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Abstract: In many longitudinal studies, when subjects are followed over a period of time, recurrent event 
frequently occur. However, some analysis focusses only on time to the first event, ignoring the 
subsequent events. The main objective of this paper was to compare the extended standard Cox models, 
such as Andersen-Gill (AG), Prentice-Williams-Peterson total time (PWP-TT), PWP-Gap time model, Wei-
Lin-Weissfeld total time (WLW-TT), and Cox frailty model, to identify risk factors associated with kidney 
re-infection. Empirical evaluation and comparison of these different models were performed. The better 
model was assessed based on the goodness of fit criteria (AIC, BIC and likelihood ratio test). Kidney data 
that was downloaded from the R statistical software using the command data(“kidney”) was used to 
perform analyses in this study. The PWP-TT model had lower standard errors, AIC and BIC values 
compared to other models, therefore fitted data better and was used to interpret results. The results 
showed that 81% (HR = 0.19; 95% CI: 0.09-0.39) of the female patients were less likely to experience 
kidney reinfection than male patients. The risk of recurrent kidney infection was significantly high (HR = 
2.32; 95% CI: 1.25-4.29) to patients having an Acute Neptiritis (AN) disease compared to patients with 
other diseases. While the prevalence of kidney infection remains the public health problem, intervention 
strategies and awareness campaigned are needed to in order to minimize risk factors behind the 
recurrent of the disease. 
 
Keywords: Andersen-Gill model; Prentice-Williams-Peterson-total-time model; Wei-Lin-Weissfeld-total-

time model; Cox frailty model; recurrent disease. 

 

Introduction 
 

Recurrent disease, characterized by repeated alternations between acute relapse and long 

remission, can be a feature of both common diseases, like ear infections, and serious chronic 

diseases, such as human immunodeficiency virus (HIV) infection or multiple sclerosis [1]. 

Subsequent re-occurrences of a disease are influenced by previous occurrences and hence the 
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correlations among the re-occurrences should be considered when modeling recurrent disease 

data. For example, the Cox proportional hazards (PH) model for any one re-occurrence ignores 

that diseases re-occurrences may be correlated [2-4]. The consequence of this is that if there 

are correlations among disease re-occurrences, then the standard errors of the model 

parameter estimates are underestimated or biased downwards. Due to the independence 

assumption of the Cox PH model, it is only appropriate for modelling the time to the first event 

(disease occurrence) [2,5], which is an inefficient use of the data because data from the later 

events are discarded. 

Models such as “Variance-corrected Cox based models” and “Frailty/random effects” 

models have been developed that consider correlations among the re-occurrences of diseases 

[4,6]. In this paper we wish to compare the performances of such models in identifying risk 

factors associated with recurrent of kidney infections. The current study uses the kidney real 

data from McGilchrist and Aisbett [7]. In particular, we consider the following extensions of the 

original Cox PH model and then compare their perfomances:  

• Andersen-Gill (AG) model [8];  

• Prentice-Williams-Peterson-total-time (PWP-TT) and gap-time (PWP-GT) model [9]; 

• Wei-Lin-Weissfeld-total-time (WLW-TT) model [10]; and 

•  Cox frailty model [7].  

 

These models can be separated into either conditional or marginal models.  The AG and 

PWP-TT models are conditional since that a patient at risk is determined from the previous 

disease re-occurrences. That is, a patient who have had the disease is at risk of its re-

occurrence. The at-risk group of patients in the marginal WLW-TT models is not determined 

from previous re-occurrences of the disease, i.e. the model assumption is that re-occurrences 

are independent. To adjust for correlations among re-occurrences, a robust sandwich estimator 

is used to estimate variances of the model parameter estimates [11]. The first three models can 

be generalized to a Cox frailty model by adding a patient specific random effect to account for 

the dependencies among the re-occurrences of the disease within a patient. In addition, 

marginal means/rates model [12-15], which model the mean number of events or the rate of 

event occurrence, have been considered. 

