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Abstract. The purpose of this work is to introduce and study a new type of

a relaxed extrapolation iterative method for approximating the solution of a
split monotone inclusion problem in the framework of Hilbert spaces. More so,

we establish a strong convergence theorem of the proposed iterative method

under the assumption that the set-valued operator is maximal monotone and
the single-valued operator is Lipschitz continuous monotone which is weaker

assumption unlike other methods in which the single-valued is inverse strongly

monotone. We emphasize that the value of the Lipschitz constant is not re-
quired for the iterative technique to be implemented, and during computation,

the Lipschitz continuity was not used. Lastly, we present an application and

also some numerical experiments to show the efficiency and the applicability
of our proposed iterative method.

1. Introduction. Let H be a real Hilbert space with an induced norm ‖ · ‖
=
√
〈·, ·〉. The Monotone Inclusion Problem (MIP) is defined as:

Find x ∈ H that solves 0 ∈ (A+A1)(x), (1)

where A : H → H and A1 : H → 2H are monotone operators. It is well known
that if A1 = NC is the normal cone of some nonempty closed and convex subset C
of H, then problem (1) becomes the classical Variational Inequality Problem (VIP)
(see [15, 16, 28]). There are several problems in the real world that can be formu-
lated as the problem (1). It is important in many different types of mathematical
optimizations problems, including variational inequalities problems, minimization
problems, linear inverse problems, saddle-point problems, fixed-point problems, s-
plit feasibility problems, Nash equilibrium problems in non-cooperative games, and
many others (see [6, 11–14, 29] and the references therein). Due to the fruitful ap-
plications of problem (1), several authors have introduced and studied different
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iterative techniques to solve problem (1). Among many others, the simplest itera-
tive technique for solving problem (1) is the well known forward-backward splitting
technique (see [13,23]). The iterative technique is defined as{

x0 ∈ H
xn+1 = JA1

λ (xn − λAxn),
(2)

where λ > 0 and JA1

λ := (I + λA)−1. The iterative technique converges weakly to a
solution provided that A is α-inverse strongly monotone. In the iterative technique
(2), the individual steps within each iteration involve forward evaluations in which
the value of the single-valued operator is computed and the backward evaluations
in which the re-solvent of the set-valued operator is computed rather than their
sum directly. In addition, the Tseng in [31], introduced and studied a modified
forward-backward splitting technique. The method is defined as follows.

x0 ∈ H
yn = JA1

λn
(xn − λnAxn),

xn+1 = yn − λn(Ayn −Axn),

(3)

where {λn} ⊂ [a, b] ⊂ (0, 1
L ). It is well known that the Lipschitz constant of an

operator is often unknown or very difficult to find or estimate depending on how
the operator is being defined. This condition makes the iterative technique difficult
to apply to real life problems.

An interesting generalization of the MIP was introduced and studied by Moudafi
in [24]. Moudafi [24], introduced and studied the Split Monotone Inclusion Problem
(SMIP). The problem is defined as

Find x ∈ H1 that solves 0 ∈ (A+A1)(x) (4)

such that

y = Tx ∈ H2 that solves 0 ∈ (B +B1)(y), (5)

where A : H1 → H1, B : H2 → H2 are single valued operators, A1 : H1 → 2H1 , B1 :
H2 → 2H2 are multi-valued operators and T : H1 → H2 is a bounded linear
operator. Furthermore, a number of real-world problems can be mathematically
represented as SMIP (4) and (5), including signal processing, image restoration,
sensor networks, computer tomography, data compression, linear inverse problems,
and machine learning (see, for example, [11, 13, 15, 24] and the references therein).
It is well known that if A1 = NC and B1 = NQ, in problem (4)-(5), where NC
and NQ are the normal cone associated with C and Q, respectively. Then the
SMIP becomes the classical split variational inequality problem (see [9, 10]). In
addition, we get the SCNPP (see [8]) as a special case in problem (4)-(5) if we
put A = 0 = B. As a result, it is clear that problems (4)-(5) are highly generic
in nature and naturally contain a wide range of significant optimization issues,
including split saddle-point problems, split equilibrium problems, split minimization
problems, and split common fixed point problems. Moudafi [24], gave the following
iterative technique{

x1 ∈ H1

xn+1 = JA1
µ (IH1 − µA)(xn + γT ∗(JB1

µ (IH2 − µB)− IH2)Txn),
(6)
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where γ ∈ (0, 2
‖T‖ ), I

H1 , IH2 are the identity operator on H1 and H2 respectively,

and JA1
µ and JB1

µ are the re-solvents of A1 and B1, respectively. He established that
the iterative sequence {xn} generated by Algorithm 6 converges weakly to a solution
of (4)-(5) in as much the solution set of problem (4)-(5) is nonempty, A1, B1 are
maximal monotone, and A,B are inverse-strongly monotone. Since the introduction
of the SMIP, many authors have proposed and studied different iterative techniques
to solve the SMIP ( see [17, 20, 27, 32] and the references therein). However, all of
these authors use the assumption that the operators A and B are inverse-strongly
monotone, which may rule out some of the potential applications of these techniques.

Remark 1.1. It is therefore natural to ask, if an iterative technique can be devel-
oped with a weaker operator.

Izuchukwu et al., [19] provided an affirmative answer to the above remark by
introducing the following iterative technique to solve the problem (4)-(5). In par-
ticular, they proposed the following iterative technique

Algorithm 1.2. Initialization Step: Choose x0, x1 ∈ H, given the iterates xn−1

and xn for all n ∈ N.
Step 1: Compute

wn = xn + θn(xn − xn−1),

yn = JA1

λn
(Twn − λnATwn),

zn = Twn − ζηndn

where dn := Twn − yn − λn(ATwn − Ayn), ηn = 〈Twn−yn,dn
‖d‖2 if dn 6= 0, otherwise,

ηn = 0 and

λn+1 =


min

{ µ1‖Twn−yn‖
‖ATwn−Ayn‖} , λn

}
, if xn 6= xn−1

λn, otherwise.

(7)

Step 2: Compute

vn = wn + γnT
∗(zn − Twn), (8)

where γn is chosen such that for small enough ε > 0, γn ∈
[
ε, ‖Twn−zn‖2
‖T∗(Twn−zn)‖2 − ε

]
if

Twn 6= zn, otherwise γn = γ.
Step 3: Compute

un = JB1
νn (vn − νnBvn),

tn = vn − φωnbn

where bn = vn − un − νn(Bvn − Bun), ωn = 〈vn−un,b〉
‖b‖2 and if bn 6= 0, otherwise,

ωn = 0 and

νn+1 =


min

{ µ2‖vn−un‖
‖Bvn−Bun‖} , νn

}
, if xn 6= xn−1

νn, otherwise.

(9)

Step 4: Compute

xn+1 = (1− αn)wn + αntn, (10)
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where JA1

λn
and JB1

ν are the re-solvents of A1 and B1, respectively. They established

that the iterative sequence {xn} generated by Algorithm 1.2 converges weakly to
a solution of (4)-(5) in as much the solution set of problem (4)-(5) is nonempty,
A1 and B1 are maximal monotone, A,B are monotone and Lipschitz continuous
with Lipschitz constant L1 and L2, respectively. However, we observe the following
regarding the iterative technique 1.2.

1. The authors established weak convergence. It is well known that strong con-
vergence is more desirable in this area of research.

