Advances in Artificial Intelligence and Machine Learning; Research 4 (3) 2629-2647 Received 3-07-2024; Accepted 20-09-2024; Published 27-09-2024

Integration of an Autoencoder Model with an Actor-Oriented System

Sithembiso Dyubele ctheradyubele@gmail.com
Department of Information Systems, Durban University of Technology
Durban, South Africa

Noxolo Pretty Cele noxolocele533@gmail.com
Department of Information Systems, Durban University of Technology
Durban, South Africa

Lubabalo Mbangata lubabalo.mbangata@gmail.com
Department of Information Systems, Durban University of Technology
Durban, South Africa

Corresponding Author: Sithembiso Dyubele

Copyright © 2024 Sithembiso Dyubele, et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original

work is properly cited.

Abstract

Traditional machine learning frameworks often struggle with scalability, modularity, and
efficient resource management, especially when dealing with vast data. Actor-Oriented Sys-
tems offer a robust framework for building such scalable systems, allowing concurrent pro-
cessing and efficient handling of large datasets. This study investigated the integration of
Autoencoders (AE), which are pivotal in unsupervised learning, with Actor-Oriented Sys-
tems to enhance the modularity, scalability, and maintainability of the model training process.
The study seeks to leverage the capabilities of AE and Actor-Oriented Systems to achieve
high-quality image reconstruction and efficient processing. The study also attempted to un-
derstand the underlying patterns in the data, assess the performance of the model, and demon-
strate the benefits of modular and scalable systems. Key findings from the results showed
significant improvements in training efficiency and performance of the model, especially
when using Actor-Oriented Systems. The training time was reduced from 16.96 seconds to
14.21 seconds, and the validation loss improved from 0.2768 to 0.2100, indicating better
generalisation and learning. Data augmentation techniques further enhanced the robustness
of the model, leading to more accurate reconstructions of the test images. Actor-Oriented
Systems facilitated concurrent processing, improved modularity, and enabled the system
to scale efficiently with increasing data volume. This study also highlighted the practical
benefits of integrating AE with Actor-Oriented Systems, providing valuable insights into
building more robust, maintainable, and scalable machine learning workflows.

Keywords: Autoencoder, Actor-oriented system, Machine Learning.

2629

Citation: Sithembiso Dyubele et al. Integration of an Autoencoder Model with an Actor-Oriented System. Advances in Artificial
Intelligence and Machine Learning. 2024;4(3):153.

https://www.oajaiml.com/ | September 2024 Sithembiso Dyubele, et al.

1. INTRODUCTION

With the increasing complexity and volume of data in various domains, the need for scalable and
modular systems has become more critical [1]. Li et al. [1], further indicated that there is a
developing interest among researchers in combining various methods of deep learning or machine
learning to mitigate challenges related to the complexity and volume of data in multiple industries.
This study integrated an AE with an Actor-Oriented System to address challenges in handling large
and complex datasets in machine learning. Zhang et al. [2], described AE as a form of neural
network used especially for unsupervised learning tasks, such as dimension reduction, efficient
coding, and generative modelling. Zhang et al. [2], further indicated that AE is one of the significant
methods utilised to capture the main features of data.

Similarly, Xu et al. [3], indicated that Autoencoders have demonstrated great superiority in learn-
ing latent feature representation in various application domains, e.g., image recognition, computer
vision, and speech recognition. As for Actors, Kumar et al. [4], define Actor-Oriented System as a
computing paradigm that provides concurrent units of computation. Similarly, Galkin and Shkilniak
[5], revealed that Actor-Oriented Systems offer a robust framework for building scalable systems
by allowing concurrent processing and efficient handling of large datasets. This is corroborated by
Srirama et al. [6], for whom the Actor-Oriented System addresses the need to work in a distributed
environment with concurrency, resiliency, and scalability requirements. By implementing and eval-
uating an AE model with an Actor-Oriented System, the study seeks to understand the underlying
patterns in the data, assess the performance model, and demonstrate the benefits of modular and
scalable systems.

1.1 Motivation

The primary motivation for this study stems from the increasing importance of unsupervised learn-
ing techniques and the development of scalable, modular systems in machine learning. Hurtado
et al. [7], revealed that unsupervised learning, where the model is trained on data without explicit
labels, is crucial for discovering hidden patterns and representations. Similarly, Mansour et al.
[8], indicated that Autoencoders are particularly effective in tasks such as data compression, noise
reduction, and feature extraction, while Kumar et al. [4], described Actor-Oriented System as an
enormous system that enables concurrent processing, which is crucial for managing the extensive
computational requirements of modern machine learning tasks. This study seeks to leverage the
capabilities of AE and Actor-Oriented Systems to achieve high-quality image reconstruction and
efficient processing. By encapsulating different components of the training process within actors,
these systems improve the modularity and maintainability of the workflow, making it easier to
manage and scale.

