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Abstract. Linear electrostatic waves in a magnetized four-component, two-
temperature electron–positron plasma are investigated, with the hot species having
the Boltzmann density distribution and the dynamics of cooler species governed by
fluid equations with finite temperatures. A linear dispersion relation for electrostatic
waves is derived for the model and analyzed for different wave modes. Analysis of the
dispersion relation for perpendicular wave propagation yields a cyclotron mode with
contributions from both cooler and hot species, which in the absence of hot species
goes over to the upper hybrid mode of cooler species. For parallel propagation,
both electron-acoustic and electron plasma modes are obtained, whereas for a
single-temperature electron–positron plasma, only electron plasma mode can exist.
Dispersion characteristics of these modes at different propagation angles are studied
numerically.

1. Introduction
The earlier theoretical studies on linear waves in
electron–positron plasmas have largely focussed on the
relativistic regime relevant to astrophysical contexts (Yu
et al. 1984; Lakhina and Verheest 1997; Lontano et al.
2001; Fonseca et al. 2003; Matsukiyo and Hada 2003;
Machabeli et al. 2005; Nishikawa et al. 2006). This is
largely due to the fact that the production of these
electron–positron pairs require high-energy processes,
which are more common in astrophysical conditions
such as those which exist in the environments of pulsars,
active galactic nuclei, gamma-ray bursts, solar flares, and
black holes. The majority of the reported studies have
been primarily limited to single-temperature electron–
positron plasmas.

However, it is plausible that non-relativistic astrophys-
ical electron–positron plasmas may exist, given the effect
of efficient cooling by cyclotron emissions (Zank and
Greaves 1995; Bhattacharyya et al. 2003). In laboratory
plasmas non-relativistic electron–positron plasmas can
be created by using two different schemes. In one scheme,
a relativistic electron beam when impinges on high Z-
target produces positrons in abundance. The relativistic
pair of electrons and positrons is then trapped in a
magnetic mirror and cools down rapidly by radiation,
thus producing non-relativistic pair plasmas (Trivelpiece
1972). In another scheme positrons can be accumulated
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from a radioactive source (Surko et al. 1989). Such non-
relativistic electron–positron plasmas have been pro-
duced in the laboratory by many researchers (Greaves
et al. 1994; Greaves and Surko 1995; Liang et al.
1998).

This has given an impetus to many theoretical works
on non-relativistic electron–positron plasmas (Stewart
and Laing 1992; Iwamoto 1993; Zank and Greaves
1995; Zhao et al. 1996; Bhattacharyya et al. 2003;
Lazarus et al. 2008; Saeed and Mushtaq 2009; Koura-
kis and Saini 2010). Stewart and Laing (1992) studied
the dispersion properties of linear waves in equal-mass
plasmas and found that due to the special symmetry of
such plasmas, well known phenomena such as Faraday
rotation and whistler wave modes disappear. Iwamoto
(1993) studied the collective modes in non-relativistic
electron–positron plasmas using the kinetic approach.
He found that the dispersion relations for longitudinal
modes in electron–positron plasma for both unmag-
netized and magnetized electron–positron plasmas were
similar to the modes in one-component electron or
electron–ion plasmas. The transverse modes for the un-
magnetized case were also found to be similar. However,
the transverse modes in the presence of a magnetic field
were found to be different from those in electron–ion
plasmas. In an electron–ion plasma, the extraordinary
wave is known to have two cutoff frequencies. How-
ever, the mode is found to have just one such cutoff
in an electron–positron plasma. Moreover, the hybrid
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resonances present in the former are not found in an
electron–positron plasma.

