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Abstract We model the dynamics of a spherically symmetric radiating dynamical
star with three spacetime regions. The local internal atmosphere is a two-component
system consisting of standard pressure-free, null radiation and an additional string
fluid with energy density and nonzero pressure obeying all physically realistic energy
conditions. The middle region is purely radiative which matches to a third region
which is the Schwarzschild exterior. A large family of solutions to the field equations
are presented for various realistic equations of state. We demonstrate that it is possible
to obtain solutions via a direct integration of the second order equations resulting from
the assumption of an equation of state. A comparison of our solutions with earlier well
known results is undertaken and we show that all these solutions, including those of
Husain, are contained in our family. We then generalise our class of solutions to higher
dimensions. Finally we consider the effects of diffusive transport and transparently
derive the specific equations of state for which this diffusive behaviour is possible.

Keywords Equations of state · Generalized Vaidya spacetimes · Radiating stars

1 Introduction

The geometry outside a spherically symmetric radiating star is described by the Vaidya
spacetime [1] and it defines outgoing null radiation. It is written in terms of the mass of
the radiating body and the Petrov–Pirani–Penrose classification of the metric is of type
D [2]. The result [1] provided an advance in the modeling process and the possibility
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then arose to study the interior of radiating stars by matching the interior solution
to the radiating exterior [3–7]. The complete derivation of the junction conditions
for a shear-free radiating star was provided by Santos [8]. The important result that
followed was that the pressure on the boundary of the radiating star should be nonzero
in general, and proportional to the heat flux. It should be noted that this framework
describes only the emission of pressureless null radiation (photons) into the exterior
region of the dissipating star, and no other outflow of any other type of observable
radiation. The effects of radiation are important in the latter stages of gravitational
collapse and allows for a surrounding zone of radiation.

1.1 The problem

Though the outside geometry and matching conditions have been studied in detail, the
main problem is as follows:
How do we model a realistic collapsing astrophysical star with a core null fluid and
a string fluid which matches to the intermediate Vaidya spacetime enclosed by the
Schwarzschild exterior?
This is a key question for a better understanding of the dynamics, thermodynamics and
gravitational collapse in realistic astrophysical stars, in the context of general relativity.
The class of spacetimes that are natural candidates for models of such stellar interiors
are generalised Vaidya spacetimes. The matter field in these spacetimes have two
components: A general Type I matter field (whose energy momentum tensor has a
timelike and three spacelike eigenvectors), that describes null fluid matter, and also a
Type II matter field (whose energy momentum tensor has double null eigenvectors) that
describes null radiation and a string fluid. Such a stellar interior can then be naturally
matched to an external radiating zone described by the Vaidya spacetime, and finally
the radiation zone can be matched smoothly with the vacuum Schwarzschild exterior,
as we explain in later sections of the paper.

1.2 Generalised Vaidya spacetimes

The generalisation of the Vaidya spacetime was given in detail by Wang and Wu
[9] and includes most of the known solutions of Einstein’s field equations with the
additional Type II fluid. The notion that the energy momentum tensor is linear in
terms of the gravitational mass for these matter fields, engenders this generalisation of
the spacetime. The generalised Vaidya metric in single (exploding) null coordinates
(v, r, θ, φ) is given as

ds2 = −
(

1 − 2m(v, r)
r

)
dv2 − 2dvdr + r2

(
dθ2 + sin2 θdφ2

)
. (1)

Here the function m(v, r) describes the Misner-Sharp mass of the stellar interior and
can be obtained via integrating the Einstein field equations with combinations of
perfect fluid and null matter sources.
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1.3 Earlier works

In recent times, Maharaj et al. [10] have generalised the Santos junction condition by
matching the interior geometry of a manifold, containing a shear-free heat conduct-
ing fluid, to the exterior geometry described by the generalised Vaidya metric which
contains the additional Type II null fluid. This result provided an even wider array
of opportunities and possibilities with regards to the modeling of relativistic objects
in astrophysics and cosmology. More importantly, the result provided a more general
exterior region for a radiating star, which is made up of a two-fluid system: a combi-
nation of the standard null radiation as in the case of the original Santos framework,
and an additional more general fluid distribution which can be taken to be another
form of radiation or, perhaps more interestingly, a field of particles such as neutrinos
or other exotic non-interacting matter. Another interesting feature of the generalised
junction condition is the fact that the radiating fluid pressure at the boundary is not
only proportional to the heat flux, but also coupled to the non-vanishing energy density
of the Type II null fluid.