The specific motivations include:
» Exploring the effectiveness of Autoencoders in learning compact and meaningful representa-

tions of complex image data.

* Evaluating the performance of Autoencoders.

2630

https://www.oajaiml.com/ | September 2024 Sithembiso Dyubele, et al.

* Investigating the benefits of data augmentation techniques in improving the generalisation
ability of the model.

* Implementing an Actor-Oriented System to modularise the training and evaluation process
improves scalability and maintainability. Demonstrating the advantages of integrating AE
with Actor-Oriented Systems through detailed visualisations and mathematical formulations.

The current study aims to contribute to the growing body of knowledge on AE and its applications
in unsupervised learning. It also demonstrates the practical benefits of integrating AE with Actor-
Oriented Systems to enhance the scalability and efficiency of machine learning workflows.

1.2 Objectives

The objectives of this study are multifaceted and aimed at exploring the potential of AE for image
reconstruction and the benefits of using Actor-Oriented Systems in machine-learning workflows.
The specific objectives include:

* Implementation of Autoencoder (AE) Models: The first objective is to implement an AE
model using the Fashion MNIST dataset. This involves defining the architecture of the AE,
including the encoder and decoder components, and training the model to learn effective
representations of the input data.

* Evaluation of Model Performance: After implementing the AE, the next objective is to
evaluate its performance in terms of quality reconstruction. This includes assessing the train-
ing and validation losses over multiple epochs and comparing the original and reconstructed
images to visually inspect the performance of the model.

» Data Augmentation: To improve the generalisation capability of the Autoencoder, another
objective is to apply data augmentation techniques by artificially expanding the training dataset
through transformations such as rotation, shifting, and flipping, which aims to enhance the
robustness of the model.

* Actor-Oriented System Implementation: One of the core objectives is to integrate an Actor-
Oriented System for training and evaluating the AE model. This involves encapsulating the
training process within an actor, enabling modular and scalable handling of the model training.

» Concurrent Processing: Leveraging the Actor-Oriented approach, the study aims to imple-
ment concurrent processing for encoding and decoding images. By using Actors for these
tasks, the study seeks to demonstrate the efficiency gains in handling large datasets and the
potential for parallel execution.

* Scalability and Modularity: Finally, the study aims to demonstrate the benefits of scalability
and modularity in machine learning workflows using Actor-Oriented Systems. This includes
discussing the ease of extending the system for more complex models and larger datasets.

By achieving these objectives, this study aims to contribute valuable insights into using AE for
image reconstruction and the advantages of Actor-Oriented Systems in enhancing the scalability and

2631

https://www.oajaiml.com/ | September 2024 Sithembiso Dyubele, et al.

modularity of machine learning processes. The outcomes are expected to provide a comprehensive
understanding of both theoretical and practical aspects of integrating Autoencoders with Actor-
Oriented Systems.

1.3 Architecture of the Study

FIGURE 1 illustrates the architecture of the current study. The Summary of the Process is explained
below:

* Load and Preprocess Data: Loaded the Fashion MNIST dataset, visualised samples, and
normalized the images.

» Data Augmentation: Applied various augmentation techniques to enhance the training dataset.

* Train the Autoencoder Model: Defined and trained an autoencoder model on the augmented
dataset.

* Reconstruct Images: Used the trained autoencoder to reconstruct test images.

* Implement Actor-Oriented System: Data Preprocessing Actor: Handled the normalisation
of images.

* Model Training Actor: Managed the training of the autoencoder model.

* Encoding and Decoding Actor: Performed encoding and decoding operations using the
trained model.

» Use Actors for Asynchronous Tasks: Leveraged threading to simulate actor behavior, en-
suring modular and asynchronous processing of tasks.

Preprocess Data H Data Augmentation }

[Train Autoencoder J‘{ Actor: Train Model]

¥

Actor: En-
Reconstruct Images)) Actor-Oriented System
code/Decode

Process Flow

Figure 1: Architecture of the Study

2632

https://www.oajaiml.com/ | September 2024 Sithembiso Dyubele, et al.

2. REVIEWED LITERATURE
2.1 The Architecture of Autoencoders

According to Andresini et al. [9], AE involves three parts in its construction. This includes Encoder,
Bottleneck, and Decoder.

* Encoder: This layer compresses and changes the input information into a code layer [10].

