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a b s t r a c t

The conditions for naked singularity formation are considered for
a radiating metric of Boulware–Deser type within an electromag-
netic field in second order Lovelock (or Einstein–Gauss–Bonnet)
gravity. The spacetime metric remains real only up to certain
maximum charge contribution. This differs from general relativ-
ity. Beyond a certain maximal charge, there exists no real and
physical spacetime since the metric becomes complex. We estab-
lish that, under certain parameters and for specific values of the
mass function and charge contribution, this branch singularity
is indeed a naked singularity. This is in contrast to the neutral
case where the spacetime metric is always real for a positive
mass function, and further, a weak, initially naked singularity
always occurs before it becomes covered by an event horizon
for all future time. We highlight that both neutral and charged
collapse under gravity in Einstein–Gauss–Bonnet gravity differ
significantly to their general relativistic counterparts.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The study of black holes remains a fruitful and important endeavour in both observational and
heoretical astrophysics, general relativity and various modified gravity theories. The theorems of
ingularity formation predict that spacetime singularities will manifest upon the termination of
ravitational collapse [1]. Their incarnation depends on certain circumstances such as causality
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preservation and, specifically, the existence of trapped surfaces. These conditions hold for various
gravitational theories, modified or otherwise. One of the conditions for geodesic incompleteness
is the existence of trapped surfaces [2]. These theorems only take into account the formation
of singularities, and not their nature. The theorems of singularity formation do not consider the
possibility of naked singularity formation, i.e. for any escaping null geodesics directed into future
infinity. In order to avoid the notion of naked singularities, Penrose [3] envisioned the cosmic
censorship conjecture (CCC), divided into the weak CCC and strong CCC, which are yet to be proven.

• Weak cosmic censorship conjecture (WCCC): The weak CCC states that, given any initial generic
data, the maximal Cauchy development holds a complete future null infinity. This is to say that
if any physically reasonable matter distribution collapses under its own gravity, a spacetime
singularity must form which is hidden underneath an event horizon for as long as it exists.
Therefore, a black hole is the final fate of gravitational collapse; the event horizon blankets
the singularity from all external observers.

• Strong cosmic censorship conjecture (SCCC): The strong CCC states that, given generic asymptot-
ically flat or compact initial data, the maximal Cauchy development is locally inextendible as a
regular Lorentzian manifold; singularities are generically spacelike or null, and not timelike.1
Thus, given initial data, the final fate for all observers should be predictable for all time.

There exists the notion of a very strong CCC which asserts that the Lorentzian manifold is continuous
as opposed to just being regular; generically, singularities are spacelike. Cauchy surfaces and
developments were discussed in Choquet-Bruhat and Geroch [4]; we highlight some definitions
in the Appendix. The strongest version of the CCC was disproven by Dafermos and Luk [5] for the
Cauchy horizon of a dynamical rotating vacuum black hole. The Vaidya–Papapetrou model [6,7]
was an early model proposing a counterexample to cosmic censorship. Other counterexamples for
certain matter distributions, in differing contexts also exist, see for example [8–16]. With regards
to the preservation of cosmic censorship, Christodolou [17] analysed the Einstein–Klein–Gordon
system for spherical gravitational collapse of a scalar field in four dimensional general relativity. It
was shown that in that context, cosmic censorship turned out to indeed be a theorem.

Considering general relativity, increasing the spacetime dimension may or may not restore
cosmic censorship. It was shown in [12,18,19] that under certain conditions, i.e. certain forms of
the mass function, horizon formation takes place in higher dimensions, and so gravitational collapse
ceases with the formation of covered singularities. We note that an increase of dimension does not
necessarily restore cosmic censorship. For example, Figueras et al. [20] examined the ultraspinning
instability of a six dimensional asymptotically flat Myers–Perry black hole. It was demonstrated
that this instability implies a naked singularity, and hence, in asymptotically flat higher dimensional
spaces, there is a violation of the weak CCC. Further considerations of naked singularities in higher
dimensions can be found in [21,22].

