)3)
1
T T T T

T
Ti=1
14l T2 -
120~ Ti=s -
1

ocess Output

0 2 4 6 8 10 12 14 16 18 20

Figure 2.4: Control effects of varying integral actiEﬁ‘:p(s) = ( +11)3j
S
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The integral timeT; ) constant is varied within the rande= [125,c]. The case when

T. =, corresponds to pure proportional control anddentical toK=1 in Figure 2.2,

where the steady-state error is 50%. The steady-steor is removed whefR has finite

value. For large values of the integration timestant, the response gradually moves

towards the setpoint. For small valueslof the response is faster but oscillatory.

2.2.2.2 Undesirable effects of I ntegral Control

Although integral control is very useful for remogi steady-state errors it is also
responsible for sometimes introducing undesiralfieces into the control loop in the
form of increase settling time, reduced stabdityl integral windup (Govender, 1997). A

short explanation of each of these undesirableisfie discussed.

Increased settling timeAn increase of the closed-loop system settling tismesually

caused by the increased oscillations as a conseguéihe present integral action.

Reduced stabilityThe presence of the integral action may lead toeased oscillations
within the control loop. These oscillations genlgrabve a tendency to move the system
towards the boundary of instability. In some cakese oscillations will result in the loop

becoming unstable.

Integral windup:Integrator windup occurs when the integral congrotialls for a control
action that the process actuator cannot producausecof its saturated state. This so-

calledintegrator windupstate results in severe overshoots in the controleiable.
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2.2.3 Derivative control (Rate or Pre-Act control)

In linear proportional control the strength of tantrol action is directly proportional to
the magnitude of the error signal and P-action imssoassertive only when a significant
error has occurred. The integral controller perforrorrective action for as long as an
error is present but its gradual ramp shaped resporeans that significant time expires
before it produces a sizeable control responseh Baise control modes are incapable of

responding to the rate of change of the error $igna

D-control action positively enhances system cldseg-stability (Astrom and Hagglund,
1995). When operating in the forward path, thewdrre controller responds to the rate

at which system error changes according to (2.13a):

uy (t) = KT, % =K, % Equation (2.13a)

K
With regards to (2.13a);|_—c =Ky is the derivative gain], denotes the derivative time
d

constant and% = De(t) is the rate of change of the error feedback sighedm

(2.13a) and (2.13b) it is obvious that D-actiolwmsy present when the error is changing;
for any static error the contribution of the D-awfier will be zero. Derivative action on
its own will therefore allow uncontrolled steadwtst errors. It is for this reason that

derivative control is usually combined with eitlicontrol or Pl control.
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Another shortcoming of the D-controller is its séagy. The D-controller can be
regarded as a high-pass filter that is sensitivsetepoint changes and process noise when
operating in the forward path (Liptak, 1995). Teduce this sensitivity, it is quite
common to find the D-controller operating in thedback loop enabling it to act on the

feedback signal according to (2.13b):

K. dy(t) dy(t) :
u,(t) =—= 2"~ =K, 22 =K, Dy(t Equation (2.13b
a( T, dt - 4Dy(t) q ( )

With regards to (2.13b§1%t) = Dy(t) represents the rate of change of the feedback

signal; all the other terms have the same mearsvgaa defined for (2.13a).

2.2.3.1 D-Action as Predictive Control

The control action of a PD-controller can be intetped as a type of predictive control
that is proportional to the predicted process erfidre prediction is performed by
extrapolating the error from the tangent to th@reaurve in Figure 2.5. PD controllers

operate according to control law (2.14):
Uy (t) = Kc(e(t) +T, @j Equation (2.14)

dt

A Taylor series expansion eft +T,) gives:
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et +T,)=e(t) +T, % Equation (2.15)

The PD control signal is thus proportional to atineste of the control error at time,

seconds ahead, where the estimate is obtainedgthfmear extrapolation.

From Figure 2.5, the longer the derivative timestant T, is set, the further into the

future the D-term will predict. Derivative actiorpgkends on the slope of the error, hence
if the error is constant the derivative action hasffect. The effects of derivative action

on control performance are illustrated in Figur@ Z.he controller proportional gain and

integrating time constant are kept constdfit,=3 and T, =2, and the derivative time is

varied according to == [0.1;0.7;4.5]. FofT,= 0 we have a pure PI control.

Error () *

Present err
Actual erro
Predicted errc

»
»

Time(t)

Figure 2.5: Interpretation of derivative action as predictiwatol
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Closed loop step response of Gp(s)=1/((s+1)%)
16
T T T T

Td=0.1

Td=0.7

ocess Output

Figure 2.6: Simulation of a closed-loop system with PID Con(rp(s) = (Sjl)gj

From Figure 2.6, we observe that system responsgciiatory for low values foil jand

highly damped for higher derivative time settings.

2.3 PID Algorithms
The transfer functions for PID algorithms are dfeess as follows: standard non-

interacting (2.16), series interacting (2.17) aatafel non-interacting PID (2.18).

U(s) _ K, [1+ 1., T,s]+b Equation (2.16)
E(s) Ts

Most tuning methods are based on (2.16) (Liptak5)9

% = {[1'* T.isJ(1+ T, s)} +b Equation (2.17)
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@:(kc +£+kdsj+b Equation (2.18)
E(s) S

With regards to (2.16) — (2.18M(s) represents the control signat(s) is the error
signal;K, denotes the proportional gaith; and T, refers to the integral and derivative

time constantsbdenotes the controller bias. The implementatioatsgy for (2.16),

(2.17) and (2.18) is shown in Figure 2.7, Figu&aghd Figure 2.9.

E(s) 1 . Us)
Ts ¢
] b
Figure 2.7: Non-interacting PID
E(s) 1 <D u(s)
rs O—0—{ .
T,s b

Figure 2.8: Interacting PID
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E(s) U(s)

Figure 2.9: Parallel non-interacting PID

Historically, pneumatic controllers based on (2.4/&ye easier to build and tune (Astrém
and Hagglund, 1995). Note that the interacting mad-interacting forms are different
only when both integral and derivative control acf are used. (2.16) and (2.17) are
equivalent when the controller is utilized for P,dP PD control. It is evident that in the
interacting controller the derivative time doesluehce the integral part, hence the

reasoning that it is interacting.

The representation for the parallel non-interactifl® controller is equivalent to the
standard non-interacting controller with the exaepthat the parameters are expressed
in a different form. The relationship between ttendard and parallel type is given by

ke = K¢, ki = Kc/Tiandky = KcTgy. The parallel structure has the advantage of ofesngo
useful in analytical calculations since the pararsetippear linearly. The representation
also has the added advantage of being preferrguuferP, | or D control by the selection

of finite tuning parameters (Astréom, 1995).
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2.4 Performance evaluation criteria

Quantification of system performance is achieveuph a performance index. The
performance selected depends on the process unmagideration and is chosen such that
emphasis is placed on specific aspects of systeriorpence. Performances indices
preferred by the control engineering disciplinelude the Integral Square-Error (ISE)
index (2.19), Integral-of-Time multiplied by Squdteror (ITSE) index (2.20), Integral
Absolute-Error (IAE) index (2.21) and the IntegodiTime multiplied by Absolute-Error

(ITAE) index (2.22).

ISE Index:

ISE= J.:ez(t) dt Equation (2.19)

An optimal system is one which minimizes this imédg The upper limitc may be

replaced byT which is chosen sufficiently large such thgt) for T <t is negligible and

the integral reaches a steady-state. A charadteabthis performance index is that it
penalizes large errors heavily and small errotstliyg A system designed by this criterion
tends to show a rapid decrease in a large initi@reHence the response is fast and

oscillatory leading to a system that has poor in@dattability (Ogata, 1970).

ITSE Index:

ITSE= '[:tez (t) dt Equation (2.20)
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This criterion places little emphasis on initialraes and heavily penalizes errors

occurring late in the transient response to a isieyt.

IAE Index:

IAE:I:|e(t)| dt Equation (2.21)

Systems based on this index penalize the controt.er

ITAE Index:

ITAE= I: te(t) dt Equation (2.22)

System’s designed using this criterion has smadtsivoots and well damped oscillations.
Any large initial error to a step-response is peedl lightly whilst errors occurring later

in the response are penalized heavily. The ITAEoperance index is used in this study.
A summary of the performance indices and theireespe properties is shown in Table

2.1
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Performance
Equation Properties
Index
Penalizes large control errors.
ISE ISE= I;ez(t)dt Settling time longer than ITSE.
Suitable for highly damped systems.
- Penalizes long settling time and large control rstrio
ITSE ITSE=[ eyt
Suitable for highly damped systems.
IAE IAE= j:|e(t)|dt Penalizes control errors.
ITAE ITAE= I: t|e(t)|dt Penalizes long settling time and control errors.

Table 2.1: Summary of performance indices

2.5 Summary and conclusion

Typical PID algorithms that form the building blackf controllers have been discussed.
The control actions of proportional, integral aneridative terms and some of their
adverse effects have also been reviewed. The propak controller provides a
corrective action that is proportional to the sit¢he error and also has an effect on the
speed of a system’s response; integral controlipesvcorrective action proportional to
the time integral of the error and is present fee entire duration of the error; the
derivative controller provides a corrective actmnoportional to the time derivative of the
error signal and responds to the rate at whicletha is changing. The effects of process

dynamics on controller tuning are discussed imid chapter.
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Chapter 3

Typical Process Control Models

3.1 Introduction

This chapter presents a discussion on the trafgfetion models of systems commonly
encountered in process control. These plant magidide used to compare the control
performance of loops tuned with the PSO versusdhkttops tuned using methodologies
proposed in the literature. The dynamics associatid each process model is also

discussed.

3.2 Dynamics associated with the selected processdsls

The SISO control loop used in this study is giverrigure 3.1. The SISO configuration
has been chosen because it forms the fundamentdinigublock of all process control
loops and the dynamics associated with it are usally applicable to configurations

such as SIMO, MISO and MIMO control loops.

D(s)

RS, [ CNEE) | U(s)

PID controller ———*— — ] Process Y(s)

Figure 3.1: SISO system with unity feedback
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Typical real-world process models that have be&ttal for this study are listed in (3.1)
to (3.4):

A Stable First Order Plus Dead-Time Process (FOPDT)

G (g=—"—""—""= Equation (3.1)

A Stable Second Order Plus Dead-Time Process (SQPDT

K, exp-L,s)

G,(s) = (I'ps+1)2

Equation (3.2)
A Stable Second Order Integrating Process with Bieat (SOIPDT):
Equation (3.3)
A First Order Delayed Unstable Process (FODUP):.

K, exd-L,s)

G,(s) = T @s) Equation (3.4)
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Equations (3.1)-(3.4) capture the typical dynaniltst are present in most real-world

L
process control systems, with the exception that:l_tii’q ratios may vary (Astronet al.,
p

2004). Equation (3.2) characterizes systems tleatieln in dynamics and include systems
such as underdamped, critically damped and overddrapgstems. These systems usually

follow an“S-shape” closed-loop response.

L
The T—p ratio, or controllability ratio, is used to chaterize the difficulty or ease of
p

L
controlling a process. Processes having small olability ratios (i.eOsT—p<l) are
p

easier to control and the difficulty of controllinthe system increases as the

L
controllability ratio increases (Astrom and Hagglurl995). Processes Witlal_ﬁzl
p

correspond to dead-time dominant processes that ddfeeult to control with

conventional PID control (Astrém, 1995).

3.3 A brief overview of integrating processes (SeRegulating Processes)

Most real-world process control systems are charaetd by offset or steady-state error
which can arise from load friction, intrinsic stgagtate nonlinearities or uncertainties in
modeling (Haunget al, 1996). If the forward branch of a feedback cdnsystem
contains an integrator, the presence of an errbicause a rate of change of output until

the error has been eliminated (Cletral, 1996; Poulin and Pomerleau, 1996).
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The dynamics of certain real-world process consiydtems are such that an inherent
integrating control effect could naturally ariseridg normal operation of the plant. This
“natural integrator” is purely error driven and Wa@nsure that any steady-state error is
driven to zero following either a setpoint changelisturbance. There is no static error to
a setpoint change for pure proportional controlwieer this is not the case when
nonzero mean disturbances act at the process impaetefore in order to ensure that
there will be no static error, a control with artegrator must be used (Poulin and

Pomerleau, 1996).

3.4 Problems experienced with tuning processes hag unstable poles and dead-
time

Processes having only right-hand poles are inhigremhstable under open-loop
conditions (Poulin and Pomerleau, 1996; Majhi arttiefton, 1999). The undesirable
effects of dead-time will contribute towards thetability inherently present in systems
of this nature. The tuning of these open-loop ustarocesses having dead-time delay
becomes more challenging than for stable procdgsmdin and Pomerleau, 1996). The
Ziegler-Nichols (1942) and Cohen-Coon (1953) tunteghniques are unsuitable for

tuning loops that have only unstable pole/s plusld@nes because:

The open-loop step response of systems havinghlagtales will be unbounded (Poulin
and Pomerleau, 1996; Hauegal, 1996). The Ziegler-Nichols and Cohen-Coon open-
loop methods rely on a stable open-loop responsdei@rmining the controller’s tuning

parameters.
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The Ziegler-Nichols closed-loop method operatesctingrol-loop within the marginally

stable region (see Figure 3.2) when the criticain gaining parameter is being
determined. Coupled with this, the destabilizinfges of the system’s right-hand pole/s
plus channel dead-time may drive the system’s respadnto its unstable region of

operation following a disturbance input.

Open-loop response trajectories of self-regulatinggrginally stable and unstable
processes are illustrated in Figure 3.2.

With regards to Figure 3.2:

Trajectory a:Open-loop stable response

Trajectory b:Open-loop marginally stable process. Closed-lamgrol will push system
response into the stable operating region.

Trajectory c:Open-loop unstable process. With closed loop-cbrind properly tuned
control, system response could be forced into thegmally stable or stable operating

region.

Stable region

Marginal

@ stability region

Unstable region

Figure 3.2: Response trajectories for self-regulating (stalrayginally stable
and unstable processes
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L
3.5 Performance limitations of PID controllers forunstable processes havingl_—p >1
p

The existence of right-hand pole/s in the open-lbapsfer function of a process may
lead to limitations in its closed-loop performar{etaung and Chen, 1996). Traditional

methods using the sensitivity functi@(s) are used to express the limitations caused by

the presence of right-hand poles.

If the process has open-loop unstable poles, t@orese of the closed-loop system will
overshoot the setpoint in all cases (Yoedal, 1976). Closed-loop performance is also
compromised when the combined effects of long demad-and unstable pole/s are
simultaneously present within the system’s contt@nnel (Govender, 2003). Added to
this, the ability of a control system to rejectdadisturbances will degrade if the process

contains unstable pole/s (Huang and Chen, 1996weM-tuned Pl controller will

L
stabilize a FODUP process if and only if the colfatwmlity ratio _I_—p <1 (De Paor and O’
p

Malley, 1989, Venkatashankar and Chidambaram, 199d) the PID controller the

L
constraint is relaxed t@l_i <2 (Huang and Chen, 1996; Leeal, 2000).
p

3.5 Summary and conclusion

This chapter has focused on typical processestaidrespective dynamics. Some of the
challenges experienced when tuning open-loop pseseand processes having a high
controllability ratio have also been mentioned. féhis no universal tuning algorithm or

tuning methodology that is suitable for all pro@sssThis is evident by virtue of the fact
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that following Ziegler and Nichols (1942), varioussearchers have proposed tuning
approaches that are applicable to specific proyges (Cohen-Coon, 1953; Astrom and
Hagglund, 1984; De Paor and O’'Malley, 1989; Zhuaagd Atherton, 1993;

Venkatashankar and Chidambaram, 1994; Poulin anteReau, 1996; Huang and Chen,

1996). The next chapter discusses selected tunatigatologies applicable to this study.
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Chapter 4

PID Tuning

4.1 Introduction

The dynamical nature of process control loops lgadshanges of operating conditions
within the loop, and hence loop performance. Charigesystem performance may be
attributed to the presence of process nonlinearitighin the control channel, process
aging, production strategy changes, modificatianthé properties of raw materials, and
changes over equipment maintenance cycles (Poroesieé Poulin, 1996). Given these
dynamical conditions, loop tuning is necessary msuee the continued satisfactory

performance of the control loop.

The goal of PID controller tuning is to determinargameters that meet closed loop
system performance specifications, and the robersopnance of the control loop over a
wide range of operating conditions should alsormieed. Practically, it is often difficult
to simultaneously achieve all of these desirablaliges. For example, if the PID
controller is adjusted to provide better transiergponse to set point change, it usually
results in a sluggish response when under distagbaanditions. On the other hand, if
the control system is made robust to disturbancehiopsing conservative values for the
PID controller, it may result in a slow closed loggsponse to a setpoint change. A
number of tuning techniques that take into consitiien the nature of the dynamics
present within a process control loop have beepgsed (see Ziegler and Nichols, 1942;
Cohen and Coon, 1953; Astrom and Hagglund, 1984;PBer and O’Malley, 1989;

Zhuang and Atherton, 1993; Venkatashankar and Gibdsam, 1994; Poulin and
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Pomerleau, 1996; Huang and Chen, 1996). All thes¢thods are based upon the
dynamical behavior of the system under either dpep-or closed-loop conditions.

These tuning methods are discussed in the follos&wgions.

4.2 Ziegler-Nichols Tuning

The earliest known and most popular tuning methmgiolwas proposed by Ziegler and
Nichols (ZN) in 1942 (Astrom and Hagglund, 2004he¥ proposed the closed-loop (or
ultimate sensitivity) method and the open-loop govcess reaction curve) method. The
ZN tuning rules has a serious shortcoming in thaseés insufficient process information
to determine the tuning parameters (Astrom and Héglg 2004). This disadvantage

leads to system performances that have poor ross{Astrom and Hagglund, 2004).

The Ziegler-Nichols tuning method is based on tet=nination of processes inherent

characteristics such as the process gain)( process time constant () and process
dead time (). These characteristics are used to determinectmroller tuning

parameters. Although the Ziegler-Nichols methodsnapt to yield optimum settings, the
only criterion stated is that the response hascayeatio of quarter (see Figure 4.1)
(Ziegler and Nichols, 1942). This is viewed as arg&toming because a controller tuned

with this criterion may not be at its optimal sedti(Liptak, 1995).
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Closed loop step response
1'4 T T T T T T T

m— Process response
Set point

1.2+ _
b
1 ﬂ\\\ /Jri\\

N

08| Decay ratio = second peak overshoot i
Process output first peak overshoot
061 ‘ alb =1/4 ]
1
1
0.4 -
0.2} -
0 i‘ 1 1 1 1 L 1 1
0 1 2 3 4 5 6 7 8 9 10
Time (s)

Figure 4.1: Response curve for quarter wave decay ratio

4.2.1 ZN closed-loop tuning method (Ultimate gain and ultimate period method)
The closed-loop tuning method proposed by ZN reguithe determination of the
ultimate gain and ultimate period. The method caniriierpreted as a technique of

positioning one point on the Nyquist curve (Astréh®95). This can be achieved by

adjusting the controller gairnk() till the system undergoes sustained oscillati@tghe
ultimate gain or critical gain), whilst maintainirtpe integral time constantl,() at

infinity and the derivative time constagf,) at zero. Consider Figure 4.2: the closed-
loop response is considered stable if there isnoir@dement of the poin{-1+ j0) by

the Nyquist plot (Figure 4.2a) of the system (Oga&x0). For a proportional gain
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(K.) = 2 the closed-loop response is stable and thguidl stability criterion is met
(Figure 4.2b). ForK, =8, sustained oscillations are produced since therean
encirclement of the point-1+ jO) by the Nyquist locus (Figure 4.2c and Figure 4.2d)
In both simulations]T, = andT,=0 is used with a change only in the proportiorahg

K.to move the process closer to the ultimate point.