The performances of the above models (AG, PWP-TT, PWP-GT, WLW-TT and Cox frailty) 

are expected to be different due to their different underlying assumptions [6]. Furthermore, 

they model correlations among disease re-occurrences differently [5]. The researchers are 

interest to know which of these models (discussed above) best describe the data of recurrent 

kidney infections in patients. Although this data is more than a decade old, the researchers 

believe it is still informative about knowing the risk factors in patients that are associated with 

recurrent kidney infections. 
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Materials and Methods 
 

This study uses kidney data from McGilchrist and Aisbett [7], which can be retrieved from the R 

software package using the command data(“kidney”). Altogether, there were 77 cases of data 

from 38 patients of which one case has missing data. McGilchrist and Aisbett [7] define 

recurrent times to infection at the point of insertion of the catheter for kidney patients using 

portable dialysis equipment. These times are right censored in the dataset due to either the 

catheter being removed for other reasons or the final recurrence times are being censored. 

Furthermore, each patient was followed for a predetermined number of recurrence times, 

some of which became censored [7].  

Table 1 contains a subset of the dataset and the variables in the dataset. The dataset 

consists of variables time=recurrence times; status (0=censored; 1=recurrence time); age 

(years), sex (1=male, 2=female) and disease type (0=Glomerulo Neptiritis (GN), 1=Acute 

Neptiritis (AN); 2=Polycyatic Kidney Disease (PKD); 3=other). The frail variable is the frailty 

prediction. 

 

Table 1: A subset of the recurrent kidney infection data from McGilchrist and Aisbett [7] 

ID time status Age (years) sex Disease type frail 

1 8 1 28 1 Other 2.3 
1 16 1 28 1 Other 2.3 
2 23 1 48 2 GN 1.9 
2 13 0 48 2 GN 1.9 
3 22 1 32 1 Other 1.2 
3 28 1 32 1 Other 1.2 

 

Standard Cox PH model 

The standard Cox PH model for the survival data specifies the hazard of the  th individual as:  
                                                 ( )    ( )    (   )                                                                              ( ) 

where   ( ) is an unspecified baseline hazard function,   is the vector of regression 
coefficients and    is the vector of covariates of the  th individual. The extended Cox models 
(AG, PWP-TT, PWP-GT, WLW-TT and Cox frailty), model the recurrent time to event outcomes 
within a subject comprehensively than the standard Cox PH model. 

 

Andersen-Gill (AG) model 

The AG model uses the counting process structure of data inputs. The counting process model 
of AG generalizes the Cox PH model, which is formulated in terms of increments in the number 
of events along the time line [8]. The AG model assumes that the correlation between event 
times for a subject can be explained by past events, which implies that the time increments 
between events are conditionally uncorrelated, given the covariates. It is a suitable model 
when correlations among events for each individual are induced by measured covariates [16]. 
The counting process style of data input of the AG model is represented as a series of 
observations with recurrent times given as (     ] (     ]   (       ]. Each recurrent event 
for the  th individual;            ; is assumed to follow the PH model. The AG model ignores 
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the order of the events leaving each subject to be at risk for any event as long as they are still 
under observation at the time of the event. This further means that a subject could be at risk 
for a subsequent event without having experienced the prior event. The hazard function is 
given as: 
                                                     ( )    ( )   *    ( )+                                                                    ( ) 

Under this model, the risk of recurrent event for an individual follows the Cox PH model 
assumption, but the number of recurrent events is not taken into consideration. 

 

Prentice, Williams and Peterson (PWP) model 

The PWP model analyses ordered multiple events by stratification, based on the prior number 
of events during the follow-up period [9]. The PWP counting process model is similar to the AG 
counting process model but stratified by events. All participants are at risk for the first stratum, 
but only those with an event in the previous stratum are at risk for the successive one [17]. 