» Bottleneck: Chen et al. [11], revealed that the bottleneck is one of the essential aspects of the
neural network. Chen et al. [11], further indicated that the bottleneck controls the movement
of information from the encoder to the decoder. This helps so that only significant information
can be processed and reach the destination.

* Decoder: This is the last and final stage after the bottleneck. Sun et al. [12], claim that this
is a layer where the bottleneck is reconstructed. Sun et al. [12], also revealed that the decoder
part recreates the original input from the compressed vector representation (the latent space
vector).

2.2 Actor-Oriented Systems

Srirama et al. [6], Actor-Oriented Systems offers a robust framework for building scalable and
modular applications by enabling concurrent processing. Actors have been integrated into this study
to enhance the modularity, scalability, and maintainability of the AE training process. Kumar et al.
[4], indicated that every Actor has a mailbox to store received messages. After a message has been
received, the Actor executes three basic actions. This includes:

* Sending messages among actors.
* Creating new actors.

* Modifying its state.

3. METHODOLOGY

This section outlines the steps taken to achieve the objectives of this study, including the imple-
mentation of the Autoencoder model, data preprocessing, Actor-Oriented System integration, and
performance evaluation. Each step is detailed below to provide a comprehensive understanding of
the process.

3.1 Dataset Preparation

The first step in the methodology involves the preparation of the dataset for training the AE model.
The Fashion MNIST dataset, consisting of 70,000 grayscale images of 28x28 pixels each, is used.

2633

https://www.oajaiml.com/ | September 2024 Sithembiso Dyubele, et al.

The dataset is divided into 60,000 training images and 10,000 test images, each associated with a
label from 10 different classes of clothing items. The following has been performed:

* Loading the Dataset: The dataset is loaded using the tensorflow.keras.datasets module, split-
ting it into training shapes of 60,000 images and test datasets of 10,000 images, each with
28x28 pixel images, and their dimensions are verified by printing the shapes to provide an
overview of the data dimensions.

* Visualisation: A subset of the training images is visualised to understand the types of images
and their corresponding labels, helping to gain initial insights into the dataset. This visual
examination, as shown in FIGURE 2, confirms the dataset is correctly loadedand familiarizes
the user with the variety of clothing items represented, highlighting the importance of data

visualisation [13].
-
‘ |

Ankle boot T-shirt/top T-shirt/top Dress
T-shirt/top Pullover Sneaker Pullover
[‘
Sandal Sandal T-shirt/top Ankle boot

-.-I_

Sandal Sandal Sneaker Ankle boot

Figure 2: Visualisation of Training Images with Labels

2634

https://www.oajaiml.com/ | September 2024 Sithembiso Dyubele, et al.

* Normalisation: The pixel values of the images in the Fashion MNIST dataset are normalised

2.5

2.0

Frequency

=
o
L

0.5 A

0.0

to the range of [0, 1] to stabilize and speed up the training process of the Autoencoder model.
This normalisation is achieved by dividing each pixel value by 255, to ensure that the neural
network receives input data on a consistent scale, enhancing training efficiency [14]. The
following formula was applied to compute normalisation. Given an image x with pixel values
in the range [0, 255], the normalised image x’ is computed as:

, X
x'=—
255

Histograms demonstrate the spreading of pixel values previously and later normalisation,
signifying its efficiency, as illustrated in FIGURE 3.

(1

=
w
L

1e7 Pixel Value Distribution (Before Normalization) 1e7 Pixel Value Distribution (After Normalization)

2.5
2.0

> 1.5 -

9

o

o

3

g

=
1.0 4
0.5 4

: : e |] - - - . :
0.0 0.2 0.4 0.6 0.8 10 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040
Pixel Value Pixel Value

Figure 3: Pixel Value Distribution Before and After Normalisation

Data Augmentation: Data expansion procedures are functional to theatrically increase the
size of the drill dataset. Alterations such as rotation, shifting, shear, zoom, and horizontal
flip are utilised to improve the enhance of the model. This method produces an improved
form of the original images assisting to avoid overfitting and refining the Autoencoder’s
generalisation ability [15]. FIGURE 4 shows the examples of the amplified images, approving
the submission of these alterations.

3.2 Building the Autoencoder

The next step involves building the AE model. Gu et al. [16], claim that an AE is a type of artificial
neural network used to learn efficient coding of unlabeled data. The architecture of the AE built in
the current study consists of an encoder and a decoder. It is elaborated below:

* Encoder: The encoder compresses the input into a lower-dimensional representation. It

consists of an input, flattened, and dense layer with Rectified Linear Unit (ReLU) or rectifier
activation function. The encoder maps the input x to a latent space representation z:

2= f(x) =0 (Wex +b,) (2)

2635

https://www.oajaiml.com/ | September 2024 Sithembiso Dyubele, et al.

a

Ankle boot T-shirt/top T-shirt/top Dress

|Ili‘i |
T-shirtftop Pullover Sneaker Pullover
Sandal Sandal T-shirt/top Ankle boot
Sandal Sandal Sneaker Ankle boot

Figure 4: Examples of Augmented Images

Where W, and b, are the weight matrix and bias vector of the encoder, and o is the activation
function (e.g., ReLU).

