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Coumarin (2H-1-benzopyran-2-one) is a plant-derived natural product known for its pharmacological properties such as
anti-inflammatory, anticoagulant, antibacterial, antifungal, antiviral, anticancer, antihypertensive, antitubercular, anticonvulsant,
antiadipogenic, antihyperglycemic, antioxidant, and neuroprotective properties. Dietary exposure to benzopyrones is significant
as these compounds are found in vegetables, fruits, seeds, nuts, coffee, tea, and wine. In view of the established low toxicity, relative
cheapness, presence in the diet, and occurrence in various herbal remedies of coumarins, it appears prudent to evaluate their
properties and applications further.

1. Introduction

Coumarins (2H-1-benzopyran-2-one) (1) consist of a large
class of phenolic substances found in plants and are made
of fused benzene and 𝛼-pyrone rings [1]. More than 1300
coumarins have been identified as secondary metabolites
from plants, bacteria, and fungi [2]. The prototypical com-
pound is known as 1,2-benzopyrone or, less commonly, as 𝑜-
hydroxycinnamic acid and lactone, and it has been well stud-
ied. Coumarins were initially found in tonka bean (Dipteryx
odorataWild) and are reported in about 150 different species
distributed over nearly 30 different families, of which a
few important ones are Rutaceae, Umbelliferae, Clusiaceae,
Guttiferae, Caprifoliaceae,Oleaceae,Nyctaginaceae, andApi-
aceae. (See Scheme 1.)

Although distributed throughout all parts of the plant,
the coumarins occur at the highest levels in the fruits
(Bael fruits (Aegle marmelos) [3], Tetrapleura tetraptera
TAUB (Mimosaceae) [4], bilberry, and cloudberry), seeds
(tonka beans) (Calophyllum cerasiferum Vesque and Calo-
phyllum inophyllum Linn) [5] followed by the roots (Ferulago
campestris) [6], leaves (Murraya paniculata) [7], Phelloden-
dron amurense var. wilsonii [8], and latex of the tropical
rainforest tree Calophyllum teysmannii var. inophylloide [9]

green tea and other foods such as chicory.They are also found
at high levels in some essential oils such as cassia oil [10],
cinnamon bark oil [11], and lavender oil [6]. Environmental
conditions and seasonal changes could influence the inci-
dence of coumarins in varied parts of the plant. The function
of coumarins is far from clear, although suggestions include
plant growth regulators, bacteriostats, fungistats, and even
waste products [12].

Biosynthesis of coumarin is reviewed by Bourgaud
et al. [11]. There are types of coumarins found in nature
due to various permutations brought about by substitutions
and conjugations; however, most of the pharmacological and
biochemical studies have been done on coumarin itself and
on its primary metabolite, 7-hydroxycoumarin in man [13].
Some of this earlier pharmacological work on coumarin
has been reviewed [14], and other more comprehensive
reviews [13, 15, 16] deal with the occurrence, chemistry, and
biochemical properties of both simple and more complex
natural coumarins.

2. Classification of Coumarins

Natural coumarins are mainly classified into six types based
on the chemical structure of the compounds (Table 1).
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Table 1: Different coumarin types and their pharmacological properties.

Sl no. Type of coumarin General chemical structure Example with reference Pharmacological
activity

1 Simple coumarins

O O

Coumarin [17] Anti-inflammatory

Esculetin [18]

Anti-inflammatory
Anticancer

Antiadipogenic
Antioxidant

Neuroprotective

Ammoresinol [19] Antibacterial

Ostruthin [19] Antibacterial
Antifungal

Osthole [20]

Antibacterial
Antifungal
Anticancer

Anticonvulsant
Antioxidant

Novobiocin [21] Antibacterial
Coumermycin [22] Antibacterial

Chartreusin [23]
Antibacterial
Antitumor

Fraxin [24]
Anticancer

Antiadipogenic
Antioxidant

Umbelliferone [25] Antitubercular

Fraxidin [26] Antiadipogenic
Antihyperglycemic

Phellodenol A [8] Antitubercular
Esculin, fraxetin [27] Antiadipogenic,

Murrayatin [28]
Auraptene [29]

2 Furano coumarins
O OO

Imperatorin [17]

Anti-inflammatory
Antibacterial
Antifungal
Antiviral
Anticancer

Anticonvulsant

Psoralen [11]
Antifungal
Anti-TB

Bergapten [25] Anti-TB

Methoxsalen [30] Cytochrome P450
inhibitor

Marmalde, marmelosin [29]

3 Dihydrofurano
coumarins

O OO

Anthogenol [31]
Felamidin [6]

Marmesin, rutaretin [25]

Antibacterial
Antibacterial
Anti-TB
Anti-TB

4 Pyrano coumarins are of two types

4a Linear type
OO O

H3C

H3C
Grandivittin [32]
Agasyllin [32]

Aegelinol benzoate [32]
Xanthyletin [25]

Antibacterial
Antibacterial
Antibacterial
Anti-TB
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Table 1: Continued.