Alternative or modified gravity theories are now a common place in the literature and the
reasons for modifying conventional Einstein gravity lie in the fact that it is incomplete; it does
not, for example, explain the black hole information paradox which deals with the emission of
radiation from an isolated black hole. It turns out that it is possible for the Lagrangian action to be of
polynomial form [23,24], which leads to the Lovelock action. The quadratic polynomial is the second
order Lovelock or Einstein–Gauss–Bonnet (EGB) action. We then have EGB gravity. These quadratic
curvature expressions act as corrections to conventional general relativity or first order Lovelock
gravity. The higher dimensional EGB-Schwarzschild analogue was first discovered by Boulware
and Deser [25] in arbitrary dimensions. The radiating Boulware–Deser solution was studied by
Kobayashi [26] and Brassel et al. [27]. It was shown in [28–30] that gravitational contraction yielded
naked singularities in five dimensional EGB gravity. The singularity was initially naked and conical
in nature before a trapping horizon formed, covering it. We note that for the Boulware–Deser black
hole in five dimensions, the mass function at the horizon is given by MH (rH ) = r2H + 2α, which
s in terms of the Gauss–Bonnet coupling constant α. Therefore, there exists a mass gap in five

1 A locally naked singularity is a timelike singularity, so the SCCC asserts that, generically, locally naked singularities
are not possible.
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dimensions: the mass function does not vanish for a zero radius; it is indeed a function of the
Gauss–Bonnet coupling constant, i.e. Mr=0 = 2α. This feature is unique only in five dimensions
nd does not occur in the higher dimensional case. In higher dimensions, this central singularity
s no longer necessarily naked initially. This is a feature which does not occur in Einstein gravity.
he metric with an electromagnetic field is very different. The Boulware–Deser metric was studied
ith an additional charge component by Wiltshire [31,32]. Again, using the methods employed in
26,33–35], the metric can be analysed in Einstein–Gauss–Bonnet–Maxwell (EGBM) gravity as a
adiating solution, in which case it reduces to the charged Vaidya metric in the Einstein limit. The
inal fate of charged radiation collapse in EGB gravity is a singularity which acts like a branch
plitting the physically real spacetime from an unphysical complex metric [35]. This singularity
s trapped by an inner (Cauchy) horizon and an outer horizon which any external observer can
iscern. Firstly, this holds for all dimensions N ≥ 5, unlike the collapse scenario without a charge

component, in which an initially naked singularity forms post collapse; this need not happen for
dimensions of six and higher. Secondly, this is significantly different to the Einstein limiting case,
i.e. charged Vaidya collapse. Thirdly, it is possible that once collapse is completed, the singularity
nature will be different to the neutral scenario. Is cosmic censorship adhered to? Are naked
singularities possible?

The basis of this paper is to study the environment of the singularities forming upon the cessation
of collapse, in the context of the CCC, for the radiating Boulware–Deser spacetime with charge in five
dimensions, which has not been done before. We demonstrate that a naked singularity is possible
in EGBM gravity, for a particular mass function, charge contribution function, obeying all the energy
conditions, and certain parameters. This is fundamentally disparate to the scenario without an
electromagnetic field where, upon collapse, a naked singularity will always form which is weak
and conical in nature [29]. Therefore it is possible to extend spacetime through the singularity;
this singularity will be trapped by an event horizon after a time depending on the EGB coupling
constant α. Hence we will demonstrate that the effect of the electromagnetic field and the higher
order curvature terms profoundly changes the dynamics of collapse and the nature of forming
singularities.

2. Einstein-Gauss–Bonnet gravity

In recent times Lovelock gravity, of which EGB gravity and general relativity are special cases,
has been studied extensively in many physical contexts, i.e. in the framework of inflation [36–41],
Einstein–Scalar–Gauss–Bonnet black holes and wormholes [42,43], and singular bouncing cosmolo-
gies [44]. The EGB theory has also proved fruitful in various studies [45,46] of the gravitational
wave (GW) signal emanating from the neutron star merging event GW170817. This GW signal
was detected by both the LIGO and Virgo detectors in 2017, originating from the shell-elliptical
(or lenticular) galaxy NGC 4993. It was shown in [47] that EGB theories can have GW speeds
equal to light rendering the analysis compatible with the aforementioned GW170817 event. In the
above works, linear and nonlinear functions of the scalar field were non-minimally coupled to the
four dimensional Gauss–Bonnet invariant. We remark that EGB gravity is higher dimensional and
relevant only for N ≥ 5. The recent ‘‘novel’’ four dimensional EGB theory as introduced by Glavan
and Lin [48] has various fundamental flaws. The ‘‘decomposition’’ of the Lovelock tensor which is
required to make four dimensional EGB gravity work leads to a violation of the Bianchi identity, in
which case, gravity cannot be coupled to a conserved source [49]. Several authors, including these
above, have then considered non-minimally coupling the four dimensional Gauss–Bonnet invariant
to a scalar field, which may yield viable models. The curvature corrections indicative of EGB gravity
can indeed have implications in observational cosmology and astrophysics, in which case the EGB
theory can be considered a viable modified gravity theory.