A significant amount of study on relativistic radiating stars has been carried out in
the standard Santos framework. The junction conditions were generalised, for exam-
ple, to include the effects of an electromagnetic field as well as shearing anisotropic
stresses during dissipative stellar collapse by de Oliveira et al. [11] and Maharaj and
Govender [12]. Analytical solutions for shear-free non-adiabatic collapse in the pres-
ence of electric charge were obtained by Pinheiro and Chan [13]. Schäfer and Goenner
[14] studied a highly idealised model with constant luminosity radiating away its mass
showing that an event horizon never forms. Nonlinear models for relativistic stars in
the shear-free regime were found with heat flow by Misthry et al. [15] using a transfor-
mation that reduced the boundary condition to a simpler form in the conformally flat
zone. Abebe et al. [16,17] utilised the Lie symmetry analysis for studies on geodesic
models and radiating Euclidean stars with an equation of state. Govender et al. [18]
modeled the physical behaviour at the surface of a radiating star. They investigated
the effect of the exterior energy density on the temporal evolution of the radiating
fluid pressure, luminosity, gravitational redshift and mass flow at the boundary of a
relativistic star.

Another important notion to consider is that of gravitational collapse. Maharaj
and Govender [19] studied collapse models with an internal isotropic pressure and
vanishing Weyl stresses and probed the dynamical stability of the dissipating stellar
fluid. They found that close to the centre, the configuration was more unstable. The
thermal evolution of a radiating fluid is vital in any stellar model and Martinez [20],
Herrera and Santos [21] and Govender et al. [22] studied the explicit role of relaxation
and mean collision time in these frameworks. A further investigation of these ideas
was carried out by Naidu et al. [23], Naidu and Govender [24] and Maharaj et al.
[25] where the latter authors investigated the gravitational collapse of a radiating
sphere evolving into a final static configuration described by the interior Schwarzschild
solution. More recently, Mkenyeleye et al. [26] studied the gravitational collapse of
the Vaidya spacetime in the context of the cosmic censorship hypothesis. Developing
a general mathematical template, they showed that there exist classes of generalised
Vaidya mass functions in which the collapse reaches an end state with a locally naked
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central singularity. It is often required that for a radiating stellar model to have a more
realistic physical form, a barotropic equation of state must be imposed on the fluid
distribution. In most cases the equation of state becomes a Cauchy–Euler differential
equation. Several attempts have been made to model such situations. Wagh et al.
[27] made use of a linear equation of state in spacetimes which are shear-free and
Goswami and Joshi [28] studied the gravitational collapse of an isentropic perfect fluid
distribution with a linear equation of state. An important note to make is that the notion
of a Type II fluid existing in the exterior region of the radiating star has been studied in
isolation without any direct connection to the interior matter conglomeration. Nonstatic
spherically symmetric solutions to Einstein’s field equations with a null fluid source
were obtained by Husain [29] in general for such an exterior fluid with a polytropic
equation of state P = kρa . He demonstrated that for a linear equation of state (a =
1) and varying values of the constant k, the metrics were either asymptotically flat
(1/2 < k < 1) or cosmological (0 < k < 1/2). The value k = 1 yielded the charged
Vaidya solution. Finally, it was shown that in the long time limit, the asymptotically flat
spacetimes were hairy black hole solutions. Dawood and Ghosh [30] characterised a
large family of solutions to Einstein’s equations representing a spherically symmetric
Type II fluid, and showed that the well known dynamical black hole solutions are a
particular case of this larger family. Ghosh and Dawood [31] then generalised these
results to higher dimensions. An appraisal was conducted by Wang and Wu [9] where
the ideas of Husain and others were extended and further classes of solution were
obtained. Contained within these results are the well known monopole solution, the
de Sitter and anti-de Sitter models, the charged Vaidya solution, the Husain solution
and the radiating dyon solution. It should be noted that these solutions were obtained
via a method of assuming a series form for the gravitational mass function in the field
equations. In our study below, we will attempt to integrate the field equations directly
subsequent to assuming an equation of state.

1.4 This paper

The intent of this paper is to generate solutions to the generalised Vaidya stellar interior
with a string fluid and null matter for various thermodynamically realistic equations of
state. It turns out that a direct integration of the resulting partial differential equations
is possible in general for the linear, quadratic and polytropic equations. Our solutions
for the linear cases generalise all of those obtained by Husain and others as well as the
complete summary of solutions presented in [9], and are therefore the most general
solutions known. For pedagogical completeness, we also further generalise all of our
results in the higher dimensional generalised Vaidya spacetimes.

This paper is organised as follows: In the next section we give a complete outline
of how to model an isolated spherical and physically realistic radiating astrophysical
star via the generalised Vaidya geometry. In the following section we describe the
generalised Vaidya spacetime in detail by analysing the Einstein field equations. We
present the relevant aphorisms indicative with the geometry of the generalised Vaidya
metric and make mention of the energy conditions for a physically reasonable model.
A note on equations of state is presented with various cases discussed. In Sect. 4 we
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systematically present solutions to the Einstein field equations for the gravitational
mass function by assuming several different equations of state. The succeeding Sect. 5
then deals with the higher dimensional spacetime and field equations. The solutions
are summarised in detail for higher dimensions and the masses are tabulated. Finally
an analysis if the effects of diffusion on our model is undertaken. We will present
several classes of solutions to the diffusion equation using the various equations of
state.

