
Nonlinear, stationary electrostatic ion cyclotron waves: Exact solutions for
solitons, periodic waves, and wedge shaped waveforms
J. F. McKenzie, T. B. Doyle, and S. S. Rajah 
 
Citation: Phys. Plasmas 19, 112115 (2012); doi: 10.1063/1.4769031 
View online: http://dx.doi.org/10.1063/1.4769031 
View Table of Contents: http://pop.aip.org/resource/1/PHPAEN/v19/i11 
Published by the American Institute of Physics. 
 
Related Articles
Characteristics of ion acoustic solitary waves in a negative ion plasma with superthermal electrons 
Phys. Plasmas 19, 112307 (2012) 
Effect of ion temperature on ion-acoustic solitary waves in a plasma with a q-nonextensive electron velocity
distribution 
Phys. Plasmas 19, 104502 (2012) 
A study of solitary wave trains generated by injection of a blob into plasmas 
Phys. Plasmas 19, 102903 (2012) 
Quantum ring solitons and nonlocal effects in plasma wake field excitations 
Phys. Plasmas 19, 102106 (2012) 
Dust-ion-acoustic Gardner solitons in a dusty plasma with bi-Maxwellian electrons 
Phys. Plasmas 19, 103706 (2012) 
 
Additional information on Phys. Plasmas
Journal Homepage: http://pop.aip.org/ 
Journal Information: http://pop.aip.org/about/about_the_journal 
Top downloads: http://pop.aip.org/features/most_downloaded 
Information for Authors: http://pop.aip.org/authors 

Downloaded 30 Nov 2012 to 41.151.129.206. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions

http://pop.aip.org/?ver=pdfcov
http://aipadvances.aip.org/resource/1/aaidbi/v2/i1?&section=special-topic-physics-of-cancer&page=1
http://pop.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=J. F. McKenzie&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pop.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=T. B. Doyle&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pop.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=S. S. Rajah&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pop.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4769031?ver=pdfcov
http://pop.aip.org/resource/1/PHPAEN/v19/i11?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4769121?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4759013?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4759162?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4757214?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4753922?ver=pdfcov
http://pop.aip.org/?ver=pdfcov
http://pop.aip.org/about/about_the_journal?ver=pdfcov
http://pop.aip.org/features/most_downloaded?ver=pdfcov
http://pop.aip.org/authors?ver=pdfcov


Nonlinear, stationary electrostatic ion cyclotron waves: Exact solutions for
solitons, periodic waves, and wedge shaped waveforms

J. F. McKenzie,1,2,a) T. B. Doyle,3,b) and S. S. Rajah1,c)

1Department of Mathematics, Statistics and Physics, Durban University of Technology, Steve Biko Campus,
Durban 4001, South Africa
2School of Mathematical Sciences, University of KwaZulu-Natal, Private Bag: X54001, Durban 4001,
South Africa
3Materials Research Division, iThemba LABS, P.O.Box 722, Somerset West, 7129, South Africa and School of
Chemistry and Physics, University of KwaZulu-Natal, Private Bag: X54001, Durban 4001, South Africa

(Received 3 September 2012; accepted 8 November 2012; published online 30 November 2012)

The theory of fully nonlinear stationary electrostatic ion cyclotron waves is further developed. The

existence of two fundamental constants of motion; namely, momentum flux density parallel to the

background magnetic field and energy density, facilitates the reduction of the wave structure

equation to a first order differential equation. For subsonic waves propagating sufficiently

obliquely to the magnetic field, soliton solutions can be constructed. Importantly, analytic

expressions for the amplitude of the soliton show that it increases with decreasing wave Mach

number and with increasing obliquity to the magnetic field. In the subsonic, quasi-parallel case,

periodic waves exist whose compressive and rarefactive amplitudes are asymmetric about the

“initial” point. A critical “driver” field exists that gives rise to a soliton-like structure which

corresponds to infinite wavelength. If the wave speed is supersonic, periodic waves may also be

constructed. The aforementioned asymmetry in the waveform arises from the flow being driven

towards the local sonic point in the compressive phase and away from it in the rarefactive phase.

As the initial driver field approaches the critical value, the end point of the compressive phase

becomes sonic and the waveform develops a wedge shape. This feature and the amplitudes of the

compressive and rarefactive portions of the periodic waves are illustrated through new analytic

expressions that follow from the equilibrium points of a wave structure equation which includes a

driver field. These expressions are illustrated with figures that illuminate the nature of the solitons.