The action for second order Lovelock (or EGB) gravity is

S =

∫
dNx

√
−g(α1R + α2R2), (1)
3
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in arbitrary dimensions, α1 is the constant affiliated with the action (R = R) of general relativity,
nd α2 = α > 0 is the EGB coupling constant, which must be positive to avoid pathologies. The

second order Lovelock Lagrangian is given by

R2
= LGB = R2

+ RabcdRabcd
− 4RcdRcd, (2)

ariation of (1) with respect to gab will yield the EGB field equations

Gab −
α

2
Hab = κNTab. (3)

e have that Gab is the Einstein curvature tensor, κN is the N-dimensional Einstein constant, Tab
s the stress energy tensor and Hab is the Lovelock tensor which is a new term which appears as a
onsequence of the second order Lagrangian (2) appearing in the action (1). It is given by

Hab = gabLGB − 4RRab + 8RacRc
b + 8RacbdRcd

− 4RacdeRb
cde. (4)

n EGB gravity, N = 5 and N > 5 are considered as the critical dimensions. If the spacetime
imension is N < 5, the Lovelock tensor Hab = 0 identically, and we have general relativity in four
imensions or Newtonian gravity for dimensions N < 4. In the limit of vanishing α, five dimensional
instein gravity will result.

. Metric and field equations

We note that in arbitrary spacetime dimensions N , we have that Einstein’s coupling constant is
iven by

κN =
2(N − 2)π

N−1
2

(N − 3)Γ
(N−1

2

) , (5)

which contains the gamma function. The total area covering the outer surface of the (N −2)-sphere
is calculated from

AN−2 =
2π

N−1
2

Γ
(N−1

2

) , (6)

here we note the explicit dependence on the dimension N . The electromagnetic energy tensor
akes the form

Eab =
1

AN−2

(
FacFbc −

1
4
F cdFcdgab

)
, (7)

and has a zero trace only in four dimensions. In the above, the Faraday tensor Fab = Φb;a − Φa;b
here Φ is the N-potential. In five dimensions, the coupling constant and surface area are

κ5 = 3π2, A3 = 2π2, (8)

espectively.
The five dimensional Boulware–Deser metric is given by

ds2 = −f (v, r)dv2 + 2dvdr + r2dΩ2
3 , (9)

here dΩ2
3 = dθ2 + sin2 θdφ2

+ sin2 θ sin2 φdψ2 and

f (v, r) = 1 +
r2

4α

(
1 −

√
1 +

8αM(v, r)
r4

)
. (10)

In the above, M(v, r) is the general five dimensional gravitational mass. For a generalized two-
component type II distribution containing a dichotomy of null dust and a null string fluid, the energy
momentum tensor is

T = µl l + (ρ + P)(l n + l n ) + Pg , (11)
ab a b a b b a ab

4
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where we have that

la = δ0a, na =
1
2
f (v, r)δ0a + δ1a, (12)

ith the following restrictions for the null vectors lc lc = ncnc
= 0, lcnc

= −1. Here we have that µ
s the energy density of the null dust and ρ and P are the energy density and pressure of the null
tring.
After a lengthy calculation, the EGB field equations (3) take on the simple forms

µ =
Mv

2π2r3
, (13a)

ρ =
Mr

2π2r3
, (13b)

P = −
Mrr

6π2r2
, (13c)

here subscripts indicate differentiation. If we make the selection

M(v, r) = M(v) −
κ5Q(v)2

6A3r2

= M(v) −
Q(v)2

4r2
, (14)

or the mass function in (10) we have that the charge contribution (7) is then embedded into the
efinition (14). Note that Q = Q(v) is the benefaction of charge for EGBM theory. We then arrive
t the charged Boulware–Deser metric [31]

ds2 = −f (v, r)dv2 + 2dvdr + r2dΩ2
3 , (15)

here

f (v, r) = 1 +
r2

4α

(
1 −

√
1 +

8αM(v)
r4

−
2αQ(v)2

r6

)
. (16)

In the general relativity limit, this metric reduces to the charged Vaidya one in five dimensions.
With the aid of (13), the EGBM field equations can be written as

µ =
Mv

2π2r3
−

QQv

4π2r5
, (17a)

ρ = P =
Q2

4π2r6
(17b)

hen Q(v) = 0, then M(v, r) = M(v) from (14), and only one field equation (17a) will remain. For
he spacetime (15) with metric (16), we must have that the energy conditions hold:

Mv ≥
QQv

2r2
, Q(v) ≥ 0.