Sl no. Type of coumarin General chemical structure Example with reference Pharmacological
activity

4b Angular type OO O
H3C

H3C

Inophyllum A, B, C, E, P, G1, and G2
[33]

Calanolide A, B, and F [34]
(+)-Dihydrocalanolide A and B [35]

Pseudocordatolide C [36]

Antiviral
Antiviral
Antiviral
Antiviral

5 Phenyl coumarins

O O

Isodispar B, dispardiol B, mammea
A/AB cyclo E, mammea A/AB
dioxalanocyclo F, disparinol D,

disparpropylinol B [37]

6 Bicoumarins
O O O O

Dicoumarol [38] Anticoagulant

O O
1

Scheme 1

O OO

O
2

OHO

HO

O
3

H3C

CH3

Scheme 2

The physicochemical properties and therapeutic applications
of natural coumarins depend upon the pattern of substitu-
tion.

3. Coumarins and Pharmacological Activity

3.1. Coumarins for Anti-Inflammatory Activity. Coumarin
(1) exhibits anti-inflammatory property and is used in the
treatment of oedema. This removes protein and oedema
fluid from injured tissue by stimulating phagocytosis,
enzyme production, and thus proteolysis [17]. Another
compound imperatorin (2) also shows anti-inflammatory
activity in lipopolysaccharide-stimulatedmousemacrophage
(RAW264.7) in vitro and a carrageenan-induced mouse paw

O

OH

O OO

HO

4

Scheme 3

edema model in vivo. Imperatorin blocks the protein expres-
sion of inducible nitric oxide synthase and cyclooxygenase-2
in lipopolysaccharide-stimulated RAW264.7 [39]. Esculetin
(3) was isolated from Cichorium intybus [40] and Bougainvil-
lea spectabilis Wild (Nyctaginaceae) [41]. It exhibited anti-
inflammatory activity in rat colitis induced by trinitroben-
zenesulfonic acid [18, 42]. Esculetin (3) inhibits the cyclooxy-
genase and lipoxygenase enzymes, also of the neutrophil-
dependent superoxide anion generation [43]. (See Scheme 2.)

3.2. Coumarins for Anticoagulant Activity. Dicoumarol (4)
was found in sweet clover [1] and exhibited anticoagulant
activity [38]. (See Scheme 3.)

Coumarins are vitamin K antagonists that produce their
anticoagulant effect by interfering with the cyclic intercon-
version of vitamin K and its 2,3 epoxide (vitamin K epox-
ide) [44]. Vitamin K is a cofactor for the posttranslational
carboxylation of glutamate residues to 𝛾-carboxyglutamates
on the N-terminal regions of vitamin K-dependent proteins
(Figure 1) [45–50].

These coagulation factors (factors II, VII, IX, and
X) require 𝛾-carboxylation for their biological activity.
Coumarins produce their anticoagulant effect by inhibiting
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Figure 1: Coumarin analogue warfarin and vitamin K cycle.

vitamin K conversion cycle, thereby causing hepatic produc-
tion of partially carboxylated and decarboxylated proteins
with reduced procoagulant activity [51, 52]. In addition
to their anticoagulant effect, vitamin K antagonists inhibit
carboxylation of the regulatory anticoagulant proteins C and
S and therefore have the potential to exert a procoagulant
effect. In the presence of calcium ions, carboxylation causes
a conformational change in coagulation proteins [53–55]
that promotes binding to cofactors on phospholipid surfaces.
The carboxylation reaction requires the reduced form of
vitamin K (vitamin KH

2
), molecular oxygen, and carbon

dioxide and is linked to the oxidation of vitamin KH
2
to

vitamin K epoxide. Vitamin K epoxide is then recycled
to vitamin KH

2
through two reductase steps. The first,

which is sensitive to vitamin K antagonist [47, 49, 50],
reduces vitamin K epoxide to vitamin K