2 The model of a dynamic and radiating relativistic fluid star

Any isolated spherically symmetric astrophysical star is a combination of three dis-
tinct concentric zones: the innermost zone is the stellar interior where there are two
component matter sources, namely null fluid matter along with radiation. The middle
zone is purely a radiation zone while the outermost zone is the vacuum Schwarzschild
exterior that extends roughly to a radius of 1 light year (for solar mass stars) beyond
which galactic dynamics take over. In this section we briefly outline how to model all
three of these zones under a combined framework using a generalised Vaidya class of
metric.

2.1 Stellar interior

As described earlier, the best possible candidate for the spacetime of a stellar interior
is the class of generalised Vaidya spacetimes (1), and the mass function m(v, r) can
be uniquely obtained via the Einstein field equations with the two component matter
sources. Letm(v, r) be one such solution for a given combination of fluid and radiation
fields. This solution then completely describes the solution of the interior of the star,
up to a boundary layer given by r = rb. Beyond this boundary we enter a pure radiation
zone.

2.2 Radiation zone

In this zone the matter field is a single component null matter field and the spacetime
is well described by the Vaidya metric

ds2 = −
(

1 − 2m1(v)

r

)
dv2 − 2dvdr + r2

(
dθ2 + sin2 θdφ2

)
. (2)

We can naturally relate the Vaidya mass function m1(v) in the radiation zone to the
generalised Vaidya mass function in the stellar interior in the following way

m1(v) = m(v, rb). (3)

This radiation zone continues until some retarded null coordinate value v = V0,
beyond which the spacetime is Schwarzschild (as dictated by Birkhoff’s theorem).
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2.3 Schwarzschild exterior

This region is well described by the exterior static subset of the completely extended
Schwarzschild manifold, and the metric is given by

ds2 = −
(

1 − 2M

r

)
dv2 − 2dvdr + r2

(
dθ2 + sin2 θdφ2

)
. (4)

Here the Schwarzschild mass M is related to the Vaidya mass m1(v) by

M = m1(V0). (5)

2.4 Matching conditions at the boundary layers: complete mass function

We note here that the spacetime is divided into three distinct regions for our above
mentioned stellar model: the interior region, the radiation zone and the Schwarzschild
exterior region. The first boundary layer between the inner and the intermediate zone,
given by r = rb, is a timelike boundary, whereas the second boundary given by v = V0
is a null boundary.The important point that all the three zones are describedby the same
class ofmetricwhichmakes thematching conditions across these boundaries extremely
transparent. To match the first fundamental form all we need is the mass function to
be continuous across these boundaries. Hence the complete C2 mass function for an
isolated stellar model can be given in the following form:

m(v, r) =

⎧⎪⎨
⎪⎩
m(v, r) r ≤ rb , v ≤ V0

m1(v) ≡ m(v, rb) r > rb , v ≤ V0

M ≡ m1(V0) ≡ m(V0, rb) r > rb , v > V0

(6)

We can easily check that this mass function is a solution to the Einstein field equations
in all the three zones mentioned above, and hence it completely describes the spacetime
of an isolated collapsing star. To match the second fundamental form, we need the
partial derivatives of the mass functions across the boundaries be continuous. These
conditions are given by

∂

∂v
m(v, rb) = ∂

∂v
m1(v), (7a)

∂

∂r
m(v, r)

∣∣∣∣
r=rb

= 0, (7b)

∂

∂v
m1(v)

∣∣∣∣
v=V0

= 0. (7c)

where r = rb is the timelike boundary [from equating (1)–(2)] and v = V0 is the null
boundary [(from equating (2)–(4)]. These boundaries serve as the matching surfaces
for the three concentric regions which can be seen in Fig. 1.
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Fig. 1 Depiction of spacetime divided into the three distinct regions

It is therefore necessary to find physically relevant mass functions, with the structure
of (6), to model a dynamical radiating star which is isolated. We achieve this by
imposing specific equations of state.

3 Generalised Vaidya spacetime: field equations and energy conditions

The line element for all three regions belongs to the generalised Vaidya class given by
(1). Note that m(v, r) is the mass of the star and is related to the gravitational energy
within a given radius r [32,33]. From the above we have the following quantities

R0
0 = R1

1 = mrr

r
, (8a)

R1
0 = 2mv

r2
, (8b)

R2
2 = R3

3 = 2mr

r2
, (8c)

with the Ricci scalar

R = 2

r2
(rmrr + 2mr),
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where we have used the notation

mv = ∂m

∂v
, mr = ∂m

∂r
.