Studies of wave propagation in electron–positron plas-
mas continue to highlight the role played by the equal
mass of electrons and positrons. For example, the low-
frequency ion acoustic wave, a feature of electron–
ion plasmas due to significantly different masses of
electrons and ions, has no counterpart in an electron–
positron plasma. In one such study, using the two-
fluid model with a single temperature of positrons and
electrons, Zank and Greaves (1995) investigated linear
and nonlinear longitudinal and transverse electrostatic
and electromagnetic waves in a non-relativistic electron–
positron plasma, both in the absence and presence of
an external magnetic field. They found that several of
the modes present in electron–ion plasmas also existed
in electron–positron plasmas, but in a modified form
because of the symmetry derived from the common
mass of electrons and positrons. On the other hand,
it is noted that the whistler and lower hybrid modes
are non-existent in electron–positron plasmas. A study
of two-stream instability yielded similar results to the
electron–ion case except that the growth rate was now
substantially larger due to equality in the masses of elec-
trons and positrons. In their nonlinear analysis, solitary
waves are found to exist in the subsonic regime, and
the width of the soliton was found to be proportional
to the wave speed, while in electron–ion plasmas, the
amplitude is related to the wave speed. Esfandyari-
Kalejahi et al. (2006) studied oblique modulation of elec-
trostatic modes and envelope excitations in pair-ion and
electron–positron plasmas. Their investigation showed
the existence of two distinct linear electrostatic modes,
namely an acoustic lower mode and the Langmuir-
type, optic-type upper mode. Shukla and Shukla (2007)
derived a new dispersion relation for low-frequency
electrostatic waves in strongly magnetized non-uniform
electron–positron plasma. They showed that the disper-
sion relation admits a new purely growing instability in
the presence of equilibrium density and magnetic field
inhomogeneties.

In astrophysical and cosmic plasmas a minority of
cold electrons and heavy ions exist along with hot
electron–positron pairs (Berezhiani and Mahajan 1995).
For example, an outflow of the electron-positron plasma
from pulsars on entering into an intersteller cold, low-
density electron–ion plasma can lead to the formation
of two-temperature multi-species electron–positron–ion
plasma (Shatashvili et al. 1997). Shatashvili et al. (1997)
studied the modulational interactions of electromagnetic
and sound waves in hot electron–positron unmagnetized
plasma with small fraction of cold electron–ion plasma.
Also, possibility of soliton formation in such plasmas
is investigated. Positron-acoustic solitary waves have
been studied in four-component unmagnetized plasma
with cold positrons, immobile positive ions, and the
Boltzmann distributed electrons and positrons (Tribeche
et al. 2009).

In pulsar magnetosphere, a possibility for the co-
existence of two types of cold and hot electron–positron
populations has been suggested by Bharuthram (1992).
This is inspired by the Sturrock (1971) model where
an accelerated electron moving on curved magnetic field
line emits curvature photon, which produces an electron–
positron pair. These secondary particles can produce
curvature radiation that will produce new pairs and so
on. Therefore, both electron and positron populations
can be subdivided in two group of distinct temperatures,
one modeling the original plasma, and another the
higher-energy cascade-bred pairs. Such distinct popu-
lation should coexist on a timescale shorter than the
thermalization time of species. Large-amplitude solitons
in electron–positron plasmas having equal hot and cold
components of both species have been studied by a num-
ber of authors (Pillay and Bharuthram 1992; Verheest
et al. 1996; Lazarus et al. 2008).

To our knowledge, no work has been done on the
properties of the linear electrostatic modes in magnetized
electron–positron plasma having equal cold and hot
components of both species. In this paper we extend
the work of Zank and Greaves (1995) on a single-
temperature-magnetized two-component electron–
positron plasma to a magnetized four-component, two-
temperature plasma having hot and cool electrons and
positrons. We neglect the effects due to electron–positron
pair annihilation, which usually occurs at much longer
characteristic time scales compared with the time in
which the collective interaction between the charged
particles takes place (Surko and Murphy 1990). Further,
the linear electrostatic waves studied here in a simple
fluid model can not handle the possible Landau damping
of modes. However, the modes having phase velocities
away from thermal velocities of either hot or cold species
are not expected to suffer significant Landau damping.