The presently described wedge-shaped waveforms also occur in water waves, for similar

“transonic” reasons, when a Coriolis force is included. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4769031]

I. INTRODUCTION

Electrostatic ion cyclotron waves have in part, because

of their ubiquitous occurrence and manifold behaviours in

both natural and laboratory magnetized plasmas, been the

subject of numerous studies. A brief, but adequate, review of

the field with some contextual relevance to the present work

can be found in the paper by Reddy et al.1 More recent publi-

cations of potential interest include those of Shin et al.2 on

observations of solitary waves by the Geotail space probe,

Richardson et al.3 and Burrows et al.4 on solar wind and

heliospheric termination shock detected by the Voyager

probe, and Wilson et al.5 on waves in interplanetary shocks.

The objectives of the present analysis are to further develop

and to clarify an earlier theoretical treatment (McKenzie6)

on nonlinear electrostatic waves in a magnetized plasma, for

which one of the motivations was to elucidate the mecha-

nism giving rise to the “spiky” or cusp-like waveforms found

from numerical solution of the equations (Reddy et al.1). In

the present treatment, we show that periodic wedge-shaped

(rather than cusp-shaped) waves, propagating at supersonic

speeds, are, in fact, formed if the amplitude of the driver field

equals a critical value corresponding to the minimum value

of the structure function attained at the local sonic point of

the flow. It is this transonic choked flow property, which

arises in many wave systems (McKenzie et al.7), that

provides the wave with its limiting wedge-shape. This phe-

nomenon also arises in nonlinear water waves if a Coriolis

force is present (see, for example, Shrira8 and McKenzie9).

Periodic waves, propagating quasi-parallel to the magnetic

field, can also be constructed and also have a limiting form

which arises when the energy of the driver field equals

another/different minimum of the structure function.

The wave structure equation, in the weakly nonlinear

limit (obtained by expanding the Bernoulli momentum and

energy functions) yields the classical soliton sech2 hump of

compression for obliquely propagating “subsonic” waves.

The fully nonlinear treatment given herein yields the exact

solution for the wave amplitude for the soliton as a function

of the Mach number for various obliquity angles. This non-

linear treatment generalises earlier weakly nonlinear theories

and predicts the important result, as demonstrated by exact

solutions for the equilibrium point corresponding to the

centre of the wave, that the strength of the soliton increases

with obliquity and with decreasing Mach number. This result

is not obtainable from weakly nonlinear theories.

a)mckenziej@ukzn.ac.za.
b)doyle@tlabs.ac.za.
c)misthrys@dut.ac.za.
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In Sec. II, the governing equations, with particular atten-

tion to the two fundamental constants of the motion (namely,

momentum flux and energy density), which enable the wave

system to be reduced to a first order differential equation for

the longitudinal flow speed, will be recalled. Exact (implicit)

expressions for the wave amplitudes, as a function of Mach

number and obliquity, are given. In Sec. III, subsonic soliton

solutions are discussed and in Sec. IV periodic solutions.

The results are summarized in Sec. V.

II. THE WAVE STRUCTURE EQUATION

A fully nonlinear description of electrostatic ion cyclo-

tron waves, propagating along the x-axis at an angle h to the

background magnetic field B0 ¼ B0ðcos h; 0; sin hÞ, has been

developed by McKenzie,6 extending the earlier weakly non-

linear treatments of Temerin et al.,10 Yu et al.,11 Jovanic and

Shukla12 and the later contributions by Reddy et al.,1

McKenzie,13 and McKenzie and Doyle.14 In this description,

it was shown that the existence of two important constants of

motion, namely conservation of momentum parallel to B0

and conservation of energy, facilitates the reduction of the

wave structure problem to a first-order differential equation

for the longitudinal component (parallel to the x-axis) of the

wave flow velocity.

Here we briefly summarize the theory and reiterate the

relevant equations.

The component of the cold ion equation parallel to B0

immediately yields the integral expressing conservation of

momentum parallel to B0, namely,

PðuixÞ cos hþ uiz sin h ¼ const; (1)

in which

PðuixÞ ¼ uix þ
pe

Mi
: (2)

Here, PðuixÞ is the momentum flux density in the x-direction

(i.e., the dynamic pressure uix plus electron pressure pe di-

vided by the conserved ion mass flux density, Mi ¼ mini0U).

ui ¼ ðuix; uiy; uizÞ is the flow velocity in the wave, ni0 is the

unperturbed ion (electron) density, and U is the wave speed.

