Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 4-(4-chlorophenyl)-8-iodo-2methyl-6-oxo-1,6-dihydro-4H-pyrimido-[2,1-b]quinazoline-3-carboxylate

Susanta K. Navak,^a* K. N. Venugopala^b* and Bharti **Odhav^b**

^aCenter for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3-20133 Milan, Italy, and ^bDepartment of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa Correspondence e-mail: nksusa@gmail.com, katharigattav@dut.ac.za

Received 25 November 2012; accepted 13 December 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.024; wR factor = 0.059; data-to-parameter ratio = 14.1.

In the title compound, C₂₀H₁₅ClIN₃O₃, the dihedral angle between the quinazolinone ring system [r.m.s. deviation = 0.047 (2) Å] and the pendant benzene ring is 82.63 (11)°. The molecular conformation is stabilized by intramolecular C- $H \cdots O$ interactions. In the crystal, the molecules are linked by $N-H\cdots O$ hydrogen bonds into chains along the *a*-axis direction. Another set of chains propagating along [101] is formed due to intermolecular I...Cl short contacts of 3.427 (1) Å, thus giving layers parallel to (010). The layers are connected by $C-H \cdots \pi$ and $\pi - \pi$ interactions, the shortest distance between the centroids of aromatic rings being 3.8143 (16) Å.

Related literature

For crystal structures of dihydropyrimidines, see: Nayak et al. (2010, 2011a,b,c); Venugopala et al. (2012). For applications of dihydropyrimidines, see: Kappe (2000). For halogen-involving interactions, see: Nayak et al. (2011b).

Experimental

Crystal data

C ₂₀ H ₁₅ ClIN ₃ O ₃	$\gamma = 92.79 \ (3)^{\circ}$
$M_r = 507.70$	V = 918.5 (4) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 7.3443 (15) Å	Mo $K\alpha$ radiation
b = 10.847 (2) Å	$\mu = 1.92 \text{ mm}^{-1}$
c = 12.475 (3) Å	T = 173 K
$\alpha = 106.66 \ (3)^{\circ}$	$0.25 \times 0.14 \times 0.12 \text{ mm}$
$\beta = 103.53 \ (2)^{\circ}$	

Data collection

Bruker APEXII Kappa DUO CCD	7109 measured reflections
diffractometer	3602 independent reflections
Absorption correction: multi-scan	3147 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2008)	$R_{\rm int} = 0.017$
$T_{\min} = 0.646, \ T_{\max} = 0.803$	

Refinement

255 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.89 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C7-C12 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots O3^{i}$	0.88	2.04	2.903 (3)	167
$C5-H5A\cdots O1$	0.98	2.22	2.807 (4)	117
C8−H8···O2	0.95	2.49	3.167 (4)	128
$C1 - H1B \cdots Cg1^{ii}$	0.98	2.67	3.647 (4)	175

Symmetry codes: (i) x - 1, y, z; (ii) -x - 1, -y - 1, -z - 1.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

The authors thank Durban University of Technology for facilities. KNV thanks the NRF South Africa for a DST/NRF Innovation Postdoctoral Fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2082).

References

- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043-1052.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Nayak, S. K., Reddy, M. K., Guru Row, T. N. & Chopra, D. (2011b). Cryst. Growth Des. 11, 1578-1596.
- Nayak, S. K., Venugopala, K. N., Chopra, D. & Guru Row, T. N. (2011a). CrystEngComm, 13, 591-605.

- Nayak, S. K., Venugopala, K. N., Chopra, D., Vasu & Guru Row, T. N. (2010). *CrystEngComm*, **12**, 1205–1216.
- Nayak, S. K., Venugopala, K. N., Govender, T., Kruger, H. G., Maguire, G. E. M. & Row, T. N. G. (2011c). Acta Cryst. E67, o3069–o3070.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Venugopala, K. N., Nayak, S. K. & Odhav, B. (2012). Acta Cryst. E68, o2977– o2978.

supplementary materials

Acta Cryst. (2013). E69, o123-o124 [doi:10.1107/S1600536812050787]

Methyl 4-(4-chlorophenyl)-8-iodo-2-methyl-6-oxo-1,6-dihydro-4*H*-pyrimido[2,1-*b*]quinazoline-3-carboxylate

Susanta K. Nayak, K. N. Venugopala and Bharti Odhav

Comment

In continuation of our work on the pharmacological properties and single-crystal X-ray studies (Nayak *et al.*, 2010, 2011*a,b,c*; Venugopala *et al.*, 2012) on dihydropyrimidine derivatives, we synthesized the title compound as a potential anti-malarial agent. Here we are reporting the single-crystal structure of the title compound.