The paper is structured as follows. In Sec. 2, the basic
equations for electron–positron plasma are presented
and the linear modes for arbitrary angle of propagation
as well as the two extreme limits, viz. perpendicular and
parallel propagation, are discussed. In Sec. 3, we present
the numerical analysis. Our results are concluded in
Sec. 4.

2. Basic theory
To study the linear electrostatic modes, we consider
a homogeneous magnetized, four-component electron–
positron plasma consisting of cool electrons and cool
positrons with equal temperatures and equilibrium num-
ber densities denoted by Tc and n0c, respectively, and hot
electrons and hot positrons with equal temperatures and
equilibrium number densities denoted by Th and n0h,
respectively. Here temperatures are expressed in energy
units and wave propagation is taken in x-direction at
an angle θ to the ambient magnetic field B0, which is
assumed to be in the x–z plane. The hot isothermal
species are assumed to be unmagntized and have the
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Boltzmann distribution. Their number densities can be
written as

neh = n0h exp

(
eφ

Th

)
(2.1)

and

nph = n0h exp

(
−eφ

Th

)
, (2.2)

where neh (nph) is the number density of the hot electrons
(positrons) and φ is the electrostatic potential. The as-
sumption of Boltzmann distribution of hot electrons and
positrons is justified provided they have sufficiently high
temperatures, much greater than that of cooler species
such that their thermal velocities parallel to the magnetic
field exceed the phase velocity of the modes so that
they are able to establish the Boltzmann distribution.
However, treating the hot species as unmagnetized is
justified when the perturbation wavelengths are shorter
than their gyroradii such that both hot electrons and
positrons follow essentially straight line orbits across the
magnetic field direction. In such situations the magnetic
field effects on hot species are not felt. The dynamics
of cooler isothermal species are governed by fluid equa-
tions, namely
the continuity equations,

∂njc

∂t
+ ∇ · (njcvjc) = 0, (2.3)

the equations of motion,

∂vjc
∂t

+ vjc · ∇vjc = −εje

m
[∇φ − vjc × B0] − Tc

njcm
∇njc,

(2.4)

where εj = +1(−1) for positrons (electrons) and j = e(p)
for the electrons (positrons). The system is closed by the
Poisson equation

ε0
∂2φ

∂x2
= −e(npc − nec + nph − neh). (2.5)

In the above equations, nj and vj are the number
densities and fluid velocities, respectively, of the jth
species. It must be noted that the chosen plasma model
is an extension of that used by Zank and Greaves (1995).
Here the two additional hot species having Boltzmann
density distributions have been included.

To determine the linear dispersion relation, (2.1)–(2.5)
are linearized. For perturbations varying as exp(i(kx −
ωt)), ∂/∂t is replaced with −iω and ∂/∂x with ik (k and
ω being the wave number and the frequency of the wave,
respectively). Hence, the perturbed number densities for
electrons and positrons become, respectively,

nec = − n0cek
2(ω2 − Ω2 cos2 θ)φ

m
(
ω4 − ω2

(
k2v2

tc + Ω2
)

+ k2v2
tcΩ

2 cos2 θ
) ,
(2.6)

and

npc =
n0cek

2(ω2 − Ω2 cos2 θ)φ

m
(
ω4 − ω2

(
k2v2

tc + Ω2
)

+ k2v2
tcΩ

2 cos2 θ
) . (2.7)

Here vtc = (Tc/m)1/2 is the thermal speed of cooler
electrons or positrons, and Ω = eBo/m is the cyclo-
tron frequency of electrons or positrons irrespective of
whether they belong to cooler or hot population. From
(2.1) and (2.2), the perturbed densities for the hot species
are given by

neh = noh
eφ

Th

(2.8)

and

nph = −noh
eφ

Th

. (2.9)

Substituting (2.6)–(2.9) into the Poisson’s equation (2.5),
the general dispersion relation for the two-temperature
electron–positron plasma is found to be