Besides using the total time (TT) as in the AG model, the PWP model can also be usually 
defined in terms of gap time (GT), which is the time since the previous event. When using a gap 
or waiting-time scale, the time index is reset to zero after each recurrence of the event, with 
assumption of a renewal process. Gaps between events are often useful with infrequent 
events, when a renewal occurs after an event or when the interest lies on prediction of a next 
event. Hence, two stratified PWP models can be fitted: (1) PWP-TT, which evaluates the effect 
of a covariate for the  th event since the entry time in the study; (2) PWP-GT, which evaluates 
the effect of a covariate for the  th event since the time from the previous event. Unlike the 
AG model, the effect of covariates may vary from event to event in the stratified PWP models. 
Therefore, the PWP models might be preferable to the AG model when the effects of covariates 
are different in subsequent events, which is likely to be the case for diseases such as kidney 
infections in patients. The baseline hazards vary from event to event, the hazard function for 
the  th event for the  th individual with the PH form is written as  

                                                      ( )    ( ) 
    ( )                                                                             ( ) 

Both PWP approaches are conditional models as an individual is not considered in the 
risk set for the  th event until experiencing the (   )th event. The PWP-GT model describes 
an intensity process from the occurrence of an immediately preceding event, with the gap time 
defined as (      ). 

                                                 ( )    (      ) 
    ( )                                                                     ( ) 

where    ( ) represents the event-specific baseline hazard for the  th event over time. 
AG model and both PWP models are adjusted by estimating the sandwich type estimators and 
hence they are known as variance corrected models [19]. 

 

Wei, Lin and Weissfeld (WLW) model 

The WLW (marginal means/rates) model is an alternative model for analysing recurrent events, 
which can be interpreted in terms of the mean number of events when there are no time-
dependent covariates [14,15,20-22]. This approach does not specify dependence structures 
among recurrent event times within a subject. However, since the marginal means/rates model 
considers all recurrent events of the same subject as a single counting process and does not 
require time-varying covariates to reflect the past history of the process, this model is more 
flexible and parsimonious than AG model [15]. If no time-dependent covariates are included in 
the AG model to account for all the influence of the prior events on future recurrences, point 
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estimates from the means/rates model and the AG model are the same. Nevertheless, the 
covariance matrix estimate for the regression coefficients for the marginal means/rates model 
uses score residuals in the middle of the sandwich estimate, which corrects for the dependency 
structure. This approach can be of interest in many medical applications when the dependence 
structure is complex and unknown, especially when it cannot be characterized by including 
time-varying covariates, as in the AG model. 

The hazard function for the  th event for the  th individual is  

                                                   ( )    ( ) 
    ( )                                                                               ( ) 

Unlike the AG model, this model allows a separate underlying hazard for each event. 
When an event is zero, it means that an individual is no longer at risk after the last given event 
[20,23]. 

 

Cox frailty model 

The frailty model also known as the random effects approach, is an extension of the Cox PH 
model, in which, the hazard function depends on an unmeasured random variable [23,24]. The 
Cox frailty model introduces a random covariate into the model that induces dependence 
among the recurrent event times [25]. The idea is that the random effect describes excess risk 
or frailty for distinct individuals, considering unmeasured heterogeneity that cannot be 
explained by observed covariates alone. The most commonly used frailty model is a shared 
frailty model with random effects assumed to follow a gamma distribution with mean equal to 
one and unknown variance [23]. The model assumes that the recurrent event times are 
independent conditional on the covariates and random effects. When there is heterogeneous 
susceptibility to the risk of recurrent events, the frailty model can be applied. For instance, 
when evaluating recurrent infections at the point of catheter insertion in dialysis patients, the 
study population can be considered as a mixture of individuals with different hazards, but the 
characteristics for differences between individuals are not captured by the measured 
covariates. In such applications, frailty models can be a possible choice. 

The hazard function    ( ) for the recurrent time of the  th event in the  th individual 
(                    ) conditional on the frailty   , follows the PH form and its given by: 

                                                         ( )     ( )   
    ( )                                                             ( ) 

where,    ( ) is the common baseline hazard function,    is a vector of observable 
covariates and   is a vector of unknown regression coefficients. Frailty    is the unobserved 
(random) common risk factors shared by all subjects in cluster ‘ ’ and is assumed to be 
independent and identically distributed (i.i.d) random variable with unit mean and unknown 
variance ( ) [24,26]. The Frailty effects occur when the observed sources of variation in the 
observed or unobserved explanatory variables fail to account for the true difference in risk. 
That is, when there are other important but omitted variables presented, the effect of omitted 
variable can be captured by frailty.  