The conformation of the title molecule is stabilized by intramolecular C—H···O interactions, and the dihedral angle between the planes of the 4-chlorophenyl and iodophenyl groups is 80.3 (2)° (Fig. 1). The crystal structure is stabilized by N—H···O infinite hydrogen bond chains parallel to [0 1 0]. Halogen-involving short contacts I···Cl [3.427 (2) Å, θ_1 = 166.1 (2)°; θ_2 = 90.5 (2)°, symmetry code: x + 1, y, z + 1, Type II (Nayak *et al.*, 2011*b*)] form infinite chains orthogonal to hydrogen bond chains which lead to two-dimensional molecular assembly (Fig. 2). Further, the C—H··· π [2.67 Å,*Cg1* = Centroid of six membered ring C7—C12; Table 1] and π – π [*Cg2*···*Cg2* = 3.814 (2) Å, symmetry code: –*X*,1-Y,-*Z*; *Cg2* = Centroid of six membered ring N2/C13/N3/C14/C19/C20] interactions enhance the stability of three-dimensional molecular assembly.

Experimental

A mixture of methyl-2-chloro-4-(4-chlorophenyl)-6-methyl-1,4- dihydropyrimidine-5-carboxylate (1 mmol), 2-amino-5iodobenzoic acid (1 mmol) and methanamine (1 mmol) in 2-propanol (5 ml) was refluxed for 12 h. The reaction completion was monitored by TLC. The reaction medium was cooled to room temperature, the product was filtered, washed with cold 2-propanol and dried to obtain the crude product. The product was purified by recrystallization using ethanol in 66% yield as a brown solid (m. p. 467 (2) K). Crystals suitable for single-crystal X-ray study were obtained from methanol and tetrahydrofuran (1:1) solvent using slow evaporation at room temperature.

Refinement

All H atoms were positioned geometrically with N—H = 0.88 Å, C—H = 0.95–1.00 Å and refined using a riding model with $U_{iso}(H) = 1.2 U_{eq}(C/N)$ except for the methyl group where $U_{iso}(H) = 1.5 U_{eq}(C)$.

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *PLATON* (Spek, 2009) and *PARST* (Nardelli, 1995).

Figure 1

A view of the title compound with the atom numbering scheme and displacement ellipsoids for non-H atoms drawn at the 50% probability level. The intramolecular C—H \cdots O interactions are shown by dashed lines.

Figure 2

Intermolecular N—H…O hydrogen bonds and short contacts I…Cl forming layers parallel to (010).

Methyl 4-(4-chlorophenyl)-8-iodo-2-methyl-6-oxo-1,6-dihydro-4H- pyrimido[2,1-b]quinazoline-3-carboxylate

Crystal data	
$C_{20}H_{15}CIIN_3O_3$	Hall symbol: -P 1
$M_r = 507.70$	a = 7.3443 (15) Å
Triclinic, $P\overline{1}$	b = 10.847 (2) Å

c = 12.475 (3) Å $\alpha = 106.66 (3)^{\circ}$ $\beta = 103.53 (2)^{\circ}$ $\gamma = 92.79 (3)^{\circ}$ $V = 918.5 (4) \text{ Å}^{3}$ Z = 2 F(000) = 500 $D_{x} = 1.836 \text{ Mg m}^{-3}$

Data collection

Bruker APEXII Kappa DUO CCD	7109 measured reflections
diffractometer	3602 independent reflections
Radiation source: fine-focus sealed tube	3147 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.017$
$0.5^{\circ} \varphi$ scans and ω scans	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.9^\circ$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADABS; Bruker, 2008)	$k = -13 \rightarrow 13$
$T_{\min} = 0.646, \ T_{\max} = 0.803$	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.024$	Hydrogen site location: inferred from
$wR(F^2) = 0.059$	neighbouring sites
S = 1.09	H-atom parameters constrained
3602 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0285P)^2 + 0.4298P]$
255 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.003$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.89 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.52 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Melting point: 467(2) K