2. The authors claim that the value of the Lipschitz constant is not required.
However, they used the fact that the operator is Lipschitz in their computa-
tion, thus, at some point the value of the Lipschitz constant might be needed
(see ).

In order to speed up the process of solving the smooth convex minimization
problem, Polyak originally presented and examined the idea of inertial extrapolation
in [25] in 1964. Since then, scientists have employed this method to accelerate the
rate at which many iterative processes converge. Since its conception, the inertial
extrapolation approach has been refined, extended, and generalized by numerous
authors; see [1–5, 21, 27, 33, 34] and the references therein. Relaxation techniques
have shown to be an effective method for improving the rate of convergence in this
field of study. It’s common knowledge that when inertial and relaxation techniques
are combined, the results increase and the rate of convergence is higher than when
either approach is used alone.

Motivated by the works of Moudafi [24], Shehu et. al., [27], Izuchukwu [19], Yao
et. al., [32], Censor et al., [9] and the recent interest in this direction of research,
our purpose in this study is to introduce and study a new inertial viscosity iterative
technique for solving problem (4)-(5) in real Hilbert spaces. Our proposed iterative
technique has the following properties.

1. The iterative sequence generated by our proposed iterative technique con-
verges strongly, unlike the result obtained in [19].

2. Our proposed iterative technique does not require the strongly inversely mono-
tone assumption on the operator A and B, which are used by authors in the
literature (see [17,20,27,32] and the references therein). Instead, our proposed
iterative technique requires that the operators A and B are to be monotone
and Lipschitz continuous. In addition, the value of the Lipschitz constant is
not relevant and the fact that the operator is Lipschitz is not used in our
computation.

3. Our proposed iterative technique is made up of a new type of relaxed inertial
technique, which helps speed the rate of convergence of the technique.

The rest of this paper is organized as follows: In Section 2, we recall some useful
definitions and results that are relevant for our study. In Section 3, we present our
proposed method and highlight some of its useful features. advantages over other
existing algorithms. In Section 4, we establish strong convergence of our method
and in Section 5, we applied the obtained result to the Split Equilibrium Problem
(SEP). Lastly in Section 6, we present some numerical experiments to show the
efficiency and applicability of our method in the framework of infinite dimensional
Hilbert spaces and in Section 7, we give the conclusion of the paper.

2. Preliminaries. In this section, we begin by recalling some known and useful
results which are needed in the sequel.
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Let H be a real Hilbert space. The set of fixed points of a nonlinear mapping
T : H → H will be denoted by F (T ), that is F (T ) = {x ∈ H : Tx = x}. We
denotes strong and weak convergence by ”→” and ”⇀”, respectively. For any
x, y ∈ H and α ∈ [0, 1], it is well-known that

‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2. (11)

‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2. (12)

‖x− y‖2 ≤ ‖x‖2 + 2〈y, x− y〉. (13)

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉. (14)

‖αx+ (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2. (15)

Definition 2.1. Let T : H → H be an operator. Then the operator T is called

1. L-Lipschitz continuous if there exists L > 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖,

for all x, y ∈ H. If L = 1, then T is called nonexpansive;
2. monotone if

〈Tx− Ty, x− y〉 ≥ 0, ∀x, y ∈ H;

3. ?α-inversely strongly monotone if there exists α > 0, such that

〈Tx− Ty, x− y〉 ≥ α‖Tx− Ty‖2, ∀ x, y ∈ H.

If B is a multivalued operator, that is, B : H → 2H , then B is said to be monotone,
if

〈x− y, u− v〉 ≥ 0 ∀x, y ∈ H, u ∈ B(x), v ∈ B(y),

and B is maximal monotone, if the graph G(B) of B defined by

G(B) := {(x, y) ∈ H ×H : y ∈ B(x)}

is not properly contained in the graph of any other monotone operator. It is gener-
ally known that B is maximal monotone if and only if for (x, u) ∈ H×H, 〈x−y, u−
v〉 ≥ 0 for all (y, v) ∈ G(B) implies that u ∈ B(x). Then the resolvent operator
JBλ : H → H associated with B is defined by

JBλ (x) := (I + λB)−1(x), ∀ x ∈ H,

where λ > 0 and I is the identity operator on H.
Let C be a nonempty, closed and convex subset of H. For any u ∈ H, there exists
a unique point PCu ∈ C such that

‖u− PCu‖ ≤ min{‖u− y‖ ∀y ∈ C}.

The normal cone of C at a point say x ∈ H is given as

NC = {z ∈ H : 〈z, y − x〉 ≤ 0 ∀ y ∈ C}

if x ∈ C and ∅ otherwise.
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Lemma 2.2. [26] Let {an} be a sequence of positive real numbers, {αn} be a
sequence of real numbers in (0, 1) such that

∑∞
n=1 αn =∞ and {dn} be a sequence

of real numbers. Suppose that ?

an+1 ≤ (1− αn)an + αndn, n ≥ 1.

If lim supk→∞ dnk
≤ 0 for all subsequences {ank

} of {an} satisfying the condition

lim inf
k→∞

{ank+1 − ank
} ≥ 0,

then, lim
k→∞

an = 0.

Lemma 2.3. [22] Let H be a real Hilbert space, A : H → H be a monotone and
Lipschitz continuous operator and A1 : H → 2H be maximal monotone operator,
then, (A+A1) : H → 2H is maximal operator.

3. Proposed Algorithm.

Assumption 3.1. Condition A. Suppose

1. H1 and H2 are two real Hilbert spaces.
2. B1 : H1 → 2H1 and A1 : H2 → 2H2 be maximal monotone mappings and

T : H1 → H2 is a bounded linear operator with the adjoint operator T ∗.
3. B : H1 → H1 and A : H2 → H2 are monotone and Lipschitz continuous with

Lipschitz constant L1 and L2, respectively.
4. f : H1 → H1 is a contraction mapping with k ∈ [0, 1).
5. The solution set of problem (4)-(5) is denoted Γ 6= ∅.

Condition B. Suppose that {αn} is a real sequence such that

1. αn ⊂ (0, 1), limn→∞ αn = 0 and
∑∞
n=0 αn =∞.

2. {εn} is a positive integer such that ◦(αn) = εn means that limn→∞
εn
αn

= 0.

We present the following iterative algorithm.

Algorithm 3.2. Initialization Step: Given Γ, ϕ > 0, µ, α, l, j ∈ (0, 1), φ, ζ ∈
(0, 2). Choose x0, x1 ∈ H1, given the iterates xn−1 and xn for all n ∈ N.

θn =


min

{
θ, εn
‖xn−xn−1‖}

}
, if xn 6= xn−1

θ, otherwise.