In order to compare the performance of the models, researchers of this study used the 
Akaike information criteria (AIC) and Bayesian information criteria (BIC). The smallest AIC and 
BIC values suggest a better model.  
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Results 
 

The results in Tables 2 and 3 contain the demographic information of the patients in the kidney 
infection data and other descriptive statistics of the data. The median follow-up time was 39.5 
months (range = 560 months). Half of the patients (50%) were between 41-55 years old, 
followed by those who were 56 years and above (21.1%), 26-40 years (15.8%), and 10-25 years 
(13.2%) (Table 2). The researchers further observed that more females (73.7%) participated in 
the study than males (26.3%). The results also show that 34.2% of the patients participated in 
the study had other types of diseases that were not mentioned, followed by those who had AN 
(31.6%), GN (23.7%), and PKD (10.5%). The results presented in Table 3 show the percentage 
number (by variables) of patients who experienced the first event and percentage of those who 
experienced the second event. 

 
Table 2: Demographic information of the patients in the kidney infection data. 

Variables 
Baseline (n=38) 

n (%) 

Median follow-up time (months) 39.5 (Range = 560) 

Median age in years (SD) 45 (14.8) 

Age group  
10 to 25 5 (13.2) 
26 to 40 6 (15.8) 
41 to 55 19 (50.0) 

56 and above 8 (21.1) 

Sex 
 Male 10 (26.3) 

Female 28 (73.7) 

Disease 
 GN 9 (23.7) 

AN 12 (31.6) 
PKD 4 (10.5) 

Other 13 (34.2) 

• SD= standard deviation 
 

Table 3: Demographic information of the patients in the kidney in data by kidney infection 
recurrence. 

Variable 
Occurrence 1 Occurrence 2 

n (%) n (%) 

Age group 
  10 to 25 5 (15.6) 4 (15.4) 

26 to 40 6 (18.7) 4 (15.4) 
41 to 55 14 (43.8) 12 (46.1) 

56 and above 7 (21.9) 6 (23.1) 

Sex 
  Male 10 (31.3) 8 (30.8) 
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Female 22 (68.7) 18 (69.2) 

Disease 
  GN 8 (25.0) 6 (23.1) 

AN 9 (28.1) 9 (34.6) 
PKD 3 (9.4) 3 (11.5) 

Other 12 (37.5) 8 (30.8) 

 
The cumulative hazard plot in Figure 1 showed that both male and female patients have 

different estimated cumulative hazard over time. Male patients had higher cumulative hazard 
than female patients at the beginning of a follow-up study. This means that males were 
experiencing kidney infection faster than females from the beginning of a follow-up period until 
month 400. 

 

 
Figure 1: Cumulative hazard plot for kidney infection recurrence over a time of follow-up for 

male and female patients. 
 
The researchers present the results for AG, PWP-TT, PWP-GT, WLW-TT and Cox frailty 

models with common effects. The researchers present the hazard ratios (HR) and 
corresponding 95% confidence intervals (CIs) for the risk factors for kidney infection 
recurrences. The likelihood ratio test (LRT) result for testing the regression parameter 
estimates, standard errors (S.E), and p-value of the models are displayed in Table 4. The 
parameter estimates obtained were consistent in sign for all the models. However, the 
standard error was relatively smaller for the PWP-TT model when compared to the other 
models. The LRT value for the AG model was 18.73 with a p-value = 0.009. For the PWP-TT, 
PWP-GT, WLW-TT and Cox frailty models, the LRT values were 20.04, 21.67, 34.42 and 37.72, 
respectively. It was observed that the PWP-TT model had the lowest AIC and BIC values of 
263.5477 and 277.9708, respectively, suggesting that the PWP-TT model was better fitted to 
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the kidney dataset than the other models. The HR, standard error, and p-value for the PWP-TT 
model displayed in Table 4 show that sex and AN were important factors for recurrent of kidney 
infection. However, the variables, age had no significant effect on the recurrent of kidney 
infection in patients. 