* Decoder: The decoder reconstructs the original input from the lower-dimensional represen-
tation. It consists of a dense layer with sigmoid activation and a reshaped layer to restore the
original image dimensions. The decoder reconstructs the input & from the latent representation
z:

2=g(2) =0’ (Waz+bq) 3)

Where W, and b, are the weights and biases of the decoder, and ¢’ is the activation function
(e.g., sigmoid).

2636

https://www.oajaiml.com/ | September 2024 Sithembiso Dyubele, et al.

* Combining Encoder and Decoder: The encoder and decoder are combined to form the
autoencoder model. The model is compiled using the Adam optimiser and binary Cross-
Entropy Loss function.

— Loss Function
The Autoencoder is trained to minimise the reconstruction error between the input x and
the reconstructed input . The binary cross-entropy loss is used for this purpose:

N
L(#) = =% 3 [xlog() + (1 - x;) log(1 -)] @
N =
where N is the number of pixels in the image.
— Optimization
The optimisation process involves updating the weights W, b, W, and b, to minimise
the loss function L (x, x). This is achieved using the Adam Optimiser, which updates the
weights as follows:

my = Bims_1 + (1 —,81) VoL (0))
U = Povs—1 + (1= Ba) VoL (6)? (6)
tiy = 1’11—’/3,)
1
o= ®)
2
iy
0, =0,_1—a —)

Where 6 represents the weights, « is the learning rate, 81 and 85 are the decay rates, m;
and v, are the first and second-moment estimates, and € is a small constant to prevent
division by zero.

— Complete Autoencoder
The complete autoencoder model combines the encoder and decoder:

2=g(f () =0"(Wa (o (Wex + b)) + ba) (10)

3.3 Training the Autoencoder

In this study, the AE model is trained on the training images. The training process is monitored
by plotting the training and validation losses over multiple epochs, and it is detailed below and
illustrated in FIGURE 5.

* Training Parameters: The model is trained for ten (10) epochs with a batch size of 256. The
training data is shuftled, and a validation split of 20% is used to monitor the validation loss.

* Model Summary: The construction of the Autoencoder is abridged, providing particulars of
the layers, output shapes, and the number of constraints.

* Loss Visualization: The drill and validation losses are designed to visualize the learning
growth of the model and detecting potential overfitting or underfitting.

2637

https://www.oajaiml.com/ | September 2024 Sithembiso Dyubele, et al.

Training and Validation Loss

—— Training Loss
Validation Loss
0.38 1
0.36 1
0.34 4
%]
w
8
0.32 A
0.30 4
0.28 _
T T T T T
0 2 4 6 8
Epochs

Figure 5: Training and Validation Loss

3.4 Implementing Actor-Oriented System

This study implemented an Actor-Oriented System to enhance the modularity and scalability of
the model training process. The process involves encapsulating the training logic within an actor,
allowing for concurrent processing and modular handling of large datasets. The implementation
includes defining specific actor classes, training the model in a separate thread, and visualizing the
results to provide insights into the performance of the model. The indicated aspects are explained
in detail below:

3.4.1 Model training actor

The model training actor class is defined to encapsulate the model training logic. This Actor
is responsible for defining, compiling, and training the AE model. The Model Training Actor
encapsulates the training logic of the Autoencoder. Let My,,i,, denote the training process managed
by the Actor.

Mirain ()C/) — X (11)

where x” are the normalized training images and £ are the reconstructed images.

3.4.2 Training in separate thread

The study also performed the model training. This was executed in a separate thread to simulate an
actor system. It allows asynchronous processing and modular handling of the training process.

2638

https://www.oajaiml.com/ | September 2024 Sithembiso Dyubele, et al.

3.4.3 Visualization

The training and validation losses were also plotted to provide insights into the performance of
the model when trained using the actor-oriented system. This visualization helps to understand the
learning progress and identify potential overfitting or underfitting.

3.4.4 Reconstruction

The trained model is used to reconstruct the test images. The original and reconstructed images are
visualized to assess the quality of the reconstruction.

3.4.5 Difference images

FIGURE 6 illustrates the different images plotted. These images were plotted to highlight the
discrepancies between the original and reconstructed images, providing deeper insights into the
accuracy model.