(16)

Step 1: Compute

wn = (1− αn)xn + (1− αn)θn(xn − xn−1),

yn = JA1

λn
(Twn − λnATwn),

zn = Twn − ζηndn

where ?dn := Twn − yn − λn(ATwn − Ayn), ηn = (1 − µ)‖Twn−yn‖2
‖dn‖2 if dn 6= 0,

otherwise ηn = 0 and λn is chosen to be the largest λ ∈ {Γ, Γ l, Γ l2, · · · } satisfying

λ‖ATwn −Ayn‖ ≤ µ‖Twn − yn‖. (17)

Step 2: Compute

vn = wn + γnT
∗(zn − Twn), (18)
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where γn is chosen such that for small enough ε > 0, γn ∈
[
ε, ‖Twn−zn‖2
‖T∗(Twn−zn)‖2 − ε

]
if

Twn 6= zn, otherwise γn = γ.
Step 3: Compute

un = JB1
νn (vn − νnBvn),

tn = vn − φωnbn

where bn = vn − un − νn(Bvn − Bun), ωn = (1 − α)‖vn−un‖2
‖bn‖2 if bn 6= 0, otherwise

ωn = 0 and νn is chosen to be the largest ν ∈ {ϕ,ϕj, ϕj2, · · · } satisfying

ν‖Bvn −Bun‖ ≤ α‖vn − un‖. (19)

Step 4: Compute

xn+1 = αnf(xn) + (1− αn)tn. (20)

Remark 3.3. 1. The choice of the step size γn in Algorithms 3.2 do not require
the prior knowledge of the operator norm ‖T ||. In addition, the step size is
well defined. To see this, observe that

Proof. Let p ∈ Γ, observe that

‖zn − Tp‖2 = ‖Twn − ζηndn − Tp‖2

= ‖Twn − Tp‖2 + ‖ζηndn‖2 − 2ζηn〈Twn − Tp, dn〉. (21)

We now estimate 〈Twn−Tp, dn〉. Since p ∈ Γ, then 0 ∈ (A1 +A)Tp and since

yn = JA1

λn
(Twn − λnATwn), we have

Ayn +
1

λn
(Twn − λnATwn − yn) ∈ (A1 +A)yn (22)

Using Lemma 2.3, we have 〈yn − Tp,Ayn + 1
λn

(Twn − λnATwn − yn)〉 ≥ 0,

as such, we have 〈yn − Tp, Twn − yn − λn(ATwn −Ayn)〉 ≥ 0.

〈Twn − Tp, dn〉
= 〈Twn − yn + yn − Tp, dn〉
= 〈Twn − yn, dn〉+ 〈yn − Tp, dn〉
= 〈Twn − yn, Twn − yn − λn(ATwn −Ayn)〉

+ 〈yn − Tp, Twn − yn − λn(ATwn −Ayn)〉
≥ (1− µ)‖Twn − yn‖2 + 〈yn − Tp, Twn − yn − λn(ATwn −Ayn)

≥ (1− µ)‖Twn − yn‖2. (23)

Thus, using ηn = (1− µ)‖Twn−yn‖2
‖dn‖2 , we have (21)

‖zn − Tp‖2 ≤ ‖Twn − Tp‖2 + ‖ζηndn‖2 − 2ζηn(1− µ)‖Twn − yn‖2

= ‖Twn − Tp‖2 + ‖ζηndn‖2 − 2ζ‖ηndn‖2

= ‖Twn − Tp‖2 −
(2− ζ)

ζ
‖Twn − zn‖2

≤ ‖Twn − Tp‖2. (24)
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Using the Cauchy-Schwarz inequality and (24), we have

‖T ∗(Twn − zn)‖‖wn − p‖ ≥ 〈T ∗(Twn − zn), wn − p〉
= 〈Twn − zn, Twn − Tp〉

=
1

2
[‖Twn − zn‖2 + ‖Twn − Tp‖2 − ‖zn − Tp‖2]

≥ 1

2
‖Twn − zn‖2. (25)

Since zn 6= Twn, we have ‖Twn − zn‖ ≥ 0, thus, we obtain that

‖T ∗(Twn − zn)‖‖wn − p‖ > 0.

Hence, we have ‖T ∗(Twn − zn)‖ 6= 0 and so γn is well defined.

2. We note that, {εn} is a positive sequence such that εn = ◦(αn), which means
that lim

n→∞
εn
αn

= 0. Clearly, we have that θn‖xn − xn−1‖ ≤ εn for all n ∈ N,
which together with lim

n→∞
εn
αn

= 0, it follows that

lim
n→∞

θn
αn
‖xn − xn−1‖ ≤ lim

n→∞

εn
αn

= 0.

It is worth mentioning that, we can take αn = 1/(n+1)p and εn = 1/(n+1)1−p,
where p ∈ [0, 1/2).

3. It is well known that the Armijo-like search rule (17) and (19) are well defined.

4. Convergence analysis.

Lemma 4.1. Let {xn} be a sequence generated by Algorithm 3.2, under Assumption
3.1, we obtain that {xn} is bounded.

Proof. Let p ∈ Γ. By using the definition of wn in Algorithm 3.2, we obtain

‖wn − p‖ = ‖(1− αn)xn + (1− αn)θn(xn − xn−1)− p‖
= ‖(1− αn)(xn − p) + (1− αn)θn(xn − xn−1)− αnp‖
≤ (1− αn)‖xn − p‖+ (1− αn)θn‖xn − xn−1‖+ αn‖p‖

= (1− αn)‖xn − p‖+ αn

[
(1− αn)

θn
αn
‖xn − xn−1‖+ ‖p‖

]
. (26)

Using (65), we have θn
αn
‖xn − xn−1‖ ≤ εn

αn
→ 0. Hence, we have

lim
n→∞

[
(1− αn)

θn
αn
‖xn − xn−1‖+ ‖p‖

]
= ‖p‖,

hence, there exists N > 0 such that (1− αn) θnαn
‖xn − xn−1‖+ ‖p‖ ≤ N. Thus, (26)

becomes

‖wn − p‖ ≤ (1− αn)‖xn − p‖+ αnN

≤ ‖xn − p‖+ αnN. (27)

In addition, using, (21), (23) and (24), we have

‖zn − Tp‖ ≤ ‖Twn − Tp‖. (28)

Furthermore, using Algorithm 3.2 and the step size, we have

‖vn − p‖2

= ‖wn + γnT
∗(zn − Twn)− p‖
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= ‖wn − p‖2 + γ2
n‖T ∗(zn − Twn)‖2 + 2γn〈wn − p, T ∗(zn − Twn)〉

= ‖wn − p‖2 + γ2
n‖T ∗(zn − Twn)‖2 + 2γn〈Twn − Tp, zn − Twn〉

= ‖wn − p‖2 + γ2
n‖T ∗(zn − Twn)‖2 + γn‖zn − Tp‖2 − γn‖Twn − Tp‖2

− γn‖zn − Twn‖2

≤ ‖wn − p‖2 + γ2
n‖T ∗(zn − Twn)‖2 + γn‖Twn − Tp‖2 − γn‖Twn − Tp‖2

− γn‖zn − Twn‖2

≤ ‖wn − p‖2 + γ2
n‖T ∗(zn − Twn)‖2 − γn(γn + ε)‖T ∗(zn − Twn)‖2

= ‖wn − p‖2 − γnε‖T ∗(zn − Twn)‖2 ≤ ‖wn − p‖2, (29)

which implies that

‖vn − p‖ ≤ ‖wn − p‖. (30)

Using similar approach as above, we have

‖tn − p‖2 ≤ ‖vn − p‖2 −
(2− φ)

φ
‖vn − tn‖2 ≤ ‖vn − p‖2, (31)

which implies that

‖tn − p‖ ≤ ‖vn − p‖. (32)

Lastly, using Algorithm 3.2, (32), (30) and (27), we have

‖xn+1 − p‖ = ‖αnf(xn) + (1− αn)tn‖
≤ αn‖f(xn)− f(p)‖+ αn‖f(p)− p‖+ (1− αn)‖tn − p‖
≤ αnk‖xn − p‖+ αn‖f(p)− p‖+ (1− αn)‖tn − p‖
≤ αnk‖xn − p‖+ αn‖f(p)− p‖+ (1− αn)‖vn − p‖
≤ αnk‖xn − p‖+ αn‖f(p)− p‖+ (1− αn)‖wn − p‖
≤ αnk‖xn − p‖+ αn‖f(p)− p‖+ (1− αn)[‖xn − p‖+ αnN ]

≤ αnk‖xn − p‖+ αn‖f(p)− p‖+ (1− αn)‖xn − p‖+ αnN

= (1− αn(1− k))‖xn − p‖+ αn(1− k)

[
N + ‖f(p)− p‖

(1− k)

]
≤ max

{
‖xn − p‖,

N + ‖f(p)− p‖
(1− k)

}
. (33)

It follows by induction

‖xn − p‖ ≤ max

{
‖x0 − p‖,

N + ‖f(p)− p‖
(1− k)

}
. (34)

Hence, {xn} is bounded.