The Einstein tensor components are

G0
0 = G1

1 = −2mr

r2
, (9a)

G1
0 = 2mv

r2
, (9b)

G2
2 = G3

3 = −mrr

r
. (9c)

The energy momentum tensor is defined by

Tab = T (n)
ab + T (m)

ab , (10)

where

T (n)
ab = μlalb,

T (m)
ab = (ρ̃ + P)(lanb + lbna) + Pgab.

In the above

la = δ0
a, na = 1

2

[
1 − 2m(v, r)

r

]
δ0
a + δ1

a,

with lclc = ncc = 0 and lcnc = −1. The null vector la is a double null eigenvector of
the energy-momentum tensor (10). Hence the nonzero components are given by

T 0
0 = −ρ̃, (11a)

T 1
0 = −μ, (11b)

T 2
2 = T 3

3 = P, (11c)

The Einstein field equations (Ga
b = κT a

b) become

μ = −2
mv

κr2
, (12a)

ρ̃ = 2
mr

κr2
, (12b)

P = −mrr

κr
, (12c)

which describe the gravitational behaviour of a string fluid [34,35].
The energy conditions for this kind of fluid are
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1. The weak and strong energy conditions:

μ ≥ 0, ρ̃ ≥ 0, P ≥ 0 (μ �= 0). (13)

2. The dominant energy condition:

μ ≥ 0, ρ̃ ≥ P ≥ 0 (μ �= 0). (14)

In the case when m = m(v) the above energy conditions all reduce to μ ≥ 0, and if
m = m(r), then μ = 0 and the matter field becomes a Type I fluid. For the purposes of
many applications, it is a requirement that the matter distribution satisfy an equation
of state

P = P(ρ̃), (15)

on physical grounds. Sometimes the linear γ -law equation of state

P = (γ − 1)ρ̃, (16)

where 0 < γ < 1, is assumed in cosmology when probing the dynamics of matter on
galactic and extragalactic length scales. The case γ = 1 corresponds to dust (vanishing
pressure); γ = 2 gives a stiff equation of state in which the speed of sound and light
speed are equal; γ = 4/3 corresponds to radiation. In the limit when γ = 0, the fluid
pressure is negative, p = −ρ̃ (since ρ̃ > 0). This is the characteristic property of the
so-called dark energy or the existence of a possible scalar field that is responsible for
the accelerated expansion of the universe. Often the particular equation of state

P = kρ̃γ ,

is assumed in relativistic astrophysics; this is called the polytropic equation of state.
It is commonly used to model electron degenerate and neutron degenerate gases in
white dwarfs and neutron stars, respectively.

4 Solutions with equations of state

In this section we will impose various equations of state upon the system (12).

4.1 Case I(a): linear

If we assume a linear equation of state P = kρ̃ to the field Eqs. (12), we have

mrr + 2k

r
mr = 0, (17)

which is a second order linear partial differential equation. Since we are differentiating
with respect to one variable, we can treat it as an ordinary differential equation, in which
case it’s a weaker variant of the Cauchy–Euler equation. The above equation can be
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solved via reduction of order and has two solutions. For the case when k = 1
2 , the

solution is given by
m(v, r) = c1(v) ln(r) + c2(v),

where c1(v) and c2(v) are functions of integration. For k �= 1
2 we have the solution

m(v, r) = c1(v)
r1−2k

1 − 2k
+ c2(v). (18)

Hence we have (for the latter case)

μ = −
[

2ċ1

κ(1 − 2k)r1+2k + 2ċ2

κr2

]
, (19a)

ρ̃ = 2c1

κr2+2k , (19b)

P = 2c1k

κr2+2k . (19c)

We have that all the energy conditions are satisfied if we have c1(v) ≥ 0 and ċ2(v) < 0.

4.2 Case I(b): generalised linear

Imposing the condition P = kρ̃ + k2 yields

mrr + 2k

r
mr + κk2r = 0, (20)

which can be solved via reduction of order. Letting y(v, r) = mr yields the first order
equation

y′ + 2k

r
y + κk2r = 0, (21)

which in turn has the solution

y(v, r) = −κk2

2k + 2
r2 + c1r−2k, (22)

where c1 = c1(v) is a function of integration. Again, two cases arise. When k = 1
2

the general solution for m(v, r) is given by

m(v, r) = c1(v) ln(r) + c2(v) − κk2

r3
,

where c2 = c2(v) is a further integration function. The general solution for the mass
when k �= 1

2 is

m(v, r) = −κk2

3(2k + 2)
r3 + c1r1−2k

1 − 2k
+ c2. (23)
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Table 1 Known solutions contained within the system (24)

Solution m(v, r) c1(v) and c2(v) k-indices

Monopole ar
2 c1(v) = a

2 , c2(v) = 0 k, k2 = 0

Charged Vaidya g(v) − q(v)2

2r c1 = q(v)2

2 , c2 = g(v) k = 1, k2 = 0

dS/AdS Λ
6 r3 c1(v) = c2(v) = 0 k = const.,

k2 = −Λ(k+1)
κ

Husain g(v) − q(v)

(2k−1)r2k−1 c1(v) = −q(v)
2 , c2(v) = g(v) k, k2 = const.