The x-gradient of the electron pressure pe is equal to the vol-

ume electric field force, �eneEx. Since the electrons are

treated as massless there also exists a constant motional elec-

tric field Ey ð¼UB0zÞ which implies that

ðuix � UÞB0z ¼ uizB0x: (3)

The second conserved quantity, namely energy, is

obtained by taking the scalar product of the ion equation of

motion with the ion velocity ui, yielding

�ðuixÞ � UPðuixÞ þ
1

2
ðu2

iy þ u2
izÞ ¼ const; (4)

where the “longitudinal” energy density is given by

�ðuixÞ ¼
1

2
u2

ix þ wðuixÞ: (5)

Here, the first term is the kinetic energy of the longitudinal

motion and wðuixÞ is the enthalpy given by

w ¼ c
ðc� 1Þ

pe

mine
/ u

�ðc�1Þ
ix ; (6)

which is related to Ex by

eEx ¼ �mi
dw

dx
;

in which we assume adiabatic flow with pe / nc
e / u�c

ex

/ u�c
ix , where for charge neutrality, we have nex ¼ nix and

uex ¼ uix.

Now with uiz given in terms of uix (through longitudinal

momentum conservation) in Eq. (1) and with uiy eliminated

through the x component of the equation of motion

uix
duix

dx
¼ e

mi
ðEx þ uiyB0zÞ; (7)

the conservation of energy integral, Eq. (4), becomes a first-

order differential equation for the longitudinal flow speed

uix. In normalized form, the equation may be written as

1

2
1� 1

M2ucþ1

� �
u

du

dx

� �2

¼ ½PðuÞ� eðuÞ�sin2h� 1

2
P2ðuÞcos2h

� EðuÞ (8)

using the normalized variables u ¼ uix=U; x ¼ x=l and

l ¼ U=X. The normalized Bernoulli momentum, P(u), and

energy, e(u), functions are given by

PðuÞ ¼ u� 1þ 1

cM2

1

uc
� 1

� �
(9)

and

eðuÞ ¼ 1

2
ðu2 � 1Þ þ 1

ðc� 1ÞM2

1

uc�1
� 1

� �
; (10)

where M is the Mach number of the wave, given by

M ¼ U

c
; c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ckTe=mi

p
: (11)

Equations (9) and (10) exhibit the adiabatic, thermody-

namic relation de¼ udP. In defining P and e, we have

adjusted the constants in the conservation laws of Eqs. (1)

and (4) to the undisturbed conditions at x ¼ �1. Thus,

P(u) measures the change in the transition of the momen-

tum, with the first and second terms on the right hand side,

respectively, representing the change in dynamic pressure

and the change in electron pressure. Similarly, in the defini-

tion of e(u), the first term is the change in longitudinal

kinetic energy and the second, the change in enthalpy. The

“structure function” E(u), defined by the right hand side

of Eq. (8), combines both constants of the motion and

its zeros define possible equilibrium points and the soliton

amplitude.
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III. SOLITON SOLUTION (SUBSONIC CASE, M < 1)

The classical soliton solution of Eq. (8) has been dis-

cussed elsewhere (McKenzie6). The necessary condition for

this solution follows from the requirement that E(u), as

defined by the right hand side of Eq. (8), possesses a double

positive zero at the “initial” (equilibrium) point u¼ 1, which

occurs for M in the range

1 > M > cos h: (12)

This is equivalent to requiring that the linear stationary

waves, with wave number k at an angle h to B0, where

k2 ¼ X2

U2

ðM2 � cos2 hÞ
ðM2 � 1Þ ; (13)

be evanescent, i.e., k2 < 0, which is indeed the case when Eq.

(12) is satisfied. In the weakly nonlinear regime, where

u ¼ 1þ d; d� 1, the Bernoulli momentum and energy func-

tions, Eqs. (9) and (10), may be expanded around the initial

point u¼ 1 to yield the wave structure equation in the form

ðM2 � 1Þ
M2

dd
dx
¼ 6

d
M

�
ð1�M2ÞðM2 � cos2 hÞ � ðcþ 1ÞM2d

�
�

cos2 h
2

3
� 1

M2

� �
þ 1

3

��1=2

: (14)

This weakly nonlinear form admits the classical sech2

hump of compression of amplitude dm given by

dm¼ ½ð1�M2ÞðM2

� cos2 hÞ�= ðcþ1ÞM2 cos2 h

�
2

3
� 1

M2

�
þ1

3

� �� �
; (15)

in which the length scale is simply jk�1j. [Equation (15) cor-

rects a mistake for dm in the original paper (McKenzie

et al.7)]