Theorem 4.2. Let {xn} be the sequence generated by Algorithm 3.2. Then, under
the Assumption 3.1, {xn} converges strongly to p ∈ Γ, where p = PΓ ◦ f(p).

Let p ∈ Γ, using Algorithm 3.2, we have

‖wn − p‖2

= ‖xn + θn(xn − xn−1)− αnxn − θnαn(xn − xn−1)− p‖2

= ‖(1− αn)(xn − p) + (1− αn)θn(xn − xn−1)− αnp‖2

≤ ‖(1− αn)(xn − p) + (1− αn)θn(xn − xn−1)‖2 + 2αn〈p, wn − p〉
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= (1− αn)2‖xn − p‖2 + (1− αn)2θ2
n‖xn − xn−1‖2

+ 2θn(1− αn)‖xn − p‖‖xn − xn−1‖+ 2αn[〈p, wn − xn+1〉+ 〈p, xn+1 − p〉]
≤ (1− αn)2‖xn − p‖2 + (1− αn)θ2

n‖xn − xn−1‖2

+ 2θn(1− αn)‖xn − p‖‖xn − xn−1‖+ 2αn[〈p, wn − xn+1〉+ 〈p, xn+1 − p〉]
≤ (1− αn)2‖xn − p‖2 + (1− αn)2θn‖xn − xn−1‖[θn‖xn − xn−1‖+ 2‖xn − p‖]

+ 2αn‖p‖‖wn − xn+1‖ − 2αn〈p, p− xn+1〉
≤ (1− αn)‖xn − p‖2 + θn‖xn − xn−1‖M − 2αn〈p, p− xn+1〉

+ 2αn‖p‖‖xn+1 − wn‖, (35)

where M := supn∈N{θn‖xn − xn−1‖, 2‖xn − p‖}. In addition, using Algorithm 3.2,
(32), (30), and (35), we have

‖xn+1 − p‖2

= ‖αnf(xn) + (1− αn)tn − p‖2

= ‖αn(f(xn)− f(p)) + (1− αn)(tn − p) + αn(f(p)− p)‖2

≤ ‖αn(f(xn)− f(p)) + (1− αn)(tn − p)‖2 + 2αn〈(f(p)− p), xn+1 − p〉
≤ αnk2‖xn − p‖2 + (1− αn)‖tn − p‖2 + 2αn〈(f(p)− p), xn+1 − p〉
≤ αnk‖xn − p‖2 + (1− αn)‖vn − p‖2 + 2αn〈(f(p)− p), xn+1 − p〉
≤ αnk‖xn − p‖2 + (1− αn)‖wn − p‖2 + 2αn〈(f(p)− p), xn+1 − p〉
≤ αnk‖xn − p‖2 + (1− αn)[(1− αn)‖xn − p‖2 + θn‖xn − xn−1‖M
− 2αn〈p, p− xn+1〉+ 2αn‖p‖‖xn+1 − wn‖] + 2αn〈f(p)− p, xn+1 − p〉
≤ (1− αn(1− k))‖xn − p‖2 + θn‖xn − xn−1‖M − 2(1− αn)αn〈p, p− xn+1〉

+ 2αn‖p‖‖xn+1 − wn‖+ 2αn〈f(p)− p, xn+1 − p〉

= (1− αn(1− k))‖xn − p‖2 + αn(1− k)

[
θn
αn

1

(1− k)
‖xn − xn−1‖M

− 2(1− αn)

(1− k)
〈p, p− xn+1〉+ 2

1

(1− k)
‖p‖‖xn+1 − wn‖

+ 2
1

(1− k)
〈f(p)− p, xn+1 − p〉

]
= (1− αn(1− k))‖xn − p‖2 + αn(1− k)Ψn, (36)

where, Ψn = θn
αn

1
(1−k)‖xn − xn−1‖M − 2(1−αn)

(1−k) 〈p, p − xn+1〉 + 2 1
(1−k)‖p‖‖xn+1 −

wn‖+2 1
(1−k) 〈f(p)−p, xn+1−p〉. According to Lemma 2.2, to conclude our proof, it

is sufficient to establish that lim supk→∞Ψnk
≤ 0 for every subsequence {‖xnk

−p‖}
of {‖xn − p‖} satisfying the condition:

lim inf
k→∞

{‖xnk+1 − p‖ − ‖xnk
− p‖} ≥ 0. (37)

To establish that lim supk→∞Ψnk
≤ 0, we suppose that for every subsequence

{‖xnk
− p‖} of {‖xn− p‖} such that (37) holds. It is easy to see from (36) and (31)

that

‖xn+1 − p‖2

= ‖αnf(xn) + (1− αn)tn − p‖2
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= ‖αn(f(xn)− f(p)) + (1− αn)(tn − p) + αn(f(p)− p)‖2

≤ ‖αn(f(xn)− f(p)) + (1− αn)(tn − p)‖2 + 2αn〈(f(p)− p), xn+1 − p〉
≤ αnk‖xn − p‖2 + (1− αn)‖tn − p‖2 + 2αn〈(f(p)− p), xn+1 − p〉

≤ αnk‖xn − p‖2 + (1− αn)[‖vn − p‖2 −
(2− φ)

φ
‖vn − tn‖2]

+ 2αn〈(f(p)− p), xn+1 − p〉

= αnk‖xn − p‖2 + (1− αn)‖wn − p‖2 − (1− αn)
(2− φ)

φ
‖vn − tn‖2

+ 2αn〈(f(p)− p), xn+1 − p〉

≤ ‖xn − p‖2 + αn
θn
αn
‖xn − xn−1‖M − 2αn〈p, p− xn+1〉+ 2αn‖p‖‖xn+1 − wn‖

− (1− αn)
(2− φ)

φ
‖vn − tn‖2 + 2αn〈(f(p)− p), xn+1 − p〉, (38)

which implies that

lim sup
k→∞

(
(1− αnk

)
(2− φ)

φ
‖vnk

− tnk
‖2
)

≤ lim sup
k→∞

[
‖xnk

− p‖2 + αnk

θnk

αnk

‖xnk
− xnk−1‖M − 2αnk

〈p, p− xnk+1〉

+ 2αnk
‖p‖‖xnk+1 − wnk

‖+ 2αnk
〈(f(p)− p), xnk+1 − p〉 − ‖xnk+1 − p‖2

]
≤ − lim inf

k→∞
[‖xnk+1 − p‖2 − ‖xnk

− p‖2] ≤ 0.