Nyquist Diagram Step Response

09 r

ozl (-1+j0) Ke=2, |
Ti=infinity,
/ Td=0 08 /\
[ - 0.7 b
P o

0s | S

Imaginary Axis 0271 7 Amplitude
05 |
04 4
0.4 |
06 4 031
0.2
08 [ B
0.1
1 L . 0 . .
-1 0.5 0 0.5 1 0 5 10 15
Real Axis Time (sec)
Nyquist representation for Kc=2,Ti=infinity and Td=0 Stable response for Kc=2,Ti=infinity and Td=0
Figure 4.2a Figure 4.2b
Nyquist Diagram Step Response
1 — 18
Kc=8,
Ti=infinity , 16 1
Td=0
e ] 14 1
12 ]
0
) 1
Imaginary Axis Amplitude
0.8
05
0.6
4 0.4
0.2
15 0
2 -1 0 1 2 3 4 0 5 10 15 20 25 30
. _ Realpis ~ Time (sec)
Nyquist representation for Kc=8,Ti=infinity and Td=0 Oscillatory response Kc=8, Ti=infinity and Td=0
Figure 4.2c Figure 4.2d

Figure 4.2: Closed-loop step response Gf(s) :ﬁ withK, =[28], T. =« and
T,=0
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A significant drawback of this closed-loop tuningtimod is that the ultimate gain has to
be determined through trial and error and the sydtas to be driven to its stability
limits. Another disadvantage is that when the psede unknown, the amplitudes of the
undampened oscillations can become excessive wéiag trial and error to determine
the ultimate gain of the system. This could leaditeafe plant conditions. The closed-

loop tuning rules for P, Pl and PID control areggivn Table 4.1.

4.2.2 ZN open-loop tuning method (Process reaction curve method)
This method is based on a registration of the dpep-step response of the system. From
Figure 4.3, it can be seen that following a stegngle, the system’s S-shaped response is

characterized by three parameters, namely the gsostatic gaink , the process time
constantT, and L, . These parameters are used to determine theolierit tuning

parameters (see Table 4.2).

Controller Kec T; T4
P 0.5K, 0 0

PI 0.4K, 0.8P, 0

PID 0.6K, 0.5P, 0.125P,

Table 4.1: Ziegler-Nichols closed-loop tuning parameter (Z&egind Nichols, 1942)
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Controller Ke T Tyq
TP
P o0 0
LPKP
09 To 333L
PI LK, 33L, 0
12 To 2L 0.5L
PID " p - p
LPKP

Table 4.2: Ziegler-Nichols open-loop tuning parameter (Ziegled Nichols, 1942)

Open loop step response

2 T T T T
fffff Set point
Process response
1.5+ B
63.2% of steady -state value
************ A Y
7’
=
5 —— 4%
o
@ Point of inflection 7
® Step change Process change
o
i |
)l A
Lp Tp
0.5+ _
-1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Time (s)

Figure 4.3: Open-loop process reaction curve for a step change
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An advantage of the open-loop method is that fiasser and only requires a step change
to be applied at the process input in order tordetee extract the relevant data for
determining the tuning parameters. The method toegver suffer from some serious
drawbacks namely:
i) The “S-shaped” process reaction curve and itsgtiia point are difficult to
identify when the measurement is noisy and,
i) A considerable amount of error can be introducedl tine tuning calculations

if the point of inflection is not determined acdeds (Liptak, 1995).

4.2.3 Assessing the efficacy of Ziegler-Nicholstuning rulesfor dead-time dominant
process

ZN tuning yields a poor closed-loop performancedead-time dominant control loops
(Astrém, 1995; Shinskey, 1994; Majhi and Athertd®99). To illustrate this point,
consider the PID controller algorithm of (4.1) lgpimsed to control the process defined in

(4.2) in a SISO control loop configuration.

G,(s) =K [1+ Ti +Tys]+b Equation (4.1)
'S

G, (9 = expess)

(5+1)° Equation (4.2)
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For closed-loop tuningK, =125 and P, =15.7. The parameters extrapolated from the
systems open-loop response to a step inputiaes1, T, =33 and L, =5. Table 4.3

shows the ZN open-loop and closed-loop tuning patars.

From Figure 4.4, both variants of the ZN tuning moefblogy methods results in a
damped oscillating response. Also, the recovemnfeoload disturbance is slow since the

integral action given by the Ziegler-Nichols methsdaveak.

ZN tuning
Kec Ti Tq
method
Closed-loop
0.75 7.9 2
tuning
Open-loop
0.8 10 2.5
tuning

Table 4.3: Ziegler-Nichols open-loop and closed-loop tuningapaeters for
expess
6, (9 = 2PL5Y
(s+1)
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Closed Loop Step Response of: Gp(s):le><p(-55)l(s+1)3
T T T T T

T T
— — — Step Input
18 2N closed-loop tuning L

e ZN open-loop tuning

1.6

1.4+

1.2

Process Output
»

4
©

o o
S @
0—44+44ﬂ——4444\444‘

o
N

1 1 1 1 1 1 1 1 1
20 40 60 80 100 120 140 160 180 200
Time(s)

o

Figure 4.4: Step response using ZN open-loop andskd-loop tuning for a dead-
expE5s)

time dominant processG, (S) =
p o(9) (s+1)°

4.3 Cohen-Coon tuning (Open-loop tuning)
The ZN method was designed for a process that taegalate itself. To account for
self-regulation, Cohen-Coon (CC) introduced thé-iegjulation index or controllability

ratio given by (4.3) (Cohen and Coon, 1953)

L

e=—"
Tp

Equation (4.3)

With regards to (4.3)L, refers to the process dead time ancdenotes the process time

constant. This method is based on a first-ordes-giead-time (FOPDT) process models

(4.4):
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K, exptL,s)

Gp(s) = (Tps+]_)

Equation (4.4)

A summary of the CC method is given in Table 4.4.

4.3.1 Comparison between ZN and CC Tuning

A fundamental difference between the ZN and CC odhs as follows: The ZN method
associates the integral and derivative constamsplsiely with the process dead-time,
whereas the CC method adjusts the integral andadse time constants according to
the particular relationship between the processl dié@e and the process time constant.
For both methods, the controller gain is a functdrihis relationship. Since processes
having different controllability ratios experiendéferent dynamic behaviors, the Cohen-
Coon method may perform better than the Zieglehbdle method (Liptak, 1995). For
example, for dead-time dominant processes i.e.ess®s having a large controllability
ratio, the derivative time constant tends towardsozaccording to the Cohen-Coon
tuning formulae. This is reasonable since the d#ékie action should not be used when
the process contains large process time lag (Aswéich Hagglund, 2004, Hagglund,
1992). The method does suffer from the decay ragimg too small. This results in
closed-loop systems that are characterized by Ewpihg and high sensitivity (Astrém,
1995). Furthermore, the tuning formula tends todpo® a very oscillatory set-point
change closed-loop response because it was ddovge a quarter wave decay ratio

following a load disturbance response (Habhgl.,1991).
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Controller Ke T Tyq
i 1
P 035+—} o 0
i £
Pl 0083+ 22| | [33+ 031 }T 0
L € ]| 1+22¢ P
i 135] | [
- 025+ 135 | [25+ 0.465}1_[) [ 37 }Tp
& ||| 1+ 061 1+ 019¢

Table 4.4:Cohen Coon tuning formula (Open-loop)

4.4 Astrom - Hagglund Gain and Phase Method (Closedoop Method)
The tuning method proposed by Astrom- Hagglund 4)®8based on the idea of moving

the critical point on the process Nyquist curvetgiven position. Astrém and Hagglund

suggested that this point be located at unity gaid at a phase ofg( -180) on the

Nyquist plot, whereg,, denotes the desired phase margin &ydrepresents the desired
gain margin. The phase and gain margins of a cosystem are a measure of closeness
of the polar plot of the system to tlie1+ jO) point. For a system to be stable both the
phase and gain margins must be positive. Negatagins indicate instability (Ogata,
1970). For satisfactory performance, the phase imatgould be between 3@nd 60,

and the gain margin should be greater than 6 d&ig@d.970). The Nyquist plots shown
in Figures 4.5a and Figure 4.5b illustrate the phasrgin and gain margin of a stable
and unstable system, respectively. The phase margitat amount of additional phase

lag at the gain crossover frequen(sy, ) required to bring the system to the verge of
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instability, wherec is defined as the frequency at whi€(jw)| (the magnitude of the
open-loop transfer function) is unity. The phasegma(¢,,) is 180 plus the phase angle

¢ of the open-loop transfer function at the gainssower frequency and is defined in
(4.5):

¢, =180 +¢ Equation (4.5)

Re

Figure 4.5a:Nyquist plot of stable system showing gain and phmaargins

Im
ENESE
N P S
. x
< G(jw)

Figure 4.5b: Nyquist plot of unstable system showing gain anaisehmargins
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The phase margin is positive fgr, >0and negative forg,, <0. For the system to be

stable the phase margin must be positive.

The gain margin is defined as the reciprocal ofrt‘rmgnitude|G(jW)| at the frequency
where the phase angle is -18Defining the phase crossover frequengy ) to be the

frequency at which the phase angle of the open-@sfer function equals -18gives:

1

M GG

Equation (4.6)

The gain margin is positive iA, >1 and negative ifA, <1. A positive gain margin

indicates that the system is stable and a neggtue margin means that the system is

unstable.

A fundamental weakness in the ZN closed-loop meikdtat the method relies on trial
and error adjustments to set the ultimate gain @tichate period. To overcome this
weakness, Astrom-Hagglund (1984) proposed theim gand phase method for
determining specific points on the Nyquist curveasist in determining controller pre-
tuning parameters. Their approach is based ongbeiia simple relay in series with the
process (see Figure 4.6). When the switch is intipastwo, the PID controller is

disconnected from the closed-loop and is replagethé relay. This mode is generally
considered apre-tuning phase where specific dynamics of the procesdatermined

in the closed-loop.
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R(s) E(s) PID us) Y(s)

1 Process
2

Switck

v

Relay

Figure 4.6: Relay feedback system

When the control signal generated by the relay sqaare wave, the corresponding

process output is similar to a sinusoidal wavefarith the process input (s) and

process outputy(s) having opposite phase (Astrom, 1995). From Fouseries

expansion, the first harmonic of the relay outpas lamplitude given by4ﬂ where d
T

represents the amplitude of the relay signal tndenotes the period of relay switching

(Astrom and Hagglund, 1984). If the process outpyt, then the ultimate gain is thus

given as:

K,=— Equation (4.7)

This result also follows from the describing functiapproximation for an ideal relay:

N(y) = 4d Equation (4.8)
7y
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For systems designed to perform within gain maspiecifications, the proportional gain

and derivative time constant is given by Equat#®8) and Equation (4.10) respectively.

K. = K, Equation (4.9)
Ay
_ 1 :
T, =T Equation (4.10)

With reference to equation (4.9) and equation (4.2 is the desired amplitude margin,

K, is the critical gain; the gain crossover frequefy) is evaluated as:

W =— Equation (4.11)

The integration timd; is arbitrarily chosen (Astrom and Hagglund, 1984).

Systems with a prescribed phase margin are obtéiyted

K. =K, cosg, Equation (4.12)
T =yl Equation (4.13)
|4 2
tang, +.|— +tan" @,
Ty = 4 Equation (4.14)
2w,

C
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The proportional gairK . is defined once the ultimate galg,is determined. The value
y=4 is commonly used to define the relationship betwé®e integralT, and the

derivative T, time constants (Astrém and Hagglund, 1995). Théhowhowever, may

not be suitable to tune PID controllers for proesswith large time delay since this
design may result in a very oscillatory closed laegponse (Zhuang and Atherton,

1993).

4.5 Poulin-Pomerleau Tuning Method for Second-Ordeintegrating Process having
Dead-Time (SOIPDT) - (Open-Loop Tuning)
Poulin and Pomerleau (1996) proposed a graphicaingu method for integrating

processes given by (4.15):

K,expEL,s)

G, (9)= S(T,s+1)

Equation (4.15)

Their method is based on the Nichol analysis ofapen-loop frequency response of the
process in series with the controller. With regatmd=igure 4.7, the design goal is to

position the system on the 3dB ellipse. This isieddd by adjusting the value of the
proportional gain K_) until the frequency response of the system rastthe stipulated
point, which is also known as the maximum peak masoe (M ). The controller

parameters are determined to satisfy the specditain the maximum peak resonance of

the closed-loop system.
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Figure 4.7: Typical open-loop frequency response for secon@+ardegrating process

with time delay in cascade with a PI controller

The maximum peak resonance is determined grappitraln Figure 4.8. From Figure

4.8, the controller can be tuned for input loadwitsance or output load disturbance. In

L
order to determine the optim#,, the_l_—p ratio must be known. A disadvantage of this

p

tuning method is that the operator requires theimam peak resonance charts in order

to tune the controller. Since this is a graphi@dhhique, it may be difficult for the

control practitioner to understand and implemeis thethod (Leet al, 2000).
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Figure 4.8: Optimal M, , according to the ITAE criterion for SOIPDT proses a

L
function of the—" ratio
TP
From Figure 4.8M, is chosen such that the ITAE criterion is minindiZer a step load
disturbance at the output or the input of the pged®oulin and Pomerleau, 1996). Once

the M, is chosen, the maximum phase value is:

1

DG( JWmax) = arcco%\/:I.OO':LMr - 1OOTM,

} -7 Equation (4.16)

The frequencyw,,.at which the phase maximum occurs is:

W, oy = _r Equation (4.17)
(T, +L,)
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The integral time constant that gives the desirés( jw,,..) is:

__ 16T, +Ly)
" (2OG( Wiy + 77

Equation (4.18)

The pointG(jw,

max

)is located on the right-most point of the ellipsesaecified byM, .

The relationship betweefB(jw,,,,)| and M, can be visualized on the Nichols chart as

shown in Figure 4.7. The maximum gain of the systegiven as:

100-05Mr
|G([Wype)| = Equation (4.19)
max 0.1M
10 —1

The proportional gain that gives the desifégw,,.,) is:

K Ti|G(J.Wma><)|\[-|-p2wmax + Wr‘r:ax E ti (4 20)
c— qguation .
2
Kp VTl Wr?]ax +1

The derivative time constant is:

Equation (4.21)
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4.6 De Paor-O’ Malley Tuning for First-Order Open-Loop Unstable Processes

having Dead-Time (FODUP)

For De Paor-O’ Malley tuning (1989), controller pareters are derived from a Nyquist
analysis of the time delayed process of (4.22)rwnei single open-loop unstable pole
(A):

K, exp(tL,s)

G,(s)= )

Equation (4.22)

The Nyquist curve for (4.22) is illustrated in Figu4.9. Asymptotic stability is obtained
if and only if the plot encircles the poiEt%+ jOJ once in an anticlockwise direction
cp
(De Paor-O’ Malley, 1989). The design procedureskased upon the classical stability
indices of gain and phase margin. The gain margsigth does however require a

numerical technique for solution of the design peob

Re
(-1+j0)

Figure 4.9: Nyquist diagram for open-loop unstable process @8iqn 4.22)
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The P-controller parameter to ensure an optimal gergin is given by (4.23) :

K, = [(1+ 5‘:2)1/4]% Equation (4.23)

p

Where, . denotes the smallest positive root and is detethiny iterative algorithm
(4.24):

L

Opy = Itan o, Equation (4.24)

From Figure 4.10, (4.24) converges td for any initial guess in the range

O<a‘1<L.
2AL

p

itan_ld /J
AL

Figure 4.10:Iterative algorithm for determination @},
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To ensure an optimal phase margin, the tuning patemfor the P-controller is

determined from (4.25):

K :L Equation (4.25)

TR,

and the optimal phase margin is:

p

1/2
L[1-AL _
@, = tan 1( m pJ - (-, ) Equation (4.26)

For PI control the P-control determined from (4:27)

AL

p

1/2
K, = cod{1- AL AL, J2 + (1_ AL”J sin(1- AL, )AL, )2 Equation (4.27)

and the integral term calculated from (4.28):

AL 2

p

12 1
3 :I.—/1Lp @, )
T = tan-" |} Equation (4.28)

Equations (4.27), (4.29) and (4.30) are used terdehe the tuning parameters for three

term control.
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1/2
1-AL
T = L{ - p} tar{%}}‘ Equation (4.29)
p

AL
T = P At Equation (4.30
‘ (1—/]Lp AIJ q (4.30)

De Paor-O’ Malley have derived their stability eribn for processes having control

L
ratios of_l_—p<1. The results of the controlled system tuned usiregmethod is highly
p

L
oscillatory with unacceptable overshoots even f_IQE’L:O.B (Venkatashankar and
p

Chidambaram, 1994). Their results on the contrajj@in (K,) and the integral time

constant ) ratio reflect that fo_ll'l__—p > 0.7, the value for the integral time constant is
p

very large. Hence the integral action in a PI cafgr would be eliminated making it a

simple proportional controller (Venkatashankar &tddambaram, 1994). For unstable

processes the proportional controller would resulan overshoot of 200% making it

unsuitable for processes of this nature (eeal, 2000).

4.7 Venkatashankar-Chidambaram Tuning Method for Frst-Order Open-Loop
Unstable Processes Having Dead-Time (FODUP)
Venkatashankar and Chidambaram (1994) derived appate analytical tuning

formulae based on the De Paor and O’ Malley metli@B9). The method was
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developed using P and PI controllers for FODUP @sses of the type represented by

(4.31):

K, exptL,s)

Gy(s) = (TpS—l)

Equation (4.31)

The work proposed a method to only tune the P dntbRtroller and does not support
tuning of the PID controller. This is viewed as ignfficant drawback since unstable
processes controlled by a PID controller may prewvietter closed-loop performance in
comparison to Pl type (Anandanataragaral, 2006). In addition, stability analysis of the
PI1 controller tuned using this method requires thatcontrollability ratio for the process

model be less than 0.775 (Venkatashankar and Chialam, 1994).

According to the Venkatashankar and Chidambaramhadefor Pl controllers, the

proportional control is bounded within the range < K_<K_ to ensure closed-loop

L
stability for systems with controllability ratio o_lf_—p < 0.775. For systems approaching
p

L
_I_—p = 025 K is determined from (4.32):
p

K, = (098)f1+T%f|” Equation (4.32)

where the gain crossover frequer(c%)is defined as:
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W, = Equation (4.33)

L
For systems approachin;Pp— =0.775 Kk is calculated from (4.34)
p

_ Ga)1+Tiafa’)”
Crmax [l+ 2&,2]1/2

Equation (4.34)

where, a is:

a= —(Tp - Lp)ﬁ Equation (4.34a)

and g3 is chosen according to (4.34b) and (4.34c):

L
B=1373 for T—p < 025 Equation (4.34b)

p

L
£=0953 for 025< _I_—p < 075 Equation (4.34c)

p

L
Systems with_l_—p - 0.775results ina - 1 (Venkatashankar and Chidambaram, 1994).
p

Ti is represented by:

T, =25, - L,) Equation (4.35)
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4.8 Summary and conclusion

A summary of the tuning rules discussed in thisptdrais given in Table 4.5(a) and
Table 4.5(b). The Ziegler-Nichols tuning methodsutein closed-loop systems with very
poor damping, since it was intended for quarter evedamping. Ziegler-Nichols open-
loop tuning is only suitable for open-loop stabteqesses and the closed-loop method is
applicable to processes that operate deep wittenstable region under closed-loop
conditions. Processes operating on the periphethefstable region will be unsafe to
tune using closed loop Ziegler-Nichols tuning. Thethod also results in poor tuning
(Astrom, 1995) and fine tuning is usually necessarymprove loop performance. In
spite of these shortcomings, the method is s#litiost preferred by control practitioners.
Its popularity is largely due to the fact that iisvamongst the first tuning methods to be

proposed, and compared to most other tuning teabksid is still the simplest to use.