1
(the natural food

form of vitamin K
1
), while the second, which is relatively

insensitive to vitamin K antagonists, reduces vitamin K
1
to

vitamin KH
2
. Treatment with vitamin K antagonists leads

to the depletion of vitamin KH
2
, thereby limiting the 𝛾-

carboxylation of vitamin K-dependent coagulant proteins.
The effect of coumarins can be counteracted by vitamin
K
1
(either ingested in food or administered therapeutically)

because the second reductase step is relatively insensitive to
vitamin K antagonists (Figure 1). Patients treated with a large
dose of vitamin K

1
can also become warfarin resistant for up

to a week because vitamin K
1
accumulates in the liver and is

available to the coumarin-insensitive reductase.

3.3. Coumarins for Antibacterial Activity. Coumarin (1) itself
has a very low antibacterial activity, but compounds having
long chain hydrocarbon substitutions such as ammoresinol
(5) and ostruthin (6) show activity against a wide spectrumof
Gram +ve bacteria such as Bacillus megaterium,Micrococcus

luteus, Micrococcus lysodeikticus, and Staphylococcus aureus
[19]. Another coumarin compound anthogenol (7) from
green fruits of Aegle marmelos [3] shows activity against
Enterococcus. Imperatorin (2), a furanocoumarin isolated
from Angelica dahurica and Angelica archangelica (Umbel-
liferae) [56], shows activity against Shigella dysenteriae [57].
Grandivittin (8), agasyllin (9), aegelinol benzoate (10) and
osthole (11) have been isolated from the roots of Ferulago
campestris (Apiaceae) [32]. Felamidin (12) was also iso-
lated from Ferulago campestris [6]. Aegelinol and agasyllin
showed significant antibacterial activity against clinically
isolated Gram-positive and Gram-negative bacterial strains
such as Staphylococcus aureus, Salmonella typhi, Enterobacter
cloacae, and Enterobacter aerogenes. Antibacterial activity
was also found against Helicobacter pylori where a dose-
dependent inhibition was shown between 5 and 25mg/mL.
(See Scheme 4.)

Many of the natural coumarins in existence have been
isolated from higher plants; some of them have been
discovered in microorganisms. The important coumarin
members belonging to microbial sources are novobiocin,
coumermycin, and chartreusin. Novobiocin (13) was iso-
lated as fungal metabolite from Streptomyces niveus [58]
and Streptomyces spheroides and has exhibited broad spec-
trum antibacterial activity against Gram-positive organisms
such as Corinebacterium diphtheria, Staphylococcus aureus,
Streptomyces pneumoniae, and Streptomyces pyogenes and
Gram-negative organisms such as Haemophillus influenzae,
Neisseria meningitides, and Pasteurella [21] and has shown
DNA gyrase inhibition activity [22]. Coumermycin (14), that
is, structurally similar to novobiocin is nearly 50 times more
potent than novobiocin, againstEscherichia coli and Staphylo-
coccus aureus, but it produces a bacteriostatic action, and the
organism developed resistance gradually. Coumermycin also
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inhibits the supercoiling of DNA catalyzed by Escherichia coli
DNA gyrase [22]. (See Scheme 5.)

Chartreusin (15) was isolated from Streptomyces
chartreusis and has an uncommon structure and was
predominantly active against Gram-positive bacteria [38],

but due to its toxicity, the compound has not been tried for
therapeutic application. (See Scheme 6.)

3.4. Coumarins for Antifungal Activity. Osthole (11) is a
bioactive coumarin derivative extracted from medicinal
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plants such as Angelica pubescens [59], Cnidium monnieri
[60], and Peucedanum ostruthium [61]. Osthole exhibited
wide spectrum of antifungal activity against important plant
pathogens such as Rhizoctonia solani, Phytophtora cap-
sici, Botrytis cinerea, Sclerotinia sclerotiorum, and Fusarium
graminearum [20]. A number of coumarins have been tested
for antifungal activity, and the three most effective ones are
psoralen (16) [11], imperatorin (2), and ostruthin (6). (See
Scheme 7.)