Thus, we have

lim
k→∞

‖vnk
− tnk

‖ = 0. (39)

In addition, using (36) and (29), we have

‖xn+1 − p‖2

= ‖αnf(xn) + (1− αn)tn − p‖2

= ‖αn(f(xn)− f(p)) + (1− αn)(tn − p) + αn(f(p)− p)‖2

≤ ‖αn(f(xn)− f(p)) + (1− αn)(tn − p)‖2 + 2αn〈(f(p)− p), xn+1 − p〉
≤ αnk‖xn − p‖2 + (1− αn)‖tn − p‖2 + 2αn〈(f(p)− p), xn+1 − p〉
≤ αnk‖xn − p‖2 + (1− αn)‖vn − p‖2 + 2αn〈(f(p)− p), xn+1 − p〉
≤ αnk‖xn − p‖2 + (1− αn)[‖wn − p‖2 − ε2‖T ∗(zn − Twn)‖2]

+ 2αn〈(f(p)− p), xn+1 − p〉
≤ αnk‖xn − p‖2 + (1− αn)[(1− αn)‖xn − p‖2 + θn‖xn − xn−1‖M
− 2αn〈p, p− xn+1〉+ 2αn‖p‖‖xn+1 − wn‖]− (1− αn)ε2‖T ∗(zn − Twn)‖2

+ 2αn〈(f(p)− p), xn+1 − p〉
≤ ‖xn − p‖2 + θn‖xn − xn−1‖M − 2(1− αn)αn〈p, p− xn+1〉
+ 2αn‖p‖‖xn+1 − wn‖ − (1− αn)ε2‖T ∗(zn − Twn)‖2 + 2αn〈(f(p)− p), xn+1 − p〉,

(40)
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which implies that

lim sup
k→∞

(
(1− αnk

)ε2‖T ∗(znk
− Twnk

)‖2
)

≤ lim sup
k→∞

[
‖xnk

− p‖2 + αnk

θnk

αnk

‖xnk
− xnk−1‖M − 2αnk

(1− αnk
)〈p, p− xnk+1〉

+ 2αnk
‖p‖‖xnk+1 − wnk

‖+ 2αnk
〈(f(p)− p), xnk+1 − p〉 − ‖xnk+1 − p‖2

]
≤ − lim inf

k→∞
[‖xnk+1 − p‖2 − ‖xnk

− p‖2] ≤ 0.

Thus, we have

lim
k→∞

‖T ∗(znk
− Twnk

)‖ = 0. (41)

Using (25), we have

‖Twnk
− znk

‖ ≤ 2‖T ∗(znk
− Twnk

)‖‖wnk
− p‖, (42)

thus, using (41), we have

lim
k→∞

‖Twnk
− znk

‖ = 0. (43)

Furthermore, observe that

‖dnk
‖ = ‖Twnk

− ynk
− λnk

(ATwnk
−Aynk

)‖
≤ ‖Twnk

− ynk
‖+ λnk

‖ATwnk
−Aynk

)‖
≤ (1 + µ)‖Twnk

− ynk
‖. (44)

In addition, using (44), we have

ηnk
= (1− µ)

‖Twnk
− ynk

‖2

‖dnk
‖2

≥ (1− µ)
‖Twnk

− ynk
‖2

(1 + µ)2‖Twnk
− ynk

‖2
=

(1− µ)

(1 + µ)2
. (45)

Thus, we have

‖Twnk
− ynk

‖2 =
ηnk

(1− µ)
‖dnk

‖2

=
‖ζηnk

dnk
‖2

(1− µ)ζ2ηnk

=
1

(1− µ)ζ2ηnk

‖znk
− Twnk

‖2

≤ 1− µ
(1 + µ)2ζ2

‖znk
− Twnk

‖2, (46)

thus, using (43), we have

lim
k→∞

‖Twnk
− ynk

‖ = 0. (47)

Using a similar approach, we have

lim
k→∞

‖unk
− vnk

‖ = 0. (48)

lim
k→∞

‖znk
− ynk

‖ ≤ lim
k→∞

‖znk
− Twnk

‖+ lim
k→∞

‖Twnk
− ynk

‖ = 0. (49)

lim
k→∞

‖tnk
− unk

‖ ≤ lim
k→∞

‖tnk
− vnk

‖+ lim
k→∞

‖vnk
− unk

‖ = 0. (50)

(51)

Also, using the above results, we have

‖tnk
− unk

‖ ≤ ‖tnk
− vnk

‖+ ‖vnk
− unk

‖ → 0 as k → ∞, (52)
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‖znk
− ynk

‖ ≤ ‖znk
− Twnk

‖+ ‖Twnk
− ynk

‖ → 0 as k → ∞. (53)

In addition, we have that

‖wnk
− xnk

‖ ≤ αnk

θnk

αnk

‖xnk
− xnk−1‖+ αnk

‖xnk
‖+ α2

nk

θnk

αnk

‖xnk
− xnk−1‖ → 0

as k → ∞. (54)

Also, we have

‖vnk
− xnk

‖ ≤ ‖wnk
− xnk

‖+ γnk
‖T ∗(znk

− Twnk
)‖ → 0 as k → ∞,

‖tnk
− xnk

‖ ≤ ‖tnk
− vnk

‖+ ‖vnk
− xnk

‖ → 0 as k → ∞,
‖tnk

− wnk
‖ ≤ ‖tnk

− xnk
‖+ ‖xnk

− wnk
‖ → 0 as k → ∞,

‖ynk
− xnk

‖ ≤ ‖ynk
− wnk

‖+ ‖wnk
− xnk

‖ → 0 as k → ∞,
‖znk

− xnk
‖ ≤ ‖znk

− ynk
‖+ ‖ynk

− xnk
‖ → 0 as k → ∞,

‖xnk+1 − tnk
‖ ≤ αnk

‖f(xnk
)− tnk

‖ → 0 as k → ∞,
‖tnk

− znk
‖ ≤ ‖tnk

− xnk
‖+ ‖xnk

− znk
‖ → 0 as k → ∞.

Lastly, we have

‖xnk+1 − xnk
‖ ≤ ‖xnk+1 − tnk

‖+ ‖tnk
− znk

‖+ ‖znk
− xnk

‖ → 0 as k → ∞.
(55)

Now, since {xnk
} is bounded, then, there exists a subsequence {xnkj

} of {xnk
}

such that {xnkj
} converges weakly to x∗ ∈ H1. Let (v, u) ∈ G(A + A1). Then

u−Av ∈ A1v. Also it follow from (22), 1
λnkj

(Twnkj
−λnkj

ATwnkj
−ynkj

) ∈ Pynkj
.

Thus, using the monotonicity of A1, we have

〈v − ynkj
, u−Av − 1

λnkj

(Twnkj
− λnkj

ATwnkj
− ynkj

)〉 ≥ 0 (56)

Using (56) and the monotonicity of A, we have

〈v − ynkj
, u〉

≥ 〈v − ynkj
, Av +

1

λnkj

(Twnkj
− ynkj

)−ATwnkj
〉

= 〈v − ynkj
, Av −Aynkj

〉+ 〈v − ynkj
, Aynkj

−ATwnkj
〉

+ 〈v − ynkj
,

1

λnkj

(Twnkj
− ynkj

)〉

≥ 〈v − ynkj
, Aynkj

−ATwnkj
〉+ 〈v − ynkj

,
1

λnkj

(Twnkj
− ynkj

)〉. (57)

From (54), we can choose a subsequence {wnkj
} of {wnk

} such that {wnkj
} converges

weakly to x∗. Also, since T is a bounded linear operator, we have that {Twnkj
}

converges weakly to Tx∗. Hence, using (47), we have that {ynkj
} converges weakly

to Tx∗. Using (17) and (47), we have

lim
j→∞

‖ATwnkj
−Aynkj

‖ ≤ µ

λ
lim
j→∞

‖Twnkj
− ynkj

‖ = 0.