In general, the amplitude of the solitary wave is given by

the compressional root u ¼ uc < 1 of the total energy function

E(u) as shown in Fig. 1(a). There is also a possible rarefactive

equilibrium point u ¼ ur > 1, which, however, cannot be

reached since the sonic point u ¼ us ¼ 1=½M2=ðcþ1Þ� ð<urÞ
intervenes and prevents the formation of a smooth soliton

because du=dx!1 at this sonic point (which corresponds to

choked flow). The wave amplitude of the soliton in the fully

nonlinear case is given by the compressive solutions for u of

the roots of the E(u)¼ 0. These are given by

m2 ¼ 1

M2
¼
"

2p

c
þ 2 ft2

cðc� 1Þ

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

c
þ 2 ft2

cðc� 1Þ � 4ð1þ t2Þ p
2

c2

s #	
2p2

c2

� �
(16a)

¼ 2u2

ðuþ 1Þ2
ðuþ 1þ t2 6 t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2 � u2

p
Þ; c ¼ 2;

(16b)

in which t ¼ tan h and p, f, and g are given, respectively, by

pðuÞ ¼ ðu
c � 1Þ

ucðu� 1Þ ¼ uþ 1

u2
for c ¼ 2

� �
;

f ðuÞ ¼ �ðc� 1Þpþ cg

ðu� 1Þ ¼ 1

u2
for c ¼ 2

� �
;

gðuÞ ¼ ðu
c�1 � 1

uc�1ðu� 1Þ ¼ 1

u
for c ¼ 2

� �
: (17)

The solutions of Eqs. (16b) are given in Fig. 2 as m(u)

for given t ¼ tan h, and Fig. 3 as u(M) curves. The relevant

solution for the amplitude of the soliton is, for a given

M < 1, the compressive solution u < 1. This solution

FIG. 1. Graph of E(u) for three cases. (a) Subsonic ðM < 1Þ and sufficiently

oblique waves yield compressive solutions. The wave amplitude is the com-

pressional root u ¼ ucð<1Þ of E(u)¼ 0; (b) M < 1 and quasi-parallel,

EðuÞ < 0 and periodic waves can be constructed with amplitudes given by

the intersections of E(u) with the line E0, representing a driver field;

(c) M > 1 periodic waves can be constructed with amplitudes ucð<1Þ and

urð>1Þ, provided uc > us, the sonic point.
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demonstrates that the amplitude increases with decreasing M
and increasing h.

IV. PERIODIC SOLUTIONS

Nonlinear periodic waves are described by Eq. (8) when

modified by the addition of a constant, E0 to the right hand

side of the equation. This constant may be regarded as a

measure of the energy of an initial “driver” about the mean

state

EðuÞ ! EðuÞ � E0: (18)

The amplitudes of possible periodic solutions of the

wave structure equation are, therefore, given by the roots of

EðuÞ ¼ E0 which are readily obtainable graphically from the

intersections of the horizontal line E0 with the curve of E(u).

The two possible cases, namely, subsonic (M < 1) and su-

personic ðM > 1Þ waves, for which their linear counterparts

are indeed periodic (propagating) waves will now be treated.

A. Subsonic case (M < cos h)

In this case, E(u) has a double negative zero at the initial

point (corresponding to propagating linear waves). The curve

of E(u) has the form shown in Fig. 1(b) which manifests two

extrema in the rarefactive regime ðu > 1Þ. The maximum

occurs at u ¼ uþ, which in the case of c ¼ 2, is given by

uþ ¼
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8M2=cos2h

p
� 1Þ

4M2=cos2h
: (19)

There is also a maximum at u ¼ us, where

us ¼
1

M2=ðcþ1Þ ; (20)

so that us > uþ and us lies to the right of the minimum.

Hence, if jE0j < jEðuÞj, there are two intersections yielding a

rarefactive root urð<uþÞ and a compressive root u ¼ uc,

which yield the amplitudes of the wave. There exists a dis-

tinct asymmetry in the wave with the rarefactive amplitude

exceeding the compressive amplitude. Moreover, an interest-

ing limiting case arises when the “driver energy” attains the

critical value

E0 ¼ EðuþÞ; (21)

and E0 touches the E(u) curve at this point where dE/du¼ 0.

A Taylor expansion of E(u) around this point shows that the

wave structure equation approximates to

1� us

uþ

� �cþ1
" #

uþ
du

dx
¼ 6ðu� uþÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E00ðuþÞ

p
: (22)

Thus, u! uþ exponentially over the length scale defined by

the above equation. In this limiting case, the “periodic” wave

form looks like a soliton of compression ðucÞ in which the

“equilibrium” rarefactive amplitude is uþ.