The ZN and AH methods are unsuitable for dead-tioeinant processes (Astrém,
1995; Shinskey, 1994; Zhuang and Atherton, 1998)eOmethods that were discussed
are not often applied in practice because theypareeived as being complicated and
time consuming to implement (Pillay and GovendedQ7). For these reasons the
research proposes a simple stochastic methodolmgged on the PSO computational

algorithm, for determining PID tuning parametersislis discussed in the next chapter.
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Tl;:lleng Controller Ke T Tq Comments
ZN Ko
(Closed-| P 0.5K, o 0 determ!ned
loop) by trail and
error
ZN K, and P,
(Closed-| PI 0.4K, 0.8P, 0 determined
loop) by trail and
error
ZN K, and P,
(Closed- | PID 0.6K, 0.5P, 0.125P determined
loop) by trail and
error
K, T, and
ZN T L :
(Open- | P o 0 » determined
loop) LoKs by open-loop
step response
ZN K,,T, and
(Open- | PI 09 % 333L, 0 L+ determined
loop) LKy by open-loop
step response
K,, T, and
ZN T ) |
(Open- | PID 12—2° 2L, 05L, » determined
loop) Lok by open-loop
step response
K, and &
1 .
CC P —[035+—} o0 0 determined
Ko € by open-loop
step response
- - K, T,andée
cC Pl 1 0.083+E M}T 0 determined
Kol el | 1+22¢ |° by open-loop
step response
- - |- K,,T, and &
CC PID =1 025+£5 M}T [L}T determined
Kol & ] | 1+06l |° |[1+019%] " |by open-loop
step response

Table 4.5a:Summary of tuning rules

| Tuning | Controller |

Kc

T;

Ty

| Comments |
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rule

PID K, bi 1 Specified gain
AH A arbitrary e margin A
Specified
AH |PID K, cosg, 7, . ;a““’m*vzi“a"“’m phase margir
) &
pp PID T G(iW )| szwamx wio 16(T, +L,) T Optlmal Mf
KT +1 @IG(Wya) + 70" ; g?gduﬁef 8”0”
A Based on
DO P Ke o 0 optimal phase
Koy ALy margin ¢,
B Based on
DO PI K" T [[[IAL”L] tanﬂzm}] 0 optimal phase
p margin ¢,
o Based orn
DO PID Kc(l) [ S t{ﬁ] AJ T, =[ e ]/rl optimal phase
[[ Ly ] 4 J (1 /\ij}T‘ margln ¢m
5
a=r (r,-L,)8
P
where,
B =1373 for
_ Ga+Tiwta]? _ _ 5 cozs
VC PI e T, =25T, - L,) 0 T
and

B =0953 for

L
025<—< 075
T

P

1/2
0 =eodu o s

p

Table 4.5b: Summary of tuning rules
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Chapter 5

Evolutionary Computation and

Swarm Intelligence Paradigms

5.1 Introduction

Evolutionary computation (EC) and Swarm Intelligen(Sl) fall within the area of
artificial intelligence (Al) (Engelbrecht, 2002).CEis founded upon the principles of
biological evolution whilst Sl techniques are inspi by swarm behavioral patterns
occurring in nature (Kennedst al.,2001). With the increase of computational powdr, A

has increasingly been used to solve complex liaedrnonlinear control problems.

This chapter provides an introduction to EC andu$es specifically on the PSO
algorithm for providing an alternative approachPti® controller tuning. A comparison
between the PSO and the GA is also included irstindy due to the fact that both SI and

GA's are based upon a population of so called liigent agents’.

5.2 Evolutionary Computation

EC techniques are inspired by biological concepishsas population mutation, self-
organizing and survival of the fittest. They argamled as general purpose stochastic
search methods that simulate the process of nasalalction and evolution in the

biological world. There are four major evolutionaeghniques namely:
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5.2.1 Genetic Programmin@P): GP is used to search for the fittest prograrsolve a
specific problem. Individuals are represented asstrand the focus is on the genetic
composition of the individual.

5.2.2 Evolutionary ProgrammingEP): EP is generally used to optimize real-valued
continuous functions. EP uses selection and mutatigerators and does not use the
crossover operator. The focus is on the observadacteristics of the population. The
selection operator is used to determine chromosdoadied parents) for mating in order
to generate new chromosomes (called offspring.)

5.2.3 Evolutionary Strategie$ES): ES is used to optimize real-valued contirsuou
functions. ES incorporates selection, crossover mwdation operators. ES optimizes
both the population and the optimisation processewgiving the strategy parameters
(Omran, 2004).

5.2.4 Genetic AlgorithmgGA): The GA is a commonly used evolutionary aition and
has been selected for comparison with the PSQisrthiesis. PSO is similar to the GA in
the sense that these two evolutionary heuristiepapulation-based search methods. The
GA and its variants have been popular in acadendalze industry mainly because of its
intuitiveness, ease of implementation and its gbtlb solve highly non-linear, mixed
integer optimization problems that are typical omplex engineering systems (Hasgsan
al., 2005). GA’'s have also been successfully utilizedtune PID controllers (see
Krohling and Rey, 2001).

EC techniques involves the following steps:

Step l:nitialise a population of individuals where eadldividual represents a potential

solution to the problem at hand.
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Step 2:Apply a fitness function to evaluate the qualityeach solution.

Step3: A selection process is applied during each titemato form a new population.

The selection process is biased toward the fittdividuals to ensure that they will be
part of the new population.

Step 4:Individuals are altered using evolutionary opemratdhe two most frequently
used evolutionary operators are mutation and cu@sso

Mutatiort Mutation introduces diversity to the populationibtroducing new genes into
the genetic pool. During mutation individual ageuntslergo small random changes that
lead to the generation of new individuals. Thidsissn reducing the possibility of agents
being trapped within local optima.

Crossover (or Recombinatian)his process is synonymous to mating. During swesr
two individual agents combine to produce offspriige main objective of crossover is
to explore new areas within the search space.

Step 5:The above-mentioned steps are repeated until taenswonverges on an optimal
or sub-optimal solution.

A brief overview of the above-mentioned evolutignatrategies is given in the following

section.

5.3 An Overview of Genetic Algorithms

Genetic Algorithms (GA’s) are adaptive heuristicaef algorithms that follow the
Darwinian principle of “survival of the fittest”. ey are based on the evolutionary ideas
of natural selection and genetic inheritance. Gid\®lve a population ofndividuals
referred to achromosomesand each chromosome consists of a string of celled

genes
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Chromosomes undergo selection in the presenceriatioa - inducing operators such as
crossoverand mutation. Crossover in GA’s occurs with a user specified piolity
called the trossover probabilityand is problem dependant. Theutation operatoris
considered to be a background operator that islypnased to explore new areas within
the search space and to add diversity to the pvpalaf chromosomes in order to
prevent them from being trapped within a local wptn. Mutation is applied to the

offspring chromosomes after crossover is performed.

A selection operatoselects chromosomes for mating in order to geeestispring. The
selection process is usually biased toward fitteromosomes. A so calletitness
functionis used to evaluate chromosomes and reproduati#eess varies with fitness.
Examples of some well-known selection approacheg&en below:

Roulette wheel selectiorParent chromosomes are probabilistically selecbeded on
their fitness. The more fit the chromosome, thehbigthe probability that it may be
chosen for mating.

Rank selection Roulette wheel selection suffers from the problémat highly fit
individuals may dominate in the selection proc&¥gken one or a few chromosomes have
a very high fitness level compared to the fitnebother chromosomes, the lesser fit
chromosomes will have a very slim chance to becsasdlefor mating. This will increase
selection pressure, which will cause diversity ézréase rapidly, resulting in premature
convergence. To reduce this problem, rank selestiots the chromosomes according to

their fitnessBase selectiosorts chromosomes based on their rank order.
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Tournament selectiorin this more commonly used approach a set ofrobbsmmes are
randomly chosen (Goldberg, 1989). The fittest closoames from the set are then placed
in a mating pool. This process is repeated ungl itating pool contains a sufficient
number of chromosomes to start the mating process.

Elitism: In this approach the fittest chromosome, or ar-specified number of best
chromosomes, is copied into the new population. fEmeaining chromosomes are then

chosen using any selection operator.

5.3.1 Premature convergence of Genetic Algorithms

GA'’s suffer from premature convergence (or stagmatiwhich occurs when poorly

performing individuals attract the population. Thagtraction is caused by a poor
initialization or through selection of an unsuilibcal optimum. Convergence prevents

further exploration of the search space and redseach capabilities (Gaing, 2004).

5.4 Swarm Intelligence

Swarm Intelligence (SI) methods are based arouadstady of collective behavior in

decentralized, self-organized systems. Sl systemsypically made up of a population

of simple agents interacting locally with one amwtrand with their environment.

Although there is no centralized control structdigtating how individual agents should
behave, local interactions between such agents ¢dted to the emergence of a global
behaviour.

Two of the most successful Sl techniques modeletherbehavior of natural systems are

ant colony optimization (ACO) proposed by Dorigaladambardella (1997) and particle
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swarm optimization (PSO) proposed by Kennedy andrlidrt (1995). Our research
focuses on the PSO method and a detailed deseriptithis method is provided in this
chapter. For the sake of completeness a brief ig¢iger of the ACO approach has also

been included.

5.4.1 Ant Colony Optimization

In ACO atrtificial ants build solutions by travergia problem space. Similar to real ants,
they deposit artificial pheromone on the workspiaca manner that makes it possible for
future ants to build better solutions. In real eslbnies the pheromone is used to find the
shortest path to food. Using ACO, finite size cadsnof artificial ants communicate with
each other via artificial pheromones to find qya$blutions to optimization problems.
ACO has been applied to a wide range of optimimapmblems such as the traveling
salesman problem, and routing and load balancimgpoket switched networks (Dorigo

and Gambardella, 1997).

5.4.2 Background to Particle Swarm Optimization

The PSO approach utilizes a population based s$tichagptimization algorithm proposed

by Eberhart and Kennedy (1995). It was inspirednfithe computer simulation of the

social behaviour of bird flocking by Reynolds (198Reynolds used computer graphics
to model complicated flocking behaviour of birds #as mainly interested in simulating
the flight patterns of birds for visual computemsiation purposes, observing that the
flock appearsto be under central control. Reynolds proceededddel his flocks using

three simple rules, namebollision avoidancevelocity matchingand flock centering
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Using these rules Reynolds showed how the behawiobeiach agent inside the flock can
be modeled with simple vectors. This characteristione of the basic concepts of PSO.
Boyd and Recharson (1985) examined the decisionmgaidtocess of human beings and
developed the concept of individual learning anluca transmission. According to their
examination, people utilize two important kinds ioformation in decision-making
processes, namely:

Their own experiencel'hey have tried the choices and know which dtatebeen better
so far, and they know how good it was and

Other people’s experience§hey have knowledge of how the other agents atdham
have performed. In other words, they know whichicé® their neighbours have found
positive so far and how positive the best pattérohoice was. Each agent’s decisions is
based upon his own experience and other peoplgeriexce. This characteristic is

another basic concept of PSO.

Eberhart and Kennedy (1995) incorporated thesesigga the development of their PSO
method and invented simple velocity and positiagpathms that mimic natural swarm

behaviour. In PSO, a set of randomly generated tagaopagate in the design space
towards the optimal solution over a number of tieress. Each agent has a memory of its

best position and the swarm’s best solution.

PSO is similar to EC techniques in a sense thdt approaches are population-based and

each individual is evaluated according to a spediffitness function. The major

difference is that PSO is influenced by the simatabf social behaviour rather than the
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survival of the fittest (Shi and Eberhart, 2001d&d to this, each individual benefits
from its history and its interactions with its peelPSO is also easy to implement and the
fact that no gradient information is required makkesgood candidate for a wide variety
of optimization problems (Kennedt al., 2001). PSO has been successfully applied to
solve a broad range of optimization problems ramdgnom Artificial Neural Network
(ANN) training (Salerno, 1997) to reactive powedamltage control (Fukuyamet al,
2000). The PSO method is also computationally lrgslening in comparison to other
EC techniques such as GA's (Gaing, 2004). A didouassf the basic PSO algorithm is

given in the following section.

5.4.2.1 The basic PSO algorithm

In a PSO system, a swarm of individuals (calfgdticles or intelligent agent$ fly
through the search space. Each particle repreaarasdidate solution to the optimization
problem. The position of a particle is influencedthe best position visited by itself (i.e.
its own experience) and the position of the bedigda in its entire population. The best
position obtained is referred to as tgmbal best particle. The performance of each
particle (i.e. how close the particle is from thieb@l optimum) is measured using a

fitness function that varies depending on the op&tion problem.

Each particle traverses th¥Y coordinate within a two-dimensional search spéise.
velocity is expressed bwx and vy(the velocity along thex-axis and y-axis,

respectively). Modification of the particles positi is realized by the position and

velocity information (Kennedgt al, 2001). Each agent knowts best valuebtained so
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far in the search gbest) and its XY position. This information is an analogy of the

personal experiences of each agent. Individuaigbestalso have knowledge about the
best value achieved by the grogbes} amongpbest Each agent uses information
relating to: itscurrent position(x,y), its current velocities(vx,vy), distance between its
current positionand its pbestand the distance between its current position amel t
groups gbestto modify its position.

The velocity and position of each agent is modifiedording (5.1) and (5.2) respectively

(Kennedy and Eberhart, 1995):
vt =vf + crand, x (pbest — s¥) + c,rand, x (gbest- s) Equation (5.1)
Sk

. = S,k + Vik+l Equation (5.2)

With regards to (5.1):

Ve = current velocity of agetat iteratiork

vt = new velocity of ageniat iterationk,

C, = adjustable cognitive acceleration constants (s®ifidence),
c, = adjustable social acceleration constant (swamnfidence),

rand ,, = random number between 0 and 1,
s¥ = current position of agemat iterationk,
pbest = personal best of agent

gbest = global best of the population.
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For (5.2):

s*** denotes the position of agardt the next iteratiork +1,

Figure 5.1 illustrates the concept of modificatioina searching point during the PSO

process (Eberhart and Kennedy, 1995). With regarésgure 5.1, 3nd s“* denote the

current and modified search point, respectivé{§/and Vkﬂrespectively represent the
current and modified velocityY e @Nd vy, represents the velocity based upmirest

andgbest respectively. Each agent changes its currentiposiising the integration of

vectors as shown in Figure 5.1.

v

Figure 5.1: Concept of modification of a searching point by PSO
(Kennedy and Eberhart, 1995)
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A problem with the early version of the PSO alduritas represented by (5.1) is that the
system has a tendency to explode as oscillatioognbe wider (Kennedgt al, 2001).

To damp the velocity and limit uncontrollable oktibns of the particles, a method of
limiting the velocity to a predetermined value waimaximum velocity parameteY (., )

is incorporated into the system (Kenneelyal, 2001). The pseudo-code for limiting

particle velocity is as follows (Kennedy al, 2001):

k+1 k+1
If VISV thenV' T = Vi

. k+1 k+1
Else if V*" >Vmax thenV "= Vax

The effect of this code allows particles to ostdlavithin bounds with no tendency for
the swarm to converge (Kennedy al, 2001). TheV, parameter thus improves the

resolution of the search and arbitrarily limits tredocities of each particle (Carlisle and

Dozier, 2001).

5.4.3 Variationsto the PSO algorithm

Variations to the conventional PSO algorithm of Blaet and Kennedy (1995) to control
convergence of the swarm have been proposed bwr&hiEberhart (1998) and Clerc
(1999). The method proposed by Shi and Eberha@8)l8ses an “inertia weighting”

function (see (5.3)) to control the swarm’s coneerce.

W —W. . .
w=w,_ ——X 0 xjter Equation (5.3)
iter. .,
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With regards to (5.3)w = inertia weightw, ., = initial inertia weight,w_. = final inertia

min

weight, iter, .. = number of iterations anider = current iteration.

The inertia weight controls the impact of the poe velocities: a large inertia weight
controls the impact of the previous velocity anshaall inertia weight favors exploitation

(Shi and Eberhart, 1998). Eberhart and Shi (1998)ally implemented the inertia

andw

weights W, i

nax ) so that it decreases over time. The effect eftittne-decreasing
coefficient is to narrow the search to induce & $fom an exploratory to an exploitative
mode (Kennedwt al, 2001). The inertia weight is then multiplied e tcurrent velocity

component, to give:

vt =wvf + crand, x (pbest - s) + c,rand, x (gbest- s*) Equation (5.4)

All the meanings of the variables in (5.4) are slame as was defined for (5.1). Clerc’s
method (1999) to control swarm convergence involeessystem of “constricted
coefficients” applied to various terms of the comv@nal swarm velocity algorithm (see
(5.1)) proposed by Eberhart and Kennedy (1995).is B calledconstriction factor
approach proposed by Clerc (1999) controls the sveamvergence so that:

- the swarm does not diverge in a real value regioh

- the swarm converges and searches region mouogeetily.

The modified velocity update equation (Clerc, 1989jiven in (5.5):
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VK = leik + ¢,rand, x (pbest — s*) + c,rand, x (gbest- S.k)J Equation (5.5)

With regards to (5.5))y represents the constriction factor and is defing®.6):

Equation (5.6)

2
X =
2-¢ 0" - 49
Where the constarg is defined in (5.7):
g=c +c,, p>4 Equation (5.7)

The meanings of all the other terms in (5.6) and)(are the same as was previously
defined for (5.1). The constriction factor resulisconvergence over time. Unlike the

other EC techniques, the constriction factor apginida PSO ensures the convergence of
the search procedures based on mathematical tf@lene, 1999). The approach ensures
that the amplitude of each agent’s oscillation dases as it focuses on a previous best

point (Clerc, 1999). Eberhart and Shi (2000) showetpirically that using both the
constriction factor and velocity clamping paramedér_.) generally improves both the

performance and the convergence rate of the PSO.

5.4.4 Stepsin implementing the PSO method.
Figure 5.2 illustrates the general flowchart foe SO technique. The sequence can be
described as follows:

Step 1:Generation of initial conditions of each agent.
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Initial searching points{’) and the velocities’ ) of each agent are usually generated
randomly within the allowable range. The currerdreking point is set tgbestfor each
agent. The best-evaluated value @fest is set togbestand the agent number with the

best value is stored.
Step 2:Evaluation of searching point of each agent.
The objective function is calculated for each agérthe value is better than the current

pbest value of the agent, thepbest is replaced by the current value. If the best eaf
pbest is better than the curremjbest, the gbest value is replaced by the best value and

the agent number with the best value is stored.

Step 3:Modification of each searching point.

The current searching point of each agent is chdhnggng (5.3), (5.4) and (5.2) for the

inertia weight approach. Equations (5.2), (5.5) ém8) is used for the constriction factor

method.

Step 4:Checking to exit condition.

The terminating criterion is checked to determinigether it has been achieved. If the
terminating criterion is not met then the processepeated from Step 1, otherwise the

algorithm is stopped.
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\4

Generation of initial condition of each agent. STEP 1

A 4
Evaluation of each searching point of each agent. STEP 2

A 4
Modification of each searching point.

STEP 3

NO Termination

criteria met?

Stop

Figure 5.2: Steps in PSO (Eberhart and Kennedy, 1995)
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5.4.5 Sdlection of the search method.

The constriction factorapproach of Clerc (1999) has been chosen oveEleehart and
Kennedy (1995)nertia weighttechnique for this research. This has been donause
Clerc’s constriction method has the advantage afgoable to recover from a shift to
exploratory search back to the exploitative seamhother advantage is that the

constriction method converges much faster tharirtbgia weight approach of Eberhart
and Kennedy (1999), and when combined with velogigximum ¥, ) may perform

well (Kennedyet al, 2001).

5.4.6 Sdlection of termination method.

A common terminating criterion is to define the mmaxtm amount of iterations that the
PSO can perform. Once the PSO reaches the pregehum iterations the algorithm is
automatically terminated according to the flowclaven in Figure 5.2. This terminating
criterion has shown to yield poor results sincen#ty produce sub-optimal performance
due to premature termination. Th&all-terminatingcriterion is therefore utilized in the
study. With this approach, if the PSO algorithmlistaontinually for any fixed period
and the algorithm is then stopped. The fixed peisagser defined and can be adjusted to

suit a particular application.

5.4.7 Factors affecting PSO performance

The swarm'’s size and velocity, plus the behaviahefswarm influence the performance

of the PSO process.
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)] Swarm size and Velocityfthe number of particles in the swarm significantly
affects the run-time of the algorithm, thus a beéabetween variety (more
particles) and speed (less particles) must be foégiother important factor
in the convergence speed of the algorithm is theinmam velocity parameter

(V.,a)- This parameter limits the maximum jump that #ipke can make in

one step, thus a very large value for this parameile result in oscillations.
On the other hand, a very small value could cabseptrticle to become
trapped within local minima.

i) Swarm BehaviourThe behavior of the swarm is dictated by the suronaif
the behaviors of individual particles. Each paetidlies’ in the direction of a
better solution, weighted by some random factorybeaovershooting, or
potentially finding an individual or global bett@osition. The interaction
between the particles in the swarm helps to prewtratying off, whilst
keeping close to the optimal solution. This typebehaviour seems ideal
when exploring a large search space, especially \aitrelatively large

maximum velocity parameteV(,,). Some particles will explore far beyond

the current minimum, while the population still rembers the global best.