Thus we have (for the latter case)

μ = −
[

2ċ1

κ(1 − 2k)r1+2k + 2ċ2

κr2

]
, (24a)

ρ̃ = 2c1

κr2+2k − k2

k + 1
, (24b)

P = k2

k + 1
+ 2c1k

κr2+2k , (24c)

which contains the system (19) as well as several of the seminal other cases sum-
marised in [9]. This list of possible solutions is presented in Table 1. Again, the energy
conditions are satisfied for c1(v) ≥ 0 and ċ2(v) < 0.

4.3 Case II(a): quadratic

If we impose the quadratic equation of state P = kρ̃2 on the system (12), we have

mrr + η

r3
m2

r = 0, (25)

where η = 4k/κ . Reducing the order of the above equation with y(v, r) = mr gives

y′ + η

r3
y2 = 0, (26)

which is a separable equation in y. The solution is

y(v, r) = − 2r2

c1r2 + η
, (27)
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where c1 = c1(v) is again, an integration function. Hence, the general solution for m
is

m(v, r) = c2 − 2

⎛
⎜⎜⎝ r

2c1
−

√
η arctan

(√
2
√
c1r√
η

)

2
√

2c3/2
1

⎞
⎟⎟⎠ , (28)

where c2 = c2(v) is a second integration function. Hence the field equations give

μ = − 2

κr2

⎡
⎣ċ2 + ċ1r

c2
1

+ ċ1r

2c1

(
1 + 2c1r2

η

)

− 3
√

2
√

ηċ1

4
√
c1

5
arctan

(√
2
√
c1r√

η

)]
, (29a)

ρ̃ = 4

κ(2c1r2 + η)
, (29b)

P = 4η

κ(2c1r2 + η)2 . (29c)

For the above, the energy conditions are satisfied for the following restriction: η ≥ 0
or c1(v) ≥ 0 and for any c2(v).

4.4 Case II(b): generalised quadratic

Imposing the condition P = kρ̃2 + k2ρ̃ + k3 yields

mrr + η

r3
m2

r + 2k2

r
mr + k3κr = 0, (30)

which can be solved again by reducing the order. Doing so with y(v, r) = mr yields

y′ + η

r3
y2 + 2k2

r
y + k3κr = 0. (31)

Equation (31) is a nonlinear Riccati equation. Integration yields

y(v, r) = −1

η

(
r2 tan

(√
k3κη − k2

2 − 2k2 − 1(ln r − c1)

)

×
√
k3κη − k2

2 − 2k2 − 1

)
, (32)
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where c1 = c1(v) is a function of integration. Thus, the solution form can be expressed
as a quadrature

m(v, r) = −1

η

∫ (
r2 tan
(√

ζ (ln r − c1)
)

√
ζ
)
dr + c2, (33)

where c2 = c2(v) is a second integration function. In the above we have set ζ =
k3κη − k2

2 − 2k2 − 1 for convenience. So we have the result

μ = 2

κηr2

[
∂

∂v

∫ (
r2
√

ζ tan
(√

ζ (ln r − c1)
))

dr
]

+ 2

κηr2
ċ2, (34a)

ρ̃ = 2

κηr2

(√
ζ r2 tan

(√
ζ (ln r − c1)

))
, (34b)

P = 1

κη

[
2
√

ζ tan(
√

ζ )

× ζ sec2
(√

ζ (ln r − c1)
)]

. (34c)

The energy conditions are satisfied as in the previous case for any c2(v) and the
condition: η ≥ 0 or c1(v) ≥ 0.

4.5 Case III: polytropic

If we finally impose the equation of state P = kρ̃γ , we have

mrr + kκ

(
2

κ

)γ

r1−2γmγ
r = 0. (35)

Reducing the order of the above equation with y(v, r) = mr gives

y′ + kκ

(
2

κ

)γ

r1−2γ yγ = 0, (36)

which is a separable equation in y. Therefore the solution is

y(v, r) =
[
(γ + 1)kκ

(
2

κ

)γ r2−2γ

2 − 2γ
+ (1 − γ )c1

] 1
1−γ

, (37)
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where c1 = c1(v) is a function resulting from the integration process. So the solution
for the mass m is

m(v, r) =
∫ [

(γ + 1)kκ

(
2

κ

)γ

× r2−2γ

2 − 2γ
+ (1 − γ )c1

] 1
1−γ

dr + c2, (38)

where c2 = c2(v) is a second integration function. It should be noted that this solution
was first presented by [29]. The field equations yield

μ = − 2

κr2

(
∂

∂v

∫ [
(γ + 1)kκ

(
2

κ

)γ

× r2−2γ

2 − 2γ
+ (1 − γ )c1

] 1
1−γ

dr

⎞
⎠− 2

κr2
ċ2, (39a)