 $0.25 \times 0.14 \times 0.12 \text{ mm}$

 $\theta = 2.9 - 26.0^{\circ}$

 $\mu = 1.92 \text{ mm}^{-1}$ T = 173 K

Plate, yellow

Mo *Ka* radiation, $\lambda = 0.71073$ Å

Cell parameters from 560 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

			TT 1 (TT
X	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
1.42667 (2)	0.047532 (17)	1.168961 (15)	0.02807 (8)
0.75652 (11)	-0.07966 (7)	0.33638 (6)	0.03791 (19)
0.6050 (3)	0.62853 (18)	0.61509 (16)	0.0272 (4)
0.9047 (3)	0.59136 (19)	0.62752 (17)	0.0287 (4)
1.2104 (2)	0.34709 (18)	0.86038 (16)	0.0250 (4)
0.5905 (3)	0.4115 (2)	0.84598 (19)	0.0238 (5)
0.4842	0.3915	0.8617	0.029*
0.9040 (3)	0.3772 (2)	0.85309 (17)	0.0184 (4)
0.7400 (3)	0.3144 (2)	0.97648 (19)	0.0235 (5)
	x 1.42667 (2) 0.75652 (11) 0.6050 (3) 0.9047 (3) 1.2104 (2) 0.5905 (3) 0.4842 0.9040 (3) 0.7400 (3)	xy $1.42667 (2)$ $0.047532 (17)$ $0.75652 (11)$ $-0.07966 (7)$ $0.6050 (3)$ $0.62853 (18)$ $0.9047 (3)$ $0.59136 (19)$ $1.2104 (2)$ $0.34709 (18)$ $0.5905 (3)$ $0.4115 (2)$ 0.4842 0.3915 $0.9040 (3)$ $0.3772 (2)$ $0.7400 (3)$ $0.3144 (2)$	xyz $1.42667 (2)$ $0.047532 (17)$ $1.168961 (15)$ $0.75652 (11)$ $-0.07966 (7)$ $0.33638 (6)$ $0.6050 (3)$ $0.62853 (18)$ $0.61509 (16)$ $0.9047 (3)$ $0.59136 (19)$ $0.62752 (17)$ $1.2104 (2)$ $0.34709 (18)$ $0.86038 (16)$ $0.5905 (3)$ $0.4115 (2)$ $0.84598 (19)$ 0.4842 0.3915 0.8617 $0.9040 (3)$ $0.3772 (2)$ $0.85309 (17)$ $0.7400 (3)$ $0.3144 (2)$ $0.97648 (19)$

C1	0.6278 (4)	0.7087 (3)	0.5443 (3)	0.0312 (7)	
H1A	0.7308	0.7789	0.5874	0.047*	
H1B	0.5104	0.7457	0.5232	0.047*	
H1C	0.6577	0.6562	0.4738	0.047*	
C2	0.7579 (4)	0.5753 (2)	0.6529 (2)	0.0205 (6)	
C3	0.7317 (3)	0.4945 (2)	0.7260 (2)	0.0185 (5)	
C4	0.5854 (4)	0.4883 (2)	0.7733 (2)	0.0208 (5)	
C5	0.4109 (4)	0.5552 (3)	0.7604 (3)	0.0270 (6)	
H5A	0.4379	0.6358	0.7432	0.041*	
H5B	0.3712	0.5751	0.8326	0.041*	
H5C	0.3097	0.4983	0.6969	0.041*	
C6	0.8863 (3)	0.4093 (2)	0.7435 (2)	0.0182 (5)	
H6	1.0084	0.4588	0.7491	0.022*	
C7	0.8535 (3)	0.2847 (2)	0.6416 (2)	0.0180 (5)	
C8	0.9062 (4)	0.2870 (3)	0.5422 (2)	0.0230 (6)	
H8	0.9657	0.3653	0.5392	0.028*	
C9	0.8728 (4)	0.1763 (3)	0.4471 (2)	0.0268 (6)	
H9	0.9064	0.1790	0.3787	0.032*	
C10	0.7903 (4)	0.0623 (3)	0.4531 (2)	0.0261 (6)	
C11	0.7360 (4)	0.0575 (3)	0.5507 (2)	0.0270 (6)	
H11	0.6781	-0.0213	0.5536	0.032*	
C12	0.7672 (4)	0.1693 (3)	0.6445 (2)	0.0231 (6)	
H12	0.7290	0.1669	0.7116	0.028*	
C13	0.7476 (4)	0.3651 (2)	0.8947 (2)	0.0192 (5)	
C14	0.8986 (4)	0.2618 (2)	1.0197 (2)	0.0212 (6)	
C15	0.8893 (4)	0.1949 (3)	1.0998 (2)	0.0262 (6)	
H15	0.7788	0.1913	1.1265	0.031*	
C16	1.0389 (4)	0.1347 (3)	1.1397 (2)	0.0264 (6)	
H16	1.0300	0.0875	1.1921	0.032*	
C17	1.2046 (4)	0.1424 (3)	1.1035 (2)	0.0233 (6)	
C18	1.2198 (4)	0.2091 (3)	1.0265 (2)	0.0227 (6)	
H18	1.3325	0.2143	1.0022	0.027*	
C19	1.0655 (4)	0.2691 (2)	0.9845 (2)	0.0194 (5)	
C20	1.0732 (4)	0.3341 (2)	0.8977 (2)	0.0194 (5)	