3.5. Coumarins for Antiviral Activity. A large variety of
natural products have been described as anti-HIV agents, and
compounds having coumarin nucleus are among them. The
inophyllums and calanolides represent novel HIV inhibitory
coumarin derivatives. Inophyllum A (17), inophyllum B (18),
inophyllum C (19), inophyllum E (20), inophyllum P (21),
inophyllum G1 (22), and inophyllum G2 (23) were isolated
from giant African snail, Achatina fulica. Inophyllums B and
P (18 and 21) inhibited HIV reverse transcriptase (RT) with
IC
50

values of 38 and 130 nM, respectively, and both were
active against HIV-1 in cell culture (IC

50
of 1.4 and 1.6 𝜇M)

[33]. (See Scheme 8.)
Two isomers, (+)-calanolide A (24) and (−)-calanolide

B (25), have been isolated from the leaves of Calophyllum
lanigerum (Clusiaceae). Calanolides A and Bwere completely
protective against HIV-1 replication [34]. (+)-Calanolide A
is a nonnucleoside RT inhibitor with potent activity against
HIV-1. (−)-Calanolide B and (−)-dihydrocalanolide B (26)
possess antiviral properties similar to those of (+)-calanolide
A [35, 62]. Both (+)-calanolide A and (+)-dihydrocalanolide
A (27) are stable at neutral pH and currently under devel-
opment for the treatment of HIV infections. However, at a
pH < 2.0 for 1 h, 73% of the (+)-calanolide A was converted
to (+)-calanolide B while 83% of (+)-dihydrocalanolide A
was converted to (+)-dihydrocalanolide B [35, 62]. Previously
inophyllum A (17) and (−)-calanolide B (25) were isolated
from the oil of seeds of Calophyllum inophyllum Linn and
Calophyllum cerasiferum Vesque, respectively. Both of them
belong to the family Clusiaceae and are known for potent
HIV-1 RT inhibitors [5]. (See Scheme 9.)

Pyranocoumarins such as pseudocordatolide C (28) and
calanolide F (29) were isolated from extracts of Calophyllum
lanigerum var. austrocoriaceum and Calophyllum teysmannii
var. inophylloide (King) P. F. Stevens (Clusiaceae). Both the
compounds exhibited anti-HIV activity [36]. Imperatorin (2)
also inhibits either vesicular stomatitis virus pseudotyped or
gp160-enveloped recombinant HIV-1 infection in several T-
cell lines and in HeLa cells [63]. (See Scheme 10.)

3.6. Coumarins for Anticancer Activity. Imperatorin (2)
exhibited anticancer effects [64]. Osthole (11) is effective
in inhibiting the migration and invasion of breast cancer
cells by wound healing and transwell assays. Luciferase and
zymography assays revealed that osthole effectively inhibits
matrix metalloproteinase-s promoter and enzyme activity,
which might be one of the causes that lead to the inhibition
of migration and invasion by osthole [65]. Esculetin (3)
exhibited antitumor activities [66] and rescues cultured
primary neurons from N-methyl-D-aspartate toxicity [67].
Protective effects of fraxin (30) against cytotoxicity induced
by hydrogen peroxide were examined in human umbilical
vein endothelial cells [24].Most of the coumarins grandivittin
(8), agasyllin (9), aegelinol benzoate (10), and osthole (11)
from Ferulago campestris plant exhibited marginally cyto-
toxic activity against the A549 lung cancer cell line [6].
Chartreusin (15) was shown to exhibit antitumor properties
against murine L1210, P388 leukemias, and B16 melanoma
[23]. 3-Demethylchartreusin (31) is a novel antitumor
antibiotic produced by Streptomyces chartreusis and it was
a structural analogue of chartreusin containing the same
aglycone of chartreusin, but different sugarmoieties [38]. (See
Scheme 11.)

Coumarin (1) which is isolated form cassia leaf oil
exhibited cytotoxic activity [10].