ω2(ω2 − Ω2) −
(
k2v2

tc +
2ω2

pck
2v2

th

2ω2
ph + k2v2

th

)
(ω2 − Ω2 cos2 θ)

= 0, (2.10)

where vtj = (Tj/m)1/2 and ωpj = (noje
2/ε0m)1/2 are the

thermal speed and the plasma frequency of the jth
species (j = c, h for cool and hot species of electrons or
positrons). For wave frequencies much lower than the
cyclotron frequency, satisfying ω � Ω cos θ and Tc � Th,
(2.10) yields an electron-acoustic (or positron-acoustic)
mode,

ω2 ≈ k2v2
ea cos2 θ

1 + 1
2
k2λ2

dh

, (2.11)

where vea = (nc0/nh0)
1/2vth is the electron-acoustic speed,

and λdh = vth/ωph is the hot electron Debye length. This
mode is similar to the one discussed by Tokar and Gary
(1984) in a magnetized plasma consisting of two-electron
temperature populations and ions.

In the absence of hot species (hot electrons and
positrons), the dispersion relation (2.10) reduces to

ω4 − ω2
(
k2v2

tc + ω2
UH

)
+

(
k2v2

tc + 2ω2
pc

)
Ω2 cos2 θ = 0,

(2.12)
where

ω2
UH = Ω2 + 2ω2

pc (2.13)

is the upper hybrid frequency associated with cooler spe-
cies (Zank and Greaves 1995). In order to gain physical
insight into the solution of the dispersion relation, the
two extreme limits of (2.10) will now be considered, viz.
pure perpendicular and pure parallel propagations.

2.1. Perpendicular propagation

Considering the perpendicular (θ = 90◦) limit, the gen-
eral dispersion relation (2.10) reduces to:

ω4 − ω2

(
Ω2 + k2v2

tc +
2ω2

pck
2v2

th

2ω2
ph + k2v2

th

)
= 0. (2.14)

Hence, the normal mode frequencies are

ω = 0 , (2.15)
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Figure 1. Normalized real frequency as a function of the normalized wavenumber. The fixed parameters are R = 0.333,
Tc/Th = 0.01, and θ = 90◦. The parameter labelling the curves is the equilibrium density ratio n0c/n0 = 0.1 (solid), 0.3 (dotted),
0.5 (broken), and 0.6 (dashdotdot).

which is a non-propagating mode, and

ω2 = Ω2 + k2v2
tc +

2ω2
pck

2v2
th

2ω2
ph + k2v2

th

. (2.16)

This is the electron cyclotron mode in the electron–
positron plasma with contributions from both the
thermal motion of the adiabatic cooler species and the
acoustic motion due to two species at different temper-
atures. The electron cyclotron mode here is modified
due to the presence of hot species. The last term on the
right-hand side of (2.16) is a modification to the result
obtained by Zank and Greaves (1995) (refer to their
Table 1).

When hot species are not present, i.e., n0h = 0(ωph =
0), we obtain from (2.16),

ω2 = ω2
UH + k2v2

tc. (2.17)

which is a upper hybrid mode similar to the one obtained
by Zank and Greaves (1995) (refer to their Table 1).

2.2. Parallel propagation

Considering the limit of parallel propagation (θ = 0◦),
the general dispersion relation (2.10) reduces to

(ω2 − Ω2)

(
ω2 − k2v2

tc −
2ω2

pck
2v2

th

2ω2
ph + k2v2

th

)
= 0. (2.18)

From the dispersion relation (2.18), it can be seen that
the two modes, i.e., the electron cyclotron mode (ω = Ω)
and electron-acoustic mode, are decoupled. The parallel
propagating electron acoustic mode is given by

ω2 = k2v2
tc +

2ω2
pck

2v2
th

2ω2
ph + k2v2

th

. (2.19)

In the absence of hot species, (2.19) reduces to

ω2 = k2v2
tc + 2ω2

pc, (2.20)

which is a electron plasma mode arising from the motion
of cooler species. Hence, it is clear that the electron-
acoustic mode given by (2.19) exists due to the presence
of hot electron (positron) species.