5.5 Comparison between the GA and PSO

Experiments conducted by Veeramacharetral. (2003) showed that the PSO method
performed better than GA’s when applied on somdigoous optimization problems. In
addition, Eberhart and Shi (1998) compared the RSGA’s. Their results showed the

following, namely:
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i) PSO is generally faster, more robust and perforattebthan GA'’s especially
when the dimension of the problem increases and,

i) PSO performance is insensitive to the populatiore s(however, the
population size should not be too small). ConsetipeRSO with smaller

swarm sizes perform comparably better than GA’sritalarger populations.

Although GA’s have been widely applied to many cohsystems, its natural genetic
operators would still result in enormous computadio efforts. Added to this, the

premature convergence of GA’'s degrades its perfocmaand reduces its search
capabilities (Gaing, 2004). On the other hand, RI$© technigue can generate a high
qguality solution within shorter calculation timesnda more stable convergence

characteristics than other stochastic methods (t&oeand Shi, 1998).

5.6 Summary and conclusion

This chapter presented a brief overview of EC ahte&niques, with special emphasis
on the GA and PSO approaches. The GA techniquekasen for comparison because it
is similar to the PSO in the sense that they ath population-based computational

approaches. Also, both the GA and the PSO appreadgend on information sharing

amongst their population members to enhance tkaich processes using a combination
of deterministic and probabilistic rules. The prepd tuning method using the PSO

algorithm is discussed in the next chapter.
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Chapter 6
PSO Tuned PID Control

6.1 Introduction
This chapter discusses the implementation of th® R&ning methodology as an
optimization strategy to determine the optimal fhgnhparameters for SISO PID control

loops.

6.2 Description of the PSO tuning methodology
Consider Figure 6.1 which represents a 3-dimenkisearch space being traversed by

intelligent agentw ;”. Each dimension’s space represents a potentiahalptalue for

K., T, andT,. The position of gent “w;” determines the controller’s tuning parameters.

I
Modification of an agent’s position is realized bgsponding to velocity and position
information according to (5.1) and (5.2). For PIRID control each agent is given an
initial position within a 2-D search space; the saapplies to PID control, but within a 3-

D search space.

Position given by the

co-ordinates(K,,T,T,) T

Figure 6.1: Position of swarm agent within a 3-D search space
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6.2.1 Application of PSO for PID Tuning

The algorithm proposed by Eberhart and Kennedy §19%es a 1-D approach for
searching within the solution space. For this stilyPSO algorithm will be applied to a
2-D or 3-D solution space in search of optimal mgnparameters for Pl, PD and PID

control.

Consider positions, . of thei-th particle as it traverses @-dimensional search space:

The previous best position for thigh particle is recorded and representeglasst, .
The best performing particle among the swarm pdjauas denoted asbgst, and the

velocity of each particle within the-th dimension is represented &s . The new

velocity and position for each particle can be glated from its current velocity and

distance with (6.1) and (6.2), respectively:

vk = )€+ crand x (pbest, - §,) + c,rand, x (gbest, -§)]  Equation (6.1)

=g Y Equation (6.2)

With regards to (6.2) and (6.3):
i = number of agents,2,....,p;
n = dimensior,2,3;

V(< = velocity of agenti- at iteration(k +1) for n-dimension;

X = constriction factor;
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Vi'fn= velocity of agentat current iteratiork for n dimension;

c, = cognitive acceleration constants (self confidgnce
c, = social acceleration constant (swarm confidence);

rand ,, = random number between 0 and 1;
pbest , = personal best of agentor n dimension;

gbest , = global best of the population for dimension;

S'fn = current position of agemtt iterationk for n dimension;

Y= position of agent at iteration(k +1) for n dimension and;

p = number of particles in the population.

For PI, PD and PID contrat = 2, 3 respectively. All other variables have the same

meanings as was described in Chapter 5.

6.2.2 Position of the PSO algorithm within the selected control loop

Figure 6.2 illustrates the position of the PSO rignalgorithm within the SISO system

used in this study. The steps for PSO tuning weentioned in Section 5.4.4. The

velocity and positional algorithms, namely (6.10g6.2), define the search within the
solution space. Following each iteration, the intpzEfceach agents position within the
search space is evaluated according to the ITAE fuogtion and the corresponding

transient response specifications. The minimizatoénthe ITAE performance index

provides a global quantification of overall systgerformance. The PSO source code

used for the tuning is given in Appendix A.
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R(s) E(s) - ues) e
A G.(9 1 & :
+ A
' Compute performance
PSO - criterion for each agent

Figure 6.2: Positioning of the PSO optimization algorithm witla SISO system

6.3 Statistical Evaluation of the Dynamical Behaviar of Intelligent Agents

The mean value and standard deviation of the ptipala position within the search
space was calculated in order to evaluate the dyahnbehavior and convergence
characteristics of the intelligent particles. Theam value (6.3) is used to determine the
accuracy of the algorithm, whilst the standard deon (6.4) measures the convergence

speed of the algorithm (Gaing, 2004).

>w

mean(x) = 4= Equation (6.3)
Y
13 - .
standard deviation(o) = .[— > (w — x)? Equation (6.4)
pPi=

With regards to (6.3) and 6.4):

W is the agent's performance index for a particybasition, ‘p’ represents the

population sizep denotes the standard deviation ané the mean value.
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6.4 Summary and conclusion

The chapter has indicated the position of the P@@ng algorithm in a SISO control
loop. A particles specific position within the sdarspace represents the tuning
parameters of the controller and is evaluated aacgrto the ITAE index. The statistical
performance of the tuning approach is measuredebsriohining the corresponding mean
and standard deviation of an agent’s position asvterses the solution space. The next

chapter focuses on determining suitable paramé&iethe PSO algorithm.
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Chapter 7

Simulation Study of PSO Performance for

Process Control

7.1 Introduction

Swarm particles display distinct behavioral charastics, namely swarm convergence
and particle explosion, as they traverse a systespace searching for an optimal
solution. Variations of the swarm’s behavior is iaeled by adjusting four explicit
parameters of the PSO algorithm, namebgnitive acceleration (¢, social acceleration

(c,), maximum velocity (W), andswarm size (§ (Kennedyet al, 2001). These four

parameters are set at the beginning of each tréhfemain constant throughout.

PSO is a stochastic optimization technique. In va#whis, swarm particles start their
search for an optimal solution from any region witthe system’s search space and, the
solution reached upon convergence may not nechsarioptimal. For this reason a
statistical validation of the PSO’s range of san is necessary to determine their
accuracy. The following indices were used to eualuhe performance of the PSO
method over ten trials, and also to provide uskfsight into the behavior of the swarm
for variations ofcy, ¢, Vinax andSs:

Mean value of the ITAE index for the tri@¥;;45)

Standard deviation of the ITAE index during thalt(io;r45)

Mean number of iterations utilized by the PSO tdqren a searclix;;,,)

Mean time taken by the PSO algorithm to completeach(X ;)
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7.2 Preliminaries to the evaluation of PSO performace
The performance of the PSO tuning methodology e $elected process models is
analyzed by running the algorithm for ten trialieTexplicit parameters of the PSO

algorithm were adjusted over the following ranges:

2
5
) 10
Swarm Size = 20 "Vimax=1; c= = 2.05
40

50

01

1
Maximum Velocity = 5 1 S$=20;6=0=2.05

10

205
Cognitive Acceleration = 3 :S$=20; Vnax=1;, @ =2.05

Social Acceleration

I
w

;' S =20; Vinax=1; = 2.05

5

Table 7.1 shows the heuristically determined PS@mpaters that were determined

following empirical testing. Each parameter wastlemstant whilst the others were
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Swarm Parameter Value
Swarm Siz€ §) 20
Maximum Velocity (Mnax 1
Cognitive Acceleration (3 2.05
Social Acceleration @ 2.05

Table 7.1:Empirically determined PSO parameters

varied over the previously mentioned ranges. Ak tiests for the ten trials were
conducted under the following conditions: Upper fwbof initialization (u,) = 1; Lower
bound of initialization () = 0. The data extrapolated from the ten trials waed to
determine the parameters for the PSO algorithm. f€sts were conducted using the

control loop shown in Figure 6.2.

7.3 Process models used in the simulation tests

The process models used in the simulation studieslaown in Table 7.2(a) to Table
7.2(d). These models, and variants thereof, areeseptative of real world models
encountered in most process control applicatiorstr(n and Hagglund, 2004; Zhuang

and Atherton, 1993).
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Model Lp/Tp

Case 1 G,(s) = % 0.1

Case 2 G,(s) = % 1

Case 3 G,(s) = % 10

Table 7.2a:FOPDT models
Model Lo/Tp

Case 4 G,(s) = % 0.1
Case 5 G,(s) = % 1
Case 6 G,(s) = % 10

Table 7.2b: SOPDT models
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Model Lo/Tp
Case 7 G,(s) =% 0.06
Case 8 G,(s) = % 0.5
Case 9 G,(9) :% 4.5

Table 7.2c:SOIPDT models

Model Lo/Tp
Case 10 G,(9) :% 0.1
Case 11 G,(s) :% 0.5
Case 12 G,(9) =% 1

Table 7.2d: FODUP models

7.4 Results of PSO parameter variation
The results of the simulations for ten trials diestrated in Figures 7.1 to Figure 7.4 and

are referenced in Table 7.3.
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PSO parameter being

varied

Case No.

Figure Ref. No.

Swarm Size §,):

2:5:10;20:40:50

Case 1, Case 4, Case 7, Case

10

Figure 7.1(agucer.1(d)

Case 2, Case 5, Case 8, Case

11

Figure 7.1(eueer.1(h)

Case 3, Case 6, Case 9, Case

12

Figure 7.1(iytwe-v.1(1)

Velocity Maximum (V.__.):

0.1;1;5;10

Case 1, Case 4, Case 7, Case

10

Figure 7.2(agueer.2(d)

Case 2, Case 5, Case 8, Case

11

Figure 7.2(gueeri.2(h)

Case 3, Case 6, Case 9, Case

12

Figure 7.2(iytoer7 . 2(l)

Cognitive Acceleration (c,):

1;2.05:3:4;5

Case 1, Case 4, Case 7, Case

10

Figure 7.3(aguoeri.3(d)

Case 2, Case 5, Case 8, Case

11

Figure 7.3(eguceri.3(h)

Case 3, Case 6, Case 9, Case

12

Figure 7.3(iytwe-v.3(1)

Social Acceleration ,):

1;2.05:3:4:5

Case 1, Case 4, Case 7, Case

10

Figure 7.4(agucer.4(d)

Case 2, Case 5, Case 8, Case

11

Figure 7.4(eueeri.4(h)

Case 3, Case 6, Case 9, Case

12

Figure 7.4(iytwe-v.4(1)

Table 7.3:Figure references to show the effects of varyigd/Qax

c: and ¢ parameters for the selected processes
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Mean Iterations Standard Deviation of ITAE Mean ITAE

Mean Time

Mean Iterations Standard Deviation of ITAE Mean ITAE

Mean Time

Adjustment of Swarm Size for FOPDT, SOPDT, SOIPDT and FODUP

5
10 s 10%°
10
= q X |
10° 10° 10°
0 10 20 30 40 50 10 20 30 40 50 0 10 20 30 40 50
(a) Case 1, Case 4, Case 7, Case 10 (e) Case 2, Case 5, Case 8, Case 11 (i) Case 3, Case 6, Case 9, Case 12
10%°
5
10 5
10
10%°
10° 10° k 10° S
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
(b) Case 1, Case 4, Case 7, Case 10 (f) Case 2, Case 5, Case 8, Case 11 (j) Case 3, Case 6, Case 9, Case 12
10° 10° 10°
2 . 2 2 L
10 10 '\\ 10
S —— v~ S ——
10! 10! 10'
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
(c) Case 1, Case 4, Case 7, Case 10 (g) Case 2, Case 5, Case 8, Case 11 (K) Case 3, Case 6, Case 9, Case 12
10° ST 107
10° 10° 10°
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
(d) Case 1, Case 4, Case 7, Case 10 (h) Case 2, Case 5, Case 8, Case 11 (I) Case 3, Case 6, Case 9, Case 12
’ —— FOPDT —#— SOPDT —*— SOIPDT FODUP ‘
Figure 7.1: Adjustment of Swarm Size (2; 5; 10; 20; 40; 50)
4 Adjustment of VeIothy Maximum for FOPDT, SOPDT, SOIPDT and FODUP
10 10 },\ J
4
N Z oA 110
107, ¥ M 10
10° 10° 10°
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
(a) Case 1, Case 4, Case 7, Case 10 (e) Case 2, Case 5, Case 8, Case 11 (i) Case 3, Case 6, Case 9, Case 12
. 10* 10°
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10° Q 10° 10°
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

10° 10° 10°

10° 10° 10° \&:
1

10 10 10*
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10

(b) Case 1, Case 4, Case 7, Case 10

(f) Case 2, Case 5, Case 8, Case 11

(j) Case 3, Case 6, Case 9, Case 12

(c) Case 1, Case 4, Case 7, Case 10

0 2 4 6 8 10

0 2 4 6 8 10
(g) Case 2, Case 5, Case 8, Case 11

3

0 2 4 6 8 10
(k) Case 3, Case 6, Case 9, Case 12

N———

N——

M~ .

1

10

10

10%

1

S;::::r—————+

N—

0 2 4 6 8
(d) Case 1, Case 4, Case 7, Case 10

10

0 2 4 6 8
(h) Case 2, Case 5, Case 8, Case 11

10

10

0 2 4 6 8
(I) Case 3, Case 6, Case 9, Case 12

10

’ —— FOPDT —#®— SOPDT —*— SOIPDT

[=

opuP |

Figure 7.2: Adjustment of Velocity Maximum (0.1; 1; 5; 10)
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Mean lterations Standard Deviation of ITAE Mean ITAE

Mean Time

Mean Iterations Standard Deviation of ITAE Mean ITAE

Mean Time

Adjustment of Cognitive Acg:eleration Constant for FOPDT, SOPDT, SIQIPDT and FOPUP
10

10 10
T 4 5
3 10 10 )
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< . |
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1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
(b) Case 1, Case 4, Case 7, Case 10 (f) Case 2, Case 5, Case 8, Case 11 (j) Case 3, Case 6, Case 9, Case 12
10° 10° 10°
1
1 b [ — ——
10" 10" 10"
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
(c) Case 1, Case 4, Case 7, Case 10 (g) Case 2, Case 5, Case 8, Case 11 (k) Case 3, Case 6, Case 9, Case 12
10° 10° 10°
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10" 10" 10"
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
(d) Case 1, Case 4, Case 7, Case 10 (h) Case 2, Case 5, Case 8, Case 11 () Case 3, Case 6, Case 9, Case 12
| —— FOPDT —=— SOPDT —+— SOIPDT FODUP |

Figure 7.3: Adjustment of Cognitive Acceleration (1; 2.05; 3,53

4 Adjustment of Social AcceJeration Constant for FOPDT, SOPDT, SOIPDT AND FODUP
10 10

I~ , 10°
10° ¢ X 0
10° 10° + = 10°
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10°
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A ——— ] \
10° 10° 100 =
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
(b) Case 1, Case 4, Case 7, Case 10 (f) Case 2, Case 5, Case 8, Case 11 () Case 3, Case 6, Case 9, Case 12
10° 10° 10°
10" 10" 10"
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
(c) Case 1, Case 4, Case 7, Case 10 (9) Case 2, Case 5, Case 8, Case 11 (K) Case 3, Case 6, Case 9, Case 12
10° 10° 10"
102'=:>-<¢k 10° 7 10° &-—q
10" 10" 10°
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
(d) Case 1, Case 4, Case 7, Case 10 (h) Case 2, Case 5, Case 8, Case 11 (1) Case 3, Case 6, Case 9, Case 12

| —— FOPDT —=— SOPDT —=+— SOIPDT FoDUP |

Figure 7.4: Adjustment of Social Acceleration (1; 2.05; 3; 4; 5
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7.5. Observing the effects of varying PSO parametsr

7.5.1 Variation in Swarm Size (SeeFigure 7.1)

Swarm size > 20 agents:

A marginal improvement was noted in the repeatgbitif the results but this was

achieved at the cost of an increased computatibneden. The number of iterations
necessary before the large swarm convergencesadesreégain at the cost of higher
computational burden. This is due to the fact thate agents find the optimal solution

over a lesser number of iterations, albeit at thet of additional computational time.

Swarm size = 20 agents:

A swarm size of twenty particles works well in aedses whereas a low population size
(say two agents) produced poor results. This cpomsds to the results of Eberhart and
Kennedy (2001). Based upon these observations st degided that a swarm size of
twenty agents was ideal for yielding high qualitylusions whilst consuming only

minimal computational power.

7.5.2 Variation of Velocity Maximum (See Figure 7.2)

The PSO algorithm yields satisfactory results whgnx = 1. Low values of Wax (say
Vmax = 0.1) yielded an unacceptable performance dumogt of the tests. This can be
attributed to the constraints placed on the pa&fScimotion trajectory, reducing its
chances of moving into an ‘optimal solution’ regidviarying the maximum velocity

from 1 to 10 resulted in no improvement in the PS&8arch since the constriction factor
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comes into effect before then parameter has an opportunity to limit the partcle

velocity (Clerc, 1999).

7.5.3 Variation of Social and Cognitive Acceleration Constants (See Figure 7.3 and
Figure7.4)

The value for cognitive and social accelerationstants has a significant impact on the
dynamic performance of the PSO algorithm. Thisasipounded by the use of Clerc’'s
constriction factor approach (1999) (see (5.48}ich inhibits particles oscillations as it
focuses on a best point within the solution spd@bservations of swarm behavior
revealed that a constriction factor gf= 073 with ¢, + ¢ = 4.1 produced the best
results. Conversely, large magnitudes ofaod ¢ results in y < 0.73and leads to a
pronounced damping effect on particle movement. diecceptable convergences of the
algorithm are illustrated in the results when usimgh values for cognitive and social
acceleration constants. For all cases, the valug ef205 and c, = 205 produced the

best results.

7.6 Summary and conclusion

Experiments to analyze the effects of variation®80 parameters for different process
models have been described. Observations of therdésslts show that the optimal

performance of the algorithm is limited to only teém values of the PSO parameters.
These values work well for FOPDT, SOPDT, SOIPDT BQDUP process models over

a range of controllability ratios. A comparison tbe proposed method with the other

tuning techniques that were discussed in the pusvabapters follows next.
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Chapter 8

Simulation Studies to Compare the Performance of

PSO vs. Other Tuning Techniques

8.1 Introduction
This chapter discusses the simulation experimdras were conducted to compare the
control performance of a conventionally tuned Ptihtcoller to that of one tuned using
the PSO method. The comparison is based upon tbhp’slotransient response
characteristics and the ITAE performance index. flimeng techniques considered in this
study includes the Ziegler-Nichols (1942), Cohere€0(1953), Astrom-Hagglund
(1984), De Paor-O’Malley (1989), Venkatashankardambaram (1994) and Poulin-
Pomerleau (1996) tuning methods. The PSO tunedatdabp will also be compared to
that of loops tuned with the GA algorithm for tleldwing reasons, namely:
i) The GA and the PSO are regarded as soft-compugaigniques having strong
roots in evolutionary computing,
i) GA'’s and the PSO display stochastic behavioralasttaristics,
iii) Both methods are population based search technigitesthe ability to
handle arbitrary non-linear cost functions and,
iv) PSO and GA’s do not require gradient informatiorthed objective function

being optimized.
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8.2 Preliminaries to the experiments

A SISO negative unity feedback control system, wikie controller and process
connected in cascade in the forward path of thérabloop will be considered for all the
experiments in this study. The control performaateach tuning method will be tested
using the process models mentioned in Chapter 3sd&hprocess models are
representative of typical processes found in mostgss control applications (Astrém

and Hagglund, 2004; Zhuang and Atherton, 1993).

The SISO control loop used for all the experimeatdscribed in this chapter is given in
Figure 8.1. With regards to Figure 81t) denotes the step input signal, disturbance
input signald(t) acts as an additive with the controller output algr(t) such that the

process input is governed hiy, . (t) = u(t) + d(t) . The process outpy(t) is fed back to

the input of the controller to form the error sipeé). The comparison between the PSO
tuning methodology and other selected tuning meth®discussed in Experiments 8.1 to

Experiment 8.8.

