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We report here the draft genome sequence of Thermomyces lanuginosus strain SSBP, which was isolated from soil in South Af-
rica. This fungus produces the largest amount of xylanase ever reported in the literature.
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Thermomyces lanuginosus is a thermophilic fungus that has the
ability to degrade plant biomass and produces the largest

amounts of hydrolyzing enzymes (1). Because of this ability, this
fungus has been identified as one of the organisms that can have
various industrial applications. Thus, sequencing of the T. lanugi-
nosus genome is important because this will provide necessary
information needed for better industrial usability of this fungus.

Whole-genome sequencing was performed using Roche 454
and Illumina paired-end sequencing strategies. The Roche 454
sequencing strategy with single ends and paired ends was used to
construct a genomic library, and a Solexa sequencing strategy was
used to construct a paired-end and mate-paired genomic library.
We are reporting a 23.3-Mb T. lanuginosus genome sequence that
was created by de novo assembling of 98% of the sequencing data
generated using next-generation sequencing technology. The re-
peat reads were �0.5% of the total reads generated. The assembly
has long-range continuity, with an N50 scaffold size of �4 Mb.
Most of the assembly (90%) is contained in the 6 largest scaffolds
and the rest in 24 smaller scaffolds with lengths of �10 kb.

The proteome that was predicted from this assembly had a
total of 5,105 genes, which is less than that of other filamentous
fungi, with 83 tRNA genes (2–6). The genome was annotated us-
ing a modified version of Maker (7). The GC content of the whole
genome was calculated to be 52.14%, while coding regions had a
significantly higher GC content, at 55.6%. As this thermophilic
fungus is a wood-degrading fungus, the CAZy family protein was
analyzed in depth. Carbohydrate-active enzymes (CAZy) have the
ability to cleave or add monomers to polysaccharides, and because
of this characteristic many of these fungi have major importance
in the biotechnology industry. A total of 224 predicted proteins
that were identified using the CAZy database belong to this group
of proteins (8).

Mechanisms of thermal adaptation by this fungus, especially in
relation to the genomic material, were suggested by the presence
of several DNA-related pathways. T. lanuginosus has a ubiquitin
degradation pathway which plays a crucial role in the responses to
various stressors, such as nutrient limitation, heat shock, and
heavy metal exposure (9). T. lanuginosus is a thermophilic organ-

isms that generally grows on dead woody material. The ubiquitin
degradation system may be essential for adaptation during rising
temperatures in composting materials. T. lanuginosus is also
capable of histone acetylation/deacetylation and poly ADP-
ribosylation and contains high numbers of methylases. Histone
acetylation/deacetylation and methylation play important roles in
packing and condensation of DNA (10). Poly ADP-ribosylation is
the addition of one or more ADP-ribose moieties to a protein
(11). It plays an important role in cell signaling and the control of
many cell processes, including DNA repair and apoptosis (12, 13).
All of these DNA condensation machinery and repairing mecha-
nisms make this fungus well adapted to living and thriving at high
temperatures.

Nucleotide sequence accession number. This Whole-
Genome Shotgun project has been deposited at DDBJ/EMBL/
GenBank under the accession number ANHP00000000. The ver-
sion described in this paper is the first version.
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