Comparison of Original and Reconstructed Images with Actor-Oriented System

Original

Original Original Original Original Original Original Original Original Original

Lol I O e A

Reconstructed Reconstructed Reconstructed Reconstructed Reconstructed Reconstructed Reconstructed Reconstructed Reconstructed Reconstructed

i"'i -
]lu ¥

s
J I l :
Difference Difference Difference Difference Difference Difference Difference Difference Difference Difference
H e bkt
:] o H I iy - - .
=t | i1 - % 4 oo A
=,y N L ES

Figure 6: Difference Images

3.5 Implementing Encoding and Decoding Actor

The study implemented an actor to handle the encoding and decoding operations using the trained
autoencoder model. This Actor encapsulates the logic for predicting reconstructed images from the
input images, allowing for concurrent processing and improved efficiency.

2639

https://www.oajaiml.com/ | September 2024 Sithembiso Dyubele, et al.

3.5.1 Encoding decoding actor

The encoding and decoding actor class is defined to encapsulate the encoding and decoding logic.
The Actor uses the trained autoencoder model to predict the reconstructed images. The Encoding
Decoding Actor handles the encoding and decoding operations. Let £g.c04. denote the encoding
and decoding process.

Let egecode (x) — X (12)

where x are the input images and X are the reconstructed images.

3.5.2 Concurrent and modularity processing

Using Actors, multiple encoding and decoding tasks can be handled concurrently, improving the
efficiency and scalability of the system. Each Actor operates independently, processing images in
parallel and communicating results back to the main system.

A; {x;} - {x;} fori=1,...,N (13)

where A; represents the i — th Actor processing the i — th batch of images.

3.6 Visualization Results

The final step in evaluating the Autoencoder’s performance involves visualizing the results of its
encoding and decoding processes. This is crucial because it provides a direct and intuitive under-
standing of how well the model reconstructs input data from its compressed (encoded) form. The
visual comparison between the original and reconstructed images allows for a qualitative assessment
of the Autoencoder’s ability to retain features and details during the reconstruction process.

3.6.1 Visualization setup

FIGURE 7 specifically illustrates the original images alongside their reconstructed versions gen-
erated by the Autoencoder. This side-by-side display facilitates an immediate visual comparison,
highlighting any differences or similarities between the input images and the outputs of the model.
Such comparisons are critical as they allow researchers and practitioners to:

+ Assess the Reconstruction Quality: By examining the reconstructed images, one can deter-
mine how accurately the Autoencoder captures and reproduces key features of the input data.
High-quality reconstructions suggest that the model effectively encodes the essential informa-
tion, while poor reconstructions indicate a need for further model tuning or adjustments.

* Identify Loss of Detail: Differences between the original and reconstructed images can reveal
areas where the model struggles, such as loss of fine details, distortions, or artefacts introduced
during the decoding process. Observing these discrepancies helps in diagnosing potential
issues with the Autoencoder’s architecture or training process.

2640

https://www.oajaiml.com/ | September 2024 Sithembiso Dyubele, et al.

* Evaluate Robustness: Visual inspection can also help evaluate the robustness of the model
under various conditions. For instance, if the reconstructed images consistently maintain their
structure and quality, it suggests that the Autoencoder is generalizing well and not overfitting
to the training data.

* Actor-Oriented System Implications: The term “Actor-Oriented System” mentioned in the
caption of FIGURE 7, may indicate that the visualization setup is part of a broader framework
or approach that considers interactions between various system components (e.g. encoding
and decoding processes as ‘actors’). This system-oriented view emphasizes understanding
the interplay between different parts of the Autoencoder, which is critical for optimizing its
performance.

Overall, the visualization of original and reconstructed images, as depicted in FIGURE 7, serves as a
powerful tool for assessing the effectiveness of the Autoencoder. It bridges the gap between numer-
ical evaluation metrics and the tangible, visual outcomes of the model, providing a comprehensive
view of its performance.

Original Original Original Original Original Original Original Original Original Original

LM R L R =

Reconstructed Reconstructed Reconstructed Reconstructed Reconstructed Reconstructed Reconstructed Reconstructed Reconstructed Reconstructed

ECIIME I mEN S =

Figure 7: Original and Reconstructed Images Using Actor-Oriented System

4. EXPERIMENTS

In this section, the experimental setup used to evaluate the performance of the autoencoder model is
detailed. The experiments are designed to assess the effectiveness of the Autoencoder in reconstruct-
ing images from the Fashion MNIST dataset and to evaluate the benefits of using an Actor-Oriented
System.