The estimated acceleration factor or risk of recurrent of kidney infection for the female 
patients was 0.19, with a 95% confidence interval (CI) of (0.09 – 0.39). After adjusting for other 
covariates, a patient with AN disease had an increased risk of recurrent of kidney infection by 
2.32 times compared to other diseases, holding the effects of other covariates constant. 

 
Table 4: Risk factors for kidney infection recurrent event data using extended standard Cox 

models. 

 
*S.E = standard error; CI = confidence interval; HR = hazard ratio 
 

Discussion 
 

The increased prevalence of kidney failure and early stages of kidney disease, and the high 
costs and poor outcomes of treatment constitute a worldwide public health threat. The main 
responsibility for developing guidelines for chronic kidney disease has now been assumed by 
Kidney Disease Improving Global Outcomes (KDIGO)—a global non-profit foundation dedicated 
to improving the care and outcomes of patients with kidney disease worldwide. According to 
Eknoyan et al. [27] and Levin et al. [28], KDIGO guidelines rate the strength of 
recommendations and evidence with rigorous and well accepted methods. 

In this paper, the researchers discussed known approaches under independent 
censoring assumption for analysis of recurrent event data. Parameter estimates obtained from 
various models were considerably different due to the disparity in their properties and 
assumptions. The AG mode assumes that the time increments between events are conditionally 
uncorrelated given the covariates. However, omission of an important covariate could induce 
dependence. In such case, the standard errors would be underestimated, causing inflation of 
type I error. The PWP models (TT or GT) are also indicated when there is interest in estimating 
effects for each event separately. The PWP models assume that the individuals can only be at 
risk for a given event after he/she experienced the previous event. On the other hand, the 
WLW-TT model also called the means/rates marginal model is useful when the interest is in 
modelling the expected number of events or the rate of event occurrence, conditional on 
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covariates. These models are also useful in many applications where there are multiple types of 
events and it is of interest to simultaneously describe marginal aspects of them.   

The frailty models are indicated when a subject-specific random effect can explain the 
unmeasured heterogeneity that cannot be explained by covariates alone. There is a strong 
evidence in the literature that if frailty is present but ignored, then the covariate effects will be 
underestimated [29,30]. A debate about using frailty models is regarding the amount of 
information, such as number of events, number of subjects and the distribution of 
events/subjects required to produce stable estimates. When random effects are large, a smaller 
number of events seems to be adequate, otherwise a larger number of events would be 
necessary [23]. 

Based on the findings for AIC, BIC and likelihood ratio test, the PWP-TT model was the 
better model that fit current recurrent event data. The results agree with earlier researchers 
*4,31,32+. The negative value of regression coefficient of covariate “sex” indicate that the 
female patients had a lower risk of kidney infection than male patients. AN disease was found 
to be the most significant risk factor associated with recurrence of kidney infection in patients. 
The current finding is consistent with other studies [33]. 

 

Limitations  
 

There are various risk factors for the causes of recurrent of kidney infection in patients during 
treatment period. In this study, we included five risk factors; therefore, there was incomplete 
information for important demographic, as well as clinical, variables; thus, the study was 
limited to only those variables described in the methods section. The study used small sample 
size. Hence, the study was subject to selection bias. Despite these limitations, this study is very 
important for the follow-up of kidney patients by health professionals during the intensive 
phase and will contribute in decision making to reducing recurrence during kidney treatment.  

 

Conclusion 
 

To improve outcomes for kidney disease, new treatments will need to be translated into clinical 
practice and public health. Recommendations for prevention are needed including 
improvements in surveillance, screening, education, and awareness, which are directed at three 
target populations: people with or at increased risk of kidney disease; providers, hospitals, 
clinical laboratories; and the general public. 
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