B. Supersonic case (M > 1)

In the supersonic case (M > 1), E(u) has a double nega-

tive zero at the initial point u¼ 1. The curve of E(u) takes

the form shown in Fig. 1(c) and in more detail in Fig. 4 for

FIG. 2. Exact solutions for m(u) from Eq. (16a). The (m, u) curves are given

for t ¼ tan h ¼ 1 and t¼ 2. Also shown is sonic curve m ¼ u3=2. Soliton sol-

utions lie in the region m > 1 and u < 1.

FIG. 3. The (u, M) solutions at given t. Soliton wave amplitudes lie in the

domain M < 1 and u < 1.

FIG. 4. The intersections between the line BB and E(u) give the amplitudes

of the periodic waves. The line AA represents the critical case where E0

touches E(u) at the sonic point, giving rise to a wedge shaped waveform at

the compressive limiting amplitude.
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various M. In this case, there are two extrema; in the com-

pressive phase, at u ¼ us and at u ¼ uþ, where uþ < us.

Again the amplitudes of the periodic waves corresponding to

a driver energy E0 are given by the intersections of the hori-

zontal line representing E0 with the E(u) curve, shown in

Fig. 4 as urð>1Þ and ucð<1Þ. The extremum at u ¼ us corre-

sponds to the local sonic point of the flow, at which steady

flow becomes choked. This point is illustrated by the hori-

zontal Es line in Fig. 4 touching the E(u) curve for M¼ 5 at

the sonic point u ¼ us. Solutions of the equation EðuÞ ¼ E0

are shown in Fig. 5 for different values of M at a given h as

ðu;E0Þ curves. Now when E0 attains the value EðusÞ, the

compressive root u ¼ uc becomes sonic ðuc ¼ usÞ and the

numerator and denominator of the wave structure equation

for du/dx both tend to zero / ðu� usÞ with the result that the

slope at the critical transonic point becomes

du

dðx=lÞ ¼ 6
ffiffiffiffiffiffiffiffiffiffiffi
EðusÞ

p
=ðcþ 1Þ

¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1� u�1

s Þsin2h� cos2 hPðusÞu�1
s �

q
=ðcþ 1Þ:

(23)

The wave form therefore develops a wedge shape at this crit-

ical (sonic) point. Previously, this was described as a spiky

or cusp-like waveform in which the slope at u ¼ us tended to

infinity (McKenzie6), but this is, in fact, not the case as the

zero of the transonic denominator is cancelled by the zero of

the numerator. This is immediately apparent from a Taylor

expansion of EðuÞ � E0 around the minimum of E(u) at

u ¼ us. Similar wedge shaped waveforms appear in the anal-

ysis of water waves, including a Coriolis term (Shrira8 and

McKenzie9). This latter behaviour obtains for precisely the

same reason as has been given here, namely, that a wedge

shape forms when the flow becomes critical. In the case of

water waves, this implies that the local flow speed matches

the local shallow water phase speed, whereas, in the case of

the electrostatic ion-cyclotron wave, the critical flow speed

is the ion-acoustic speed.

The analytic expressions for these solutions are given by

Eq. (16b) except that in the radical we multiply 4c2p2=c2 by

½1þ 2E0=ðu� 1Þ2�, which follows directly from solving

EðuÞ ¼ E0. Figure 5 shows the amplitudes of the periodic

waves as the rarefactive root and the compressive root, the

latter is less (or equal) to us, both of which increase with

Mach number M.

V. SUMMARY

Two fundamental constants of motion of the wave sys-

tem (parallel momentum and total energy) reduce the wave

structure equation to a first order ordinary differential equa-

tion for the longitudinal flow speed in the transition. Com-

pressive soliton solutions exist for waves propagating at

subsonic speeds oblique to the magnetic field. In the present

treatment an exact expression for the wave amplitude as a

function of the wave Mach number M and its obliquity h is

given as shown in Fig. 3. In the case of supersonic wave

speeds, periodic wave structures can be constructed, whose

compressive and rarefactive amplitudes are also given by a

similar exact expression, which now includes the effect of

the initial driver field. The asymmetry about the compressive

and rarefactive phases of the wave is illustrated in Fig. 4,

which also demonstrates the formation of a wedge shaped

wave form brought about by the gas dynamics associated

with transonic flow.
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