ρ̃ = 2

κr2

[
(γ + 1)kκ

(
2

κ

)γ r2−2γ

2 − 2γ
+ (1 − γ )c1

] 1
1−γ

, (39b)

P = 1

(1 − γ )r2k

[
(γ + 1)kκ

(
2

κ

)γ r2−2γ

2 − 2γ
+ (1 − γ )c1

] γ
1−γ

× (γ + 1)k

(
2

κ

)γ

. (39c)

A summary of the above solutions can be found in Table 2. The weak and strong energy
conditions are satisfied when c1(v) ≥ 0 and for any c2(v). The dominant energy
condition is satisfied for c1(v) ≥ 0 and the further restriction: 2

κr2k ≥ (γ+1)
(1−γ )

( 2
κ

)γ
.

5 Higher dimensional Vaidya spacetime

Higher dimensional Vaidya spacetimes have a variety of physical applications. For
example, the thermodynamics of spacetime, entropy and the existence of horizons
have been studied in detail by Debnath [36]. Also Mkenyeleye et al. [37] considered
gravitational collapse in higher dimensional Vaidya spacetimes. It is also interesting
to note that solutions have been found in alternate theories of gravity. For example,
Dominguez and Gallo [38] found families of radiating black hole solutions for various
equations of state in higher dimensional Einstein–Gauss–Bonnet gravity. Collapse
and other physical features are affected by the presence of higher dimensions. The
N -dimensional generalised Vaidya metric is given by

ds2 = −
(

1 − 2m(v, r)
rN−3

)
dv2 − 2dvdr + r2dΩ2

N−2, (40)
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Table 2 Equations of state and the gravitational mass

Equation of
state

P = P(ρ̃) m(v, r)

Linear P = kρ̃ m(v, r) = c1(v) ln(r) + c2(v), (k = 1
2 )

m(v, r) = c1(v) r
1−2k

1−2k + c2(v), (k �= 1
2 )

Generalised
linear

P = kρ̃ + k2 m(v, r) = −κk2
3(2k+2)

r3 + c1(v)r1−2k

1−2k + c2(v)

Quadratic P = kρ̃2 m(v, r) = c2(v) − 2
(

r
2c1(v)

−
√

η arctan

(√
2
√
c1(v)r√
η

)

2
√

2c1(v)3/2

⎞
⎟⎠

Generalised
quadratic

P = kρ̃2 +
k2ρ̃ + k3

m(v, r) = c2(v) − 1
η

∫ (
r2 tan
(√

ζ (ln r − c1(v))
)√

ζ
)
dr

Polytropic P = kρ̃γ m(v, r) = ∫ [(γ + 1)kκ
(

2
κ

)γ × r2−2γ

2−2γ
+ (1 − γ )c1(v)

] 1
1−γ dr + c2(v)

where

dΩ2
N−2 =

N−2∑
i=1

⎡
⎣i−1∏

j=1

sin2(θ j )

⎤
⎦ (dθ i )2.

The nonvanishing Ricci tensor components are given by

R0
0 = R1

1 = mrr

r(N−3)
− (N − 4)mr

r(N−2)
, (41a)

R1
0 = (N − 2)mv

r(N−2)
, (41b)

R2
2 = R3

3 = · · · = Rθ(N−2)
θ(N−2) = 2mr

r(N−2)
, (41c)

with the Ricci scalar

R = 2mrr

r(N−3)
+ 4mr

r(N−2)
. (42)

The nonvanishing components of the Einstein tensor are

G0
0 = G1

1 = − (N − 2)mr

r(N−2)
, (43a)

G1
0 = (N − 2)mv

r(N−2)
, (43b)

G2
2 = G3

3 = · · · = Gθ(N−2)
θ(N−2) = − mrr

r(N−3)
. (43c)
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Table 3 Equations of state and the higher dimensional gravitational mass

Equation of
state

P = P(ρ̃) m(v, r)

Linear P = kρ̃ m(v, r) = c1(v) ln(r) + c2(v), (k = 1
N−2 )

m(v, r) = c1(v) r
1−(N−2)k

1−(N−2)k + c2(v), (k �= 1
N−2 )

Generalised
linear

P = kρ̃ + k2 m(v, r) = − κk2
(N−2)k+N−2

rN−1

N−1 + c1(v) r
1−(N−2)k

1−(N−2)k + c2(v)

Quadratic P = kρ̃2 m(v, r) = (2 − N )
∫ rN−2

c1(v)(N−2)rN−2+η
dr + c2(v)

Generalised
quadratic

P = kρ̃2 +
k2ρ̃ + k3

m(v, r) = − 1
2η

∫ [(
rN−2 tan(

√
ς(ln r − c1(v))

)
×(

√
ς + N − 2 + ξ)

]
dr + c2(v)

Polytropic P = kρ̃γ m(v, r) = ∫ [κk(γ + 1)
(
N−2

κ

)γ × rN−2−γ (N−2)

N−2−γ (N−2)

+(1 − γ )c1(v)
] 1

1−γ dr + c2(v)

The Einstein field equations are thus

μ = − (N − 2)mv

κrN−2 , (44a)

ρ̃ = (N − 2)mr

κrN−2 , (44b)

P = − mrr

κrN−3 . (44c)

As in Sect. 4 we can find solutions to the field equations with various equations of
state for the higher dimensional Vaidya spacetime (40). The results are presented in
Table 3 for particular equations of state.