Note that since the term 2αQ2

r6
has a negative sign in (16), there is a maximum charge endowment

hat exists before the metric ceases to be real [35].

. Gravitational collapse

.1. Singularity type

There are some marked differences between the gravitational collapse process of the charged
oulware–Deser spacetime (16) and the uncharged counterpart (10). The collapse dynamics of the
onventional Boulware–Deser spacetime are precariously affected by the constant α. Firstly, the
pacetime metric is well defined and regular for all r , however the manifold on which the metric sits
5
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is itself singular because of the diverging Kretschmann invariant [29]. Therefore collapse ceases with
a central weak and extended conical singularity. Secondly, the EGB constant α impedes the horizon
ormation for a time period, therefore the singularity remains naked initially. The trapping horizon
ventually forms creating a black hole containing the trapped surfaces and conical singularity.
harged Boulware–Deser collapse is fundamentally contrasting. Firstly, the metric is no longer well
efined and is singular near r = 0; in fact there is no spacetime at r = 0. The charge benefaction
efashions the type of singularity encountered once collapse is completed; it ends with the creation
of a strong curvature branch-like singularity separating the two regions from each other [35]. This
ranch singularity is a fortiori the result of the maximal contribution of charge keeping the square
oot in (16) real. Consider the square root√

1 +
8αM(v)

r4
−

2αQ(v)2

r6
= 0.

his can be written as

r6s + 8αMr2s − 2αQ2
≥ 0. (18)

The above inequality has six solutions, four complex and two real, one of which is positive. If
Q ̸= 0 and M > 0, for this positive root, there is a branch-like singularity r = rs(v) which
eparates the complex metric from the physical spacetime. The value of the above inequality gives
< rs < r1 ≤ r0 < ∞ as the domain of r; there is no spacetime in the interval 0 < rs. The Cauchy
nd outer horizons (r1 and r0 respectively) form at v = 0, rs > 0 which was not the case for Q = 0.
he constant α along with the charge contribution Q significantly change the collapse dynamics.
e note that only the outer horizon is observable from infinity, and contains the inner horizon and

rapped surfaces. Fig. 1 showcases the behaviour of the Boulware–Deser metric (16) for both the
harged and neutral cases (we have used α = 2, v = 2 and positive values for M(v) and Q(v)). It can
learly be seen that for Q(v) ̸= 0, f (v, r) is not well defined at r = 0 since this is the region where
he metric becomes complex by expression (18). When Q(v) = 0, the metric function is everywhere
ell defined for all α > 0. The shaded region simply depicts the values of r for which both cases
re mutually well defined. We note that for Q(v) ̸= 0, the metric functions vanish for two values
f r which would correspond to the formation of two horizons. When Q(v) = 0, the metric f (v, r)
anishes for one value of r which would indicate a single event horizon. It can also be seen that
or larger values of r , the two cases appear to coincide which implies that the charged and neutral
cenarios are indistinguishable from each other, for any observer at very large distances from the
ource.
In the lower order limit of string theory it is known that the Gauss–Bonnet constant α is very

mall, therefore it can be interpreted, in regimes where Kα ≪ 1 (K = RabcdRabcd is the Kretschmann
nvariant) that the second order Lovelock term R2

= LGB presents as a correction to the theory.
his notion is similar for the action of general relativity. If we suppose that α ≪ 1, i.e. very small,
e can perform a second order Taylor expansion, for example, on the metric function (16) which
ields

f (v, r) ≈ 1 −
M
r2

+
Q 2

4r4
+

(
(4Mr2 − Q 2)2

8r10

)
α + O(α3), (19)

hich is then the perturbed EGB metric. The first three terms 1 −
M
r2

+
Q 2

4r4
are indeed those

f the conventional five dimensional Reissner–Nordström metric. Therefore for very small α, the
erm

(
(4Mr2−Q 2)2

8r10

)
α is the perturbative EGB correction to the Reissner–Nordström metric. Thus, the

Gauss–Bonnet term R2
= LGB in the action (1) acts, in a sense, as a perturbative quadratic correction

to the Einstein–Hilbert action.
Since uncharged Boulware–Deser collapse results in an (at least) initially naked singularity, the

next questions arise: is it possible that there is no formation of the above mentioned horizons? Are

naked singularities possible in five dimensional charged Boulware–Deser collapse?