4.1 Experimental Setup

The experiments are conducted using the following setup:

* Hardware and Software: The experiments are performed on a machine equipped with an
NVIDIA GPU to accelerate the training process. The software environment includes Tensor-
Flow and Keras for building and training the Autoencoder and Pykka for implementing the
Actor-Oriented System.

2641

https://www.oajaiml.com/ | September 2024 Sithembiso Dyubele, et al.

* Training and Validation: The Autoencoder model is trained on the training set of the Fashion
MNIST dataset and validated on the test set. The training and validation losses are monitored
to assess the performance model.

* Data Augmentation: Data augmentation techniques are applied to the training images to
enhance the generalization capabilities of the model.

» Actor-Oriented System: The model training and encoding/decoding operations are encapsu-
lated within actors to demonstrate the benefits of modularity and scalability.

4.2 Evaluation Metrics
The performance of the autoencoder model is evaluated using the following metrics:

* Reconstruction Loss: The binary Cross-Entropy loss measures the reconstruction error be-
tween the original and reconstructed images.

* Visual Inspection: The quality of the reconstructed images is visually inspected by comparing
them with the original images.

 Difference Images: The differences between the original and reconstructed images are visu-
alized to highlight the areas where the reconstruction model deviates from the original.

4.3 RESULTS AND DISCUSSION

This section offers a thorough analysis of the experimental outcomes, concentrating on the Au-
toencoder’s learning growth and reconstruction performance. The evaluation involves plotting
the training and validation losses and comparing the reconstructed images with the original ones,
complemented by examining the different images to pinpoint areas of deviation.

Training and Validation Loss

The training and validation losses are plotted over multiple extended periods to visualize the learning
progress of the Autoencoder. These plots serve as a critical diagnostic tool, revealing how well the
model minimizes reconstruction errors during training:

* Decreasing Losses: the consistent decrease in both training and validation losses over time
indicates that the Autoencoder is effectively learning to compress and reconstruct the input
images. This trend suggests that the model’s parameters are being optimized, progressively
reducing the discrepancy between the original and reconstructed images.

* Final Loss Values: The final values of the losses are crucial as they provide a quantitative
measure of the model’s performance. Low reconstruction errors imply that the Autoencoder
has learned to extract meaningful features from the data, resulting in high-quality recon-
structions. The combination of training and validation losses also indicates that the model
generalizes well without significant overfitting, maintaining its performance across unseen
data.

2642

https://www.oajaiml.com/ | September 2024 Sithembiso Dyubele, et al.

Reconstructed Images

The comparison of reconstructed images with their original counterparts, as visualized in FIGURE 7,
is essential for a qualitative assessment of the Autoencoder’s reconstruction quality:

* Visual Comparison: Displaying original and reconstructed images side-by-side, as done in
the visualization setup, offers an immediate visual assessment of how accurately the Autoen-
coder reproduces the input data. The resemblance between these images demonstrates the
model’s capacity to learn compact and informative representations, effectively capturing the
critical features of the input images during encoding.

» Assessing Quality and Robustness: The close similarity between the reconstructed and
original images underscores the model’s robustness. A high degree of similarity suggests that
the Autoencoder effectively encodes the data without significant loss of important details,
which is crucial for applications where high accuracy is necessary.

Difference Images

Difference images, which highlight deviations between original and reconstructed images, are in-
strumental in diagnosing specific weaknesses in the model’s performance:

* Identifying Areas of Deviation: These images emphasize the specific areas where the Au-
toencoder’s reconstruction deviates from the original input. This visual representation helps to
pinpoint where the model might be losing information, such as fine details or subtle textures,
which are not captured adequately during the encoding process.

» Performance Insights: By analyzing these differences, researchers can gain valuable insights
into the strengths and weaknesses of the Autoencoder. For example, consistent deviation in
particular regions might indicate that the model struggles with certain features, prompting
adjustments in the Autoencoder’s architecture or training strategy.

Integration of Visualization in Performance Assessment

The visualization of the original and reconstructed images, combined with the different images,
provides a holistic view of the Autoencoder’s effectiveness. It bridges qualitative metrics like loss
values with qualitative, visual feedback, offering a comprehensive evaluation framework:

* Holistic Understanding: This integrated approach allows researchers to not only see how
well the model performs in numerical terms but also understand its performance visually. By
examining reconstructed images alongside loss plots, one can validate whether low-loss values
correspond to reconstructions that are visually accurate and robust.

* Guiding Model Improvement: The detailed assessment can guide further refinements, such
as tuning hyperparameters, adjusting the Autoencoder’s complexity, or incorporating addi-
tional data preprocessing steps. By continuously comparing visual outputs and loss metrics,
the model can interactively be improved to enhance both reconstruction accuracy and overall
learning efficiency.