3. Numerical results
To obtain numerical results, normalized form of (2.10)
is used. Normalizations used are as follows: the fluid
speeds are normalized with the thermal velocity vth =
(Th/m)1/2 of hot species, the particle density by the total
equilibrium plasma density n0 = n0c + n0h, the temper-
atures by Th, the spatial length by λd = (ε0Th/n0e

2)1/2,
and the time by ω−1

p = (n0e
2/ε0m)−1/2. The normalized

general dispersion relation can be written as

ω′4 − ω′2
(

1

R2
+ k′2 Tc

Th

+
k′2n′

0c

n′
0h + 1

2
k′2

)

+
cos2 θ

R2

(
k′2 Tc

Th

+
k′2n′

0c

n′
0h + 1

2
k′2

)
= 0, (3.1)

where ω′ = ω/ωp, k
′ = kλd, n

′
0h = n0h/n0, n

′
0c = n0c/n0,

and R = ωp/Ω is a ratio of plasma frequency to
cyclotron frequency. The effect of propagation angle,
density, and temperature of hot and cool electrons and
positrons on wave modes are studied here.

First, we investigate the waves propagating perpendic-
ular to the ambient magnetic field by using the general
dispersion relation (2.10). Figure 1 shows the variation of
normalized real frequency with normalized wavenumber
(kλd) for different values of the normalized cold species
density ratios (n0c/n0) for other fixed parameters, R =
0.333, Tc/Th = 0.01, and θ = 90◦. Figures 1–6, are
plotted for kλd range restricted to 0.3–0.8 so that all our
assumptions, namely kλdh < 1, kλdc < 1, and kvth/Ω > 1,
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Figure 2. Normalized real frequency as a function of the normalized wavenumber. The fixed plasma parameters are R = 0.333,
n0c/n0 = 0.1, and θ = 90◦. The parameter labelling the curves is the temperature ratio Tc/Th = 0.0 (solid), 0.01 (dotted), and 0.05
(broken).

Figure 3. Normalized real frequency as a function of the normalized wavenumber. The fixed parameters are R = 0.333,
Tc/Th = 0.01, and θ = 0◦. The parameter labelling the curves is the equilibrium density ratio n0c/n0 = 0.1 (solid), 0.3 (dotted),
0.5 (broken), and 0.6 (dashdotdot).

are satisfied. The frequency increases with increase in
cold species density. This is the cyclotron mode modified
by the presence of finite temperature cold species (second
term in (2.16)) and acoustic term arising due to the
presence of cold and hot species (last term in (2.16)).
At large values of (n0c/n0), i.e., for small quantity of hot
species, the mode approaches upper hybrid frequency
((2.17)).

Figure 2 shows the variation of normalized real fre-
quency with normalized wavenumber (kλd) for different
values of normalized cold to hot species temperature
ratios (Tc/Th) for other fixed parameters, R = 0.333,
n0c/n0 = 0.1, and θ = 90◦. This is the electron cyclotron

mode, as the curve is observed close to ω/ωp = 1/R ≈ 3
and mode frequency increases with increase in Tc/Th

values. It must be emphasized that the behavior of the
curves in Fig. 2 is a characteristic of a four-component,
two-temperature electron–positron plasma and has not
been reported in the literature before.

Figure 3 shows normalized frequency as a function
of normalized wavenumber for parallel propagation
θ = 00 for various values of cold species density for
the parameters of Fig. 1. It is noted that the frequency
of the mode increases with increase in noc/no. From
dispersion curves, the mode is identified as an electron-
acoustic mode (cf. (2.19)). This is a feature of the
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Figure 4. Normalized real frequency as a function of the normalized wavenumber. The fixed plasma parameters are R = 0.333,
n0c/n0 = 0.1, and θ = 0◦. The parameter labelling the curves is the temperature ratio Tc/Th = 0.01 (solid), 0.02 (dotted), and 0.05
(broken).