6
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Fig. 1. A visual representation of the evolution of the metric function (16) against r for Q(v) ̸= 0 and Q(v) = 0. The
charged metric function f (v, r) is not defined at r = 0 and the shaded region indicates the values of r for which both
cases are well defined, mutually. For larger values of r both cases appear to coincide.

4.2. Model of collapse: singularity analysis

We now study the gravitational collapse of charged radiation described by the metric (16). For an
EGB universe which is asymptotically flat and empty at infinite distances, a thick shell of radiation
surrounded by an electromagnetic field contracts at the centre of symmetry [50]. If K a is the tangent
to the nonspacelike geodesics where K a

=
dxa
dk , then K a

;bK b
= 0 and

gabK aK b
= B, (20)

here k is an affine parameter and B is some constant which describes geodesic classes. When
= 0, this characterizes null geodesics while B < 0 implies timelike geodesics. The expressions

dKv
dk and dK r

dk can be calculated (using the Euler–Lagrange equations)

∂L
∂xa

−
d
dk

(
∂L
∂ ẋa

)
= 0, (21)

where we have the usual Lagrangian L =
1
2gabẋ

aẋb. For the charged spacetime (16) these equations
ecome, after a lengthy calculation,
-component:

dK v

dk
= −

1
2

[
r
2α

(
1 −

√
1 +

8αM(v)
r4

−
2αQ(v)2

r6

)

−
r2

8α

⎛⎝ 12αQ
r7

−
32αM
r5√

1 +
8αM(v)

r4
−

2αQ(v)2

r6

⎞⎠⎤⎦ (K v)2

+ r
(
(K θ )2 + sin2 θ (Kφ)2 + sin2 θ sin2 φ(Kψ )2

)
. (22)

r-component:

dK r

dk
= −

[
r
2α

(
1 −

√
1 +

8αM(v)
r4

−
2αQ(v)2

r6

)

7
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−
r2

8α

⎛⎝ 12αQ
r7

−
32αM
r5√

1 +
8αM(v)

r4
−

2αQ(v)2

r6

⎞⎠⎤⎦(1
2
f (v, r)(K v)2 − K vK r

)

+
r2

16α

⎛⎝ 8αMv
r4

− 4αQQv

r6√
1 +

8αM(v)
r4

−
2αQ(v)2

r6

⎞⎠ (K v)2

+ f (v, r)r
(
(K θ )2 + sin2 θ (kφ)2 + sin2 θ sin2 φ(Kψ )2

)
. (23)

-component:

dK θ

dk
+

2
r
K rK θ − sin θ sinφ

(
(K θ )2 + sin2 φ(Kψ )2

)
= 0. (24)

φ-component:

dKφ

dk
+

2
r
K rKφ + 2 cot θK θKφ − sinφ cosφ(Kψ )2 = 0. (25)

ψ-component:

dKψ

dk
+

2
r
K rKψ + 2 cot θK θKψ + 2 cotφKφKψ = 0. (26)

In the expression (23) above, f (v, r) is the function from (16). Following the approaches of [51] we
can write

K v =
P
r
, (27)

where we have that P = P(v, r) is an arbitrary function. Using Eqs. (22) and (23) and noting that
B = gabK aK b, a lengthy calculation yields

K v =
dv
dk

=
P
r
, (28a)

K r
=

dr
dk

= f (v, r)
P
2r

+
Br
2P

−
l2

2rP
. (28b)

n the above, l is the impact parameter.

. Locally naked singularity conditions

We will now examine whether the end state of charged radiation collapse in EGB gravity is a
aked singularity or a black hole. We note that there is no spacetime at 0 < rs, yet the branch
ingularity (18) is the curvature singularity of the spacetime [35]. For a charged shell of radiation
ith a large enough mass, this branch singularity begins to form at rs = v = 0 and extends into the

uture. If there exist families of trajectories directed into the future reaching observers at infinity in
he spacetime, the singularity which forms post collapse will then be considered naked. A charged
lack hole will result if no such trajectories exist, and the two horizons form sufficiently early.