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.02738 (11)	0.03098 (12)	0.02945 (11)	0.00738 (8)	0.00520 (8)	0.01593 (8)
C11	0.0363 (4)	0.0311 (4)	0.0339 (4)	0.0142 (3)	-0.0019 (3)	-0.0018 (3)
01	0.0242 (10)	0.0311 (11)	0.0342 (11)	0.0093 (8)	0.0084 (9)	0.0202 (9)
O2	0.0265 (11)	0.0315 (11)	0.0400 (12)	0.0078 (8)	0.0166 (9)	0.0220 (9)
O3	0.0167 (9)	0.0348 (11)	0.0314 (10)	0.0061 (8)	0.0103 (8)	0.0185 (9)
N1	0.0154 (11)	0.0320 (13)	0.0320 (13)	0.0073 (9)	0.0111 (10)	0.0173 (10)
N2	0.0153 (11)	0.0229 (12)	0.0202 (11)	0.0031 (9)	0.0065 (9)	0.0097 (9)
N3	0.0213 (12)	0.0289 (13)	0.0247 (12)	0.0064 (10)	0.0095 (10)	0.0115 (10)
C1	0.0335 (16)	0.0341 (17)	0.0321 (16)	0.0071 (13)	0.0055 (13)	0.0215 (13)
C2	0.0221 (14)	0.0174 (13)	0.0205 (13)	0.0040 (11)	0.0037 (11)	0.0044 (11)
C3	0.0159 (13)	0.0186 (13)	0.0205 (13)	0.0023 (10)	0.0037 (10)	0.0060 (11)
C4	0.0209 (14)	0.0191 (13)	0.0231 (13)	0.0042 (11)	0.0047 (11)	0.0080 (11)

supplementary materials

C5	0.0230 (14)	0.0303 (15)	0.0363 (16)	0.0118 (12)	0.0140 (13)	0.0168 (13)
C6	0.0167 (12)	0.0228 (14)	0.0194 (13)	0.0034 (10)	0.0069 (10)	0.0113 (11)
C7	0.0121 (12)	0.0223 (14)	0.0220 (13)	0.0069 (10)	0.0039 (10)	0.0103 (11)
C8	0.0208 (14)	0.0261 (15)	0.0264 (14)	0.0047 (11)	0.0102 (11)	0.0113 (12)
C9	0.0237 (14)	0.0353 (17)	0.0237 (14)	0.0103 (13)	0.0078 (12)	0.0100 (12)
C10	0.0210 (14)	0.0263 (15)	0.0251 (14)	0.0107 (12)	-0.0004 (12)	0.0027 (12)
C11	0.0242 (15)	0.0211 (15)	0.0360 (16)	0.0041 (12)	0.0032 (12)	0.0128 (13)
C12	0.0227 (14)	0.0247 (15)	0.0254 (14)	0.0046 (11)	0.0077 (12)	0.0113 (12)
C13	0.0176 (13)	0.0205 (13)	0.0199 (13)	0.0040 (10)	0.0070 (11)	0.0046 (11)
C14	0.0221 (14)	0.0218 (14)	0.0198 (13)	0.0045 (11)	0.0056 (11)	0.0058 (11)
C15	0.0260 (15)	0.0340 (16)	0.0237 (14)	0.0041 (12)	0.0122 (12)	0.0119 (12)
C16	0.0308 (15)	0.0312 (16)	0.0217 (14)	0.0047 (12)	0.0079 (12)	0.0141 (12)
C17	0.0256 (14)	0.0240 (14)	0.0202 (13)	0.0057 (11)	0.0042 (11)	0.0075 (11)
C18	0.0223 (14)	0.0247 (14)	0.0220 (14)	0.0044 (11)	0.0066 (11)	0.0079 (11)
C19	0.0183 (13)	0.0212 (13)	0.0192 (13)	0.0014 (11)	0.0052 (10)	0.0070 (11)
C20	0.0187 (13)	0.0193 (13)	0.0190 (13)	0.0023 (10)	0.0029 (11)	0.0058 (11)