2643

https://www.oajaiml.com/ | September 2024 Sithembiso Dyubele, et al.

Overall, the comprehensive evaluation of the training and validation loss, reconstruction images, and
different images provide a thorough understanding of the Autoencoder’s performance, validating its
ability to effectively learn and reproduce the input data.

5. ADVANTAGES OF USING THE ACTOR-BASED APPROACH

Implementing an actor-based approach in training the autoencoder model offers several advantages
over the traditional training methods. These benefits are particularly evident regarding training time,
validation loss, modularity, and scalability.

5.1 Improved Training Time

One of the most noticeable advantages of the actor-based approach is the reduction in training
time. The training process is encapsulated within independent actors that can run concurrently by
leveraging an Actor-Oriented System. This allows more efficient use of computational resources.

* Training Time with Actor: 14.21 seconds

* Training Time without Actor: 16.96 seconds

The reduction in training time demonstrates the efficiency gains achieved through parallel and
asynchronous processing enabled by the actor-based system.

5.2 Enhanced Model Performance

The Actor-based approach not only improves training efficiency but also enhances the performance
of the model. By organizing the training process within Actors, better management of the training
workflow was observed, leading to more consistent and optimized learning.

* Validation Loss with Simple Autoencoder: 0.2768
* Validation Loss with Actor-Based Autoencoder: 0.2100

The lower validation loss indicates that the Actor-based approach facilitates better generalization
and learning, leading to more accurate reconstructions of the test images.

5.3 Modularity and Scalability

Actors provide a natural way to decompose the system into modular components. Each Actor en-
capsulates specific functionality, making the system easier to maintain and extend. This modularity
is beneficial for complex machine learning workflows that require flexibility and ease of updates.

2644

https://www.oajaiml.com/ | September 2024 Sithembiso Dyubele, et al.

* Modularity: The training logic, encoding, and decoding operations are encapsulated within
separate Actors, promoting a clear separation of concerns.

* Scalability: The Actor-Oriented System can handle multiple encoding and decoding tasks
concurrently, allowing the system to scale efficiently with increasing data volume.

5.4 Asynchronous and Concurrent Processing

The actor model supports asynchronous message passing, enabling concurrent task processing. This
is particularly useful in scenarios where multiple operations must be performed simultaneously, such
as training and evaluating large datasets.

* Concurrent Processing: By running training and evaluation tasks concurrently, the Actor-
based approach optimizes the workflow, reducing idle times and improving overall system
throughput.

5.5 Robustness and Fault Tolerance

Actors are designed to be resilient and can handle failures more appropriately. In the event of
an error, an Actor can be restarted without affecting the entire system. This fault-tolerant nature
enhances the robustness of the machine-learning pipeline.

5.6 Summary

The Actor-based approach significantly improves the efficiency and performance of the autoen-
coder model. The reduction in training time, improved validation loss, enhanced modularity, and
scalability make it a superior choice for implementing complex machine learning models. By
leveraging the advantages of Actor-Oriented Systems, individuals or businesses can build more
robust, maintainable, and scalable machine learning systems.

6. CONCLUSION

The study presented a comprehensive analysis of implementing and evaluating an Autoencoder
model using the Fashion MNIST dataset. This study demonstrated the effectiveness of Autoencoders
in learning compact and meaningful representations of complex image data and highlighted the
benefits of using an Actor-Oriented System to enhance the modularity and scalability of machine-
learning workflows.

6.1 Summary of Findings
The key findings of this study are summarized as follows:

2645

https://www.oajaiml.com/ | September 2024 Sithembiso Dyubele, et al.

» Effectiveness of Autoencoders: The Autoencoder model successfully learned to reconstruct
images from the Fashion MNIST dataset, achieving low reconstruction loss and high-quality
reconstructed images.

* Benefits of Data Augmentation: Data augmentation techniques improved the generalisation
capabilities of the model, leading to more robust performance on the test set.

* Actor-Oriented Systems: The use of the Actor-Oriented System enhanced the modularity
and scalability of the model training and evaluation process, enabling concurrent processing
of encoding and decoding tasks.

6.2 Future Work

Future work can extend this study in several directions:

» Exploration of Different Architectures: Investigate the performance of other types of au-
toencoders, such as variational Autoencoders and convolutional autoencoders, on the Fashion
MNIST dataset.

» Application to Other Datasets: Apply the autoencoder model to other benchmark datasets
to evaluate its generalization capability across different image data types.

* Integration with Other Models: Explore the integration of Autoencoders with other machine
learning models, such as classifiers and generative models, to enhance their performance on
various tasks.