For the PSO and the GA, the conditions under wthiehexperiments were conducted are
the same as for the simulation experiments discuss€hapter 7, namely: Upper bound
of initialization () = 1, Lower bound of initialization f) = O; termination is reached
after 10 successive stalls of the algorithm. Th® P&rameters used in the experiments
are the same as those previously mentioned in Takland these are repeated in Table

8.1 for convenience. The parameters used for ale¥periments using the GA is given in
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Table 8.2. The tuning methodology used for the &¢hhique is similar in nature to the

proposed PSO method.

d(t)
e uproc (t)
() e(t) < u(t) %

— G, — G,

v

y(t)

A
/
1
1
1
1

PSO/GA

Figure 8.1: Process control loop used in the experiments

Parameter Value

Swarm Size (§ 20
Maximum Velocity (Vnay) | 1
Cognitive Acceleration ¢ | 2.05

Social Acceleration 2.05

Table 8.1:PSO parameters

The GA parameters in Table 8.2 were kept constanalf the simulation experiments
and follow standard implementations from the litera (Krohling and Rey, 2001). As a
consequence of their stochastic nature, the PSQthen&A vyields different controller
parameter solutions for each trial. For this reasotin optimization methods were each
run for ten trials and the average values of tliesdrials was then used as the controller

tuning parameters. The details of the trial runsdeted for each experiment discussed
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in this chapter is given in Appendix BAll the simulation experiments were conducted
using a standard Pentium 4 personal computer halimgga-byte of random access

memory.

Parameter Value/Type
Population Size 20
Selection Method Tournament

Crossover Method Heuristic
Crossover Probability | 0.35

Mutation Probability | 0.02

Table 8.2:GA parameter settings
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8.3 Experiments
This section discusses the simulation experimdrds were conducted to compare the
performance of the PSO tuning methodology to thected tuning techniques discussed

in Chapter 4.

8.3.1 Experiment 8.1: Tuning of FOPDT process for optimal setpoint tracking

8.3.2 Objective

The objective of this experiment is to compare ¢betrol performance of a PSO tuned
loop to a loop tuned using the GA, ZN and CC turimgthods. The ZN and CC have
been included in this experiment because they weiginally proposed for FOPDT

processes (Ziegler and Nichols, 1942; Cohen anch CI53).

8.3.3 Methodology
The FOPDT process used in this experiment is givéa.1):

exp (—0.2s)

Gp(s) = (s+1)

Equation (8.1)

The PID controller is tuned for setpoint tracking.

8.3.4 Observations and analysis of results

The PID tuning parameters and the dynamic closep-ferformance specifications are
shown in Table 8.3. Figure 8.2 shows the closeg-lcesponses for Experiment 8.1.
With regards to Figure 8.2, the ZN and CC methagver marginally quicker rise time,
but at the expense of larger overshoot and lorggdirgy times. The CC method positions

dominant poles that yield a quarter-wave amplitddeay ratio, resulting in oscillation
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and an increased settling time. The GA tuned systeliwers a sluggish response which
is evident from the long rise time. Overall the P®@®ed controller delivers an improved

response when compared to the other methods.

Dynamic Performance Performance
Tuning PID Parameters
Specifications Index

Method

K. T T, t, t.(2%) | M (%) ITAE
ZN 6 0.4 0.1 0.1 5.4 78.4 17.6
CcC 7.02 0.46 0.07 0.1 8.4 93.1 35.3
GA 0.94 0.67 0.11 1.3 5.4 5.1 17.5
PSO 3.63 0.97 0.07 0.2 1.9 0.1 3.8

Table 8.3:PID parameters and closed-loop response speotfitsafor

Experiment 8.]((; (s) = Mj
P (s+1)
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Closed Loop Step Response of: Gp(s)=1exp(-0.2s)*1/(s+1)

2 T T T T T T T
2 ZN
18 E e cc
a GA
1 PSO
16 { /|
14} |
121 -
Process Output
1 I Y ) U U S RV A S A A RS
0.8 ! i
06 3"': |
| 3
04l ]
¥
0.2 -
0 L | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
Time(s)
i . exp(-0.2s
Figure 8.2: FOPDT system response for Expenmen{ssgr(s) = —?( ) )j
S+

Figure 8.3 shows the recorded results of the A ruins for the PSO and GA methods for
Experiment 8.1. It is evident from Figure 8.3 thia GA method provides a large level
of variance of the PID parameters when compargtieédSO trials. Further analysis of
the trial runs are provided in Table 8.4 and shioat the PSO technique has better search
capability than the GA method, and can also reacbmimal solution within a shorter

time and fewer iterations.
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Figure 8.3(a): Performance quantification for lfls: PSO vs. G
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GA \
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Figure 8.3(d): Search for optimal Td over 10 tri&®SO vs. GA

Figure 8.3: PSOvs.GA - Exp. 8.1 results following 10 trials

exp(-0.2s
G,(9 = p( )
(s+1)
GA PSO
ITAE | K, | T | T, |Time(s)|lter | ITAE | K, | T | T, | Time(s)| Iter
Mean(®) |15 15| 0.04 0.67|0.11|46.65 | 80 | 3.66 | 3.680.97|0.07| 20.19 | 33
(After 10
trial runs)
Standard
Deviation(o) | 1.19 0.05/ 0.08| 0.1 | 15.26 26.8 0.02 0.07| 0 0 2.07 3.98
(After 10
trials)

Table 8.4:PSOvs.GA — Exp. 8.1 statistical analysis following 1ats

exp(—O.Zs))

(Gp(s) = (s+1)
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On average the PSO required 20.19 seconds to perdosearch whilst the GA took

46.65 seconds to reach either a near optimal opéimal solution. Furthermore, the PSO
yields a higher quality solution with low variati@m the ITAE and PID parameters for
each trial run. The PSO algorithm required onlyitg8ations to complete the task of
finding the solution to the problem, while the GAetimod needed 80 iterations. Analysis
of the standard deviation of the results indicatésgher variation in the PID parameters

for the GA technique than the PSO method.
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8.4 Experiment 8.2: Tuning of SOPDT process for dpnal setpoint tracking

8.4.1 Objective
In this experiment the ZN closed-loop tuning anel &strom and Hagglund (AH) phase

margin method will be compared to the PSO methagiofor a SOPDT process model.

L
The AH method has been chosen since it is suitedystems having smaljl_—p ratios.
p

(Astrom and Hagglund, 1984) The ZN method is alsduded in this experiment

because of its popularity amongst control pracigis.

8.4.2 Methodology for experiment

The SOPDT model used in the experiment is give(BR):

exp0.5s)

Zrorl Equation (8.2)

G,(9) =

The ultimate gainK, and ultimate periodP, of the SOPDT process are determined
through trial and error. With regards to the Astréind Hagglund (AH) tuning method, a

phase marging,, of 45 is used as the design criterion. In addition, lati@nship of

=4 is selected since it is a common choice amongsiraiopractitioners (Astréom

|-

and Hagglund, 1995). The PSO and GA methods arefaudO trials each. For the

process model given by Equation (8.2), the ultimgéén and period iK, = 4.7and

P, =33, respectively.
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8.4.3 Observations and analysis of results

The PID tuning parameters and dynamic closed-loegopnance specifications are
shown in Table 8.5; the closed-loop responses i@endn Figure 8.4. The ZN and AH
methods delivers a response having large overgim@bmarginally quicker rise time than

the PSO method.

The AH method also yields an oscillatory responsth wong settling time. The GA
method gives a system with very long rise time seitling time as compared to the other
tuning methods. From Table 8.5, we observe thaP®®@ method yields a system having
minimal overshoot and a rapid settling time. Thegmally longer rise time is offset by

the system’s improved performance index over theromethods.

Figure 8.5 and 8.6 illustrate the performance ayrhthic characteristics of the PSO and
GA methods for the first trial. With regards to &g 8.5, the GA method demonstrates
that it is susceptible to the problem of local miaifor problems of this nature. The GA
algorithm is trapped within the minima just aftaitialization. The PSO method on the
other hand displays its capability of being resili@and robust in finding near optimal
solutions very quickly and efficiently after its mmmencement. The optimal solution is

reached within 32 iterations taking only 29.84 setoto complete.

Figure 8.6 illustrates the mean and standard dewiaif the 20 individuals for each

iteration of the PSO and GA. The evaluation valtieazh individual is compared to the

other members of the populations using mean anddatd deviation statistical
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assessments following each iteration. As expetbtedmean and standard deviation value
of the entire population is initially large for otechniques during the start since they are

randomly initialized between the upper and lowsnité of the search space.

Dynamic Performance Performance
Tuning PID Parameters
Specifications Index
Method
K. T T, t, t,(2%) | M (%) ITAE

ZN 2.82 1.65 0.41 0.7 5.4 34.6 30.2

AH 3.13 2.5 0.63 0.4 7.1 33.6 33.8

GA 0.87 0.95 0.91 2.1 13.2 16.9 84.4

PSO 2.07 1.99 0.54 0.8 4.6 4.9 17.8

Table 8.5:PID parameters and closed-loop response speatficsafor

: exp(0.5s)
E t 8. =
xperiment 8 Z(Gp(s) )
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Closed Loop Step Response of: Gp(s):1exp(—0.53)*1/(§+23+1)
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Figure 8.4: SOPDT system responses for Experiment(@% (s) = —EXp(_O'SS)j

s?+2s+1

PSO Performance versus GA Performance (Experiment 7.2 ,trial run 1 for both techniques)
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Figure 8.5: ITAE convergence for PS@s. GA [Gp(s) =—
s°+2s+1

exp 0.53))
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- Dynamic Performance of PSO versus Evolutionary rssgof GA
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Figure 8.6(a): Dynamic performance of PSO vs. GAalll
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Figure 8.6(b): Variation in the solution: PSO v#:Grial 1

Figure 8.6: Statistical analysis for PS@&.GA [Gp(s) =

expl O.SS)J
s +2s+1

ITAE | K T, Ty
Mean (x)

Time(s)| Iter| ITAE | K, | T,

T, | Time(s)| Iter

(After 10 |497.8| 0.9 | 0.940.86
trial runs)

Standard

35 53 | 12.72| 5.162.17|0.55|17.5

31

Deviation(o)

(After 10 303.7 | 0.34 0.22| 0.07| 17.4 291 O

trial runs)

0.020.03| 0.01| 2.99

54

Table 8.6: Statistical analysis of the 10 trial runs for P&GA for

Experiment 8.2[Gp(s) _ &Xp059)

s +2s+1
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8.5 Experiment 8.3: Tuning of SOIPDT process for ptimal setpoint tracking

8.5.1 Objective

The objective of this experiment is to compare geformance of the PSO tuning

methodology to that of the Poulin and Pomerleau) @#l GA method for a SOIPDT

process model. The PP method has been chosersinaimparison study because it was

developed for integrating processes.

8.5.2 Methodology

The SOIPDT model used in the experiment is given by

exp(-0.2s)

Gp(s) = s(s+1)

Equation (8.3)

The PID controller is tuned for optimal setpoiradking.

8.5.3 Observations and analysis of results

The PID tuning parameters and closed-loop dynamsidopmance specifications are

shown in Table 8.7 and Figure 8.7 respectively. e RP tuning method delivers a

response that has less overshoot than the PSOiqaehimhe GA method produces a
highly oscillatory system with excessive overshawtd undershoots. On the other hand,
the PSO tuned PID provides a closed-loop systenchwtielivers improvements in rise

and settling time.
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With regards to the statistical analysis given ablg 8.8, the PSO optimization algorithm
required 31 iterations to find the solution withi@.5 seconds. The GA, on the other
hand, required 53 iterations and required twiceameunt of time to yield a solution for

the same experiment.

Dynamic Performance Performance

Tuning PID Parameters

Specifications Index
Method

Kc Tl Td tr ts (2%) M P(%) ITAE

PP 0.54 7.09 0.86 2.5 19 17.8 196.3
GA 0.9 0.94 0.86 0.9 40 73.7 996
PSO 5.16 2.17 0.55 0.2 3.8 54.2 12.7

Table 8.7:PID parameters and closed-loop response speatitafor

exp(0.2s) J

Experiment 8.3 G_(s) =
Xperi { 0(9) S(s+1)
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Process Output

Figure 8.7: SOIPDT system responses for Experiment(&i’; (s) =

18

Closed Loop Step Response of: Gp(s)zlexp(—O.Zs)*l/(§+s)
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40

exp0.2s)
s(s+1)

ITAE

T, | Time(s)| Iter | ITAE | K,

Time(s)

Iter

Mean(x)
(After 10
trial runs)

497.8

0.940.86| 35 53 | 12.72| 5.1¢

17.5

31

Standard
Deviation(o)
(After 10
trial runs)

303.7

0.22|0.07|17.4 291 0 0.02

2.99

5.4

Table 8.8: Statistical analysis of the 10 trial runs for P&GA for

Experiment 8.’{(3p (s) = Mj

s(s+1)
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8.6 Experiment 8.4: Tuning of FODUP process for dpmal setpoint tracking

8.6.1 Objective

The objective of this experiment is to compare R8O tuning to that of the methods of
De Paor and O’Malley (DO) (1989) and Venkatashamkeat Chidambaram (VC) (1994)
for FODUP. These tuning methods have been choseaube they are based upon

controller design for open-loop unstable processes.

8.6.2 Methodology for experiment

The FODUP model considered in the experiment ismgivy (8.4):

expF0.2s)

&=

Equation (8.4)

A PI controller is utilized to control an open-loamstable process and is tuned for

optimal setpoint tracking.

8.6.3 Observations and analysis of results

The PI tuning parameters and dynamic closed-loofopeance specifications are shown
in Table 8.9 and Figure 8.8 respectively. Analysethe results indicate that the tuning
methods of DO provide oscillations and excessiverstwoot. Conversely, the method of
VC delivers no oscillations but suffers severelynirlonger settling time, that are caused

by the weak integral action provided by the turatgprithm.

- 108-



Dynamic Performance Performance
Tuning PID Parameters
Specifications Index
Method
K. T T, t, t.(2%) | M (%) ITAE
DO 1.7 1.35 0 0.3 17 122.7 197.5
VC 2.4 19.6 0 0.4 33.1 58.5 953.7
PSO 3.83 1.36 0 0.2 3.7 97.2 16.9

Table 8.9: Pl parameters and closed-loop response specifisato

Experiment 8.{6 (s) = Mj
P (s-1)

Closed Loop Step Response of: Gp(s)=1exp(-0.2s)*1/(s-1)

25 : : ) ‘ ‘
------ DO
----------- VC
— PSO
2 [ -
15+ -
Process Output \
‘I
1h \‘ '/ ™~ ez -
0.5+ _
0 ! | | | | | |
0 5 10 15 20 25 30 35 40
Time(s)
' . expt0.2s
Figure 8.8: FODUP system responses for Expenment[&’ﬁ% (s) = —(p( ) )j
S —
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The GA tuned system is not shown in Figure 8.8tdues unstable closed-loop response.
Due to the premature convergence characteristibeiGA, the method was unable to

find a suitable solution for closed loop stabilifthe PSO tuned PI controller generates a
superior control performance in terms of improvése rtime and settling time, with

marginally larger overshoot than the VC method.
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8.7 Experiment 8.5: Tuning of FOPDT processes foregpoint tracking and
disturbance rejection.

8.7.1 Objective

The objective of this experiment is to demonstth&eeffectiveness of the PSO method to
tune the PID controller for setpoint tracking ansturbance rejection. The ZN, CC and
GA tuning methodologies are chosen for comparisiéh the PSO technique. The ZN
and CC methods have been chosen for this experigiece they have been design for

load disturbance rejection.

8.7.2 Methodology

The FOPDT model considered in the experiment isrgiyy (8.5):

p(-0.2s)

_ex .
G,(s)= (s+D) Equation (8.5)

A unit step load disturbanag(t) is introduced into the process input#t=10 seconds

8.7.3 Observations and analysis of results

The PID tuning parameters and dynamic closed-loegopmance specifications are
given in Table 8.10; Figure 8.9 shows the closexpleesponse of the system following a
step input and disturbance signal. From these testhie Ziegler-Nichols and Cohen-
Coon methods produce an oscillatory response wgh avershoots and longer settling

time following a setpoint change.
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Dynamic Performance Performance
Tuning PID Parameters
Specifications Index

Method

Kc Tl Td tr ts (2%) M P(%) ITAE
ZN 6 0.4 0.1 0.1 12 78.4 29.5
CcC 7.02 0.46 0.07 0.1 13.1 93.1 53.1
GA 1.07 0.32 0.07 0.6 14.6 34.4 78.9
PSO 4.92 0.40 0.07 0.1 10.8 50.7 15

Table 8.10:PID parameters and closed-loop response speatfitafor
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Figure 8.9: FOPDT system responses for setpoint tracking astdriance rejection

(Experiment 8.5{6p (s)=
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ZN and the CC tuning results in oscillatory setrpdracking and a poor recovery from

load disturbances. Using the GA and the PSO metbggowe can tune for improved

servo tracking and regulatory control, albeit systeecovery from disturbances takes

longer for system’s tuned with the GA.

The statistical evaluation of system performanae H8O and GA tuning is given in

Table 8.11. These two methods were selected ferahalysis because they are regarded

as being computational based evolutionary algostifnom Table 8.11:

The GA method reaches a mean ITAE of 87.04 witlénit8rations whilst the PSO

required 37 iterations for an ITAE of 14.99. In #@doh, the PSO method delivers tuning

parameters that are more repeatable as is evidentthe smaller standard deviations for

all parameters considered in this analysis.

GA PSO
ITAE | K, | T, T, | Time(s)| Iter | ITAE | K, | T T, | Time(s)| lter
Mean(x)
(After 10 87.04 | 1.07/0.32| 0.07]| 44.63 86 14.99 4.920.40| 0.07| 17.36 37
trial runs)
Standard
Deviation(o)
(After 10 | 3.77 | 0.20/ 0.03| 0.07| 10.36 17 0.01 | 0.010.01|0.00| 3.64 8
trials)

Table 8.11:Statistical analysis of the 10 trial runs for PS@ &A for

Experiment 8.E£Gp (s)= exp(02s)
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8.8  Experiment 8.6: Tuning of SOPDT processes foetpoint tracking and
disturbance rejection.

8.8.1 Objective

The objective of this experiment is aimed at cormgathe PSO tuning method to that of
the ZN, AH and GA for setpoint tracking and distambe rejection. These methods have

been chosen for the reasons previously mentioned.

8.8.2 Methodology

The SOPDT model considered in the experiment isrglw (8.6):

expE0.5s)

Equation (8.6
s?+2s+1 q (8.6)

G,(9)=

A unit step load disturbana(t) is introduced into the process inputg@t=10 seconds

8.8.3 Observations and analysis of results

The PID tuning parameters and dynamic closed-loegopmance specifications are
given in Table 8.11; Figure 8.10 shows the closeghlresponse of the system following
a step input and disturbance signal. The PSO tuniethod produces a high peak
overshoot to setpoint change but delivers the bestvery to load disturbance. In
contrast the GA gives a very sluggish responseircoiniy that it may not be suited for
processes of this nature. The ZN response is nalgisiower compared to the AH and

PSO methods but shows less sensitivity to loadidiance to that of the AH tuning.
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Dynamic Performance Performance

Tuning PID Parameters

Specifications Index
Method

K, T, T, t, Lo | M%) | ITAE

ZN 2.82 1.65 0.41 0.7 13.8 34.6 101.8
AH 3.13 2.5 0.63 0.4 17 33.6 137.7
GA 1.1 0.77 0.83 8.9 19.4 35.2 293.9
PSO 3.31 1.33 0.53 0.4 13.1 49 86.5

Table 8.11:PID parameters and closed-loop response speatficator
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8.9 Experiment 8.7: Tuning of SOIPDT processes faetpoint tracking and
disturbance rejection.

8.9.1 Objective

The objective of this experiment is aimed at cormgathe PSO tuning method to that of

the PP and GA for setpoint tracking and disturbaetion of SOIPDT process.