3.7. Coumarins for Antihypertensive Activity. Dihydromam-
mea C/OB (32) is a new coumarin that has been isolated
from the seeds of the West African tree Mammea africana
Sabine (Guttiferae) [68]. The molecular structure has been



BioMed Research International 7

O OO

16

Scheme 7

OO O

H

O

O

O

O O

O
H

O

O

O O

H
OH

20

21 22

O

O

O O

OH
H

O

O

O O

OH
H

O

O

O O

H

O

17 18 19

OO O

H

O

23

H3C

H3C H3C

H3C H3C

H3C

H3C

H3C

H3C H3C

H3C

H3CH3C

H3C

H3C

H3C

CH3 CH3 CH3

CH3

CH3 CH3

CH3 CH3

CH3 CH3

CH3CH3

Scheme 8

O

O

O O

OH

O

O

O O

OH

O

O

O O

OH

O

O

O O

OH

24 25 26 27

H3C

H3C H3C

H3C H3C

H3C H3C

H3CCH3
CH3

CH3 CH3

CH3
CH3

CH3
CH3

CH3 CH3

CH3CH3

Scheme 9

elucidated by single crystal X-ray method [69]. Antihy-
pertensive effects of the methanol and dichloromethane
extracts of stem bark from Mammea africana in N𝜔-nitro-
L-arginine methyl ester induced hypertensive male albino
Wistar rats weighing 250–300 g of 12–16-week old rats have
been used in the studies [70].Dichloromethane andmethanol
extracts of stem bark from Mammea africana exhibited
a significant antihyperglycemic activity and improved the
metabolic alterations in streptozotocin-induced male albino

Wistar diabetic rats (3-month-olds, weighing 200–250 g) [71].
Vasodilatory effects of the coumarin are reported on cultured
myocardial cells as well [72]. Scopoletin (33) was isolated
form the fruits of Tetrapleura tetraptera TAUB (Mimosaceae)
and it produces hypotension in laboratory animals in vitro
and in vivo through its smooth muscle relaxant activity
[4]. Visnadine (34), an active ingredient extracted from the
fruit of Ammi visnaga, exhibited peripheral and coronary
vasodilator activities and has been used for the treatment
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of angina pectoris [2]. Khellactone (35) was isolated from
Phlojodicarpus sibiricus and it exhibited vasodilatory action
[73]. (See Scheme 12.)

3.8. Coumarins for Antitubercular Activity. Umbelliferone
(36) is found in many plants and obtained by the distilla-
tion of resins belonging to the natural order Umbelliferae
[27]. Umbelliferone (36), phellodenol A (37), psoralen (16)
and scopoletin (33), bergapten (38), (+)-(S)-marmesin (39),
(+)-(S)-rutaretin (40), and xanthyletin (41) were isolated
from the whole plants of Fatoua pilosa. The compounds
scopoletin and umbelliferone are found to be active against
Mycobacterium tuberculosis H

37
Rv with MIC values of 42

and 58.3𝜇g/mL, respectively [25]. Compounds phellodenol
A, (+)-(S)-marmesin and xanthyletin exhibited activity at 60
𝜇g/mL and the remaining compounds exhibited activity at
more than 119 𝜇g/mL. Phellodenol A was also isolated from
the leaves of Phellodendron amurense var. wilsonii [8]. (See
Scheme 13.)

3.9. Coumarins for Anticonvulsant Activity. Imperatorin (2)
showed anticonvulsant action in mice and the ED

50
val-

ues ranged between 167 and 290mg/kg. Acute neurotoxic
effects in the chimney test revealed that the TD

50
values for

imperatorin ranged between 329 and 443mg/kg [56]. Osthole
(11) exhibited anticonvulsant action in mice and the ED

50
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values ranged between 253 and 639mg/kg and the acute
neurotoxic effects with the TD

50
values ranged between 531

and 648mg/kg [74].

3.10. Coumarins for Multiple Sclerosis. Osthole (11) could be
a potential therapeutic agent for the treatment of multiple
sclerosis [75].

3.11. Coumarins for Antiadipogenic Activity. Fraxidin (42),
[26] fraxetin (43), fraxin (30), esculetin (3), esculin (44),
and scopoletin (33) have been isolated from the stem barks
of Fraxinus rhynchophylla DENCE (Oleaceae). Esculetin
(3) showed the most potent antiadipogenic activity against
preadipocyte cell line, 3T3-L1 by in vitro assay system [27].
(See Scheme 14.)

3.12. Coumarins for Cytochrome P450 Inhibiting Activity.
Methoxsalen (8-methoxypsoralen) (45) is found in the seeds
of the Ammi majus (Umbelliferae) and exhibited potent
mechanism-based microsomal P 450 inhibitor in vitro [76]

and single-dose methoxsalen effects on human cytochrome
P 450 2A6 activity [30]. (See Scheme 15.)

3.13. Coumarins for Antihyperglycemic Activity. Fraxidin (42)
inhibited the formation of inducible nitric oxide synthase [77]
and showed antihyperglycemic activity [78].