* Advanced Actor-Oriented Systems: Develop more advanced Actor-Oriented Systems to
handle more complex machine learning workflows, including distributed training and real-
time data processing.

References

[1] LiP,PeiY, LiJ. A Comprehensive Survey on Design and Application of Autoencoder in Deep
Learning. Appl Soft Comput. 2023;138:110176.

[2] Zhang G, LiuY, Jin X. A Survey of Autoencoder-Based Recommender Systems. Front Comput
Sci. 2020;14:430-450.

[3] Xu W, Jang-Jaccard J, Singh A, Wei Y, Sabrina F. Improving Performance of Autoencoder-
Based Network Anomaly Detection on Nsl-Kdd Dataset. IEEE Access. 2021;9:140136-
140146.

[4] Kumar A, Wang Z, Ni S, Li C. Amber: A Debuggable Dataflow System Based on the Actor
Model. Proc VLDB Endow. 2020;13:740-753.

[5] Galkin O, Shkilniak O. Using Domain-Specific Language for Describing Actor-Oriented
Systems. In: 4th International Conference on Advanced Trends in Information Theory (ATIT).
IEEE PUBLICATIONS. 2022;2022: 300-303.

2646

https://www.oajaiml.com/ | September 2024 Sithembiso Dyubele, et al.

[6] Srirama SN, Dick FM, Adhikari M. Akka Framework Based on the Actor Model for Executing
Distributed Fog Computing Applications. Future Gener Comput Syst. 2021;117:439-452.

[7] Calderon Hurtado A, Kaur K, Makki Alamdari M, Atroshchenko E, Chang KC, Kim
CW. Unsupervised learning-based framework for indirect structural health monitoring using
adversarial Autoencoder. J Sound Vib. 2023;550:117598.

[8] Mansour RF, Escorcia-Gutierrez J, Gamarra M, Gupta D, Castillo O, Kumar S. Unsupervised
Deep Learning Based Variational Autoencoder Model for COVID-19 Diagnosis and
Classification. Pattern Recognit Lett. 2021;151:267-274.

[9] Andresini G, Appice A, Malerba D. Autoencoder-Based Deep Metric Learning for Network
Intrusion Detection. Inf Sci. 2021;569:706-727.

[10] Wang G, Li W, Zhang L, Sun L, Chen P, Yu L et al. Encoder-X: Solving Unknown Coefficients
Automatically in Polynomial Fitting by Using an Autoencoder. IEEE Trans Neural Netw Learn
Syst. 2022;33:3264-3276.

[11] Chen X, Ding M, Wang X, Xin Y, Mo S, Wang Y et al. Context Autoencoder for Self-
Supervised Representation Learning. Int J Comput Vis. 2024;132:208-223.

[12] Sun D, Li D, Ding Z, Zhang X, Tang J. Dual-Decoder Graph Autoencoder for Unsupervised
Graph Representation Learning. Knowl Based Syst. 2021;234:107564.

[13] https://mural.maynoothuniversity.ie/17359/

[14] Nifio-Adan I, Landa-Torres I, Portillo E, Manjarres D. Influence of Statistical Feature
Normalisation Methods on K-Nearest Neighbours and K-Means in the Context of Industry
4.0. Eng Appl Artif Intell. 2022;111:104807.

[15] Poojary R, Raina R, Kumar Mondal AK. Effect of Data-Augmentation on Fine-Tuned CNN
Model Performance. IAES Int J Artif Intell. 2021;10:84.

[16] Gu S, Kelly B, Xiu D. Autoencoder Asset Pricing Models. J Econ. 2021;222:429-450.

2647

	INTRODUCTION
	Motivation
	Objectives
	Architecture of the Study

	REVIEWED LITERATURE
	The Architecture of Autoencoders
	Actor-Oriented Systems

	METHODOLOGY
	Dataset Preparation
	Building the Autoencoder
	Training the Autoencoder
	Implementing Actor-Oriented System
	Model training actor
	Training in separate thread
	Visualization
	Reconstruction
	Difference images

	Implementing Encoding and Decoding Actor
	Encoding decoding actor
	Concurrent and modularity processing

	Visualization Results
	Visualization setup

	EXPERIMENTS
	Experimental Setup
	Evaluation Metrics
	RESULTS AND DISCUSSION

	ADVANTAGES OF USING THE ACTOR-BASED APPROACH
	Improved Training Time
	Enhanced Model Performance
	Modularity and Scalability
	Asynchronous and Concurrent Processing
	Robustness and Fault Tolerance
	Summary

	CONCLUSION
	Summary of Findings
	Future Work