.1. Existence of outgoing nonspacelike geodesics

If we a priori allow X0 to be a limiting value at rs = v = 0, i.e. the tangent to the radial geodesic,
n any singular geodesic, the nature of this limiting value is calculated as

X0 = lim
rs=v→0

X = lim
rs=v→0

v

rs
. (29)

Using the above expression (29) an explicit equation for X0 can be found which will dictate the
behaviour of all null geodesics in the region of the singularity rs. Differentiating (18) yields

drs
+

4
α

1
3

dM
+

8
αM

1
4

drs
−

2
αQ

1
5

dQ
= 0. (30)
dv 3 rs dv 3 rs dv 3 rs dv
8
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For a well defined tangent at the singularity rs to exist in the above expression, the mass function
(v) ∼ λv4 and the charge function Q(v) ∼ βv3, where λ and β are positive real constants. We
an then write Eq. (30) as

drs
dv

+
16
3
αλ

(
v

rs

)3

+
8
3
αλ

(
v

rs

)4 drs
dv

− 2αβ2
(
v

rs

)5

= 0. (31)

The choices M(v) ∼ λv4 and Q(v) ∼ βv3 in (30) are the only choices that will allow for the full
nvocation of (29) into the resulting Eq. (31). The above then reduces to the following

X6
0 −

4λ
β2 X

4
0 −

1
2αβ2 = 0, (32)

using (29). The above algebraic equation needs to be solved to determine the nature of the
singularity. The equation for null geodesics for the spacetime metric (15) is

XN =
K v

K r =
dv
dr

=
2

1 +
r2
4α

(
1 −

√
1 +

8αM(v)
r4

−
2αQ(v)2

r6

) , (33)

which reduces to

XN = 2, (34)

in the vicinity of the singularity rs = v = 0, since the term in brackets vanishes.

5.2. Sufficient conditions

We begin by stating the following Lemma:

Lemma 5.1. If the functions for the mass and charge obey M(v) ∼ λv4 and Q(v) ∼ βv3, where λ, β
are positive constants, the central singularity at rs = v = 0 is not trapped.

Proof. Consider the metric (16) with mass and charge functions M(v) ∼ λv4 and Q(v) ∼ βv3,
respectively. We then have

f (v, r) = 1 +
r2

4α

(
1 −

√
1 +

8αλv4

r4
−

2αβ2v6

r6

)
.

he metric (16) becomes complex for any positive mass and charge contribution, in general by
xpression (18). Therefore for these particular choices of M(v) and Q(v), the same will hold since
hese choices are never negative. Therefore, for these functional values of M(v) and Q(v), the central
ingularity at rs = v = 0 cannot be trapped. □

We can finally state the sufficient conditions [11] determining the extant central singularity
hich is locally naked for a contracting charged Boulware–Deser spacetime.

roposition 5.1. Consider a C2 Boulware–Deser spacetime undergoing collapse with a mass function
(v) = λv4 satisfying all energy conditions, surrounded by an electromagnetic field with charge

ontribution Q(v) = βv3 from a regular epoch. If the following conditions are satisfied:

1. The partial derivatives of the positive mass M(v) and charge Q(v) functions are continuous and
exist at the central singularity,

2. There exist one or more positive and real roots X0 to the equation

X6
0 −

4λ
β2 X

4
0 −

1
2αβ2 = 0,

3. At least one real and positive root is less than

X = 2,
N

9
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Fig. 2. A plot showing the evolution of the metric function (16) against r for Q(v) ̸= 0 and the parameter values
= β = λ = 2.5 > C . It is clear that when the metric f (v, r) = 0, it does not coincide to any value of r on the axis,

urther demonstrating that there is a naked singularity. The shaded region indicates the values of r for which the metric
s defined.

t the branch singularity, then the singularity is naked locally and there exists outgoing radial C1 null
eodesics escaping to future infinity.

. Cosmic censorship

We now consider Eq. (32). It admits six roots, four complex and two real, one of which is positive.
his positive and real root is given by

X0 =
1

√
6

√
3√2G +

32λ222/3

β4G
+

8λ
β2 , (35)

where

G =
3

√
3
√
3β2

√
512αλ3 + 27β4 + 256αλ3 + 27β4

αβ6 . (36)

We need only show that this positive real root is less than XN . Since α, β and λ are positive constants,
we can choose sufficient values to evaluate X0. If we make the selection α = β = λ = C , say, where
C is a real constant, it turns out that the minimum value this constant can take on such that X0 < XN
is

C =
1
24

3
√
566 + 42

√
33 +

8

3 3
√
566 + 42

√
33

+
1
3

≈ 1.00077. (37)