6 Diffusion

The notion of diffusion is an important one in regards to the understanding of many
physical systems. The ideas of diffusion have been applied to fields as diverse as the
stock exchange, kinetic theory and physiology. Vilenken [39] characterised string evo-
lutions as the formation of Brownian trajectories in an attempt to introduce diffusion
into the description of cosmic strings. Calogero [40] presented a new model to describe
the dynamics of particles undergoing diffusion in general relativity. It was shown that
in the flat Robertson–Walker spacetime, either unlimited expansion or the formation
of a singularity may occur, depending on the initial value of the cosmological scalar
field. If we assume that string diffusion is likened to point particle diffusion then we
have
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∂

∂v
n = D∇2n, (45)

where ∇2 = r−2
(

∂
∂r

)
r2( ∂

∂r ) and D is the positive coefficient of self-diffusion, which
we treat as a constant. In classical transport theory the diffusion equation is derived
beginning with Fick’s law

J(n) = −D∇n, (46)

where ∇ is a purely spatial gradient. The 4-current conservation Ja
(n);a = 0, where

Ja(n);a = (n, J(n))

= n
∂

∂u
− D
(

∂n

∂r

)(
∂

∂r

)
, (47)

then yields the diffusion Eq. (45). Rewriting the field Eqs. (12a) and (12b) as mv =
−κμr2 and mr = κρ̃r2, we can express the integrability condition for m as

∂ρ̃

∂v
+ 1

r2
∂

∂r
(r2μ) = 0. (48)

If we compare the diffusion Eq. (45) (n replaced with ρ) with ρ̃v in Eq. (48) above,
we get

∂m

∂v
= Dr2

∂ρ̃

∂r
. (49)

Solving the above Eq. (49) for the mass function m(v, r) will provide solutions for
the Einstein equations. Recall that the equations of state presented earlier were of the
form F1(m′,m′′) = 0. Using the field Eq. (12b) and substituting into (49) we get the
following

∂m

∂v
= 2D

κ

(
∂2m

∂r2
− 4

r
∂m

∂r

)
, (50)

which is of the functional form F2(ṁ,m′,m′′) = 0. In order to solve (50) entirely we
require a functional form F3(ṁ,m′) = 0. This entails isolating ∂2m

∂r2 in each equation
of state and substituting into (50). We will consider some cases below.

6.1 Linear

If we begin with the linear equation of state P = kρ we have from before

mrr + 2k

r
mr = 0,

which we can substitute into (50) to finally get

∂m

∂v
− α

r
∂m

∂r
= 0, (51)
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where α = − 2D
κ

(2k + 4) for convenience. Equation (51) can be solved using the
method of characteristics and the solution is given by

m(v, r) = F
(

1

2
r2 + αv

)
, (52)

which is an infinite family of solutions. To check for consistency, we simply have to
substitute (52) into (17). In doing so we get

r2F ′′ + (1 + 2k)F ′ = 0, (53)

which is a consistency condition on F . It turns out that a solution is only possible for
the case when k = − 1

2 . It is given by

F
(

1

2
r2 + αv

)
= l1

(
1

2
r2 + αv

)
+ l2, (54)

where l1 and l2 are constants.

6.2 Generalised linear

For the generalised linear equation of state the resulting partial differential equation
becomes

∂m

∂v
− α

r
∂m

∂r
+ κk2r = 0, (55)

and can be solved in the same way as above giving the solution

m(v, r) = F
(

1

2
r2 + αv

)
− κk2

3α
r3. (56)

The above solution is consistent if and only if

r2F ′′ + (1 + 2k)F ′ −
(

2k2κ

α
+ 2kk2κ

α
− k2κ

)
r = 0. (57)

Then we must have

F ′′ = (1 + 2k)F ′ =
(

2k2κ

α
+ 2kk2κ

α
− k2κ

)
= 0. (58)

This implies that F has the same form as (54) and k = − 1
2 . We also have

k2κ

(
1 − 1

α

)
= 0. (59)
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Since k2 �= 0, we have that
(
1 − 1

α

) = 0 which implies α = 1 and so κ = −6D. This
is also a generalisation of the first result (54) where k = − 1

2 with the added restriction
that κ = −6D.