Geometric parameters (Å, °)

I1—C17	2.099 (3)	C5—H5C	0.9800	
Cl1—C10	1.750 (3)	C6—C7	1.530 (4)	
O1—C2	1.338 (3)	С6—Н6	1.0000	
01—C1	1.436 (3)	C7—C12	1.389 (4)	
O2—C2	1.211 (3)	С7—С8	1.390 (3)	
O3—C20	1.223 (3)	C8—C9	1.389 (4)	
N1-C13	1.363 (3)	C8—H8	0.9500	
N1-C4	1.392 (3)	C9—C10	1.379 (4)	
N1—H1	0.8800	С9—Н9	0.9500	
N2-C13	1.382 (3)	C10—C11	1.380 (4)	
N2-C20	1.398 (3)	C11—C12	1.388 (4)	
N2—C6	1.483 (3)	C11—H11	0.9500	
N3—C13	1.301 (3)	C12—H12	0.9500	
N3—C14	1.386 (3)	C14—C19	1.401 (4)	
C1—H1A	0.9800	C14—C15	1.404 (4)	
C1—H1B	0.9800	C15—C16	1.372 (4)	
C1—H1C	0.9800	C15—H15	0.9500	
С2—С3	1.469 (3)	C16—C17	1.401 (4)	
C3—C4	1.349 (3)	C16—H16	0.9500	
С3—С6	1.515 (3)	C17—C18	1.379 (4)	
C4—C5	1.502 (4)	C18—C19	1.405 (4)	
С5—Н5А	0.9800	C18—H18	0.9500	
С5—Н5В	0.9800	C19—C20	1.461 (3)	
C2—O1—C1	115.4 (2)	С9—С8—Н8	119.6	
C13—N1—C4	125.0 (2)	C7—C8—H8	119.6	
C13—N1—H1	117.5	C10—C9—C8	119.3 (3)	
C4—N1—H1	117.5	С10—С9—Н9	120.4	
C13—N2—C20	121.4 (2)	С8—С9—Н9	120.4	
C13—N2—C6	120.6 (2)	C9-C10-C11	121.1 (3)	
C20—N2—C6	116.72 (19)	C9—C10—C11	119.8 (2)	