Thus, we have that

〈v − Tx∗, u〉 ≥ 0
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as j →∞. Thus, by the maximal monoticity of A+A1, we have Tx∗ ∈ (A+A1)−1(0).
Also, using similar approach as above, (41) and (48), we have

lim
j→∞

‖Bvnkj
−Bunkj

‖ = 0

and

lim
j→∞

‖vn − wn‖ = lim
j→∞

γnkj
‖T ∗(znkj

− Twnkj
)‖ = 0.

Thus, since wnkj
, vnkj

and unkj
converges weakly to x∗ and

lim
j→∞

‖Bvnkj
−Bunkj

‖ = 0,

we have x∗ ∈ (B + B1)−1(0). Thus, x∗ ∈ Γ. Furthermore, since xnkj
converges

weakly to x∗, we obtain

lim sup
k→∞

〈f(p)− p, xnk
− p〉 = lim

j→∞
〈f(p)− p, xnkj

− p〉 = 〈f(p)− p, x∗ − p〉. (58)

Since p is a solution of Γ, it follows

lim sup
k→∞

〈f(p)− p, xnk
− p〉 = 〈f(p)− p, x∗ − p〉 ≤ 0, (59)

and we obtain from (59) and (55)

lim sup
k→∞

〈f(p)− p, xnk+1 − p〉 ≤ 0. (60)

Lastly, we also obtain

‖xnk+1 − wnk
‖ ≤ ‖xnk+1 − xnk

‖+ ‖xnk
− wnk

‖ → 0 as n→∞. (61)

Using our assumption, (61), (60), and the fact that Ψnkj
=

θnkj

αnkj

1
(1−k)‖xnkj

−

xnkj
−1‖M −

2(1−αnkj
)

(1−k) 〈p, p − xnkj
+1〉 + 2 1

(1−k)‖p‖‖xnkj
+1 − wn‖ + 2 1

(1−k) 〈f(p) −
p, xnkj

+1 − p〉 ≤ 0.Thus, From Lemma 2.2, we have that lim
n→∞

‖xn − p‖ = 0.

5. Application to split equilibrium problem. An interesting optimization prob-
lem is the equilibrium problem (EP) introduced and studied by Blum and Oettli [7].
Some well known problems in sciences are special type of the equilibrium problem.
For example, Minimization problems, mathematical programming problems, saddle
point problems, Nash equilibrium problems fixed point problems, vector minimiza-
tion problems, and so on. The equilibrium problem (EP) is defined as finding x∗ ∈ C
such that

F (x∗, y) ≥ 0, (62)

for all y ∈ C, where F : C×C → R is a bifunction. The solution set of EP is denoted
by EP (F ). Due to its numerous application, the notion of EP has been extended
and generalized by different scholars. For instant, Kazmi and Rizvi [20] introduced
and studied the following Split Equilibrium Problem (SEP). Let C ⊆ H1, Q ⊆ H2,
F1 : C × C → R and F2 : Q × Q → R be two bifunctions and suppose that
T : H1 → H2 is a bounded linear operator. The SEP is to find x∗ ∈ C such that

F1(x∗, x) ≥ 0 ∀ x ∈ C (63)

and such that

y∗ = Tx∗ ∈ Q solves F2(y∗, y) ≥ 0, ∀y ∈ Q. (64)
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We denote the solution set of (63) and (64) by Ω = {x ∈ EP (F1) : Tx ∈ EP (F2)}.
It is easy to see that if H1 = H2 = H and F2 = 0 with T = IH problem (63)-
(64) becomes (62). The following assumptions are needed in solving equilibrium
problems.

Assumption 5.1. [30] Let F : C×C → R be a bifunction satisfying the following
assumptions:

1. F (x, x) = 0 for all x ∈ C;
2. F is monotone. That is F (x, y) + F (y, x) ≤ 0 for all x ∈ C;
3. for each x, y, z ∈ C, lim supt→0+ F (tz + (1− t)x, y) ≤ F1(x, y);
4. for each x ∈ C, y 7→ F1(x, y) is convex and weakly lower semi-continuous.

Lemma 5.2. [30] Assume that F : C × C → R satisfies Assumption 5.1 and let
BF be a set valued operator defined from H into itself as

BF (x) =


{z ∈ H : F (x, y) ≥ 〈y − x, z〉 ∀y ∈ C}, if x ∈ C,

∅, otherwise.

(65)

ThenBF is a maximal monotone operator with domainD(BF ) ⊂ C andB−1(0) =
EP (F ). Thus, the re-solvent JFλ := (IH + λBF )−1 of BF is defined by

JFλ (x) = {x ∈ C : F (z, y) +
1

λ
〈y − z, z − x〉 ≥ 0 ∀ y ∈ C}.

Applying of Lemma 5.2, the following iterative method is deduced from Algorithm
3.2 for solving the problem (63)-(64).

Algorithm 5.3. Initialization Step: Given λ, γ, µ > 0. Choose x0, x1 ∈ H1,
given the iterates xn−1 and xn for all n ∈ N.

θn =


min

{
θ, εn
‖xn−xn−1‖}

}
, if xn 6= xn−1

θ, otherwise.

(66)

Step 1: Compute

wn = (1− αn)xn + (1− αn)θn(xn − xn−1),

yn = JF2

λ Twn.

Step 2: Compute

vn = wn + γnT
∗(zn − Twn). (67)

where γn is chosen such that for small enough ε > 0, γn ∈
[
ε, ‖Twn−zn‖2
‖T∗(Twn−zn)‖2 − ε

]
if

Twn 6= zn, otherwise γn = γ. Step 3: Compute

un = JF1
µ vn.

Step 4: Compute

xn+1 = αnf(xn) + (1− αn)un. (68)

Theorem 5.4. Let F1 : H1 ×H1 → R and F2 : H2 ×H2 → R be two bifunctions
which satisfy conditions (5.1) and suppose that Ω 6= ∅. Also, let Assumptions 3.1
hold. Then, the sequence {xn} generated by Algorithm 5.3 converges strongly to an
element in Ω.
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6. Numerical example. In this section, we will give some numerical examples
which will show the applicability and the efficiency of our proposed iterative method
in comparison to the same Algorithm 3.2 but with the normal inertial (xn+θn(xn−
xn−1)) and Algorithm 3.2 without inertial term.

Example 6.1. Let H1 = H2 = L2([0, 1]) be equipped with the inner product

〈x, y〉 =

∫ 1

0

x(t)y(t)dt ∀ x, y ∈ L2([0, 1]) and ‖x‖2 :=

∫ 1

0

|x(t)|2dt ∀x, y,∈ L2([0, 1]).