8.9.2 Methodology

The SOIPDT model considered in the experimentvsrgby (8.7):

_exp(02s)

G,(8=—73 Equation (8.7)
(s"+59)

A unit step load disturbanas(t) is introduced into the process inputgt=20 seconds

8.9.3 Observations and analysis of results

The PID tuning parameters and dynamic closed-loegopmance specifications are
given in Table 8.12; Figure 8.11 shows the closeghlresponse of the system following
a step input and disturbance signal. The GA tupigluces an unacceptable response as
the system oscillates erratically to system inpat lbad changes. The GA tuned response
will eventually reach setpoint if given adequatedi The PP method gives a slow initial
response and does not respond well to load distaebaince it results in a very high
overshoot. The PSO tuning method outperforms theranethods in this experiment for

all the performance specifications considered.
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Dynamic Performance Performance
Tuning PID Parameters
Specifications Index
Method
K, T, T, t, b)) | M) | ITAE
PP 0.58 5.91 0.83 2.2 37 142.5 2899
GA 0.72 0.85 0.73 1.5 40 135.7 5201.8
PSO 7.64 0.85 0.47 0.2 21.6 96.6 52.5
Table 8.12:PID parameters and closed-loop response speatfitafor
exp(—O.Zs)j

Experiment 8.7(6p (s) =

(s*+9)

Closed loop response to step input and load disturbance for Gp(s)=exp(-0.2s)/s(s+1)
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8.10 Experiment 8.8: Tuning of FODUP processes faetpoint tracking and
disturbance rejection.

8.10.1 Objective

The objective of this experiment is aimed at cormgathe PSO tuning method to that of

the DO, VC and GA for setpoint tracking and disaurbe rejection of FODUP process.

8.10.2 Methodology

The FODUP model considered in the experiment isrgivy (8.8):

exp(0.2s)

Gp(9)= (s-1)

Equation (8.8)

A unit step load disturbance(t) is introduced into the process inputg=20 seconds

A PI controller is utilized to control an open-loapstable process.

8.10.3 Observations and analysis of results

The PID tuning parameters and dynamic closed-loegopnance specifications are

given in Table 8.13; Figure 8.12 shows the closeghIresponse of the system following

a step input and disturbance signal. The GA tudidghot result in a stable system and is
not chosen for this experiment. The VC tuned respamas expected because of its high
integral time constant and the DO gave an oscijatesponse. Overall, the PSO yielded
the best system recovery from load disturbance asident from its faster settling time

shown in Table 8.12.
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Dynamic Performance Performance
Tuning PID Parameters
Specifications Index
Method
K. T Ty t, L2oe) | Me(%) | ITAE

DO 1.7 1.35 0 0.3 33.7 122.7 774
VvC 2.4 19.6 0 0.4 40 58.5 2829
PSO 4.41 1.23 0 0.2 22.3 108.9 80.9

Table 8.12:PID parameters and closed-loop response speatfitafor

: _expE0.2s)
Experiment 8.5{Gp (s) —WJ

Closed loop response to step input and load disturbance for Gp(s)=exp(-0.2s)/(s-1)
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Figure 8.12: FODUP system responses for Experiment(&g(s) :_ex(ps(_—%)ZS)J
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8.11 Summary and conclusion

This chapter has presented a comparative studyoséd-loop system performance for

FOPDT systems that were tuned using the proposé€d m&hodologws. ZN, CC and

GA tuning. The dynamical performance of the PSCtusystem outperforms that of the

same system tuned with ZN, CC and the GA for thieviong reasons:

ii)

The ZN and CC methods provide only initial tunirgygameters. Fine tuning
for an improved response depends on the experiandeintuition of the
control practitioner.

The PSO method does not suffer from premature egewnee — this is not
true for the GA.

The high degree of stochasticity that the GA ssffesm means that there is a
strong possibility of the algorithm yielding poarsults over a small number
of iterations. Improvements in tuning performanaea be achieved if the GA
is run for a greater number of iterations — thimes at the cost of increased
computational computation burden and process delays

The GA depends on genetic operators. This imphas éven weak solutions
could contribute to the composition of future calade solutions.

GA’s operate according to a sharing mechanism dutireir evolutionary
process whereby the previous solutions are potgnt@st whilst the PSO
relies on a memory based progression (Engelbr&f?). This ability to
‘remember’ its previous best solution means thatRISO can converge much

faster than the GA on an optimal solution.
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The subsequent chapters will discuss the applicatiche PSO tuning methodology

on real-life systems.
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Chapter 9

Offline Tuning for Process Control

9.1 Introduction

This chapter describes tests that were conductadgess the effectivenesofffine PSO
tuning for process control. In this approach trengfer function of the process was
determined and utilized for the PSO tuning usinguation. The P, | and D tuning
parameters determined from the PSO tuning methggloMas applied to a process plant
that is housed in the instrumentation laboratorthatDurban University of Technology.

The main variables under control are water flonmpudischarge pressure and tank level.

9.2 Basic description of the Process Control Plantsed in the study

The plant used for this study is given in Figurk.@nd its corresponding P&ID schematic
is shown in Figure 9.2. The plant consists of aagte tank, process tank, feed water
pump, control valve and pressure, level and flomngmitters. A feed-pump supplies
water from the storage tank to the process tank.gressure transmitter (PT03) and the
flow meter (FTO1), which is situated downstreanthed pump, provides an indication of
pump discharge pressure and volume of water moyedéopump. Control valve (CV01)
is situated between the flow transmitter and thee@ss tank to manipulate the flow and
thus control the discharge pressure and the ldwelter in the process tank. Control of
the water flow rate (FTO1), line pressure (PTO3Y grocess tank level (LT02) is

achieved separately using control valve (CVO1)myeach control session. A current-to-
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pressure (I/P) converter is used to provide corsggtal interface to the control val

(CV01), which operatesom a 4 bar air supply.

‘Level
| transmitte

Control

-

‘_/“,-I-I' !
. Pressu-re StOLage Tan
transmitte transmitter

Figure 9.1: Process plant used for the tests
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Desktop PC with Advantech P-1710

I:l | multifunction /O card
a

1

Air Pressure Converter

Supply

TANK 2

Process Tank

Cvo1 I
HV02

S Inlet manual valve

- B TANK 1
03 Storage Tank

Feed wate HVO01

pump Outlet manual

Figure 9.2: P&ID of the plant under study

9.3 Interfacing the plant to the PC based controlles

The PID control algorithm was implemented on a déad Pentium 4 desktop PC. The
PC is interfaced to the process control rig usimgAmlvantech PCI-1710, 12-bit
multifunction I/O card. The PCI-1710 1/O card ispported by MATLAB® 7.3,Real
Time Workshop Toolbox version 6.Bhe PCI-1710 card is capable of 12-bit A/D
conversion with up to 100 kHz sampling rate. Eieatrconnection to each of the devices

in the plant is illustrated in Figure 9.3.
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PC with MATLAB® Rea-Time
Desktop P( Workshop

| PCI1710 I/O Car | 1/O Terminatiot

A A A Boarc

1/0 Marshalling
0-10V v

A0 All Al 2 AO 0
Opto-Isolator  f------ Opto-Isolator  }------- Opto- Isolator  }------ Opto-Isolator ~ |-----
4 A 4-20 mA A
Field
Flow Level Pressurt ControlValve
Transmitter Transmitter Transmitter (Cvol)
(FTO1) (LT02) (PTO3)

Figure 9.3: Interface between plant and PC

The interaction with the 1/0O card drivers was daméiin the MATLAB® Simulink
environment and the parameter dialog boxes providdtie Real-Time WorkshopO
library. The Simulink model of the control applicat is shown in Figure 9.4. The
analogue 1/0 channels of the PCI-1710 card areesemted by device driver blocks. The
rate transition is inserted between the deviceedrblocks and the ‘standard’ Simulink

blocks to ensure proper data transfer between block
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LA
—
v
[0

Hj SRT Analog
N ® '& > Output
Rate Transitionl
Step Add2 Analog Output
Advantech
PCI-1710 [auto]
>
Analog Controller Ouput
Input
ate Transition
Analog Input roce espon:
Aivaneen o |
PCI-1710 [auto]
Clock o

Figure 9.4: MATLAB® Simulink based PID controller fareal-timecontrol

All the details of the control-loop for flow, levelnd pressure control are given in

Appendix C1.1.

9.4 Preliminaries for the real-time experiments

The process models used in the experiments fqoréesure, flow and level control loops
are given in (9.1), (9.2) and (9.3) respectivelyddls (9.1) — (9.3) were identified with
the MATLAB® Systemldentification Tool Boxver. 6.12. (9.1) - (9.3) were used to
determine the tuning parameters by means of theGZN,AH, PP, GA and PSO tuning
methodologies.

(s) = 062exp(-0.1s)

Pressure control system - FOPDT:Gpp (055 +1)
ressure oS +

Equation (9.1)

Flow control system - SOPDT: G, (S)= 0.5ezxp(—6.53)
flow (124s° + 35s+1)

Equation (9.2)
(s) = 002exp(-5s)

Level control system - SOIPDT: G, 0765+ 1)
eve s(076s +

Equation (9.3)
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Plant models (9.1), (9.2) and (9.3) were used terdene the tuning parameters for each
respective control loop. These parameters weredpphed to the actual process plant in
order to determine the dynamical closed-loop peréorce of the plant. The PSO and GA
methods were each run over ten trials. Detailsheé trials are provided in Appendix
C2.1 to Appendix C2.3. The closed-loop performafme each tuning method was

evaluated using its transient response charadétsrasnd the ITAE performance index.

9.5 Pressure control loop

L
The controllability ratio for the pressure cont®jstem in (9.1) isT—: 02. A PI
p

controller was used because experimental resuttsesth that the derivative action caused
erratic movement of the control valve due to thespnce of valve noise present within
the control channel. The tuning parameters fordPtrol were obtained using ZN (open-

loop tuning), CC, GA and PSO tuning techniquesanedshown in Table 9.1.

Tuning Pl Parameters
Method | K, T,

ZN 7.26 0.33
CC 7.39 0.24
GA 0.86 0.02
PSO 4.53 0.43

Table 9.1: Tuning parameters for the pressure control loop

G, (s) = 062exp(=0.1s)
pressure (053 + 1)
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The statistical analysis over the ten trials foOP&d GA tuning is given in Table 9.2.

The reasons for choosing only these two methode mentioned in Chapter 8.

GA PSO
ITAE | K. | T, | Ty | Time(s)| Iter| ITAE | K. | T, | Ty | Time(s)| Iter

Mean(x)

(After 10 | 30.79 | 0.86 0.02| 0.00|35.26 | 52| 2.41 | 4.580.43|0.00| 8.27 20

trial runs)

Standard

Deviation(e) | 15 g5 | .09 0.05|0.00/ 1027 | 14| 0.01| 0.050.01|0.00|1.36 3

(After 10

trial runs)

Table 9.2: Statistical analysis over the 10 trials for PSO &#dfor
_ 0.62exp(—0.1s)j

pressure control IooEG

9.5.1 Results and observations

P pressure

(s)

(05s+1)

From Table 9.2, the PSO tuned system displays t@rbeerformance than the GA by

achieving a mean ITAE of 2.41 as opposed to 307%ke GA, also the PSO results are

more repeatable as is evident from its small stahdaviation of 0.01. The closed-loop

step response for the different tuning methoddlustrated in Figure 9.5. For ease of

viewing, the step responses for each of the tummeghods are show separately. The

response specifications and performance indexh®mptessure control loop are given in

Table 9.3.

From Figure 9.5 and Table 9.3, the GA method yiglds/stem with higher overshoot,

longer settling and rise time in comparison to otmethods. The closed-loop response

for the ZN and CC methods are similar with the C&hnd yielding marginally higher

overshoot and longer settling time. The PSO methigdivers superior control
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performance with improved dynamic performance dmations over the other tuning

methods.
Closed Loop Step Response of Pressure Control Loop
4 T T T T T T T
P Output A/ZN
rocess Output | vav ~ o
2 > | | | | | 1 1 1 |
0 5 10 15 20 25 30 35 40 45 50
Time(s)
4 T T T T T T T T T
cC
Process Output 3 WW
2 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50
Time(s)
4 T T T T T T
GA
Process Output 3 W
2 | | | I | | | | |
0 5 10 15 20 25 30 35 40 45 50
Time(s)
4 T T T T T T
PSO
Process Output 3 - / Yo
2 D" | | | | 1 1 1 |
0 5 10 15 20 25 30 35 40 45 50
Time(s)

Figure 9.5: Closed-loop step responses of the pressure cdotplusing ZN, CC, GA

and PSO tuning parametgre,, (s) = 062expt-01s)
pressure (053 + 1)
Dynamic Performance Performance Index
Tuning Specifications
Method t, t,(2%) | M, (%) | ITAE TAEeso ITAE . cc o
ZN 0.5 48.8 1.6 293.9 0.63
CC 0.5 49.1 3.7 442 0.42
GA 0.7 49.8 5.8 1266.4 0.15
PSO 0.5 21.6 0.9 186.2 -

Table 9.3:Closed-loop performance of the pressure contr@ laging ZN, CC, GA and

_ 062exp0.1s)
p ressure(s) -
P (05s+1)

PSO tuning method%G
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9.6 Flow Control

L
The controllability ratio for the flow process (9.3 T—p =22.75, making the system
p

dead-time dominant. A PI controller was used i3 #xperiment since derivative action
is not recommended for dead-time dominant procetsssom and Héagglund, 2004;

Hagglund, 1992). Using (9.2), the PID tuning partereare obtained by applying the

ZN (closed-loop tuning), AH, GA and PSO tuning teicjues. The ultimate gaink(,)

and ultimate periodP,) of the process was heuristically determined. Thsed-loop

system under sustained oscillation is illustrateBigure 9.6.

Closed Loop Step Response with Kc=7, Ti=inf and Td=0
T T T T T

Ke =7
Ti=infinity
Td=0

35 -

25 -

Process Output

15+

<>

05 -
Ultimate Period - Pu=17
Ulitmate Gain - Ku=7

0 J L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

Time (s)

Figure 9.6: Closed-loop step response of the flow control laith K, =7,T, =0 and

05expE6.5s
Td = O [prlow (S) = 2 p( ) j
124s° + 35s5+1
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With regards to Figure 9.1, =7 and B, =1/. A phase margin of, = 60° was used

to determine the tuning parameters for the AH tephen The tuning parameters using

the respective tuning methods are shown in Talle The statistical analysis of the ten

trials for PSO and GA tuning is given in Table 9Be reasons for choosing only these

two methods were mentioned in Chapter 8.

Table 9.4: Tuning parameters for the flow control Ioéﬁpﬂow (s) =

Tuning | Pl Parameters
Method | K, T.

ZN 2.8 13.6
AH 3.5 38.99
GA 0.09 0.74
PSO 0.85 5.03

_ 05exp(-65s) )
124s® + 35s+1

ITAE

T, | Time(s)| Iter

ITAE

Time(s)

Iter

Mean(x)
(After 10
trial
runs)

2776

0.09

0.74

0.00| 25.81

33.5

1013

0.855.03

24.74

36

Standard
Deviation
(o)
(After 10
trial
runs)

194.48

0.04

0.23

0.00| 17.49

17.69

0.01

0.000.01

0.00

3.93

5.99

Table 9.5: Statistical analysis of the 10 trial runs for PS@ &A for the flow control

loop (Gpﬂow (s) =

05exp6.5s)
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9.6.1 Results and observations
From Table 9.7, the PSO tuned system displays terbeérformance than the GA by
achieving a mean ITAE of 1013; this is more thanlded (2776) for the GA; also the

PSO results are more repeatable as is evidentifsosmall standard deviation of 0.01.

The closed-loop step responses of the PID contrla step input under different tuning
conditions are illustrated in Figure 9.7. The rews® specifications and performance
index for the flow control loop is given in TableB9From Figure 9.7 and Table 9.6, it is
evident that both ZN and AH tuning results in aniltetory response. This confirms that
these methods are not suited for processes thatea:time dominant. The GA tuned
system is characterized by slow a rise time andaggimal improvement in overshoot.
The delayed response and slow rise time is atettd the weak proportional gain given
by the GA method. Overall the PSO method delitieesbest performance as is evident

from its ITAE performance index.

- 132-



Closed Loop Step Response of Flow Control Loop

35+

25+

Process Output

2+

15F

0.5

Step Change

| | | | | | |
0 10 20 30 40 50 60 70 80 90 100
Time (s)

Figure 9.7: Closed-loop step responses of the flow control lasipg ZN, AH, GA and

PSO tuning paramete(prlow (s) = 20EXPE65) j

1245 +35s+1
Dynamic Performance Performance Index
Tuning Specifications
Method ITAE
t 8 M,(%) | ITAE P ATAE 1 cc on
ZN 22.5 - 109 39724.4 0.23
AH 23.2 - 105 42596.6 0.21
GA 31.2 93.3 15 11616 0.77
PSO 25.9 77.9 25 8950 -

Table 9.6:Closed-loop performance of the flow control loongZN, AH, GA and

PSO tuning method%Gp (s) = 0-5e;<p(—6-53) )
1245 + 35s+1
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9.

7 Level Control

L
The controllability ratio for the level process nebd9.3) isT— =2, hence the need for

p

PI control for this dead-time dominant process. Phduning parameters for (9.3) are

determined using P-P, GA and PSO tuning and arengin Table 9.7. The statistical

analysis over ten trials for PSO and GA tuningiieg in Table 9.8. The reasons for

choosing only these two methods are the same aseasoned in Chapter 8.

Table 9.7: Tuning parameters for the level cont(@plevel(s)

Tuning Pl Parameters
Method | K, T,

PP 7.03 17.29
GA 0.06 0.94
PSO 14.54 5.64

_ 002exp3s)
s(076s+1)

GA PSO

ITAE K | T, T, | Time(s)| Iter | ITAE K. T, T, | Time(s) | lter

xitZ?(ﬁé 72285 | 0.06 0.94|0.00|27.45 | 30| 6137.5| 1454 564.00| 4545 | 361
trial runs)
Standard

?(f)"'a“o“ 16554.7| 0.06| 0.16| 0.00| 17.63 | 23| 149.65| 0.09| 58D.00|48.78 | 37.6
(After 10
trial runs)

Table 9.8: Statistical analysis of the 10 trial runs for PS@ &A for the level control

|00p [Gplevel

(9= 0.02exp(—3s)j

~ s(076s+1)
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9.7.1 Results and observations

From Table 9.10, the PSO tuned system displaystarlgerformance than the GA by
achieving a mean ITAE of 6137.5 as compared to B2& the GA; also the PSO
results are more repeatable as is evident fromowssmall standard deviation of 149.65

vs.16554.7 for the GA.

The closed-loop step responses of the PI contrélleed using the selected tuning
methods are illustrated in Figure 9.18. The respospecifications and performance
index is given in Table 9.8. From Figure 9.18 arabl& 9.9, the GA tuned response
converges towards the stable region with unacceptadxillation around the setpoint.
The PP method produces a slower response with h@hershoot than the PSO tuned
response. The PSO tuned system results in quiek#ing time and smaller overshoot

when compared to the PP and GA tuning methods.
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Closed Loop Step Response of the Level Control Loop
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Figure 9.8: Closed-loop step responses of the level contrgl lessing PP, GA and PSO
tuning parameterEG (s) :wj

Plevel

s(076s+1)
Dynamic Performance Performance Index
Tuning Specifications
Method t L(2%) | M, (%) | ITAE ITAEPSO/TAEPP .
PP 53.6 260 17 28056 0.69
GA 41.5 - 55.3 210911 0.09
PSO 36 114 7.5 19527 -

Table 9.9:Closed-loop performance characteristics for lewaltml loop using PP, GA

and PSO tuning G, (s):w
tevel s(076s+1)
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9.8  Summary and conclusion

The ZN, CC, AH, PP, GA and PSO tuning methods Heeen implemented on pressure,
flow and level control loops and a comparison @& ttontrol performance using these
methods has been completed. An analysis of themeaince characteristics for all the
control loops shows that the PSO method outperfalhtghe tuning techniques under
consideration in this study as is evident from pleeformance characteristics mentioned
in the previous discussions. The next chapter eximine the performance of the PSO

algorithm for real-time servo system control.
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Chapter 10

Online Tuning for Real-Time Positional Control

10.1 Introduction

This chapter discusses the control performance s#rao positioning system tuned for
optimal servo-tracking and regulatory control usihg proposed PSO method. Two
approaches of using the PSO tuning methodology steidied. The first approach made
use of the system process model to determine th&atler parametersffline using
simulation. This is similar to the PSO tuning agmio discussed in the previous chapter.
In the second approach a model of the process tsrewuired; rather the servo-
mechanism is controlled in real-time using the etéht PID parameters given by the
PSO technique. Following each iteration, the PS@ctethe best PID parameters based
on minimizing the ITAE performance index. This iaglled thepre-tuningphase. This
phase is terminated once the PSO algorithm conseoge an optimal PID tuning
parameter. In both approaches the control perfocmarf the PSO tuned system was

compared to other selected tuning techniques.