6.3 Generalised quadratic

Isolating mrr in the Eq. (30) and substituting into (50) the resulting partial differential
equation is given by

∂m

∂v
− Θη

1

r3

(
∂m

∂r

)2

− Θ

(
2k2 + 4

r

)
∂m

∂r
− Θk3κr = 0, (60)

where Θ = − 2D
κ

and η = 4k
κ

. This equation above cannot be solved via the method of
characteristics and so another approach is needed. If we assume a separable solution
for the mass function m of the form

m(v, r) = a(v) + b(r),

then we can express (60) as two ordinary differential equations

da

dv
= c, (61a)

Θη
1

r3

(
db

dr

)2

− Θ

(
2k2 + 4

r

)
db

dr
−Θk3κr = c, (61b)

where c is a constant. Both of these equations can be analysed independently and used
to yield a solution for the master Eq. (60). Solving Eqs. (61a) and (61b) yields the
final expression for the mass function as

m(v, r) = cv + ε − (2k2 + 4)

6η
r3 ±
[

1

6αβη
(αr2 + βr)

3
2

− β
√

αr

8α
5
2 η

√
β

(
1 + αr

β

) 3
2 + β

16α
5
2 η

√
1 + αr

β

− β

2α
5
2 η

ln

(√
1 + αr

β
+

√
αr√
β

)
+ ζ

2βη

]
, (62)

where α = Θ2(2k2 + 4)2 − 4Θ4k3κ , β = 4c and, as before η = 4k
κ

. In the above
ε and ζ are constants of integration. The mass functions (62) are other solutions to
the diffusion Eq. (50) which we believe are new. The functional form (62) has to be
consistent with the equation of state (30).
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6.4 Polytropic

Special mention should be made about this particular case. The partial differential
equation resulting from substitution of the expression (35) for the polytrope is

∂m

∂v
− βκk

(
2

κ

)
r2−2γ

(
∂m

∂r

)γ

− β
4

r
∂m

∂r
= 0, (63)

which is a first order, degree γ nonlinear equation. The above equation can only be
solved for specific values of the constant γ but not in general. Specifically, we have
shown that it only admits general closed form analytical solutions only for 0 < γ ≤ 2.
The case γ > 3 is highly nonlinear and not easy to analyse.

7 Discussion

In this work we considered a spherically symmetric radiating star. We noted that any
astrophysical star is a combination of three distinct concentric zones: the innermost
two-component matter zone, the middle radiation zone and the outermost zone which
is the vacuum Schwarzschild exterior. A large family of solutions to the field equations
were presented for various thermodynamically realistic equations of state. We showed
that it was possible to obtain solutions via a direct integration of simple second order
differential equations. Note that many of our solutions cannot be found using the
Wang and Wu [9] approach; they assumed a series form of the mass function which is
restrictive. Several other mass functions have been shown to exist in four and higher
dimensions which are physically reasonable. It was also possible to obtain several
diffusive solutions for the mass function via a substitution of the above mentioned
second order equations into the diffusion equation. We can easily show that a dynamical
radiating star is possible by matching the mass function (6) at the two boundaries. We
illustrate this with the generalised linear equation of state

P = kρ̃ + k2. (64)

At the first interface r = rb, between the two-component region and the null Vaidya
zone, the mass function is

m1(v) = −κk2

3(2k + 2)
r3b + c1(v)r1−2k

b

1 − 2k
+ c2(v). (65)

At the second interface, between the Vaidya zone and the vacuum exterior the mass
function is

M = −κk2

3(2k + 2)
r3b + c1(V0)r

1−2k
b

1 − 2k
+ c2(V0). (66)

Clearly the forms (65) and (66) are always possible since c1(v) and c2(v) are arbi-
trary functions. A comparison with earlier well known results was undertaken and we
showed that our solutions generalise all of the earlier ones, including those of Husain
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[29]. We then generalised our results to higher dimensional spacetimes. Additionally,
diffusive solutions are also possible at each interface for the same reasons. These (for
the generalised linear case) are given by

m1(v, r) = F
(

1

2
r2b + αv

)
− κk2

3α
r3b, (67a)

M = F
(

1

2
r2b + αV0

)
− κk2

3α
r3b, (67b)

at the first and second interfaces respectively.
Another important observation that transparently comes out of our analysis here

is the nonlinear nature of gravity. Even though the energy momentum tensor can be
written as a combination of radiation and matter parts, these quantities intertwine in
the metric in such a way as to give physically interesting solutions that can model a
dynamic star. If we switch off the radiation part completely, then the field equations
force the remaining matter to obey an equation of state ρ̃ + pr = 0 (pr is the radial
pressure), which is that of an anisotropic de Sitter like space, and hence not appropriate
for stellar modeling.

The work in this paper can further be enhanced by considering the notion of gravi-
tational collapse; whether or not there are special classes of Vaidya mass functions for
which a collapse comes to an end as a naked singularity or not. This will be a future
endeavour.
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