Let T ;A;A1;B;B1; f : L2([0, 1])→ L2([0, 1]) be defined by;

A1x(t) = max{0, x(t)}, t ∈ [0, 1], x ∈ L2([0, 1]);

B1x(t) =
1

2
max{0, x(t)}, t ∈ [0, 1], x ∈ L2([0, 1]);

Ax(t) =

∫ t

0

x(s)ds, t ∈ [0, 1], x ∈ L2([0, 1]),

Bx(t) =

∫ 1

0

(
x(t)− 2tset+s

e
√
e2 − 1

cosx(s)

)
ds, t ∈ [0, 1], x ∈ L2([0, 1]),

fx(t) =

∫ t

0

t

2
x(s) ds t ∈ [0, 1], x ∈ L2([0, 1]);

Tx(s) =

∫ 1

0

K(s, t)x(t)dt x ∈ L2([0, 1]),

where K is a continuous real-valued function on [0, 1]× [0, 1]. It is easy to see that
A,A1, B,B1 and T satisfies Assumption 3.1, (see [6, 18] for details). In addition,
f is a contraction on L2([0, 1]) and T is a bounded linear operator with the adjoint

operator T ∗x(s) =
∫ 1

0
K(t, s)x(t)dt x ∈ L2([0, 1]). We choose αn = 2

200n+5 , Γ =
0.4, ϕ = 0.3, l = 0.5, j = 0.4, µ = 0.2, α = 0.3, ζ = 1.6 and φ for all n ∈ N. Also
if we consider ε = ‖xn − xn1

‖ ≤ 10−5 as the stopping criterion and choose the
following as starting points:

Case I: x0(t) = t+ 2, x1(t) = 2t+ 1;
Case II: x0(t) = e2t + 1, x1(t) = t3;
Case III: x0(t) = t3 + t2 + 2, x1(t) = 2t+ cos(t).

Example 6.2. Let H1 = H2 = l2(R) := {x = (x1, x2, x3, · · · ), xi ∈ R :
∑∞
i=1 |xi|2 <

∞} and ‖x‖ = (
∑∞
i=1 |xi|2)

1
2 for all x ∈ l2(R). Suppose the operators T ;A;A1;B;B1;

f : l2(R)→ l2(R) are defined by

A1x = (3x1, 3x2, 3x3, · · · , 3xi, · · · ) ∀ x ∈ l2(R);

B1x = (7x1, 7x2, 7x3, · · · , x7i, · · · ) ∀ x ∈ l2(R);

A(x) = 2(x1, x2, x3, · · · , xi, · · · ) ∀ x ∈ l2(R);

B(x) = (
x1 + |x1|

3
,
x2 + |x2|

3
,
x3 + |x3|

3
, · · · , xi + |xi|

3
, · · · ) ∀ x ∈ l2(R);

Tx = (0, x1,
x2

2
,
x3

3
, · · · ), x ∈ l2(R);

f(x) =
x

3
∀ x ∈ l2(R).

It is easy to see that T is a bounded linear operator with the adjoint operator T ∗y =
(0, y1,

y2
2 ,

y3
3 , · · · ) y ∈ l2(R) and A,A1, B,B1 satisfy Assumptions 3.1. We choose
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Figure 1. Example 6.1, Top Left: Case I; Top Right: Case II.
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Figure 2. Example 6.2, Top Left: Case I; Top Right II.

αn = 2
200n+5 , Γ = 0.4, ϕ = 0.3, l = 0.5, j = 0.4, µ = 0.2, α = 0.3, ζ = 1.6 and φ for

all n ∈ N. Also if we consider ε = ‖xn − xn1
‖ ≤ 10−5 as the stopping criterion and

choose the following as starting points:

Case I: x0 = (1, 3, 5, · · · ), x1 = (0.5, 0.5, 0.5, · · · );
Case II: x0 = (1, 2, 3, 4, · · · ), x1 = ( 1

2 ,
1
4 ,

1
6 · · · ).

7. Conclusion. In this paper we have introduced and studied an iterative algo-
rithm for solving split monotone inclusions problem in the framework of real Hilbert
spaces using viscosity inertial techniques. We have obtained a strong convergence
result without assuming that our single valued operator is inversely strongly mono-
tone assumption. We emphasize that the value of the Lipschitz constant is not
required for the iterative technique to be implemented, and during computation,
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the Lipschitz continuity was not used. Lastly, we present an application and al-
so some numerical experiments to show the efficiency and the applicability of our
proposed iterative method. However, the linear rate of convergence of the iterative
technique introduced and studied in this paper was not investigated. Hence, we
intend to look in this direction in the near future.

Author contributions: The authors acknowledge and agree with the content,
accuracy and integrity of the manuscript and take absolute accountability for the
same. All authors read and approved the final manuscript. The first author wrote
the manuscript, the second author designed the problem, the third author proofread
and designed the numerical experiment, the fourth author helped with the proof
reading and suggestions that improve the manuscript.

Declarations. The authors declare that they have no conflict of interest. In addi-
tion, we never used any form of artificial intelligence in the writing of this paper.

REFERENCES

[1] F. Akutsah, A. A. Mebawondu, H. A. Abass and O. K. Narain, A self adaptive method for

solving a class of bilevel variational inequalities with split variational inequlaity and composed

fixed point problem constraints in Hilbert spaces, Numer. Algebra Control Optim., 13 (2023),
117-138.

[2] F. Akutsah, A. A. Mebawondu, G. C. Ugwunnadi and O. K. Narain, Inertial extrapolation

method with regularization for solving monotone bilevel variation inequalities and fixed point
problems in real Hilbert space, J. Nonlinear Funct. Anal., 2022 (2022), Article ID 5, 15 pp.

[3] F. Akutsah, A. A. Mebawondu, G. C. Ugwunnadi, P. Pillay and O. K. Narain, Inertial

extrapolation method with regularization for solving a new class of bilevel problem in real
Hilbert spaces, SeMA Journal , 80 (2023), 503-524.

[4] F. Alvares and H. Attouch, An inertial proximal monotone operators via discretization of a

nonlinear oscillator with damping, Set Valued Anal., 9 (2001), 3-11.
[5] P. N. Anh, Strong convergence theorems for nonexpansive mappings Ky Fan inequalities, J.

Optim. Theory Appl., 154 (2012), 303-320.
[6] H. H. Bauschke, and P. L. Combettes, Convex Analysis and Monotone Operator Theory in

Hilbert Spaces, CMS Books in Mathematics. Springer, New York, 2011.

[7] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium prob-
lems, Math. Stud., 63 (1994), 127-149.

[8] C. Byrne, Y. Censor, A. Gibali and S. Reich, The split common null point problem, J.

Nonlinear Convex Anal., 13 (2012), 759-775.
[9] Y. Censor, A. Gibali and S. Reich, The split variational inequality problem,

arXiv:1009.3780v1.

[10] Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem,
Numer. Algorithms, 59 (2012), 301-323.

[11] Y. Censor, T. Bortfeld, T. B. Martin and A. Trofimov, A unified approach for inversion

problems in intensity-modulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353-2365.
[12] Y. Censor and T. Elfving, A multi-projection algorithm using Bregman projections in a

product space, Numer. Algorithms, 8 (1994), 221-239.
[13] P. L. Combettes and V. R Wajs, Signal recovery by proximal forward-backward splitting,

Multiscale Model. Simul., 4 (2005), 1168-1200.

[14] J. Douglas, and H. H. Rachford, On the numerical solution of the heat conduction problem
in two and three space variables, Trans. Am. Math. Soc., 82 (1956), 421-439.

[15] G. Ficher, Sul pproblem elastostatico di signorini con ambigue condizioni al contorno, Atti
Accad. Naz. Lincei Rend, Cl. Sci. Fis. Mat. Natur, 34 (1963), 138-142.