10.2 Positioning servo-system

The system under study is based on the ModularoSBositioning Control System
(MS150 MKII) from FEEDBACK INSTRUMENTS LTD. The mairequirement for the
position control system is for the motor to rotateoutput shaft to the same angle as the
input shaft. In this case the error sigeé) is created by mounting a potentiometer onto

the reference shaft and the motor shaft. The potesters are connected to equal but
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opposite DC supplies and the voltages will candednveach shatft is at the same position.
Hence any misalignment between the two shaftsgimit an error signal proportional the
angular displacement. The error signal is used iclosed-loop strategy with a PID
algorithm for positional control. The control argdture is implemented with the
MATLAB® Real-Time Workshop environment in conjuranti with the Advantech 1/0

(PCI 1710) card. The system is illustrated in Fegl®.1.

¥
Servo Amplifier Power Supply
Unit <: Unit
(SA1500) (PS150E)
PC with Advantech I/O card (PCI1710)

(MT150F)

] [

Magnetic Loading Unit|

|
|
|
|
|
|
[
|
|
|
|
|
|
| Motor Unit
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Input Pot. Uni Output Pot
(IP150H) <l : Unit
(OP150K

Figure 10.1: Schematic of Servo control system
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10.2.1 PID control structure used for the positional servo-system

The objective of the control strategy is to enstrat the dynamical response of the
system accurately tracks the setpoint and remaimsst to disturbances. This is achieved
by utilizing a one degree-of-freedom (1-DOF) PIDntoller implemented within
MATLAB®. The algorithm for the PID controller used this study is the standard non-

interacting PID algorithm:

G.(s) = Kc(1+%+Td S) Equation (10.1)

10.2.2 Positioning servo-system control loop

The positioning system is actuated by means ofraratare controlled DC motor with
gear speed reduction. A schematic of the positgprs@rvo-system is shown in Figure
10.2. The following characteristics applicablehie irmature DC motor and the load will

be considered for this study:

R, = armature resistance,

L, = armature inductance,

J = moment of inertia of motor and load,

f = viscous friction coefficient of the motor andhth
K = motor torque constant,

K, = back emf constant,

6(s) = angular displacement,
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C(s) = angular displacement of motor shaft.

R(s)

©

1%

E(s)

G (9)

R, L, (s) N -

Constant fielc

curren

J

th
f

10.2.3 Model of the armature controlled DC motor and gear mechanism

Figure 10.2: Schematic of the positional servo-mechanism

C(s)

The feedback control loop of the positioning systesmshown in Figure 10.3. With

regards to Figure 10.3, when consideridg(s) as input andd(s) as output of the

systent (s), the transfer function of the armature controll¥d motor is:

o(s) _

KexpELs)

U.(s) gLal$ +(Laf + Ra)s+Raf+KK,]

Equation (10.2)

The motor gain and the time constants are givenEbwations (10.3) and (10.4)

respectively:

m

K

" (Raf +KK,)
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R,J

= Equation (10.4)
(Raf + KK ;)

Substitution of Equation (10.3) into (10.4) yielde transfer function for the armature

controller DC motor:

6(s) _ K, exptLs)
Us(®  s(T,s+1)

Equation (10.5)

The transfer function for the gear mechanism is:

c®

o) Equation (10.6)

The lumped transfer function for the positionalveemechanism is a second order

integrating system with dead time:

C(s) _ NK, exptLs)
Ug(8)  S(T,s+D)

Equation (10.7)

D(s)

R(s) E() 6.9 U.(s)4Us(9) G.(9 9(32

C(s)

+

Figure 10.3: Feedback control loop for the positional servo-naeism
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Using the MATLAB® system identification toolbox tHellowing transfer function of

the servo positioning system was determined:

_ 965exp(-0.1s)

Equation (10.8)
s(001s+1)

G, (9)

10.3 Evaluating PSO Performance for Offline Tuning

ZN, PP, GA and PSO tuning parameters for the ssystem were obtained using the
model (10.8) of the positioning control system. 3&@arameters were then used for the
real-time tests. The ZN and PP methods were chosen becausts efidespread
applicability to integrating process. Table 10.¢egi the tuning parameters given by the
respective methods. The ultimate gain and ultinpat®od of the system was determined

by trial and error.

10.3.1 Observations and analyses of results
10.3.1.1Controller tuned for setpoint tracking
The performance specifications for the system arengin Table 10.2 and the response

of the system to setpoint changes are illustratdeéigure 10.4.
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Tuning PID Parameters
Method | K, T, T,

ZN 0.98 0.105 0.026
PP 0.55 0.48 0.01
GA 0.98 0.37 0.06
PSO 0.81 5.38 0.05

(Gp (s)

_ 965exp0.1s)
s(001s+1)

Table 10.1:PID parameters of the positional servo-mechanisrsédtpoint tracking

Dynamic Performance Performance Index

Tuning Specifications
Method ITAE

t, t, M, (%) ITAE SO ITAE 0 pp.cn
ZN 0.08 0.8 94 5791 0.54
PP 0.09 - 109 6620 0.47
GA 0.08 1.18 75.5 4654 0.67
PSO 0.15 0.47 5.6 3153 -

Table 10.2:Closed-loop response specifications for setpoauking
_ 965exp(-0.1s)
s(001s+1)

(Gp (s)
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Real time closed loop response of the positional servomechanism (Setpoint tracking)
lO T T

Process output

time(s)

Figure 10.4:Closed-loop setpoint response of the positionalcserechanism using off-

line tuning(Gp(s) - 9-65exp(—o,1s)J

s(001s+1)

With regards to Table 10.2, it is evident that B8O tuning method provides the best

closed-loop performance in comparison to the ottethods.

10.3.1.2System tuned for disturbance rejection
Table 10.3 gives the PID parameters for the regmettining methods. The results of the
experiment are given in Table 10.4 and the respoh#® system to setpoint change and

load disturbance of the process are illustratdigare 10.5.
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Table 10.3:PID parameters of the positional servo-mechang@nditturbance rejection.

_ 965exp0.1s)
s(001s+1)

Tuning PID Parameters
Method | K, T, T,

ZN 0.98 0.105 0.026
PP 0.55 0.41 0.01
GA 0.98 0.25 0.05
PSO 1.24 0.21 0.05

E

o (S)

Dynamic Performance Performance Index
Tuning Specifications
Method ITAE
t t(2%) | M, (%) | ITAE /TAE
ZN 0.09 0.86 72.5 1093 0.87
GA 0.08 0.85 72.4 1018 0.94
PSO 0.08 0.76 72.5 961 -

Table 10.4:Closed-loop response specifications for disturbaation

E

o (S)

_ 965exp0.1s)

s(001s+1)
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Real time closed loop response of the positional servomechanism (Disturbance rejection)
10 T T T T T T T T T

Process output

2 ! ! ! ! ! ! ! ! !
0 1 2 3 4 5 6 7 8 9 10

time(s)

Figure 10.5:Closed-loop setpoint and disturbance responseegbdisitional servo-

mechanism using off-line tuninE;Gp(s) = 9'65€Xp(‘0-1S)J

$(001s+1)

With regards to Table 10.4, the PP method resuhedn unstable performance and
therefore is deemed unsuitable for tuning distuckarejection loops of this type. The
PSO tuned loop results are similar to those of ZANeand GA, but overall the PSO
yielded an improved control performance as is ewideom its superior performance

index.

10.4 Evaluating PSO performance using online PSO Ting
The PID control and PSO tuning algorithm was im@atedonline for real-timecontrol.

PID parameters were obtained during thre-tuning phase. The online PSO tuning
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method was compared to ZN, PP and GA tuning alyost Several tests were
conducted in order to determine the minimum nundfeagents required for the PSO
algorithm to be consistent upon convergence. The p&ameters used in the tests are
given Table 10.5. From initial tests it was obsdriwbat 1 agent resulted in poor

performance of the PSO search and therefore dademo part of the evaluation.

Swarm Size 2,3,4,5
Maximum Velocity (Mna,) 1
Cognitive Acceleration (¢ 2.05
Social Acceleration (g 2.05
Upper Bound Of Initialization (ub) 1
Lower Bound Of Initialization (Ib) 0

Stall Limit- Termination Criterion 10

Table 10.5:PSO parameters used in the test

The swarm size was adjusted within the range giweilable 10.5 and the test was
repeated for 4 trial runs. The results of the téststhe setpoint tracking tuning and

disturbance rejection tuning are shown in Tabl® Hhd Table 10.7 respectively.

With regards to Table 10.6, the best ITAE perforosamdex was found using 3 agents
within 8.22 minutes. The standard deviation frone #h trial runs indicate that the

consistency of the PSO search improves with a highenber of agents. On the other
hand, the time required for the ‘pre-tuning’ phasereases due to the increased
computational burden. Table 10.7 displays a sinpédtern to Table 10.6 — this indicates
that for this application the best ITAE index wasitid using 5 agents and required 13.65

to 13.8 minutes to search.
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Standard Deviation from 4 trail

Number Best result obtained Average

of agents runs Time
ITAE K. T T, ITAE K. T T, (Minutes)

2 agents | 1483.47 | 2.06 3.41 | 0.02 | 1660.18 | 1.06 | 2.17 | 0.21 5.51

3 agents | 1463.33 | 2.16 444 | 0.05 275.71 0.23 | 1.56 | 0.03 8.22

4 agents | 1479.90 | 2.13 456 | 0.05 73.79 0.17 | 0.13 | 0.00 11.03

5agents | 1473.75| 2.05 5.03 | 0.05 71.72 0.05 | 0.11 | 0.00 13.65

Table 10.6:0Online PSO tuning for setpoint tracking tuningrfals)

Number Best result obtained Standard Deviation from 4 trail Average

of agents runs Time
ITAE K. T T, ITAE K. T Ty (Minutes)

2 agents | 1302.78 | 3.25 0.65 | 1.70 762.28 1.06 | 0.36 | 0.67 5.51

3 agents | 960.71 0.82 0.05 | 0.09 748.31 1.03 | 0.36 | 0.64 8.26

4 agents | 659.95 0.60 0.10 | 0.06 510.34 | 0.42 | 0.15 | 0.49 11.02

5agents | 587.63 1.28 0.09 | 0.05 66.86 0.28 | 0.03 | 0.02 13.80

Table 10.7:Online PSO tuning for disturbance rejection tunihgrials)

10.4.1 Observations and analysis of results

10.4.1.1 System tuned for setpoint tracking

The PID parameters obtained for the setpoint tragkuning is shown in Table 10.8.

Figure 10.6 shows the closed-loop responses fodififierent tuning methods. The ZN

closed-loop method was used and the PP methodumas for setpoint tracking. With

regards to Figure 10.6, the PP delivers a systdim avlarge overshoot which oscillates

around the setpoint. This is due to a lower propoal gain and a low value for the

derivative time constant. The ZN and GA tuned resps also suffer from high

overshoot; however the settling time is improvecewicompared to the PP method. The
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PSO tuned system provides a stable response ttighdvershoot and very quick settling
time. This is largely due to the high integral timenstant that the PSO tuning method

has specified.

Real time closed loop response of the positional servomechanism (Setpoint tracking)

Process output
=)

N

Voo ol
AN

time(s)

Figure 10.6:Closed-loop setpoint response of the positionalcsarechanism.
(On-line tuning)

PID Parameters Dynamic Performance Index
_ Performance
I\-I/-Ilé?rllrc])% Specifications
K T T ITAE
. ¢t |ty | M%) | ITAE P%AEZN,pP,AH
ZN 0.98 | 0.205| 0.05| 0.040.5 | 90.7 1721.6 0.86
PP 0.55 | 0.48 | 0.01] 0.0410 | 1214 3679.1 0.40
GA 1.15 | 0.3 0.04| 0.080.98| 70.5 1653.6 0.89
PSO 2.16 | 444 | 0.05| 0.080.2 | 10.9 1484.8 -

Table 10.8:PID settings and closed-loop response specification
setpoint tracking only
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10.4.1.2 System tuned for disturbance rejection

The PID parameters obtained for the disturbanaetien tuning is shown in Table 10.9.
Figure 10.7 shows the closed-loop responses fodifferent tuning methods. The PP
tuned system results in large overshoot therebjiroaing the results from the previous
section in that it may not be suitable for tuningfarbance rejection loops of this type. In
contrast, the PSO tuned system delivered an improegponse to load disturbance, with

improved settling times and percentage overshoot.

Real time closed loop response of the positional servomechanism (Disturbance rejection)
10 T T T T T T T

Process output

I
0 1 2 3 4 5 6 7 8 9 10
time(s)

Figure 10.7:Closed-loop disturbance rejection response of tsitipnal servo-

mechanism. (On-line tuning)
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PID Parameters Dynamic Performance Index
Performance

I\-I/-Ilé?rllrc])% Specifications
K T T ITAE
| ¢t |ty | M%) | ITAE P%AEZN,pP,AH
ZN 0.98 | 0.205| 0.05| 0.080.87| 191 1362.6| 0.75
PP 0.55 | 0.41 0.01| 0.0810 387.4 3613.5 0.28
GA 0.97 | 0.38 0.06] 0.041.21| 225 1438.9] 0.71
PSO 1.28 | 0.1 0.09| 0.080.42| 135.1 1017.14 -

Table 10.9:PID settings and closed-loop response specificatilisturbance rejection

and setpoint tracking

With regards to the results presented in this gecthe PSO method yields systems with
superior closed-loop response for servo control dgistlrbance rejection in comparison

to conventional approaches.

10.5 Summary and conclusion

This chapter has presented teal-timeresponses of a positional servo system that was
tuned usingoff-line and thenon-line tuning For off-line tuning a process model was
obtained using the MATLAB® model identification tbox. This model was then used
in the simulation studies to determine the tunimgameters for the different tuning
methods under consideration. For on-line tuning gaeameters for the GA and PSO
approach were obtained directly off the live pldfdr both tests it was found that the

PSO method outperformed all other tuning methods.
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Chapter 11

Summary of Study, Recommendations and Conclusion

11.1 Introduction

The study has focused on the application of the E&@putational algorithm for PID
control loops. The objective has been to improve gerformance of systems that
experience a poor control behavior when tuned usomyentional tuning methodologies.
Process control models commonly found in plant @ssccontrol systems was selected
for the study in order to test the efficacy of tR&O tuning methodology. Control
behavior of selected plant models was measuredighrthe system’s transient response

specifications to an input stimulus.

Tests were conducted using several existing corv@ittuning methodologies (see ZN,
1942; CC; PP; AH; VC; DO) including the GA computatl based algorithm. Each of
these techniques was discussed in detail andghertcomings in the chosen applications
were also mentioned. For this study the ITAE penfance index was chosen to evaluate
the control performance of the process loops. ThAEI criterion penalizes large
overshoots and minimizes long settling times —unm@search it was heuristically found
that the best control response is obtained by ninmm these two transient response

criteria.
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11.2 PSO Tuning

PSO tuning is implementeaffline and thenonline For offline tuning the plant model
(first order system for pressure, second orderegydor flow, second order integrating
system for level and positional control) is deterad using the MATLAB® system
identification toolbox, and tuning was then perfedrunder simulated conditions within
the MATLAB® Simulink environment. @line tuning can be applied to tune a range of

known process models.

For online tuning all testing was conducted in real-time on a sguesitioning system.
Using the PSO method for online tuning realizesftlewing advantages:
i) The presence of a process model is not requireddiiermining the
controller’'s parameters,
i) A minimal knowledge of the process under considenais necessary when
calculating the controller’s tuning parameters,
i) No tuning formulae are used for determining the mitages of the

controller's adjustable parameters.

However, the shortcoming of online tuning is the tuning method is not applicable to
processes having long time constants - this isesalse processes of this nature usually
require a considerable time for tpee-tuning phase to execute. Pre-tuning could also
lead to an unstable control action for process@emancing the strong negative effects

of nonlinearities within the control channel.
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11.3 Advantages of the PSO

11.3.1 Improved Process Behaviour

Our study has also shown that processes tuned usi@gPSO methodology is
characterized by an improved control behavior fetpsint tracking and disturbance
rejection. This is evident from the improved ITAErformance index when compared to
the control performance obtained with using thditranal tuning methods and the GA.
The reasons for this can be attributed to:

i) PSO relies on a memory based progression, in wikheh previous
solutions arerememberedand is continually improved upon until
convergence is reached,

i) GA’s suffers from premature convergence since lieseon genetic
operators that allow weak solutions to contribudetite composition of
future candidate solutions,

i) Traditional tuning methods require further fine ihghto improve control

performance.

11.3.2 Attractive features of PSO Based PID Tuning
In this study the PSO algorithm was used as amnaliige to finding suitable tuning
parameters for a variety of processes. The PSQéwesal attractive features that make it

an ideal candidate for the tuning of PID contra]eramely:

i) Fast convergenceThe PSO is influenced by the simulation of social

behaviour rather than the survival of the fittestim the GA. From the tests
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ii)

discussed in Chapter 8, it was shown that eaclvithehl benefits from its
history and its interactions with other agents waitlthe population. This
sharing of knowledge helps facilitates faster cogeece to an optimal

solution.

Simple operating algorithm:The use of simple mathematical operators
facilitates a faster computational time and makes dlgorithm suitable for
determining tuning parameters under high-speed rdigad conditions for
processes that lend themselves to tuning of thisreasuch as flow and

pressure control.

Efficient operating algorithmFrom the tests that were conducted, it was
shown that the PSO determined parameters provideyi#lded the best
control performance — this is evident from the IBWAE that was observed

during the tests.

Repeatability: The PSO was compared to the GA evolutionary algori
Tuning parameters obtained with the PSO are camdisiver a number of

tuning sessions. This does not apply to the GAdasgng method.

11.3.3 Fixed PSO Operating Parameters for | mproved Repeatability
The study has also presented experiments to and#hgzeffects of variations in PSO
parameters for different process models. Obsemsatid the results revealed that a fixed

set of PSO parameters, namely a constriction fawtgy = 0.73. cognitive acceleration
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c1=2.05 social acceleratiom,=2.05, velocityvmax= 1 and a swarm size of 20 agents
produces repeatable results for all the processesidered for this study. Large

magnitudes ofc; and c; made the constriction factoy < 0.73and damped particle

movement within the search space (see Clerc, 1999).

11.4 Recommendations for further research

The study can be extended by using the ZN tuningomunction with the PSO tuning
methodology for refining the ZN tuning parametdrs.this approach the PSO tuning
utilizes initial tuning parameters given by the Ziding method as a starting point to
begin search. The effects of using hybrid PSO-GAingpation strategies may be
considered. It may be advantageouskitb poor performing PSO particles in order to

improve efficiency and search capability.

11.5 Summary and conclusion

Research was conducted to study the effects o§ubaPSO algorithm as a tool for PID

tuning. From the results presented in the studyag shown that the PSO tuning yielded
improved responses and can be applied to diffggemtess models encountered in the

process control industry.
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Appendix A

Al. PSO source code (MATLAB® m-file).
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Appendix B

B1. Trial runs for PSO and GA tuning for Chapter 8.