It turns out that Proposition 5.1 is satisfied if and only if α = β = λ > C , where C is given by
37) since the value of X0 < XN . If α = β = λ < C the two event horizons will form blanketing
he singularity within the confines of a charged black hole. Fig. 2 depicts the charged metric (16)
ersus r for the mass and charge functions M(v) = λv4 and Q(v) = βv3 with parameter values
= β = λ = 2.5 > C . We clearly see that the metric f (v, r) no longer intersects with the r-axis

unlike in Fig. 1) indicating that no horizon forms for these above mentioned parameter values, and
10
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Fig. 3. Spacetime diagram depicting the null radiation collapse process in five dimensional EGBM gravity. There exists a
branch singularity r = rs(v) which forms at v = rs(0) = 0 and extends into the future separating the complex region from
the rest of the real contracting spacetime. A naked singularity forms at the origin and there are null geodesic trajectories
escaping to infinity. There is an injected and charged flow of null radiating matter into a region initially consisting of a
type II fluid with M = M(v) focused into the singularity of growing mass at the centre.

the branch singularity separating the complex metric from the physical spacetime is, in principle,
visible to an observer in the external universe; it is a naked singularity.

Various values of α, β and λ as well as the resulting values of X0 are presented in Table 1.
Therefore, we can state all of the above in the form of a theorem:

Theorem 6.1. Consider a collapsing five dimensional radiating Boulware–Deser spacetime within an
electromagnetic field from a regular epoch, with a positive and real mass function M(v) = λv4 and
charge contribution Q(v) = βv3, satisfying all the energy conditions, and which are at least C2 in the
entire spacetime. Should the parameter values of α = β = λ > C, where C is given by (37), the final
outcome of gravitational collapse is a central naked singularity.

Fig. 3 shows the collapse scenario which is possible, from an initial space of Minkowski type, for
null charged matter. Radiating charged null matter cascades into a naked singularity. The charge
11
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Table 1
Parameters for naked singularity formation.
Values of α, β, λ X0 value Naked singularity

X0 < XN (= 2)

α = β = λ = 1 X0 = 2.0077 No
α = β = λ = C X0 = 2 No
α = β = λ = 1.5 X0 = 1.6393 Yes
α = β = λ = 2 X0 = 1.41196 Yes
α = β = λ = 3 X0 = 1.1591 Yes

contribution 2αQ (v)2

r6
in the metric function (16) stipulates that the metric becomes complex for

a specific value of r = rs and there exists no physical spacetime below this value. This promotes
he creation of a branch naked singularity, for our parameter values, which separates the complex
egion of the spacetime metric from the real contracting spacetime. The naked singularity forms at
= rs(0) = 0 and extends into the future as per Theorem 6.1. The collapse process will eventually
ease at a later time v = V0, with the singularity being visible to external observers in the charged
oulware–Deser exterior.

. Singularity strength

Supposing we have a null affine parameter k̂, we can compute the strength of the singularity
if we consider the null geodesics which are parametrized by k̂, terminating at the shell-focusing
ranch singularity rs = v = k̂ = 0 [52]. A measure of the destructive capacity of the singularity lies

in its strength; is it possible to extend spacetime through it or not? In the case of five dimensional
neutral collapse, the singularity is weak and conical and so, in principle, an extension of spacetime
through it is indeed possible. Following [11,53], a singularity would be considered strong if the
following

lim
k̂→0

k̂2η = lim
k̂→0

k̂2RabK aK b > 0, (38)

olds true, where Rab is the Ricci curvature tensor. For our spacetime (15) with function (16), and
he choices M(v) = λv4 and Q(v) = βv3, it can be shown after some calculation that the scalar
= RabK aK b is given by

η =
3
4

8λX3
0 − 3β2X5

0√
1 + 8αλX4

0 − 2αβ2X6
0

(
P
r

)2

, (39)

therefore

k̂2η =
3
4

8λX3
0 − 3β2X5

0√
1 + 8αλX4

0 − 2αβ2X6
0

(
Pk̂
r

)2

. (40)

Evaluating the limit at k̂ → 0 yields

lim
k̂→0

k̂2η =
3
4

8λX4
0 − 3β2X6

0√
1 + 8αλX4

0 − 2αβ2X6
0

. (41)

This condition above depends on the positive and real root X0, along with the positive parameters
α, β and λ. If

lim k̂2η > 0, (42)

k̂→0

12
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we can then establish that the observed naked singularity is strong. In order for the above
condition (42) to be satisfied, however, the positive real root X0 needs to satisfy

X0 =
2
√
6
√
λ

3β
.