Figure 5. Normalized real frequency as a function of the normalized wavenumber showing the electron-acoustic branch for
various angles of propagation θ = 0◦ (solid), 9◦ (dotted), 22.5◦ (broken), and 45◦ (dashdotdot). The fixed plasma parameters are
R = 0.333, Tc/Th = 0.01, and n0c/n0 = 0.1.

four-component, two-temperature electron–positron
plasma and is due to the contribution of the second spe-
cies. In a single-temperature electron-positron plasma,
the electron-acoustic mode cannot exist. Figure 4 shows
the variation of normalized frequency for various values
of Tc/Th ratios for the parameters of Fig. 3.

Figures 5 and 6 show the normalized real frequency
versus normalized wavenumber for a range of propaga-
tion angles for electron-acoustic and cyclotron branches,
respectively. It is noted that the slope of the curves are
much smaller as compared to the single-temperature
electron–positron model of Zank and Greaves (1995).
Frequency of the electron-acoustic mode (Fig. 5) de-

creases with propagation angle and eventually disap-
pears at θ = 90◦. On the other hand, frequency of
cyclotron mode increases with increase in propagation
angle.

4. Conclusions
Linear electrostatic waves in a magnetized four-
component, two-temperature electron–positron plasma
have been investigated, with the hot species having a
Boltzmann density distribution and the dynamics of the
cooler species governed by fluid equations. Solutions of
the corresponding dispersion relation yield the electron-
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Figure 6. Normalized real frequency as a function of the normalized wavenumber showing cyclotron branch for various angles of
propagation θ = 0◦ (solid), 9◦ (dotted), 22.5◦ (broken), 45◦ (dashdotdot), and 90◦ (longdash). The other fixed plasma parameters
are same as in Fig. 5.

acoustic, upper hybrid, electron plasma and electron
cyclotron branches, which were explored as a function
of several plasma parameters. For perpendicular wave
propagation, an electron cyclotron mode exists with
contributions from both cooler and hot species and
hence influencing the dispersive properties of the wave.
In the absence of hot species, this mode goes over to the
upper hybrid mode where the cooler species contribute
to the wave dynamics, as expected and reported earlier
by Zank and Greaves (1995). On the other hand, for
parallel propagation, the solutions display a dominant
electron acoustic mode, which goes over to an electron
plasma mode when hot species are absent. Further,
this mode is decoupled from the electron cyclotron
mode. The properties of other modes (cyclotron and
upper hybrid) studied here are also significantly modified
due to the presence of two-temperature (cold and hot)
electron–positron populations.

The four-component magnetized plasmas consisting
of cold and hot electrons–positrons can be present in
pulsar magnetosphere. Such plasmas can support the
electron-acoustic mode, a novel mode that is not present
in the pure two-component, single-temperature electron–
positron plasma. In the Earth’s magnetosphere electron-
acoustic modes are important and could explain the
broadband electrostatic noise (BEN) emissions up to
the cold electron plasma frequency (Singh and Lakhina
2001). Although the BEN observations in the pulsar
magnetosphere have not been reported, the electron-
acoustic mode can play important role there. Firstly,
it can modulate the pulsar electromagnetic radiation
during their passage through the pulsar magnetosphere
leading to modulational instability (Hasegawa 1975;
Luo 1998). This would explain some features of mi-
crostructure in pulsar radiation. Secondly, the coup-
ling of electron-acoustic wave with an electromagnetic

wave may produce, depending upon the beat conditions,
higher or lower frequency electromagnetic waves by
three-wave interaction process (Luo 1998).

In this paper we have carried out the analysis of
linear electrostatic waves in four-component electron–
positron plasmas using fluid equations. The results may
be modified in the presence of kinetic effects. This is
best studied using the kinetic theory, which we plan to
do in future.
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