[16] G. Ficher, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue
condizioni al contorno, Atti Accad. Naz. Lincci, Cl. Sci. Fis. Mat. Nat., Sez., 7 (1964), 91-140.

[17] J. L. Guan, L. C. Ceng and B. Hu, Strong convergence theorem for split monotone variational
inclusion with constraints of variational inequalities and fixed point problems, J. Inequal.
Appl., (2018), Paper No. 311, 29 pp.

http://mathscinet.ams.org/mathscinet-getitem?mr=MR4520403&return=pdf
http://dx.doi.org/10.3934/naco.2021046
http://dx.doi.org/10.3934/naco.2021046
http://dx.doi.org/10.3934/naco.2021046
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4627396&return=pdf
http://dx.doi.org/10.1007/s40324-022-00293-2
http://dx.doi.org/10.1007/s40324-022-00293-2
http://dx.doi.org/10.1007/s40324-022-00293-2
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1845931&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2931381&return=pdf
http://dx.doi.org/10.1007/s10957-012-0005-x
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3616647&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1292380&return=pdf
http://dx.doi.org/10.2307/43629646
http://dx.doi.org/10.2307/43629646
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3015119&return=pdf
http://arxiv.org/pdf/1009.3780v1
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2873136&return=pdf
http://dx.doi.org/10.1007/s11075-011-9490-5
http://dx.doi.org/10.1088/0031-9155/51/10/001
http://dx.doi.org/10.1088/0031-9155/51/10/001
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1309222&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2203849&return=pdf
http://dx.doi.org/10.1137/050626090
http://mathscinet.ams.org/mathscinet-getitem?mr=MR0084194&return=pdf
http://dx.doi.org/10.1090/S0002-9947-1956-0084194-4
http://dx.doi.org/10.1090/S0002-9947-1956-0084194-4
http://mathscinet.ams.org/mathscinet-getitem?mr=MR0178631&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3877697&return=pdf
http://dx.doi.org/10.1186/s13660-018-1905-6
http://dx.doi.org/10.1186/s13660-018-1905-6


AN INERTIAL METHOD FOR SPLIT MONOTONE INCLUSION PROBLEMS 19

[18] D. V. Hieu, P. K. Anh and L. D. Muu, Modified hybrid projection methods for finding common
solutions to variational inequality problems, Comput. Optim. Appl., 66 (2017), 75-96.

[19] C. Izuchukwu, S. Reich, and Y. Shehu, Relaxed inertial methods for solving the split monotone

variational inclusion problem beyond co-coerciveness, Optimization, 72 (2021), 607-646.
[20] K. R. Kazmi, R. Ali and M. Furkan, Hybrid iterative method for split monotone variational

inclusion problem and hierarchical fixed point problem for a finite family of nonexpansive
mappings, Numer. Algorithms, 79 (2018), 499-527.

[21] S. Kesornprom and P. Cholamjiak, A new relaxed inertial forward-backward-forward method

for solving the convex minimization problem with applications to image inpainting, Appl.
Set-Valued Anal. Optim., 5 (2023), 439-450.

[22] B. Lemaire, Which fixed point does the iteration method select? Recent Advances in Opti-

mization, Springer, Berlin, Germany, 452 (1997), 154-157.
[23] P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM

J. Numer. Anal., 16 (1979), 964-979.

[24] A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl., 150 (2011), 275-
283.

[25] B. T. Polyak, Some methods of speeding up the convergence of iteration methods, Politehn

Univ. Buchar Sci. Bull. Ser. A Appl. Math. Phys., 4 (1964), 791-803.
[26] S. Saejung and P. Yotkaew, Approximation of zeros of inverse strongly monotone operators

in Banach spaces, Nonlinear Anal., 75 (2012), 742-750.
[27] Y. Shehu and F. U. Ogbuisi, An iterative method for solving split monotone variational

inclusion and fixed point problems, RACSAM , 110 (2016), 503-518.

[28] G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Math. Acad.
Sci., 258 (1964), 4413-4416.

[29] R. Suparatulatorn, P. Charoensawan and K. Poochinapan, Inertial self-adaptive algorithm for

solving split feasible problems with applications to image restoration, Math. Methods Appl.
Sci., 42 (2019),7268-7284.

[30] S. Takahashi, W. Takahashi and M. Toyoda, Strong convergence theorems for maximal mono-

tone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl., 147
(2010), 27-41.

[31] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings,

SIAM J. Control Optim., 38 (2000), 431-446.
[32] Y. Yao, Y. Shehu, X. H. Li and Q. L. Dong, A method with inertial extrapolation step for

split monotone inclusion problems, Optimization, 70 (2021), 741-761.
[33] Y. Zhang and Y. Wang, A new inertial iterative algorithm for split null point and common

fixed point problems, J. Nonlinear Funct. Anal., 36 (2023), 1-25.

[34] J. Zhao, H. Wang and N. Zhao, Accelerated cyclic iterative algorithms for the multiple-set
split common fixed-point problem of quasi-nonexpansive operators, J. Nonlinear Var. Anal.,

7 (2023), 1-22.

Received August 2023; 1st revision April 2024; final revision July 2024; early
access August 2024.

http://mathscinet.ams.org/mathscinet-getitem?mr=MR3590722&return=pdf
http://dx.doi.org/10.1007/s10589-016-9857-6
http://dx.doi.org/10.1007/s10589-016-9857-6
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4548364&return=pdf
http://dx.doi.org/10.1080/02331934.2021.1981895
http://dx.doi.org/10.1080/02331934.2021.1981895
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3857923&return=pdf
http://dx.doi.org/10.1007/s11075-017-0448-0
http://dx.doi.org/10.1007/s11075-017-0448-0
http://dx.doi.org/10.1007/s11075-017-0448-0
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1467027&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR0551319&return=pdf
http://dx.doi.org/10.1137/0716071
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2818920&return=pdf
http://dx.doi.org/10.1007/s10957-011-9814-6
http://mathscinet.ams.org/mathscinet-getitem?mr=MR0169403&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2847453&return=pdf
http://dx.doi.org/10.1016/j.na.2011.09.005
http://dx.doi.org/10.1016/j.na.2011.09.005
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3534503&return=pdf
http://dx.doi.org/10.1007/s13398-015-0245-3
http://dx.doi.org/10.1007/s13398-015-0245-3
http://mathscinet.ams.org/mathscinet-getitem?mr=MR0166591&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4037966&return=pdf
http://dx.doi.org/10.1002/mma.5836
http://dx.doi.org/10.1002/mma.5836
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2720590&return=pdf
http://dx.doi.org/10.1007/s10957-010-9713-2
http://dx.doi.org/10.1007/s10957-010-9713-2
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1741147&return=pdf
http://dx.doi.org/10.1137/S0363012998338806
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4238890&return=pdf
http://dx.doi.org/10.1080/02331934.2020.1857754
http://dx.doi.org/10.1080/02331934.2020.1857754
http://dx.doi.org/10.23952/jnva.7.2023.1.01
http://dx.doi.org/10.23952/jnva.7.2023.1.01

	1. Introduction
	2. Preliminaries
	3. Proposed Algorithm
	4. Convergence analysis
	5. Application to split equilibrium problem
	6. Numerical example
	7. Conclusion
	 Author contributions:
	Declarations
	REFERENCES