Substituting (35) into the above expression will yield the relationship between the constants α, β
nd λ that can give rise to a strong curvature singularity.

8. Discussion

In this article we analysed the nature of singularities forming from the gravitational collapse of
he charged Boulware–Deser spacetime found by Wiltshire [31], in the context of the CCC in five
imensions. The type of singularity forming after collapse terminates is a branch-like singularity
= rs(v) resulting from the fact that whenever the inequality

r6s + 8αMr2s − 2αQ2
≥ 0,

is violated, the metric function is complex. We showed that, for a particular mass function M(v)
nd charge subsidy Q(v), obeying the energy conditions, a naked singularity is indeed possible in
GBM gravity for certain parameters. The central singularity structure was studied in order to show
hat it can become a node with null and escaping geodesics emanating from a singular point with
n assured tangent value, depending on the above mentioned parameters. This is dissimilar to the
ive dimensional neutral case analysed by [28–30] where a weak and conical naked singularity will
lways form for any mass function, post collapse. This singularity eventually succumbs to an event
orizon after a time period depending on the Gauss–Bonnet coupling constant α. This feature of
ncharged collapse is only prevalent in five dimensions, however; for all N ≥ 6 collapse need
ot cease with an initially naked singularity. The charge contribution in tandem with the curvature
orrections, therefore play a paramount role in the collapse dynamics in EGB gravity. The metric
ith the charge Q(v) is always singular and there appears to be no real difference between the
= 5 and N ≥ 6 cases. We derived the conditions for which this naked singularity will be

trong; in this case spacetime cannot be extended through it. This is unlike the five dimensional
ncharged collapse scenario where the singularity forming is always weak; in principle, spacetime
an always be extended through it [29]. Analogously to the general relativity cases studied by [12],
igher dimensions may perhaps restore cosmic censorship under certain conditions in the presence
f an electromagnetic field in EGB gravity theory.
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Appendix. Mathematical preamble for cosmic censorship

The physical behaviour of gravitational curvature singularities remains unknown. The Hawking–
enrose singularity theorems predict that singularities are inevitable upon the collapse of any
hysically reasonable matter distribution [1]. Excluding finite patches of spacetime hidden un-
erneath event horizons covering singularities, general relativity describes the universe as being
eterministic; knowing its state at any moment in time, it is possible to predict the entire evolution
f the universe. The failure of cosmic censorship implies the failure of determinism; in the causal
uture of a spacetime curvature singularity, it is impossible to predict the behaviour of spacetime.
e now provide some classical definitions and a theorem which are required for the understanding
f cosmic censorship [2,3,5,54].

efinition A.1 (Cauchy Surface). Let (M, g) be a smooth Lorentzian (spacetime) manifold. A Cauchy
surface Σ is an embedded submanifold Σ ↪→ M such that every inextendible, differentiable
imelike curve in M intersects Σ precisely at one point.

We note that a Cauchy surface is a spacelike hypersurface on the manifold M with dimension
ne less than that of M. Any causal curve without an endpoint passing through any event in the

spacetime M will necessarily intersect the Cauchy hypersurface Σ . The above-mentioned evolution
f the universe can be determined by knowing its condition everywhere on the hypersurface Σ at
ny moment of time.

efinition A.2 (Global Hyperbolicity). A Lorentzian manifold (M, g) which admits a Cauchy surface
is called globally hyperbolic.

Global hyperbolicity implies that solutions of the Einstein field equations are uniquely deter-
ined from the initial data set, i.e. in this case the Cauchy surface Σ . We are now in the position

to state the following theorem [4,54]:

Theorem A.1 (Maximal Cauchy Development). Let a Cauchy surface (Σ, ḡ,K) be a smooth vacuum
initial data set, where ḡ and K are the induced first and second fundamental forms respectively. There
exists a unique smooth spacetime (M, g) such that

1. The Ricci scalar vanishes on M, i.e. R = 0,
2. (M, g) is globally hyperbolic,
3. Any other smooth spacetime with the first two properties isometrically embeds into M.

The spacetime (M, g) is then called a maximal Cauchy development.

It should be noted that similar theorems can be proven for other general relativistic systems, for
example the Einstein–Maxwell equations, null dust and Einstein-scalar fields.
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