C13—N3—C14	116.7 (2)	C11—C10—C11	119.1 (2)
01—C1—H1A	109.5	C10-C11-C12	119.1 (3)
O1—C1—H1B	109.5	C10—C11—H11	120.4
H1A—C1—H1B	109.5	C12—C11—H11	120.4
01—C1—H1C	109.5	C11—C12—C7	120.9 (2)
H1A—C1—H1C	109.5	C11—C12—H12	119.5
H1B—C1—H1C	109.5	C7—C12—H12	119.5
O2—C2—O1	122.5 (2)	N3—C13—N1	118.2 (2)
O2—C2—C3	123.1 (2)	N3—C13—N2	125.2 (2)
O1—C2—C3	114.4 (2)	N1—C13—N2	116.6 (2)
C4—C3—C2	126.5 (2)	N3—C14—C19	122.9 (2)
C4—C3—C6	119.8 (2)	N3—C14—C15	118.4 (2)
C2—C3—C6	113.7 (2)	C19—C14—C15	118.7 (2)
C3—C4—N1	118.3 (2)	C16—C15—C14	120.4 (2)
C3—C4—C5	129.1 (2)	C16—C15—H15	119.8
N1-C4-C5	112.6 (2)	C14—C15—H15	119.8
С4—С5—Н5А	109.5	C15—C16—C17	120.3 (2)
С4—С5—Н5В	109.5	C15—C16—H16	119.8
H5A—C5—H5B	109.5	C17—C16—H16	119.8
С4—С5—Н5С	109.5	C18—C17—C16	120.8 (2)
H5A—C5—H5C	109.5	C18—C17—I1	121.37 (19)
H5B—C5—H5C	109.5	C16—C17—I1	117.80 (19)
N2—C6—C3	111.06 (19)	C17—C18—C19	118.7 (2)
N2—C6—C7	110.0 (2)	C17—C18—H18	120.6
C3—C6—C7	111.7 (2)	C19—C18—H18	120.6
N2—C6—H6	108.0	C14—C19—C18	121.0 (2)
С3—С6—Н6	108.0	C14—C19—C20	118.9 (2)
С7—С6—Н6	108.0	C18—C19—C20	120.0 (2)
С12—С7—С8	118.8 (2)	O3—C20—N2	120.3 (2)
С12—С7—С6	121.6 (2)	O3—C20—C19	125.0 (2)
C8—C7—C6	119.6 (2)	N2—C20—C19	114.7 (2)
C9—C8—C7	120.7 (3)		
C1-01-C2-02	-1.3 (4)	C6—C7—C12—C11	179.1 (2)
C1—O1—C2—C3	179.5 (2)	C14—N3—C13—N1	176.6 (2)
O2—C2—C3—C4	168.5 (3)	C14—N3—C13—N2	-4.1 (4)
O1—C2—C3—C4	-12.4 (4)	C4—N1—C13—N3	168.0 (2)
O2—C2—C3—C6	-13.4 (4)	C4—N1—C13—N2	-11.4 (4)
O1—C2—C3—C6	165.8 (2)	C20—N2—C13—N3	0.0 (4)
C2—C3—C4—N1	-176.2 (2)	C6—N2—C13—N3	166.5 (2)
C6—C3—C4—N1	5.7 (4)	C20—N2—C13—N1	179.3 (2)
C2—C3—C4—C5	3.0 (5)	C6—N2—C13—N1	-14.2 (3)
C6—C3—C4—C5	-175.0 (3)	C13—N3—C14—C19	4.3 (4)
C13—N1—C4—C3	15.7 (4)	C13—N3—C14—C15	-173.8 (2)
C13—N1—C4—C5	-163.7 (2)	N3—C14—C15—C16	176.1 (3)
C13—N2—C6—C3	31.8 (3)	C19—C14—C15—C16	-2.0 (4)
C20—N2—C6—C3	-161.1 (2)	C14—C15—C16—C17	1.8 (4)
C13—N2—C6—C7	-92.5 (3)	C15—C16—C17—C18	-0.7 (4)
C20—N2—C6—C7	74.6 (3)	C15—C16—C17—I1	179.9 (2)

C4—C3—C6—N2	-27.2(3)	C16—C17—C18—C19	-0.1(4)
C2—C3—C6—N2	154.5 (2)	II—C17—C18—C19	179.16 (19)
C4—C3—C6—C7	96.0 (3)	N3—C14—C19—C18	-176.9 (2)
C2—C3—C6—C7	-82.2 (3)	C15-C14-C19-C18	1.1 (4)
N2—C6—C7—C12	27.4 (3)	N3—C14—C19—C20	-0.5 (4)
C3—C6—C7—C12	-96.5 (3)	C15—C14—C19—C20	177.5 (2)
N2—C6—C7—C8	-154.5 (2)	C17—C18—C19—C14	-0.1 (4)
C3—C6—C7—C8	81.7 (3)	C17—C18—C19—C20	-176.4 (2)
C12—C7—C8—C9	0.2 (4)	C13—N2—C20—O3	-179.2 (2)
C6—C7—C8—C9	-178.0 (2)	C6—N2—C20—O3	13.8 (3)
C7—C8—C9—C10	-1.5 (4)	C13—N2—C20—C19	3.8 (3)
C8—C9—C10—C11	1.7 (4)	C6—N2—C20—C19	-163.2 (2)
C8—C9—C10—Cl1	-177.3 (2)	C14—C19—C20—O3	179.8 (3)
C9—C10—C11—C12	-0.6 (4)	C18—C19—C20—O3	-3.8 (4)
Cl1—C10—C11—C12	178.3 (2)	C14—C19—C20—N2	-3.4 (3)
C10-C11-C12-C7	-0.7 (4)	C18—C19—C20—N2	173.0 (2)
C8—C7—C12—C11	0.9 (4)		

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H··· A
N1—H1…O3 ⁱ	0.88	2.04	2.903 (3)	167
С5—Н5А…О1	0.98	2.22	2.807 (4)	117
С8—Н8…О2	0.95	2.49	3.167 (4)	128
$C1$ — $H1B$ ··· $Cg1^{ii}$	0.98	2.67	3.647 (4)	175

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*-1, -*y*-1, -*z*-1.