3.14. Coumarins for Antioxidant Activity. Fraxin (30) showed
free radical scavenging effect at high concentration (0.5mM)
and cell protective effect against H

2
O
2
-mediated oxidative

stress [24]. Esculetin (3) exhibited antioxidant property [79].
The antioxidant activity of the coumarins grandivittin (8),
agasyllin (9), aegelinol benzoate (10), and osthol (11) was
evaluated by their effects on human whole blood leukocytes
and on isolated polymorphonucleated chemiluminescence
[32]. Fraxin (30) and esculin (44) were characterized in stems
and fruits of Actinidia deliciosa (kiwifruit) and Actinidia
chinensis [80]. Fraxin (30) extracted fromWeigela florida var.
glabra leaves (Caprifoliaceae) protects cells from oxidative
stress.
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3.15. Coumarins for Neuroprotective Activity. Esculetin
(3) also exhibited neuroprotective effects on cerebral
ischemia/reperfusion injury in a middle cerebral artery
occlusion model in mice at 20𝜇g/mL and was administered
intracerebroventricularly at 30min before ischemia [81].

3.16. Coumarins as Phytoalexins. Phytoalexins are oxy-
genated coumarin derivatives and they are produced in plants
in response to fungal infection, physical damage, chemical
injury, or a pathogenic process. The common property of
phytoallexins is to inhibit or destroy the invading agents such
as bacteria, insects, and viruses. Ayapin (46) is one among
them and structurally it is 6,7-methylenedioxycoumarin. Ini-
tially it was isolated from Eupatorium ayapana (Asteraceae)
[4]. Later, ayapin (46) was isolated from a number of other
plants such as Helianthus annuus [8], Artemisia apiacea [2],
Pterocaulon virgatum [14], and Pterocaulon polystachyum
[15]. (See Scheme 16.)

4. Identification of Coumarins from Different
Sources and Their Structural Elucidation

Coumarin compounds isodispar B (47), dispardiol B, (48),
mammea A/AB cyclo E (49), mammea A/AB dioxalanocyclo
F (50), disparinol D (51), and disparpropylinol B (52) have

been isolated from the fruits and the stem bark of Calophyl-
lum dispar (Clusiaceae) [37, 82, 83]. (See Scheme 17.)

Seed oil [5] and essential oils such as cinnamon bark oil
[11] and lavender oil from roots (Ferulago campestris) [6],
contain some amount of coumarin compound (1).

The main coumarin constituents found from the leaves
of Murraya paniculata are 7-methoxy-8-(3-methyl-2-
oxobutoxy)-2H-chromen-2-one (53) [7] and murrayatin
(54). The latter was also found in the leaves of Murraya
exotica [28]. (See Scheme 18.)

Prenylcoumarins (+)-fatouain A (55), (+)-fatouain A
(56), (+)-fatouain C (57), (−)-fatouain D (58), (+)-fatouain
E (59), and (−)-fatouain F (60), along with two new bis-
prenylcoumarins, (+)-fatouain G (58), and (+)-fatouain H
(59), have been isolated from the whole plants of Fatoua
pilosa [84]. (See Scheme 19.)

Marmin (63) is isolated from the bark. Imperatorin
(2) and aurapten (64) are isolated from the fruit of Aegle
marmelos (linn) Correa commonly known as Bael (or Bel)
belonging to the family Rutaceae [29]. (See Scheme 20.)

5. Analysis of Coumarins by Different Methods

Various methods for the isolation and analysis of coumarins
are chromatography (paper chromatography, thin layer chro-
matography, gas chromatography, and high-performance
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liquid chromatography), titrimetric and spectrophotometric
(colorimetric and polarographic) methods. Methods for the
analysis of coumarin derivatives stipulated by official phar-
macopoeias (US Pharmacopoeia (23rd Edition), European

Pharmacopoeia (3rd Edition, Suppl. 2001), and British Phar-
macopoeia (16th Edition, 1998) and methods for coumarin
determination in yellow sweet clover have been reviewed
[85].
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6. Conclusion

This paper covers natural coumarin lead compounds and
their broad pharmacological properties and their meth-
ods of identification according to their official pharma-
copoeias. Natural coumarins are of great interest due to their
widespread pharmacological properties, and this attracts
manymedicinal chemists for further backbone derivatization
and screening them as several novel therapeutic agents.
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