B1.1. Experiment 8.1: Tuning for setpoint trackafid~-OPDT process model:

exp (—0.25s)
(Gp(s) TG+ >
PSO tuning method

Trial | ITAE Kc Ti Td Time(s) Iterations
1 3.66 | 3.63] 0.97 0.0y 20.14 32
2 3.65 | 3.63] 0.97 0.0y 19.80 31
3 3.72 | 3.41] 0.97 0.06 20.60 33
4 3.65 | 3.63] 0.97 0.0y 24.74 43
5 3.65 | 3.63] 0.97 0.0y 21.10 37
6 3.65 | 3.63] 0.97 0.0y 20.24 35
7 3.66 | 3.61] 0.97 0.0y 17.25 30
8 3.66 | 3.62| 0.97 0.0y 18.18 31
9 3.65 | 3.63] 0.97 0.0y 20.75 36
10 3.66 | 3.63 0.96 0.07 18.25 31
X 3.66 | 3.63| 0.97| 0.07 20.19 32.50
o 0.02 | 0.07 | 0.00| 0.00 2.07 3.98

GA tuning method

Trial | ITAE Kc Ti Td Time(s) Iterations
1 18.69 | 0.98 0.60 0.28 40.64 67
2 16.89 | 0.95 0.67 0.07 59.10 101
3 17.01 | 0.98 0.72 0.12 55.90 95
4 18.38 | 0.98 0.57 0.28 21.56 36
5 16.58 | 0.93 0.70 0.0L 58.60 101
6 18.34 | 0.8 0.67 0.1D 50.00 86
7 17.96 | 0.86 0.70 0.08 58.40 101
8 19.60 | 0.85 0.54 0.18 43.30 74
9 19.36 | 0.94 0.58 0.29 26.55 44
10 16.16 | 0.97 0.77 0.04 22.79 38
x 18.15 | 0.94 | 0.67 | 0.11 46.65 80.00
o 1.19 | 0.05| 0.08| 0.10 15.26 26.79
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B1.2. Experiment 8.2: Tuning for setpoint trackaigSOPDT process model:

exp (—0.55s)
<Gp(s) S (s?+2s+ 1))
PSO tuning method

Trial | ITAE Kc Ti Td Time(s) Iterations
1 17.79 | 2.06 1.98 0.54 29.84 32
2 17.79 | 2.05 199 0.54 16.82 28
3 17.79 | 2.06 1.98 0.54 15.50 26
4 17.79 | 2.06 1.98 0.54 20.01 31
5 17.79 | 2.07] 1.98 0.54 14.80 25
6 17.79 | 2.07] 199 0.54 13.72 23
7 17.79 | 2.06 1.98 0.54 14.07 24
8 17.79 | 2.07, 2.00 0.54 15.12 24
9 17.79 | 2.07) 1.99 0.58 20.48 35
10 17.79 | 2.07 199 0.54 18.29 31
X 17.79 | 2.07| 1.99| 0.54 16.16 27
o 0.00 | 0.01] 0.01| 0.00 4.83 412

GA tuning method

Trial ITAE Kc | Ti Td | Time(s) Iterations
1 88.31 | 0.86 0.91 0.89 26.34 40
2 80.06 | 0.94 0.9%5 0.92 31.80 48
3 85.11 | 0.83 0.97 0.90 56.90 87
4 88.69 | 0.79 0.95 0.93 65.40 101
5 86.99 | 0.87, 0.92 0.9p 37.86 58
6 76.71 | 0.97 0.98 0.83 65.84 101
7 100.90| 0.52 0.97 0.48 40.00 60
8 89.66 | 0.88 0.89 0.93 34.53 53
9 81.60 | 0.87 0.98 0.95 36.42 56
10 86.50 | 0.93 0.92 0.78 31.02 44
x 86.75 | 0.87|0.95]| 091| 37.14 57
(4 6.57 | 0.13]| 0.03| 0.16| 14.58 22.92
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B1.3. Experiment 8.3: Tuning for setpoint trackafgsOIPDT process model:

_exp (—0.2s)
<Gp(s) T os(s+ 1) )

PSO tuning method

Trial | ITAE Kc Ti Td Time(s) Iterations
1 12.72 | 5.15 2.17 0.5p 22.39 40
2 12.72 | 5.15 2.17 0.5b 16.53 29
3 12.72 | 5.14 2.18 0.56 21.18 37
4 12.73 | 5.160 2.09 0.5p 14.96 26
5 12.72 | 5.17| 2.17 0.5p 17.87 31
6 12.72 | 5.13 2.18 0.56 19.90 35
7 12.72 | 519 2.16 0.55 17.11 30
8 12.72 | 5.16) 2.18 0.5b 15.58 27
9 12.73 | 5.14 2.13 0.5p 22.91 40
10 12.72| 5.17 2.1% 0.55 15.40 27
x 12.72 | 5.16 | 2.17 | 0.55 17.49 30.50
o 0.00 | 0.02] 0.03| 0.01 2.99 5.39

GA tuning method
Trial ITAE Kc | Ti | Td | Time(s) Iterations
1 452.60 | 0.94 0.97Y0.81| 34.20 48
2 41420 | 0.94 0.97Y0.85| 62.50 99
3 560.60 | 0.93 0.920.77| 21.43 34
4 403.10 | 0.87 0.990.91| 47.92 75
5 543.00 | 0.83 0.960.80| 30.00 48
6 1142.00| 0.23 0.910.94| 23.06 37
7 578.20 | 0.92 0.820.92| 63.37 103
8 396.80 | 0.95 0.970.86| 62.05 101
9 875.90 | 0.94 0.260.75| 21.37 34
10 1153 0.84 0.880.88| 35.80 58
x 497.80 | 0.90| 0.94| 0.86| 35.00 53
[ 303.74 | 0.34]|0.22| 0.07| 17.42 28.50
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B1.4. Experiment 8.4: Tuning for setpoint trackafd~ODUP process model:

exp (—0.25s)
(Gp(s) BT )
PSO tuning method
Trial | ITAE Kc Ti Td Time(s) Iterations
1 16.93 | 3.83 1.36 0.00 19.90 32
2 16.93 | 3.82 1.36 0.00 14.98 24
3 16.93 | 3.83 1.36 0.00 13.70 22
4 16.93 | 3.83 1.36 0.00 16.57 27
5 16.93 | 3.84 1.36 0.00 13.46 22
6 16.93 | 3.82 1.35 0.00 24.09 40
7 16.93 | 3.83 1.35 0.00 16.31 26
8 16.93 | 3.83 1.37 0.00 13.81 22
9 16.93 | 3.82 1.36 0.00 13.44 22
10 16.93| 3.83 1.36 0.0D 14.10 23
x 16.93 | 3.83| 1.36 | 0.00 14.54 23.50
o 0.00 | 0.01] 0.01| 0.00 3.48 5.87
GA tuning method

Trail ITAE Kc | Ti | Td | Time(s) | Iterations
1 12190.00| 0.980.85|0.00| 27.83 30
2 11690.00 | 0.980.86| 0.00| 39.93 58
3 9744.00 | 1.020.98| 0.00| 21.79 30
4 21940.00 | 0.920.84| 0.00| 25.75 36
5 11370.00| 0.980.87| 0.00| 23.04 33
6 24550.00 | 0.910.80| 0.00| 45.47 66
7 10830.00| 0.990.85| 0.00| 56.97 83
8 23260.00| 0.950.55|0.00| 21.83 30
9 21210.00| 0.950.59|0.00| 22.40 31
10 12470.00| 0.970.97|0.00| 31.11 45
x 12330.00 | 0.97| 0.85]| 0.00| 26.79 34.50
o 5972.52 | 0.03| 0.14| 0.00| 12.04 18.69
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B1.5. Experiment 8.5 — Tuning for setpoint trackamgl disturbance rejection of FOPDT

. __ exp (-0.2s)
process model: (Gp(s) =T )

PSO tuning method

Trial | ITAE Kc Ti Td Time(s) Iterations
1 14.98 | 4920 0.40 0.0y 15.98 34
2 14.98 | 493 0.40 0.0¢ 17.30 37
3 14.98 | 493 0.40 0.0¢ 19.96 43
4 15.00 | 4.90 0.39 0.07 18.52 40
5 15.00 | 490 0.39 0.07 18.43 40
6 1499 | 491 0.40 0.0¢ 14.45 31
7 15.02 | 490 0.38 0.08 9.59 20
8 14.98 | 493 0.40 0.0¢ 23.22 50
9 14.99 | 492 0.40 0.0y 16.73 36
10 1498 | 4.93 0.40 0.0 19.44 42
X 1499 | 492 | 0.40| 0.07 17.36 37
o 0.01 | 0.01| 0.01| 0.00 3.64 8

GA tuning method

Trial | ITAE | Kc Ti Td | Time(s) Iterations
1 83.83| 1.23 0.31] 0.04 63.59 110
2 88.55| 0.92 0.333 0.08 52.7 101
3 85.77| 0.9 0.3 0.2 38.107 75
4 83.66 | 1.28 0.31] 0.01 52.38 104
5 90.49| 0.9] 0.31] 0.02 31.92 63
6 89.47| 0.92 0.29] 0.1 33.9 66
7 82.76 | 1.35 0.35] 0.0 51.96 101
8 93.61| 0.85 0.34] 0.04 43.05 84
9 82.83| 1.31] 0.37] 0.06 34.32 68
10 89.41| 0.93 0.31] 0.18 44.37 88
x 87.04 | 1.07| 0.32 | 0.07| 44.63 86
o 83.83 | 1.23| 0.31 | 0.04| 63.59 110
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process model: (Gp(s) =

(s2+25+1)

)

B1.6. Experiment 8.6: Tuning for setpoint trackaryl disturbance rejection of SOPDT
exp (—0.5s)

PSO tuning method

Trial | ITAE Kc Ti Td Time(s) Iterations
1 87.03 | 3.39 1.26 0.56 11.37 17
2 86.51 | 3.33 1.31 0.54 21.68 34
3 86.48 | 3.30] 1.33 0.58 21.97 34
4 86.49 | 3.31] 1.33 0.58 17.85 28
5 86.47 | 3.30] 1.33 0.58 27.20 43
6 86.47 | 3.29] 1.34 0.58 26.58 42
7 86.47 | 3.29 1.34 0.58 22.16 35
8 86.47 | 3.29 1.34 0.58 26.84 42
9 86.49 | 3.29 1.34 0.52 15.14 23
10 86.47 | 3.29 1.34 0.53 26.30 41
x 86.54 | 3.31| 1.33| 0.53 21.71 33.90
o 0.17 | 0.03] 0.03| 0.01 5.44 8.85

GA tuning method

Trial ITAE Kc Ti Td Time(s) Iterations
1 228 0.85 0.73 0.88 42.96 70
2 199 1.25 0.3] 0.59 34.1 59
3 220 09| 0.77 0.8 60.4 102
4 223 0.85 0.69 0.91 50.45 88
5 2724 | 1.36 0.78 0.88 34.87 54
6 275 1.42| 0.87 0.94 66.9 107
7 278 1.45 091 0.92 59.1 101
8 324 0.91 0.7§ 0.63 40.5 69
9 266.2 | 1.23 0.95 0.84 59.24 101
10 312 0.75 0.87 0.8p 21.53 36
x 259.76 | 1.1 | 0.77| 0.83| 47.01 78.7
(4 41.17 | 0.27| 0.18| 0.12| 14.55 24.53
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B1.7. Experiment 8.7: Tuning for setpoint trackargl disturbance rejection of SOIPDT

exp (—0.2s) )

process model: (GP(S) - s(s+1)

PSO tuning method

Trial | ITAE Kc Ti Td Time(s) Iterations
1 52.19 | 7.64 0.87 0.46 24.86 45
2 52.19 | 7.620 0.86 0.4b 28.36 51
3 52.21 | 7.62] 0.86 0.4b 16.80 30
4 52.30 | 7.70 0.82 0.48 24.98 45
5 52.19 | 7.63] 0.86 0.46 21.62 39
6 52.20 | 7.63] 0.87 0.4b 17.73 32
7 5230 | 7.71 0.81 0.48 19.54 35
8 52.19 | 7.63 0.86 0.4b 25.48 46
9 52.19 | 7.63] 0.86 0.46 28.09 51
10 5219 | 7.64 0.86 0.46 19.43 35
X 52.22 | 7.64| 0.85]| 0.47 22.69 41
o 0.05 | 0.03| 0.02| 0.01 4.22 8

GA tuning method
Trial ITAE Kc | Ti | Td | Time(s) Iterations

1 3073 0.29 0.860.41| 29.38 53
2 1112 0.88 0.790.76| 40.35 73
3 1868 0.84 0.820.62| 25.17 47
4 3121 0.28 0.7%0.82| 23.43 42
5 3121 0.28 0.7%0.82| 23.42 42
6 1320 0.81 0.870.59 36.9 66
7 1437 1.23 0.810.88| 21.93 39
8 1569 1.10 0.8/ 0.7 39.2 38
9 2347 0.81 0.760.72 25.7 46
10 3133 0.71] 1.320.94| 55.69 101
x 2210.10 | 0.72] 0.85| 0.73| 32.10 55

o 843.17 | 0.34]|0.17| 0.16| 10.78 20
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B1.8. Experiment 8.8: Tuning for setpoint trackargl disturbance rejection of FODUP
exp (—0.2s) )

process model: (Gp(s) —

PSO tuning method

Trial | ITAE Kc Ti Td Time(s) Iterations
1 8092 | 437 124 O 15.70 27
2 8092 | 441 124 O 10.90 18
3 8091 | 441 124 O 14.63 25
4 80.89 | 442 123 O 20.61 36
5 80.89 | 442 123 O 20.31 35
6 80.93| 435 123 O 10.58 18
7 8090 | 441 123 O 15.63 27
8 8090 | 442 123 O 17.17 30
9 80.89 | 442 123 O 17.91 31
10 8090 | 442 123 O 12.43 21
X 80.91 | 441 | 1.23| 0.00 15.59 27
(4 0.01 | 0.03] 0.00| 0.00 3.55 6

GA tuning method
Trial ITAE Kc | Ti | Td | Time(s) | Iterations
1 16205 0.86 0.8 O 23.31 37
2 16670 1.2 103 O 55.49 101
3 11264 0.820.78| 0 41 77
4 15227 0.920.93| 0 55.11 101
5 16051 0.940.87| O 38.63 71
6 10243 1.340.95| O 41.27 76
7 16367 0.930.89| O 30.4 60
8 17275 0.870.64| O 22.67 41
9 11149 096 09| O 60.6 112
10 15332 0.910.73| O 23.5 43
x 14578.30 | 0.98| 0.85| 0.00| 39.20 72
[ 2628.69 | 0.16| 0.12| 0.00| 14.27 27

- 174-



Appendix C

C1. Process Control Rig Loop Schematics.
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Fieure ©1.1: Wiring diagram of the flow control loop (FT01
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C2. Trial runs for PSO and GA tuning for Chapter 9

C2.1 Pressure control loop: (Gp(s) =

0.62exp (—0.1s)
(0.55+1)

GA tuning method
Trial ITAE Kc Ti Td Time(s) | Iterations
1 33.00 | 0.93] 0.02 0.00 51.27 40
2 27.97 | 0.93] 0.02 0.00 38.79 62
3 22.07 | 0.81] 0.01 0.00 43.65 70
4 34.30 | 0.94] 0.07 0.00 21.58 34
5 64.40 | 0.77] 0.19 0.00 21.60 34
6 22.18 | 0.67| 0.01 0.00 41.60 67
7 58.40 | 0.77] 0.06 0.00 21.80 35
8 25.37 | 0.94] 0.02 0.00 34.37 55
9 54.30 | 0.88] 0.06 0.00 30.10 48
10 28.57| 0.84 0.02 0.00 36.14 58
x 30.79 | 0.86 | 0.02 | 0.00 35.26 52
o 15.85 | 0.09 | 0.05| 0.00 10.27 14
PSO tuning method
Trial | ITAE Kc Ti Td Time(s) Iterations
1 241 | 453 0.42 0.00 8.47 20
2 241 | 459 0.43 0.00 8.46 20
3 241 | 4.61] 0.43 0.00 8.07 19
4 2.4 4.49| 042 0.00 9.32 22
5 2.4 4.52| 0.43 0.0(b 11.35 27
6 2.4 450 042 0.00 10.49 25
7 241 | 457, 0.43 0.00 7.74 18
8 2.4 4.49| 042 0.00 7.30 17
9 2.4 451 043 0.00 7.34 17
10 241 | 4.61 0.44 0.00 7.72 18
X 241 | 453 0.43] 0.00 8.27 20
o 0.01 | 0.05] 0.01] 0.00 1.36 3
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C.2.2 Flow control loop: (Gp(s) = M)

(1.24s2+3.55+1)

GA tuning method
Trial ITAE Kc | Ti Td | Time(s) | Iterations
1 3015.00, 0.04 0.30| 0.00, 63.53 52.00
2 2764.00, 0.08 0.72| 0.00, 28.28 34.00
3 2763.00, 0.08 0.73| 0.00] 26.25 34.00
4 2788.00, 0.08 0.72| 0.00, 23.90 30.00
5 2744.00, 0.09 0.75| 0.00, 25.36 33.00
6 3112.00|] 0.15 0.95| 0.00] 21.63 28.00
7 3042.00, 0.04 0.36| 0.00, 21.70 28.00
8 3214.00, 0.16 0.94| 0.00, 64.00 85.00
9 2746.00, 0.10 0.82| 0.00, 21.60 28.00
10 2638.00, 0.110.96| 0.00] 50.00 38.08
x 2776.00| 0.09] 0.74| 0.00| 25.81 33.50
g 194.48 | 0.04] 0.23| 0.00| 17.49 17.69
PSO tuning method
Trial ITAE Kc Ti Td Time(s) Iterations
1 1013.00 0.85| 5.04| 0.00 24.90 36.00
2 1013.00 0.85| 5.03| 0.00 23.93 35.00
3 1013.00 0.85| 5.02| 0.00 22.61 33.00
4 1013.00 0.85| 5.03| 0.00 24.57 36.00
5 1013.00 0.85| 5.03| 0.00 25.43 37.00
6 1013.02 0.86 | 5.04| 0.00 18.53 27.00
7 1013.00 0.85| 5.03| 0.00 21.12 31.00
8 1013.00 0.85| 5.03| 0.00 29.01 43.00
9 1013.00 0.85| 5.02| 0.00 32.37 48.00
10 1013.00 0.85| 5.02| 0.0Q 27.18 40.00
X 1013.00[ 0.85] 5.03| 0.00| 24.74 36.00
o 0.01 | 0.00| 0.01]| 0.00 3.93 5.99
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C.2.3 Level control loop (Gp(s) =

0.02exp (—3s) )

5(0.765+1)

GA tuning method

Trial ITAE Kc | Ti | Td | Time(s) | lterations
1 7825.00 | 0.11 0.76| 0.00] 30.40 25.00
2 29100.00 | 0.18 0.95| 0.00] 22.90 29.00
3 2228.00 | 0.01 0.96| 0.00] 70.06 90.00
4 1176.00 | 0.06 0.50| 0.00] 21.40 27.00
5 45680.00 | 0.170.82| 0.00] 21.50 27.00
6 39470.00 | 0.13 0.68| 0.00 21.40 27.00
7 5069.00 | 0.03 0.93| 0.00] 62.00 80.00
8 7735.00 | 0.05 0.99| 0.00] 32.88 42.00
9 6722.00 | 0.04 0.98| 0.00] 37.58 48.00
10 4898.00 | 0.03 0.98| 0.00] 24.49 31.00
X 7228.50 | 0.06| 0.94| 0.00| 27.45 30.00
o 16554.76 | 0.06| 0.16]| 0.00| 17.63 23.65

PSO tuning method

Trial ITAE Kc Ti Td | Time(s) | Iterations
1 6137.50| 14.54 5.6 0.00 455.50 361.00
2 6137.48| 1454 5.64 0.00 454.50 361.00
3 6138.32| 14.34 5.62 0.00 354.50 283.00
4 6137.49| 1454 5.64 0.00 454.50 361.00
5 6478.20| 14.41 5.6 0.00 399.39 314.00
6 6136.29| 1454 5.64 0.00 453.50 362.00
7 6138.22| 14.34 5.63 0.00 352.50 282.00
8 6136.49| 14.55 5.64 0.00 454.50 361.00
9 6137.49| 1454 5.64 0.00 456.50 363.00
10 6505.79| 14.41 5.71 0.00502.18 393.00
X 6137.50| 14.54| 5.64 | 0.00| 454.50 361.00
o 149.65 | 0.09 | 58.09| 0.00| 48.78 37.57
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Appendix D

D1. Derived publications.

D1.1 “A Particle Swarm Optimization Approach for Modaldependent Tuning of PID
Control Loop,”IEEE Africon 2007, IEEE Catalog: 04CH37590C, ISEN7803-
8606-X 2007

D1.2 “Particle Swarm Optimization of PID Control for Se+8ystem Positioning,”
Proceedings of the Tenth IASTED International Cafee on Control and
Applications pp.148-153, 2008

D1.3 Draft Journal Paper
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